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The renormalization group (RG) is a class of theoretical techniques used to explain the collective
physics of interacting, many-body systems. It has been suggested that the RG formalism may be
useful in finding and interpreting emergent low-dimensional structure in complex systems outside
of the traditional physics context, such as in biology or computer science. In such contexts, one
common dimensionality-reduction framework already in use is information bottleneck (IB), in which
the goal is to compress an “input” signal X while maximizing its mutual information with some
stochastic “relevance” variable Y. IB has been applied in the vertebrate and invertebrate processing
systems to characterize optimal encoding of the future motion of the external world. Other recent
work has shown that the RG scheme for the dimer model could be “discovered” by a neural network
attempting to solve an IB-like problem. This manuscript explores whether IB and any existing
formulation of RG are formally equivalent. A class of soft-cutoff non-perturbative RG techniques
are defined by families of non-deterministic coarsening maps, and hence can be formally mapped
onto IB, and vice versa. For concreteness, this discussion is limited entirely to Gaussian statistics
(GIB), for which IB has exact, closed-form solutions. Under this constraint, GIB has a semigroup
structure, in which successive transformations remain IB-optimal. Further, the RG cutoff scheme
associated with GIB can be identified. Our results suggest that IB can be used to impose a notion

of “large scale” structure, such as biological function, on an RG procedure.

I. INTRODUCTION

An overarching theme in the study of complex sys-
tems is effective low-dimensionality. We are content, for
example, with the existence of laws of fluid dynamics
whose few phenomenological parameters accurately ac-
count for the macroscopic behavior of many completely
different fluids. We are also confident that the laws are
insensitive to the particular microscopic configuration of
a fluid at any given time. These are connected, but dif-
ferent notions of low-dimensionality; the first deals with
simplification in model space, while the second refers to
the emergence of collective modes, of which relatively
few, when compared to the total number of degrees of
freedom, will be important. A central result of Wilson’s
renormalization group (RG) formulation is that an ef-
fective low-dimensional model of a system may be found
through repeated coarsening of the microscopic or “bare”
model. In other terms, by successively removing dynam-
ical degrees of freedom from the system description, the
effective model “flows” towards a description involving
very few parameters. In general, there are many strate-
gies which can be used to simplify the description of a
high-dimensional system, and RG methods, though vast
in breadth, form only a subset of these. An altogether
different dimensionality reduction framework is the infor-
mation bottleneck (IB), which attempts to compress (or
more accurately coarsen) a signal while keeping as much
information about some a priori defined “relevance” vari-
able as possible [I]. Both IB and RG have been applied
in theoretical neuroscience [2H5], computer science [6-
11], and other frontier areas of applied statistical physics

[12, 13]. Given the ubiquitous need to find simplifying
structure in complex models and data, a synthesis of the
ideas present in IB and RG could yield powerful new
analysis methods and theoretical insight.

Probability-theoretic investigations of renormalization
group methods are not a recent development [14]. One
early paper by Jona-Lisinio used limit theorems from
probability theory to argue the equivalence of older, field-
theoretic RG formalism due to Gell-Mann and Low with
the modern view due to Kadanoff and Wilson [I5]. Re-
cent work [I3], [16H20] has focused on connections of RG
to information theory. Since the general goal in RG is to
remove information about some modes or system states
through coarsening, an effective characterization of RG
explains how the information loss due to coarsening gen-
erates the RG flow or relates to existing notions of emer-
gence. Moreover, like the probabilistic viewpoint pro-
moted by Jona-Lisinio, the information-theoretic view-
point enjoys a healthy separation from physical context.
The hope is that, by removing assumptions about the
particular organization or interpretation of the degrees
of freedom in the system, RG methods can be general-
ized and made applicable to problems outside of a tra-
ditional physics setting [5l [2I]. This viewpoint also has
the potential to enrich traditional RG applications, as
Koch-Janusz et al. point out [I2]. Their neural-network
implementation of an IB-like coarsening scheme was able
to “discover” the relevant, large-scale modes of the dimer
model, whose thermodynamics are completely entropic,
and whose collective modes do not resemble the initial
degrees of freedom. More recently, Gordon et al. built
upon this scheme to formally connect notions of “rele-



vance” between IB and RG [13].

In contrast to most RG formulations which require an
explicit, a priori notion of how the modes of the system
should be ordered, the information bottleneck approach
defines the relevance of a feature by the information it
carries about a specified relevance variable. To be con-
crete, let X be a random variable, called the “input,”
which we wish to coarsen. Then, let Y be another ran-
dom variable, called the “relevance variable,” which has
some statistical interaction with the input X. IB defines
a non-deterministically coarsened version of X, X, which
is optimal in the sense that the mutual information (MI)
between X and Y is maximized. Because X is defined as
a non-deterministic coarsening of X, an exact correspon-
dence between RG and IB demands that the RG scheme
uses what is known as a “soft” cutoff. This means, for ex-
ample, that the ubiquitous perturbative momentum shell
approach put forth by Wilson cannot be mapped exactly
onto IB under the interpretation of X as some coarse-
grained variable. The trade-off between degree of coars-
ening, indicated by I(X; X) and the amount of relevant
information retained I(X;Y) is controlled by a continu-
ous variable, denoted 3. Formally, the non-deterministic
map which yields X from X is found by optimizing the
IB objective function:

Py(&lx) = argminpz, I(X§X) - 51(X§Y) (1)

For large values of 3, the compressed representation
is more detailed and retains a greater deal of predictive
information about Y. Conversely, for smaller 3, rela-
tively few features are kept, in favor of reducing I(X; X)
(increasing compression/coarsening). The formalism in-
vestigated here is the one originally laid out in 2000 by
Tisbhy et al. [I], but since then a number of thematically
similar IB schemes have been proposed [2224]. 1B meth-
ods have been employed extensively in computer science,
specifically towards artificial neural networks and ma-
chine learning [6HIT]. In theoretical neuroscience, Palmer
et al. have demonstrated using IB that the retina opti-
mally encodes the future state of some time-correlated
stimuli, suggesting that prediction is a biological func-
tion instantiated early on in the visual stream [4] 25]. IB
has also been applied in studies of other complex sys-
tems, for instance to efficiently discover important re-
action coordinates in large MD simulations [26], and to
rigorously demonstrate hierarchical structure in the be-
havior of Drosophila over long timescales [27].

From a broad perspective, there are some basic sim-
ilarities between RG and IB. Both frameworks entail a
coarsening procedure by which the irrelevant aspects of
a system description are discarded in order to generate a
lower-dimensional, “effective” picture. Further, the La-
grange multiplier 8 in IB, which parameterizes the level
of detail retained, can be seen as roughly analogous to
the scale cutoff present in some implementations of RG.
As a first guess, one might imagine that X in IB roughly
corresponds to the (fluctuating) bare state of a system
we are interested in renormalizing, and its compressed

representation X is a coarsened dynamical field akin to
a fluctuating “local” order parameter. However, it is not
difficult to find implementations of RG which do not map
to IB in this way, and vice versa. For example, in Wilso-
nian RG schemes with a hard momentum cutoff, the dec-
imation step represents a deterministic map from bare to
coarsened system state. Together with our provisional
interpretation, this contradicts the original formulation
of IB, in which the coarsening is non-deterministic [28].

Another, more serious discrepancy is due to the ex-
pected use cases of these two theoretical frameworks.
Generically, the fixed point description of criticality of-
fered by RG is legitimate due to the presence of infinitely
many interacting degrees of freedom, otherwise the coars-
ened model cannot be mapped back into the original
model space. In IB, the random variables X is finite-
dimensional, such as a finite lattice of continuous spins,
and “dimensional reduction” does not refer to the con-
vergence towards a low-dimensional critical manifold in
model space, but instead the actual removal of dimen-
sions from the coarsened representation of X. Finally,
and perhaps most dauntingly, there is not an obvious
equivalent of the IB relevance variable Y in RG. It seems
counterintuitive that one would want more control over
the collective mode basis used to describe a system, when
for the vast majority of RG applications, length or energy
scale works perfectly well as a cutoff.

Despite these apparent mismatches, there are some sig-
nificant structural similarities between IB for continuous
variables and a class of RG implementations involving
soft cutoffs. For concreteness, we restrict our discussion
of the correspondence to Gaussian statistics. While this
precludes the analysis of non-Gaussian criticality, it al-
lows all of the results to be expressed analytically and
makes connections more transparently. This can also
serve as a basis for later investigations involving non-
Gaussian statistics and interacting systems. To begin,
we show that Gaussian information bottleneck (GIB) [29)
exhibits a semi-group structure in which successive IB
coarsenings compose larger 1B coarsenings. This struc-
ture is summarized in an explicit function of the Lagrange
multiplier 8 which simply multiplies under semigroup
action and is therefore analogous to the length scale
in canonical RG. Next we explore how the coarsening
map P(Z|z) provided by IB defines an infra-red regulator
which serves as a soft cutoff in several non-perturbative
renormalization group (NPRG) schemes. This relation
shows that the freedom inherent in choosing a cutoff
scheme maps directly to the choice of Y-statistics in IB.
Finally, we use a Gaussian field theory as a toy model to
explore the physical significance of this fact. One result
is that the RG scheme provided by IB can select a collec-
tive mode basis which is not Fourier, and hence impose a
cutoff which cannot be interpreted as a wavenumber. Ad-
ditionally, in whichever collective mode basis is chosen,
the shape of this IB cutoff scheme is closely related to the
Litim regulator which is ubiquitous in NPRG literature
[30].



II. SEMIGROUP STRUCTURE IN GAUSSIAN
INFORMATION BOTTLENECK

Every IB problem begins with the distribution P(x,y),
which specifies the statistical dependencies linking the
input variable X to the relevance variable Y. Gaussian
information bottleneck (GIB) refers to the subset of 1B
problems in which P(x,y) is jointly Gaussian. Under this
constraint, a family of coarsening maps Pg(Z|z) can be
found exactly for all 8. Chechik et al. [29] showed this by
explicitly parameterizing the coarsening map, then min-
imizing the IB objective function with respect to these
parameters. Their parameterization consists of two ma-
trices A and ¥¢, which are used to define the compressed
representation X as a linear projection of the input plus
a Gaussian “noise” variable £. Explicitly, X = AX + ¢

with §& ~ N(0,%¢). Under this parameterization, one
exact solution is given by:
Ye=1
A(B) = diag {ai(8 )}‘//T 2)
1/2
—Xi)—
a;(B) = [5(1/\isi) 1] e (ﬁ - 1in)

Where O is the Heaviside step function and s; =
[VTY xV];. The matrix V represents a set of eigenvec-
tors with corresponding eigenvalues A; in the following
way:

Sy SxyV = Vdiag {\;} .

The matrix 2}12 x|y used above also appears in
canonical correlation analysis and we therefore refer to
it as the “canonical correlation matrix”. Note that since
it is not generally symmetric, the eigenvector matrix V
is not generally orthogonal. An important property of
the canonical correlation matrix is that its eigenvalues
lie within the unit interval; that is, A; € [0,1] for all 7.

The GIB solution is not unique. At a cursory
level, this follows from the IB objective function ,
which is a function only of mutual information terms
and hence invariant to all invertible transformations on
X, X, and Y. However, not all invertible transforma-
tions X — f(X) will leave the joint distributions P(z,y)
and Pg(x,Z) Gaussian. It is specifically invertible linear
transformations X — LX (and analogous transforma-
tions for X and Y) which preserve IB optimality and
leave all joint distributions Gaussian. One consequence
of this is that X — LX changes the coarsening param-
eters (A,%¢) — (LA, LY LT) = (A", %] ) If L is invert-
ible, then these new parameters also solve GIB. When
testing whether a given parameter combination (A4, 3¢)
is GIB-optimal, it is therefore useful to consider the quan-
tity V_lATZglAV_T, Which is invariant to all invert-
ible linear transformations on X, X, and Y.

In this section, we show that solutions to GIB have an
exact semigroup structure, wherein two GIB solutions
“chained together” compose a larger solution which is

still optimal. To be more precise, let P(z,y) be jointly
Gaussian, then suppose Pg, (Z1|z) is IB optimal. Because
Pg, (#1]z) is Gaussian under the parameterization X; =
A1 X +¢&1, it must also be that P(Z1,y) is jointly Gaussian
and thus a valid starting point for a new GIB problem.
Taking X; to be the new input variable, let the second
optimal coarsening map be Pg,(Z2|z), and parameterize
it the same way: Xo = Ay Xy + &, Then, we claim, the
composition of these two coarsening maps, obtained by
integrating the expression Pg,(Z2|Z1)Pg, (Z1|z) over i,
is also given by a single IB-optimal coarsening Pg(Z|x)
for some 3 = 3 0 81, where o is a binary operator whose
explicit form will be provided shortly. We represent this
composition schematically with the Markov chain:

Yo x 2% 52, (3)

To simplify the analysis, we begin by redefining [31] the
input variable X by projecting it onto the eigenvectors
of the canonical correlation matrix. Assuming that V is
full-rank,

X -VvTrx

is an invertible linear transformation. Invertibility guar-
antees that the objective function is unaffected, while
linearity guarantees that P(y,x) remains Gaussian. We
call this new basis for X the “natural basis” since af-
ter this transformation ¥ x, ¥ x|y, and A; are diagonal.

Additionally, after the first compression to X;, the new
analogous quantities, e.g. Xy , Z;my, and A, will re-
main diagonal. For the transformation matrices A; and
Ay, this fact can be seen by inspecting , while Lemma
B.1. in [29] proves that ¥x and X x|y are diagonal. In
this new basis, they are given by:

(Ex)ij = 8i6ij ,
(Ex)v)ij = siMidsj -

We now show that successively applied GIB compres-
sion as portrayed in composes GIB transformations of
greater compression. A more detailed treatment is given
in appendix @ Suppose that A and ¥ describe a non-
deterministic map AX + £. From Lemma A.1. in [29],
this map (A, X¢) is IB-optimal if there exists some § such
that

[ATS ALy = o (8)di5

where «a; is as given in .

Consider two successive maps with bottleneck param-
eters §; and (2, each with unit noise. The composi-
tion of these transformations is represented by the pair
(A,Ef) = (AQA],AQA% + I) Both Al and AQ can
be computed explicitly using , though Ay is initially
given in terms of the statistics P(Z1,y). Using X, =
A1 X + &, we thus re-write Ay in terms of the original
relevance variable-input variable statistics P(z,y). Af-
ter this substitution, direct evaluation of ATEglA shows



that (A2A;, A2 AT + 1) is IB optimal:
[A1A2(A5 + 1) Ay Arlij = oF (B2 0 B1)6ij

where By o By is the bottleneck parameter of the full, 1-
step compression:

B251
Bo+p1—1"

It is important to note that this computation defines
the binary operator o. If GIB did not have a semigroup
structure, it would not be possible to identify o in this
manner. Direct computations show that this operator
satisfies closure and associativity, and thus furnishes the
space in which S values live, that is R > 1, with a semi-
group structure. As bonuses, if we consider 8 = oo to
be an element, we see that it is the identity element.
This aligns with the fact that in the limit 8 — oo, the
IB objective becomes insensitive to the encoding cost
I(X;X) and hence no coarsening occurs; X becomes a
deterministic function of every component of X which
contains information about Y. Further, o is symmet-
ric. One should be careful to note, however, that the
maps P, op,(Z|z) and Pa,op, (Z|z) need only agree in the
overall level of compression achieved, and may otherwise
differ since X — LX is a symmetry.

Paofr = (4)

A. What is the significance of this structure?

A broad goal of this paper is to explore structural sim-
ilarities between IB and RG. The semigroup structure
present in Wilsonian RG is crucial to its explanation of
scaling phenomena, so its presence in GIB is a promis-
ing sign. The traditional picture is this: consider the
RG transformations R, and R, which rescale length
by factors b; and by, respectively. Then a fundamental
property of R is that Ry, Ry, = Ripyp,- This structure
imposes a strong constraint on the behavior of the flow
near a fixed point. If o represents an eigenvector of the
Jacobian matrix at the fixed point, then its associated
eigenvalue A\, will scale as b¥<[32]. In short, the semi-
group typically allows one to define the critical exponent
Yo

The operator o we introduced does not immediately
lend itself to this sort of analysis. However, we can
introduce a function b(8) which satisfies b(f2 o 1) =
b(B2)b(B1). By inspection, this function is given by:

B
bB) = 5 -

This quantity is interesting because it is analogous to
the length-rescaling factor found in typical Wilsonian or
Kadanoff RG schemes, yet in IB there is no need for a no-
tion of space, and hence rescaling length generally means
nothing. Compare this with, for example, a momentum-
shell decimation scheme. One identifies the rescaling

factor by comparing the new and old UV cutoffs, and
so it acquires the meaning of a length-rescaling factor.
Here, b is determined entirely by the Lagrange multiplier
B and the structure of GIB, both of which are defined
without deference to an a priori existing notion of spa-
tial extent. As discussed in the introduction, connecting
IB to RG is attractive, in part, precisely because IB is
an information-theoretic framework and does not rely on
physical interpretations. Hence this rescaling factor b
should be considered an information-theoretic quantity
in the same way as f3.

Can b(B) as defined above be used in the same way
as the rescaling factor b is used in RG? First, limits of
the IB problem involving extremal values of § should
match intuition about b in an RG context. Indeed, for
B — oo, the zero-coarsening limit, b(8) — 1. Next, by
the data processing inequality, at 3 = 1 the optimal IB
solution is degenerate with complete coarsening, i.e. X
becomes independent of X. Correspondingly, the limit
B — 1 gives b(8) — oo. Next, let us recall the scope of
the GIB framework. GIB makes statements only about
completely Gaussian statistics, so no anomalous scaling
will appear, and thus a discussion of critical exponents
is hard to motivate. Second, GIB is defined for finite-
dimensional X and Y, so we cannot simply connect it to,
say, momentum-shell Wilsonian RG, which only makes
statements about infinite systems. Finally, and related
to the last point, we have not identified yet what the
analogous “model space” is in the context of IB, or how
an optimal GIB map could represent an RG transforma-
tion in that space. This will be the subject of the next
section, where we show that the non-deterministic nature
of IB coarsening aligns exactly with existing soft-cutoff
RG methods.

Whether or not this analysis helps to formally con-
nect IB and RG, it is interesting to ask whether other
IB problems exhibit semigroup structure. Omne could
imagine, for example, that a series of high-8 compres-
sion steps (low-compression limit) might be easier than
one large compression step. If this is the case, IB prob-
lems with semigroup structure may benefit from an it-
erative chaining scheme similar to the one we present
here. One possible application of this structure is the
construction of feed-forward neural networks with IB ob-
jectives. If the IB problem in question has semigroup
structure, then the task of training the entire network can
be reduced to training the layers one-by-one on smaller
(higher-compression) IB problems. This has benefits in
biological systems, such as biochemical and neural net-
works, where processing is often hierarchical, likely as
a result of underlying evolutionary and developmental
constraints. Biological systems are also shaped by their
output behavior, which sets a natural relevance variable
in the arc from sensation to action.



III. STRUCTURAL SIMILARITIES BETWEEN
IB AND NPRG

A. Soft-cutoff NPRG is a theory of
non-deterministic coarsening

The renormalization group is not a single coherent
framework, but rather a collection of theories, compu-
tational tools, and loosely-defined motifs. As such, it
is probably not possible to succinctly define RG on the
whole. A common theme, at least, is that RG tech-
niques describe how the effective model of a given system
changes as degrees of freedom are added or removed. The
modern view of RG theory, which is largely due to Wil-
son [33H37] and Kadanoff [38], concerns itself with the
removal of degrees of freedom through a process known
as decimation, in which a thermodynamic quantity (typi-
cally the partition function) is re-written by performing a
configurational sum or integral over a subset of the orig-
inal modes. Here, even before discussing rescaling and
renormalization, we must make procedural choices. To
begin, one must specify the subset of degrees of freedom
which are to be coarsened off. In theories where modes
are labelled by wavenumber or momentum, one typically
establishes a cutoff and decimates all modes with momen-
tum above it. As a result, those modes are completely
removed from the system description, and their statis-
tics are incorporated into the couplings which parame-
terize the new effective theory. Another consideration is
the practicality of carrying out such a procedure. If the
model in consideration can be expanded in a perturbation
series about a Gaussian model, and if the non-Gaussian
operators are irrelevant or marginal under the flow, then
this analysis is amenable to perturbative RG. However,
this is often not the case, for example in systems far from
their critical dimension, or in non-equilibrium phase tran-
sitions, where there may not even be critical dimensions
[39, [40].

In non-perturbative RG (NPRG) approaches, the need
for a perturbative treatment is removed by working from
a formally exact flow equation at the outset. The first
such treatment was put forth in 1973 by Wegner and
Houghton, who used Wilson’s idea of an infinitesimal
momentum-shell integration to derive an exact flow equa-
tion for the full coarse-grained Hamiltonian [41]. Be-
cause this equation describes the evolution of the Hamil-
tonian for every field configuration, this and other NPRG
flow equations are called integro-differential equations,
and the NPRG is sometimes referred to as the func-
tional renormalization group (FRG). Later, Wilson and
Kogut [35], as well as Polchinski [42], proposed new
NPRG flow equations in which the cutoff was not de-
scribed explicitly through a literal demarcation between
included and excluded modes, but instead through non-
deterministic coarsening, so that the effective Hamilto-
nian satisfies a functional generalization of a diffusion
equation [43]. These approaches were introduced, at least
in part, as a response to difficulties [44] that arise from

the sharp cutoff in the Wegner-Houghton construction.
Correspondingly, the Wilson-Polchinski FRG approach
can be thought to give a soft cutoff, where modes can be
“partially coarsened”.

The most common NPRG approach in use today was
first described in 1993 by C. Wetterich [45]. Like the
Wilson-Polchinski NPRG, the Wetterich approach uses
a soft cutoff, but the objects computed by this frame-
work are fundamentally different. Instead of comput-
ing the effective Hamiltonian of modes which are below
the cutoff, the Wetterich framework computes the ef-
fective free energy of modes above the cutoff. For this
reason, we say that the Wilson-Polchinski framework is
UV-regulated and Wetterich is IR-regulated. Yet, de-
spite this difference in perspective, the Wetterich formal-
ism still describes the flow effective models make from
their microscopic to macroscopic pictures. In this sec-
tion, we will explore how the soft-cutoff construction is
related to a notion of non-deterministic coarsening, and
in turn, the information bottleneck framework. An in-
depth discussion of the philosophy and implementation
of NPRG techniques would be distracting, so we instead
refer the reader to a number of good references on the
topic [46H49].

So far we have not explained how one actually imposes
a soft-cutoff scheme. We begin by examining the Wet-
terich setup, in which one writes the effective (Helmholtz)
free energy at cutoff k:

WilJ] = log [ Dyesp [ SD — ASel]

Y [ate Ja<x>xa<x>] .

The bare action, given by .S, is the microscopic the-
ory which is known a priori. The source J allows us to
take (functional) derivatives of this object to obtain cu-
mulants (connected Green’s functions). The remaining
term ASy[x] is known as the deformation, and it is this
term which enforces the cutoff. It is written as a bilinear

in x:
ASHM=:%E:/ﬁﬁmﬁymﬂw@zMXﬁﬂxdw~@)
ab

For compactness, we will often resort to a condensed
notation and express integrals instead as contraction over
suppressed continuous indices. For example, the defor-
mation may be re-written:

1
A&M=§ﬂ&x

The kernel (matrix) R is known as the regulator, and
it controls the “shape” of the cutoff. Almost always, it is
chosen to be diagonal in Fourier basis so that the cutoff
k has the interpretation of a wavenumber or momentum.
The resulting Fourier-transformed regulator Ry (g) has
some freedom in its definition, but it must satisfy the
following properties [30]:



1. limq2/k2ﬁ0 Rk(q) >0
2. limkz/q'z_)O Rk(q) =0

3. Rp(¢) >0 Yq as k— o

These constraints guarantee that the deformation acts
as an IR cutoff. The first condition increases the effec-
tive mass of low-momentum modes and suppresses their
contribution to the effective free energy. The second en-
sures that modes with high momentum (¢ > k2) are left
relatively unaffected, and contribute more fully to W.
The third condition ensures that the so-called “effective
action,” defined as

Tile] = Tt — Wi[J] — ASk[e],

approaches the bare action (or Hamiltonian, as the case
may be) in the limit &k — oo. Here, the order parameter ¢
is given by §Wy[J]/§JT. Because of this construction, the
second regulator property also ensures that in the limit
k — 0, the deformation AS}, disappears, and the effective
action I'y, becomes the Legendre transform of W[J]. This
functional I'y—¢ is known in many-body theory as the 1PI
generating functional, and in statistical mechanics as the
Gibbs free energy. In the Wetterich formalism, one is
generally interested in computing the flow of I'y, because
of these useful boundary conditions.

To see how this approach is related to non-
deterministic coarsening, we will connect it to a soft-
cutoff UV-regulated approach, also put forth by Wet-
terich, which is formally equivalent to the Wilson-
Polchinski framework. We begin with the following ex-
pression defining the average action I'3V Y], taken directly
from the paper [50], with only a slight change in notation:

V] = log / Dx Pilxx] exp(~S[])

where we refer to this functional Pg[x|x] as the coars-
ening map. If we were interested in performing deter-
ministic coarsening, i.e. one involving a hard cutoff, the
coarsening map would be something like a delta-function
d(x — Px[x]) for some functional ®;. However, in all
soft-cutoff UV-regulated approaches, this distribution is
Gaussian in x

- 1 1,
Py[XIx] = exp ~5 (X — A A (X~ Ax) — C
(6)

In principle, given the coarsening parameters Ay and
Ay for all k, the exact flow equation for I'}V is deter-
mined. Wetterich gives explicit choices for these param-
eters, while Wilson and Polchinski independently give
their own (though in slightly different fashion). The term
C}, is a normalizing constant which is essentially unim-
portant to the remainder of our discussion.

Now we connect the IR and UV approaches to show
that they are complementary, and in some sense, equiv-
alent. In particular, suppose we know Py [x|x] for all k.

Then, from this single object, one can construct both
the IR-regulated and UV-regulated flows. This should
make intuitive sense; the IR-regulated part tracks the
thermodynamics of the already-integrated modes, while
the UV-regulated part tracks the model of the uninte-
grated modes. This can all be seen clearly by writing out
the full sourced partition function Z[J] and invoking the
normalization of the coarsening map.

A /Dx exp (—S[x] + J'X)
= /D)ZDX Pi[x|x] exp (—S[X] + JTx)
- [prew (;xm,;lx W Jbzﬂ) )

In the final expression, the normalizing constant Cj
has been dropped. Readers familiar with the Polchinski
formulation will immediately recognize Wi [J[X]] as the
effective interaction potential. However, the argument to
this potential is shifted by the source J, which therefore
enters nonlinearly, unlike in Polchinski’s approach. This
difference is due to the fact that we define a flow for each
initial source configuration, instead of adding a linear
source term to the vacuum flow.

To arrive at @ above, we had to define the effective
field-dependent source J and identify a suitable defor-
mation term in Pg[x|x]. By directly substituting @,
one can see that

JIX] = ALA 'Y
and
1 _
ASk[x] = §XTAZA;€ YArx (8)

As promised, the existence of a family of distributions
Pr[X|x] with a known parameterization (A, Ag) allows
us to define an IR regulator scheme, and therefore com-
pute the NPRG flow both above and below the cutoff.
The deformation term AS}, ultimately came from the y?
term present in the coarsening map, which could be in-
terpreted as a free energy. We also identify immediately
that the IR regulator Ry corresponding to a given choice
of coarsening map is given by ALA;lAk.

We will next use this viewpoint to introduce informa-
tion bottleneck into the discussion. In particular, we
will associate the coarsening map Pj[x|x] with the IB
coarsening map Ps(Z|x) and examine some consequences.
This discussion comes with some restrictions. Firstly,
one should note that all soft-cutoff NPRG frameworks,
regardless of the structure of the microscopic action, as-
sume a Gaussian coarsening map. With a non-Gaussian
Pr[X|x], the flow may still be defined, but it will not, in
general, satisfy any known exact flow equations. This is
easiest to see in the IR Wetterich formalism, since a non-
Gaussian P, would yield a ASk[x] which is no longer
bilinear in y, and hence one could not write the flow



equation in terms of the exact effective propagator, as it
usually is. Indeed, the more general ASy[x] could have
terms at arbitrarily high order in y, and thus require
arbitrarily high-order derivatives of I'y, in the flow equa-
tion. So, while it is not impossible to seriously consider
non-Gaussian Py[x|x], it is certainly inadvisable without
good reason.

With this in mind, we must also note that IB has an
exact solution involving Gaussian Pg(Z|x), but only when
the variables X and Y are jointly Gaussian. By analogy,
this restricts us to discussing theories where the bare ac-
tion S[x], or perhaps more accurately, the bare Hamilto-
nian H[x] contains only linear and bilinear terms in x.
While everything presented above holds for general S, ev-
erything that follows will be totally Gaussian so that IB
optimality can be exactly satisfied. Finally, note that IB
may not be well-defined for infinite-dimensional random
variables such as fields, so our scope is further limited to
finite-dimensional multivariate Gaussian distributions of
classical variables.

B. The Gaussian IB regulator scheme

In the last section, we briefly introduced soft-cutoff
NPRG approaches and argued that both UV- and IR-
regulated flows can be defined given a family of Gaus-
sian coarsening maps Pg[X|x]. Broadly, we aim to show
in this paper that IB and RG can be connected by iden-
tifying this map with the IB-optimal coarsening map
Ps(Z|z). By this we do not mean to say that the family
of maps produced by IB are the “correct” starting point
for NPRG. Instead, we simply note that IB-optimality
is a constraint one could impose on the coarse-graining
scheme. Assuming we do so, what characteristics does
the IB-RG scheme carry? Using the exact solution to
GIB and Eq. , we identify the regulator, or soft-cutoff
scheme, required by IB optimality for some known initial
statistics P(z,y)
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Here the f3; are critical bottleneck values, indexed by
the components of the so-called “natural” basis, which is
found by diagonalizing the canonical correlation matrix
2}12 x|y as discussed in section The critical bottle-
neck values 3; are given by (1 —\;)~1. If V is the matrix
of right eigenvectors of this matrix, then s; is given by
[VTY xV]i. Notice also that this regulator is diagonal in
natural basis. © denotes the Heaviside step function.

In the typical context, R is diagonalized by a Fourier
transform, and thus it represents a cutoff in wavevector
or momentum. Here this notion is generalized, and in-
stead of identifying a cutoff wavenumber k, we should
consider the cutoff to be of information-theoretic origin,
and fundamentally defined by 8. Consequently, the de-
gree to which the mode labelled by 7 is coarsened should
be found by comparing its corresponding critical value

B; to the cutoff 5. As such, we can essentially make the
replacements k> — B and ¢?> — f3;, with the caveat that
B and B; should approach unity as k? and ¢? go to zero.

In Figure [1] we plot RIB) obtained from the first toy
model presented in section [VB|and compare it against
the well-known Litim regulator [30], denoted R and
given in Eq. . Ignoring for now the particulars of
the model, we point out that the IB and Litim regula-
tors appear qualitatively similar, and for fixed parame-
ters t and n, all limits involving ¢ and k satisfy the reg-
ulator scheme requirements. Moreover, we see that the
NPRG and IB notions of mode relevance are in agree-
ment. Smaller canonical correlation eigenvalues A (top
plot) correspond to collective modes which get integrated
out later in the flow. This is reflected in the structure of
the soft cutoff, which increasingly suppresses fluctuations
as ¢ — 0.

Is it okay to take @ seriously as an IR regulator
scheme? Let us attempt to compare with the conditions
outlined in the last section. The typical interpretation

Canonical correlation matrix spectrum

— Mg)

Regulator shape

— R’
k2 — R

_t 2]
t+77k

Mode label ¢

FIG. 1. IR Regulators compared between Litim and IB
schemes. The IB problem depicted here is from the toy model
discussed in section [[VB]|for the simple case where the collec-
tive modes selected by IB are Fourier and the disorder cor-
relation has no dispersion (7 is constant). Top: Eigenvalues
of the canonical correlation matrix E;(l Y x|y as a function of
label ¢, which may be interpreted as a wavevector magnitude.
Modes with smaller eigenvalue can be thought to carry more
information about Y. Bottom: Regulator values as a function
of cutoff k¥ and mode label ¢ for the Litim scheme and
the IB scheme (black and blue, respectively).



of the first requirement on R is that the lowest energy
modes should be given extra mass by the regulator so
that they are “frozen out” of the configurational integral.
In fewer words, there should not be soft modes in inter-
mediate stages of the flow. By analogy, it must be true
that (Rg)11 > 0, where we take 51 = min; ; to represent
the most “relevant” mode (in the IB sense). Indeed, for
all B, this is satisfied by @ Next, R must vanish for
the i*" mode when the cutoff 3 is taken sufficiently far
below ;. Because of the step function, this is satisfied.
Finally, each diagonal component (Rg);; should diverge
as B — oo so that at zero compression, only the saddle
point configuration of the microscopic theory contributes
to the generating function, or whichever thermodynamic
potential we are interested in. If §; are all finite, then
this limit holds as well [51].

Because it satisfies all of the properties required of a
typical regulator in a soft-cutoff scheme, we call @ the
“IB regulator” and denote it RB). This identification
has some interesting consequences, which will be explored
in the coming section. One particularly striking feature
is that the cutoff scheme is now parameterized by the
family of distributions P(x,y). In IB theory, these dis-
tributions formalize the notion of “important features” of
X implicitly through its correlations with Y. This means
that the RG scheme selected by a given set of IB solu-
tions will not favor, for instance, “long distance modes”
unless P(z,y) is chosen to enforce that. Instead, the ana-
logue of long distance modes are those modes which have
the most information about Y. In section [V Bl we will
attempt to clarify this by calculating the IB regulator
explicitly in a simple, familiar context.

IV. CONSEQUENCES AND
INTERPRETATIONS OF THE
CORRESPONDENCE

A. The Blahut-Arimoto update scheme may
displace the flow-equation description

The apparent goal of Information Bottleneck is to iden-
tify the coarsening map Pg(Z|x) for some set of 8 values.
This seems to align poorly with the problem statement
and goals of NPRG, in which the coarsening map Py [X|x]
is taken as the starting point and used to derive the flow
equations. Is it really true that solving IB only gets us
to the starting point of an RG scheme, after which we
still need to “do the RG part?” In this section, we in-
vestigate one way to resolve this dissonance by noting
that the quantities one would usually consider to be the
results of the NPRG flow can be used to parameterize
Ps(Z|z) itself. From this viewpoint, one may organize
the computation around a set of self-consistent update
equations instead of a set of flow equations.

The general IB problem can be solved, in principle,
by iterating what is known as the Blahut-Arimoto pro-
cedure, which is borrowed from rate distortion theory in

a more general context [I]. This procedure relies on the
fact that when Pg(Z|z) is IB optimal, it satisfies the fol-
lowing condition:

Py(|z) = Zg(x) ™" P3(2) exp (= BDxu[P(yl2)||Ps (y]2)]) .

Where everything on the RHS is to be considered a func-
tion of Pg(Z|x) through

Py (i) = / A Py (i) P(x)

Psoli) = 5 [ 4 Plle)Po(ile) Ple).

The function Zg(z) normalizes Pz(Z|x) and therefore
also depends on Ps(Z|z) through the above equations.

In brief, the BA procedure entails taking an esti-
mate for Pg(Z|z), plugging it into the IB optimality
criterion above, then iterating until satisfactory con-
vergence. In this way, we say that Ps(Z|z) is self-
determined. This procedure is practically very difficult—
if not impossible—for distributions of multivariate con-
tinuous variables in general. However, in the case of GIB,
we can parameterize the distributions then use Gaussian
integral identities to update these parameters exactly.
Chechik et al. [29] carry out this procedure in terms of
the matrices A and ¢, used to define X =AX +¢ We
repeat this computation but instead parameterize the up-
date equation using X ¢, Zx\fo and X, 5. The first two
of these represent objects of interest in the UV- and IR-
regulated parts of the NPRG scheme, respectively. The
third quantity, 3 ¢ carries information about how the
IR degrees of freedom X are coupled to the original, UV
variables X. In a very condensed form, the BA update
equations in this parameterization read:

Syx = BX +82BTE, (BT, (10)
N = [E/;ilx —ﬁQBZX‘XBT]‘l,
/ _ / T~/

Yyx = Py xB ¥k

where both B and Z/qu can be expressed in terms of

B, P(z,y) and the current estimate for the parameter-
ization of P(t,z). The full expressions are complicated
and given fully in appendix Note that % x| X repre-
sents the IR-regulated flow; it is directly analogous to
the effective propagator Gy, in the Wetterich formalism.
In other words, given that we are only looking at Gaus-
sian statistics, the function Wg(J) (or I'y) can be sim-
ply reconstructed from X X|X Next, X ¢ represents the
UV-regulated part, since the probability distribution de-
scribing X can be reconstructed from it.

We reiterate that this self-consistent updating scheme
comes from IB optimality, written in terms of objects we
would usually calculate in NPRG. The idea of a self-
consistent updating scheme which determines the IR-
regulated statistics and UV-regulated dynamics simulta-
neously is interesting. In addition to essentially replacing



the flow-equation description, it is very non-perturbative
in nature. However, it seems wrong that imposing a con-
straint on P(Z|x) should make anything easier, especially
given the fact that IB enforces a goal which is only some-
times aligned with the typical goals of RG analysis. A
natural question, then, is whether IB has actually pro-
vided any new leverage. More precisely, if we really have
given up the flow equation in favor of a self-consistency
scheme, does this new scheme actually help to calculate
the objects of interest as the flow equation usually would?
If so, why would IB optimality be necessary?

In the case of general, i.e. non-Gaussian P(z,y), the
integration

[ s PulPGala)

can’t be carried out directly. This is equivalent to the
statement that at (and below) intermediate values of k
in NPRG, Wy [J] can’t be directly computed from its in-
tegral representation. The whole point of Wilsonian RG
is to get around this integration step by connecting Wy
to Wi oo = 0 by invoking a known flow equation. So,
to answer our question, the IB update scheme may actu-
ally provide the same leverage, but only if (1.) we can
represent the BA procedure parametrically, and (2.) the
derivation of that parametric representation does not re-
quire the explicit marginalization of z to obtain P(y|Z).
The updates we present above for the fully Gaussian
problem satisfy the first requirement, but fail the second
since we explicitly carried out Gaussian integrals over x
in the derivation. It is therefore unclear at this point
whether some structure in IB could allow us to estimate
P(y|Z) parametrically, which seems to be a prerequisite
for the utility of a more general IB-RG framework in
which IB is exactly enforced. Finally, we note that these
conditions are necessary, but not sufficient, since further
integration steps may be required to complete the BA
update, for example in computing Dy [P(y|x)||P(y|Z)]
and going from an updated P(z, %) back to the moments
of P(x|Z).

In principle, the self-consistent structure imposed by
IB-optimality obviates the need for a traditional cut-
off/flow equation description. However, the opposite is
also true: if the cutoff scheme and flow equation are
known, then the self-consistency conditions are displaced.
Because GIB is exactly solvable, we are able to examine
both approaches here. In Eq. @[), we present a soft
cutoff scheme which arises from the constraint of GIB-
optimality, but it is given in terms of quantities which
have no physical context, and so it is hard to say a priori
how it relates to existing cutoff schemes structurally. In
the next section, we consider a toy model which provides
this physical context and therefore affords us a glimpse
into how IB-optimal NPRG schemes differ structurally
from those already employed.

B. Collective modes are not always Fourier: a
minimal example

In the Wetterich NPRG, the cutoff is enforced through
a deformation ASg[x] = %XTka added to the bare ac-
tion or Hamiltonian. In section [[ITB] we identified this
structure as the free energy of a Gaussian coarsening
map from the bare degrees of freedom y to some com-
pressed representation y. We then defined the IB reg-
ulator through the deformation produced by the map
solves the Gaussian Information Bottleneck problem, and
showed that it satisfies the various “design” constraints
traditionally placed upon it. An immediate consequence
of this construction is that the regulator design space
is now parameterized by the joint distributions P(z,y)
which define the starting point of IB, and for many such
distributions, the preferred basis selected by IB will look
nothing like Fourier modes. Of course, for finite sys-
tems not organized in a lattice, this is unsurprising; the
Fourier basis will not exist in any familiar sense. How-
ever, for practitioners of NPRG, it may cause discomfort
to consider a regulator R,g)(u) in which the numbers
v and u do not represent radii in momentum space. In
contrast, for the majority of applications, the standard
cutoff scheme is provided by the Litim regulator

R (q,q) = 0%a— YK — O —¢?),  (11)

Which should be interpreted as a soft momentum-
space cutoff. The Litim regulator sees widespread use
both because it is optimized to give good convergence
properties in certain contexts [52], and because its simple
form often leads to analytically expressible flow equations
(after appropriate truncation procedures) [30, 53].

The IB regulator R(BIB) given in @D does not mani-
festly have any such nice qualities, and in the general
case may be difficult to interpret. In this section, we
calculate R(BIB) explicitly in a trivial statistical field the-
ory problem to explore its structure in a familiar context
and address some of its non-intuitive features. For our
model, we consider a real scalar field x(x) in d dimen-
sions at equilibrium and finite temperature kT = 1.
This fluctuating field will serve as the “input variable”
X. We also add a disordered source field h(x) which will
serve as the “relevance variable” Y.

il = [ e { G- V) - hal(o) |

(12)
We also give Gaussian statistics to the disorder:

A[R] = det(2rH)™1/? /DhA[h] X (13)
exp (—; /ddaslddarg h(xl)[H_l](xl,xg)h(x2)>

In our condensed notation, the above equations are re-



expressed:
1 _
HIxIh] = 5 x"Gg'x = h"x
1
log P[h] ~ -5 RTH'h

Together, the Boltzmann weight H[x|h] and the dis-
tribution P[h] describing the disorder statistics consti-
tute a joint distribution P[y,h] which is jointly Gaus-
sian and thus—momentarily casting aside worries about
the continuously infinite-dimensional random variables—
a valid starting point for GIB. From the IB standpoint,
the goal would usually be to construct a coarsened field
X(z) which discards some information about x while en-
coding as much as possible about the statistics of h. How-
ever, the goal here is not to discuss x, but rather to better
understand the NPRG cutoff scheme that IB imposes as
a consequence of this starting point. Since we have as-
sumed a canonical form for the bare Green’s function G, !
and the source term is h - x, the only remaining control
over P[x, h] is the two-point correlation of h:

h(xl)h(fl,‘g) = H(l‘l, .132)

To explore different forms of R(IB), we therefore con-
sider three different constructions of H. First, we choose
h to be totally uncorrelated at different points, with a
constant variance at each point. Second, we choose H
diagonal in Fourier basis, but with some dispersion that
adds position-space correlations. In both of these first
examples, we will arrive at regulators with momentum-
space cutoffs. It is the goal of the third case to present
an H which is not diagonal in momentum basis, thereby
introducing a non-momentum cutoff structure.

1. IB regulator when disorder correlations are diagonal in
momentum space

In the first and simplest case, we take H to be a 0-
function multiplied by some constant factor 7. Since the
Fourier transform F is unitary [54], the momentum-space
representation of H is unchanged from its position-space
representation:

H(z1,22) = n6%(z1 — 22);
H(q1,a2) = [FHF(q1, 42)
=n0%q1 — q2).

The first step in GIB analysis is constructing the
canonical correlation matrix 2}12 x|y, where we have
chosen X < y and Y <> h. After a calculation involv-
ing only Gaussian integral identities and our definition of
P[x, h], we obtain:

E;lEx‘h = (I—FHGo)il

Next, we find the right eigenfunctions V' (z,u) and cor-
responding eigenvalues A(u) of the correlation. For our

10

current construction of H,
V(z,q) = Fi(z,q) = (2m)~e”
Ag) = (1 +1Go(g)) ™,

Where Go(q) = 1/(t + ¢?) is obtained after Fourier
transform of Gy. To finally obtain the IB regulator in a
familiar form, we would like to find a way to express it
completely in terms of ¢, k, and the various other param-
eters introduced in this application. However, equation
@D gives us R®) in terms of the bottleneck parameter
B, which has not been defined yet in this application.

The crucial insight is to note that [ serves essentially
the same role as k in the typical theory. To find the
explicit map between the two, we use the fact that crit-
ical bottleneck values (q) are defined in terms of the
canonical correlation eigenvalues A(q) through S(q) =
(1—X(g))~!. In this model, the critical bottleneck values
are

1

Bla) = nGo(q) o

Using this map, we can replace 8 with 8(k), where k
is the usual momentum cutoff. Doing so, we find that
the IB regulator can be neatly expressed in terms of the
Litim regulator:

t+q?
FP@ = gy (8 — 00 = ¢?)
= Ma)R{" (9). (14)

In particular, the limit n — 0 gives R — R,
It is interesting that the Litim regulator appears in this
expression, since its derivation invokes optimality prin-
ciples which are not obviously connected to information
bottleneck.

2. Momentum-space IB regulator with dispersion in
disorder correlations

Without changing our decision to make H diagonal in
Fourier basis, we can also add ¢g-dependence to 7. In this
case, the steps taken above are essentially unchanged,
and we end up with a slightly different regulator:

R (g) = A(g) (Zg,i;éol(k) - é01<q>) x
77((1) ~—1 ~—1
@(n(k)ao () — G <q>)

With some manipulations, one could optionally re-
write this in terms of (1 — 2)©(1 — x) in order to appeal
to the Litim description once again.

A new feature appears in the regulator scheme when
1 is given g-dependence. For extreme choices of 7, the
ordering of modes can actually be reversed. To see how
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FIG. 2. A depiction of the IB problem applied to a Gaussian field theory for d = 2, as described in Eq. . Each column
represents a different random variable (X' , X, or Y) in the IB problem, while each row depicts a sample drawn from the
joint distribution between them. Using h as the relevance variable Y, the GIB-optimal coarsened field X can be constructed
through non-deterministic coarsening of x, as depicted by the arrows. The Lagrange multiplier 81 controls the trade-off between
minimizing mutual information between x(81) and x while maximizing mutual information between x(81) and h. According
to the semigroup structure described in Sec. this process can be repeated to generate x(82 o 1) through non-deterministic

mapping from Xx(81) with compression level .

this is possible, note that fundamentally it is the IB pa-
rameter S which sets the cutoff, while the critical values
B(q) define the mapping to g. Therefore, by picking, e.g.,
n(q) ~ Gy2(q), one achieves a 3(g) which monotonically
decreases with respect to ¢, meaning longer wavelength
modes (lower ¢) actually get integrated out before shorter
ones. However, this construction presents some patholo-
gies and is hard to interpret in the truly continuous case,
so we will not explore it further here.

3. Ezxplicit form of the IB regulator in a more general case

In the last section we assumed a form of H which was
diagonal in Fourier basis. This assumption led us to a
regulator scheme which could be interpreted as a soft
cutoff in momentum space. In this section we explore
an example in which H is no longer diagonal in Fourier
basis:

H=nFGy P F.CoFL Gy P F

Where F, is the fractional Fourier transform through
angle o and 7 is a constant. Under this definition, we can

again compute X, and find the spectrum of X 1Ex|h.
This yields eigenfunctions analogous to the plane wave
solutions in last section, but indexed by a new param-
eter u which can neither be interpreted as position nor
wavenumber:

Vi) = { G2 FLGE 2R H)
Au) = (1+7Go(u) ™!

Here, the notation [-] indicates that VT is best concep-
tualized as a functional parameterized by w, where for
instance the collective modes of x(x) would be given by

V1i[x](u). Stated differently, the leftmost operator Gp/”
is evaluated at u, and the rightmost is a Fourier transform
over the integrand []. Unfortunately, this solution is only
formal, and cannot be visualized in the same manner as
plane waves. In a true field theory, even with the trivial
Gaussian setup, both H(z1,x2) and V(z,u) are poorly
behaved when written as functions of z. When written
as an integral in ¢, V' diverges when |gmax| — 00, and is
discontinuous in both x and u. One way to conceptual-
ize this is by comparison with G ! which includes V?
and thus cannot be written as elementary functions of



x. After Fourier transform, we can replace the operator
description with a simple function of the continuous vari-
ables ¢. Similarly, although we cannot express H and V'
as functions of z, the various operators we are interested
in can be written simply in the non-orthogonal basis de-
fined by V:

(VTIHV T (ur,u2) = né®(uy — us) (15)
[VIGoV] (u1,u2) = Go(u1)d%(us — us) ~ (16)

It is hard to say what the label u physically represents
beyond being a parameter that defines and orders collec-
tive modes x'(u) = VT[x](u) in the system. Despite this,
the regulator maintains its simple form:

R (u) = Mu)R{P (u) (17)

Where now v takes the role of the cutoff, replacing k as
u has replaced ¢. That is, the collective modes labelled by
u are ordered in terms of their predictiveness about the
disordered source field h. GIB then imposes a soft-cutoff
scheme at a scale v, which is a proxy for the bottleneck
parameter 3, as k was in the Fourier case. We stress
that these labels v and u are defined by the correlation
structure of P[x, h] and have no simple intrinsic physical
meaning. Without significantly more effort, all we can
say is that a mode labelled u; carries more information
about the disorder A than a mode labelled us if uq < uo.

Many of the difficulties present in this discussion,
such as the poorly-behaved character of collective modes
V(z,u) and disorder correlator H(x1,x2), as well as the
non-intuitive nature of the mode labels u and v, stem
from a common cause. IB is only suited to analysis of
systems with finitely many degrees of freedom, and field
theories have infinitely many. The calculations above
were nonetheless performed in this context to demon-
strate that IB defines collective modes of a system and
establishes a cutoff scheme which, in general, differs from
traditional notions of relevance, as represented by the
Fourier basis and momentum cutoff. This idea could be
crucial to understanding collective behavior in systems
without clear notions of locality or organization. Such
problems abound in, for example, the brain where long-
distance connections between brain areas are common
and important for computation while information is also
spread across many areas and recombined for important,
multi-modal tasks. The recurrent, highly interconnected,
and still computationally efficient structure in the brain
renders the simple notion of physical distance between
cells rather limiting.

C. The relevance variable Y can have many
physical interpretations

Gaussian IB begins with a choice of joint distribution
P(z,y). As we have discussed, this distribution gives a
constrained parameterization of a cutoff scheme which is
analogous to the one employed in Wetterich NPRG. In
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the last section, we showed that not all choices P(z,y)
lead to collective modes V7 X which have a canonical
interpretation such as Fourier modes. That discussion
was carried out under the assumption that the relevance
variable Y pertains to a source field with some disorder
statistics. Generally speaking, this is only one way of
constructing Y. Even within the constraint of P(z,y)
being jointly Gaussian, the physical interpretation of x
and y can vary. Here we briefly discuss some of these
alternative interpretations.

First, Y may represent the environment of a set of vari-
ables X. This scenario is analogous to the one presented
by Koch-Janusz et al. [I2]. Consider a collection of spins
on a lattice, and choose some enclosed region. Let X be
the state of the spins in that region and let Y denote the
state of those outside. In the case that these spins have
Gaussian statistics, this is a valid starting point for GIB.
With this setup, we expect that the most relevant collec-
tive modes would be relatively slowly varying in position.
In fact, Gordon et al. recently formalized this idea for
field theories not restricted to Gaussian statistics [13].
They consider a “buffer” zone between X and Y whose
size is taken to infinity. In this limit, the first collec-
tive variables encoded by IB at strong compression (low
B in our notation) correspond to the operators with the
smallest scaling dimensions, and hence the most relevant
operators in the RG sense. Their approach is therefore
promising for the analysis of systems with local interac-
tions whose order parameter is not known a priori. More
fundamentally, they have shown that ¥ and X can be
chosen to enforce a traditional, “physical” definition of
relevance.

Second, consider a stationary stochastic process with
Gaussian statistics both in time and across variable in-
dex. We could choose X to represent the current state
of the system while Y represents the future. Here, the
most relevant modes are those projections of X which
vary the slowest. In fact, if we suppose that time has
been properly discretized, this interpretation of the GIB
problem is equivalent to a certain class of slow feature
analysis problems [55].

Third, we can imagine another dynamical system in
which variables X which are driven by a stochastic sig-
nal Y such that the joint distribution is Gaussian and
stationary. Now, the features of X which are most rel-
evant are no longer simply the slowest-varying compo-
nents. The cutoff scheme we find will depend on the
statistics which generate Y, the manner in which Y cou-
ples to X, the internal dynamics of X, and whether we
take Y to be in the past, future, or present.

Together with the example from last section, in which
Y fulfilled the role of a disordered source field, these ex-
amples span a number of physically interesting scenarios.
Certainly, more are possible. Any valid interpretation
will generally consist of a set of random variables {Z;}
that obeys a Gaussian joint distribution, which is then
partitioned into two or three disjoint sets. The first is
{X,}, the second is {Y},}, and the third, which is op-



tional, is a dummy set containing every Z; which we don’t
care to include in the model. In the case that these sets
aren’t disjoint, it is possible to have X and Y become de-
terministically related which is an invalid starting point
for GIB. Finally, we note that while this framework al-
lows for some discussion of systems involving dynamics,
it is poorly suited for application to general stochastic
processes as the distribution P(X,Y’) must be stationary.
This also means that the connections drawn here between
GIB and NPRG are not meant to cover the more gen-
eral, dynamical NPRG framework often seen in nonequi-
librium statistical mechanics literature [49, 56| 57]. How-
ever, given the importance of both IB and the dynamical
NPRG to applications in nonequilibrium settings, we be-
lieve that a more general framework is in demand.

V. CONCLUSION

In this manuscript, we have examined structural sim-
ilarities between the Gaussian information bottleneck
problem and a class of RG techniques involving soft cut-
offs. Our main result is to identify that the crucial con-
nection between the two is a non-deterministic coarsening
map. In NPRG, this map defines both the UV-regulated
coarse-grained Hamiltonian of the Wilson-Polchinski pic-
ture, as well as the IR-regulated free energy used in the
Wetterich approach. Therefore, one can rigorously con-
nect IB to RG by requiring that this coarsening map
solves a particular IB problem. In doing so, one param-
eterizes a space of soft cutoff schemes in terms of IB rel-
evance variable statistics P(z,y). Additionally, one can
identify the structures in an IB problem which are anal-
ogous to UV- and IR~cutoffs in RG.

While we believe that this connection holds for more
general IB problems, we limited our discussion to Gaus-
sian statistics for two main reasons. First, NPRG coars-
ening maps are always Gaussian, since this leads to sim-
pler flow equations with physical interpretations. Second,
in order to be compatible with this first consideration, we
studied only the GIB problem which has exactly known
solutions that are Gaussian [29].

Another result was to show that the GIB coarsening
map satisfies a semigroup property. In particular, we
identify an explicit function b(/) which multiplies under
composition of coarsening maps in a manner analogous
to the length scale in a traditional RG setting. Given
that the typical role of semigroup structure in RG the-
ory is the identification of anomalous exponents, it is not
within the scope of this manuscript to assign a similar
task to b(8). More immediately, the presence of this
structure within GIB raises the question of whether it
may be present in IB schemes more generally. If so, would
an iterative coarse-graining scheme consisting of repeated
low-compression transformations be advantageous as an
analysis technique?

By explicitly comparing the set of GIB solutions pro-
vided by Chechik et al. with a generic NPRG scheme,
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we identified the IR cutoff scheme present in GIB @D
A similar analysis can be carried out to identify the UV
cutoff, but doing so involves a discussion about reparam-
eterization which we felt would distract from the main
points. Direct computations on a toy model showed that
the IB regulator has some characteristics which are simi-
lar to the ubiquitous Litim regulator [30]. An important
generalization is that IB selects the collective mode basis
according to which features of the system state X will be
most informative about Y, whatever it is chosen to be.
We gave a simple example in which this collective mode
basis could not be interpreted as a Fourier basis. In gen-
eral, this will be the case, though depending on how Y is
defined, one may still arrive at collective modes which are
essentially Fourier in nature. One bit of analysis we did
not carry out is the connection of IB to the dynamical
NPRG, though for non-equilibrium problems involving
IB—such as the predictive coding problem—this may be
a fruitful avenue for further work.

Next, we note that IB is generally extremely difficult
to solve, so restricting an NPRG scheme to a family of
exact IB solutions is completely unrealistic without sig-
nificant advances in IB theory. Omne avenue of attack
is to find better ways of solving IB. As outlined in sec.
[[VA] a more general parametric Blahut-Arimoto scheme
would be very powerful in this context since it could
essentially replace the flow-equation description with a
self-consistency scheme at each cutoff value. However,
given that the exact Gaussian form we derive is com-
plicated, this seems unlikely to work. A more realistic
approach to practical IB-RG implementation is to relax
the IB-optimality constraint. We suggest that even in
a non-Gaussian setting, one could directly calculate the
IB regulator @ proposed here and use the NPRG flow
equations in exactly the same way. While the resulting
statistics would no longer be exactly IB-optimal, this pro-
cedure is no more difficult than any other NPRG imple-
mentation, and may produce qualitatively similar results
to an exact IB solution.

We reiterate that not all IB problems will benefit from
the RG connections presented here, and vice versa. Ide-
ally, the problem in question involves a system with a
large, but finite, number of degrees of freedom X sta-
tistically coupled to a similarly large number of random
variables Y. Finiteness is required by IB, but because of
the construction of the NPRG, this is not an issue. The
flow is defined exactly even in the absence of a traditional
rescaling step, which would be illegal in a finite system
since it adds more modes. Biophysics systems, for exam-
ple, may be particularly well-suited to IB-RG analysis,
because Y can be chosen to have biological relevance,
and the cutoff scheme will define and prioritize collective
modes that are most informative about that function. Bi-
ological systems all have size and energy constraints that
make the efficient compression of inputs from the exter-
nal world critical for survival. Balancing that, and just
as important for function, organisms also have clear pref-
erence for what is relevant in that external signal, namely



which aspects can be used to drive behavior that confers
a fitness benefit. The IB framework helps cast behavioral
relevance as the prime mover in input compression, while
the RG can help show how this kind of computation is
achieved. Uniting these theories can provide a way to
pull together normative notions of relevance with their
mechanistic implementation.
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Appendix A: Detailed derivation of GIB semigroup
structure

A map (A, X¢) representing X = AX + ¢ solves the
GIB problem if it satisfies:

VAT AV T, = (A1)

Bl—Xi) -1 1 N

for some 3. To show that the composition of two GIB
maps is IB-optimal, we explicitly compute the above ex-
pression for the map (A, %) arrived at by sequential
coarsening. The individual maps are,

X =AX+6
Xo=A2 X1 +&.

This construction gives

Xy = Ag A1 X + Agéy + &
CAX t¢

So we have that, for X¢, = 3¢, =1,

(A, S¢) = (As A1, A2 AT + ).
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In order to ensure that both A; and Ay are diago-
nal, we project X into natural basis with the replace-
ment X — VTX. Note that Ay is actually automat-
ically diagonal because the first compressed representa-
tion X7 = A1 X +&; is already in natural basis. After this
transformation, the optimality condition is simpli-
fied because the V~! matrices have been absorbed into
the definition of X. The new condition is:

[ATS Al = (A2)

BL—Xi) -1 1
P77 g )6
Si)\i ﬁ 1-— /\z J
Now we explicitly compute A; and As. From we
have:

[As]i; = {M} v © (51 - 1) 0ij

Si)\i 1- )\i
Ba(l =Ny — 1112 1
[AZ]ij = |:2(8//\/) ) 52 - 1_7/\, 51’]‘

where

The latter two equations must be re-expressed in terms
of the original X —Y statistics, represented by A; and s;.

Sy = ATxy Al +1
= S;)\; = /\Z:S,L[Al]?z +1
g, = AiSx Al +1
= sj = si[A]5 +1
Solving for X', we have:
CosilAdn +1

Now, directly evaluating A; and s;, we get the following
for A and s":

. B
[ .
)\imm{ - 1)\2,1

/31(1 — )\z) —1 1
/ _
s; = Y (SR - +1

Using these last two expressions, Ao can be expressed directly in terms of s and A. By direct substitution, we can
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now check whether the composite scheme (4, X¢) satisfies the GIB optimality condition (A2):

(AP AT] = [ApAr (A3 + 1)~ Ay Al

B - ><52<1—51 0 (L 1 N
i (B1(1 = Ag) + Ba( i) — 1) 1—min{1,5 ,\}

~ (B2oB)(1—N) — 1

. 1 </32 o - AZ) b

where the binary operator o is given by

B2o 1 = __Bab
B2+ p1—1

By identifying B3 o 81 with a single value 3, we find
that the GIB optimality condition is satisfied. It is
important to note that this operator maps the space of
valid 8 values R > 1 to itself. That is,

o:R>1 xXxR>1 —->R>1

Which means that 83037 really can be identified as a bot-
tleneck parameter. Along with associativity, this means
that (R > 1,0) is a semigroup representing sequential
GIB coarsening.

Appendix B: Derivation of the GIB regulator

In section [[TTB] we present an IR regulator that is both
analogous to the one used in the Wetterich NPRG for-
malism, and which enforces optimality in the Gaussian
IB problem. Here, we show explicitly how this regulator
is derived. To begin, recall that the role of the regulator
is to deform the microscopic theory through the addition
of a mass-like term which “freezes out” the most relevant
modes:

1
ASk[x] = iXTRkX

In a context relevant to GIB where the bare variable x
J

(

is finite-dimensional, we would write this as:

1
ASp(z) = ixTRﬁx
With Rg a positive semi-definite matrix. Following the
argument in section [ITA] we can identify the deforma-
tion produced by a Gaussian coarsening X = AX + &:
1 _
AS(z) = ixTATEf YAz

Now, by imposing IB optimality (Al) on (A4, X¢), we

find that

RY™ = A(B)Tse(8) L A(B)
=V diag(a; (8)) V"
With
B(1—N)

— ) —1 1
)\isi 6(/8_1_)\i>-

After the substitution 8; = (1 — \;) 71,

[ (IB)} ZVW B — Bu

Bu - 1)
This expression differs from the one given in section [[ITB]
because there we assumed that X had already been pro-
jected into natural basis. Here, taking X — V7 X means
R— V- IRV-T and so

aw) _ B-Bi s
L I e LG

(ﬂ - 5u)vu]

Appendix C: Blahut-Arimoto update scheme for GIB in terms of NPRG objects

Eqgs. depict the Blahut- Arimoto updates for X X| % Y ¢, and X ¢ at a schematic level. Written as expectations,

these matrices are:

[EX\X]ab = EX\)?:E {(X - NX|)"<(5C))a(X - Mx\f((@)b}

Xl =Ex {(X —hx

)a(X*M;z)b}

Exxla =Ex {(X — px)a(X — u;z)b}
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As described in the main text, the BA procedure can be thought of as an iterative procedure wherein an estimate
for P(Z|x), or equivalently P(z,Z), is plugged into a known functional representing the consistency condition required
by optimality. Schematically,

P'(x,%) = BA[P(z,7)]

1 - -
= ———P(x)P(z) exp [~ Dk [P(yl2)|| P(y|7)]]
Zg(x)
where Dy, is the Kullback-Leibler divergence, defined for two distributions P and @ of the same variable as

P(y)
Q(y)

and the RHS can be seen as a functional of P(z,t) through the expressions:
P(z) = /de(:c,i)

PUie) = 5755 [ 4o Plule)Pla.3)

Dxy, [P||Q] = / dy P(y) log

Zo(x) = / 43 P(7) exp [~ D [Pl2) | PG17)]]

In this appendix, we derive the equations using the explicit form of the BA map presented above. The goal is
to express “updates” for the matrices X% Y ¢, and Xy ¢ in terms of their current estimates. In general, quantities

describing the updated joint distribution P’(x,Z) will be primed. To begin, we evaluate P(y|Z) using elementary
properties of Gaussian variables. Next, we evaluate the divergence Dk, and the partition function Zg(z). Finally,
we combine these elements and read off the updated parameters. Suppose a = b+ ¢, with b ~ N (up, ) and
¢~ N (e, ). Then

GNN(ILLG,Z@) with g = pip + pe,  Xa = Xp + X
Therefore consider y = Wx + 2 with 2 ~ N(0, Xy |x) and suppose that P(z|%) = N (uy 5, Xy 5). Then
Hy1x = WNX\X
Syix = WZX‘XWT + Sy |x
Now, consider jointly Gaussian variables (a, ). Then
/u'a|b = HUa + z)abzb_l(b - Nb)
Hence, assuming without loss of generality that gy =0, ux =0, and pug =0,
py)x =Wz = W =3yx2y!
and
1~
Bxix = EXXE)”( z
so finally,

Yyg = EYXE;(lzxk

Syix = SrxZx Ty x5x Txy + Sy x

These matrices allow us to construct P(y|Z) and thereby calculate Dky,. For Gaussian distributions, the KL
divergence has a standard form. In this context, we care only about the terms which carry x and & dependence.

1 _
Dxu[Pyla)llP(yl2)] ~ 5 (pyix = ,uy|)~()TEY‘15((,uY|X — Iy %)
1
- 5:#2;2@2;&2},22;@ — eSSy B By £ 25 + {a?]
1

= 2£TE;~(12XYE;I1XEYXE;£ —2"BT7 + {2?}
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Where ~ denotes “up to addition of a constant.” The matrix B describing the coupling between z and Z has been
introduced for convenience. Note also that there is a pure-z term in this quantity, denoted {xQ}, which will cancel
with the partition function Zg(z) that normalizes P(¢|x) in the BA map. In addition to this trivial z-dependence,
Zs(z) also contributes a new z? term, which needs to be included.

Zs(x) = / di P(&) exp (~BDx [P(yla) || P(y]7)

1
- /dfc exp (—2£T [2;(1 + 52;212@2;'1)223,)22;} i+ pxB Tz + {2?} + Consts.>

1
= /djz exp (2 ~TE’§|1X:% + B2 BTz + {2} + consts.)

1
~ exp (2ﬂ2xTBTZ’XXBx + {xz})

Here we have introduced E/XTX to further clean up notation. Now it is straightforward to obtain P’(x,t) from the

BA map by direct evaluation.
P'(x,t) = Zg(x) " P(x) P(Z) exp [-ADxy [P(yl|2)[| P(y|2)]]
_ I 11 P Ay I pev-t - T pT ~
= exp <2:c Xy — 55 w' B Y Br - 37 ZX\XI+6:C B'%
Now, finally, all that remains is to complete the square and put the distribution in the form:
. 1 _ 1 re1s
P'(z,%) ~ exp (—2(x — M’X|)~()TE/X‘15((3U — M/XIX) -3 TE/X 1x>
where
_ NV -1~
pxix =Exg¥x T
/
X|X’

Yol =y +p°BTY. B

After completing the square, the updated matrices 3 Z/X’ and E’X % can be read off:

X|X X|x
-1 _ y/—1 2 ’ T
Y T Xxx TP BEy B
/ _ / T~
Yz = 52){\5{3 Ye.

These can be written entirely in terms of the old estimates through the substitutions:
BT =23 SxyEyir Sy £ 5%
Sex = 5% TATY Bxy By xSy Y
Yyx = ZYXZ}lzxf(
Syix = Syix + ZyxIx Ty 2 Sk Sxv

Finally, we note that iteration of these equations does not guarantee the convergence of each matrix involved,
since invertible linear transformations on the random variables are a symmetry of the objective function. The GIB-
optimal solutions, which are described by the fixed points of this update scheme, are connected continuously by these
symmetries. If one wishes to use these updates practically and ensure that all matrices converge to fixed values,
it is necessary to break this reparameterization invariance by taking extra steps after each update. In the original
GIB paper [29], the reparameterization-invariant quantities «; are instead plotted over iteration of their BA scheme,
because their convergence is guaranteed.

Appendix D: Selected computations for toy model
1. Canonical correlation Green’s function

A central object in GIB is the canonical correlation matrix, 2)_{12 x|y - From this object, one obtains the eigenvector
matrix V', which describes the linear transformation of X into its collective modes, and eigenvalues A;, which order
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these modes in terms of their information content about Y. In the toy model, we begin with physical definitions for the
statistics in Egs. and . Then, by interpreting x as the input variable X and the disorder h as the relevance
variable Y, we ask what the structure of the resulting GIB-regularized NPRG scheme looks like. Like any other GIB

problem, we must first calculate the canonical correlation Green’s function, 37 12)(\ h

directly from the definitions:
Yyn = Go, Yh=H
To find X, we need ¥, which we get through i, p:
Hxlh = NI

Compute this mean by looking at the Hamiltonian for x with frozen disorder h:

1
Ts by — mTy

HIxIh] = 5x7 S,

1 Ty—1 1 7 o1
= §(X - Mx|h) Ex‘h(X - Mx\h) - §Nx|hzx|h'u><|h

-1
= h= Ex\h/”LX‘h

Hence we can identify X:
Yh = Xy nXn = GoH
Now, use the Schur complement formula to identify X, :

2y =Syn + Zn )y Say
=Gp+ GoHH_lHGo
=Gy + GoHG)

So finally, the canonical correlation Green’s function is

SIS =T+ HGo) ™"

Two Green’s functions come

2. Canonical correlation eigendecomposition calculations

a. Fourier collective basis

Once the canonical correlation Green’s function is known, one calculates its eigenfunctions (or eigenvectors, in
the usual, finite-dimensional case) and eigenvalues. In the main text, we consider three constructions of H which
altogether yield two eigenbases: Fourier and non-Fourier. Let’s first calculate the spectrum A(g) for case 2 in section

[[VB] which also covers the analysis of case 1.

1 iq-(x1—x
H(x1,22) = W/ddQU(Q)@W( 1mw2)

= [FTHF)(x1,z2)

Where H represents a “diagonal” function, H(q1,q2) = 1(q1)0%(q1 — g2). The frozen disorder propagator Gy is also

diagonal in Fourier basis:

Go(z1,m2) = 6%(z1 — @2)[t — Ve,

1 d 1 ig-(x1—x
- (zw)d/d qt+q2eq( o

= [FIGoF)(z1,x2)
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We use éo(q) to represent both the function (¢+¢?)~!, and the diagonal kernel (¢+¢2)~'§%(g; —q¢2) interchangeably,
as needed. Using the expression for 3 1Zx\ n derived in the last section, we have:

S0 S gn = + HGo) ™!
= (I +F HFFIGoF)™

= FI I+ HGo)™!
=VAV!
Since F is unitary and both H and Gy are diagonal, we have:
1 ; 1
V(z,q) = Fl(z,q) = ——=¢"77, Ag) = -
(ra) = F00) = Gy R TN

b. Non-Fourier collective basis

Next, we carry out the same computation for case 3, in which H is not diagonal in Fourier basis, and so neither is
the canonical correlation Green’s function. Written formally, the disorder correlator is

H =nF'Gy P F.GoFLGy P F

Where F, is the d-dimensional fractional Fourier transform. The 1-dimensional version defined as:
1
fél)[f](u) = (2misin a)_1/2 / dz f(x)exp [—i (csc(a)ux ~3 cot(a) (2 + u2)>} (D1)

This transform is unitary, satisfies Fg M =F" W and o = 7/2 gives the usual one-dimensional Fourier transform.

o )
To construct the d-dimensional version .7-'&, we simply take tensor products: F, = Fq V.. o }-él) with d copies.
Hence, F, has properties analogous to ]-'a , namely

Fl=F o=F"1 and  Fu_pjp=F

As in the Fourier case, we calculate the canonical correlation Green’s function in terms of H and G, then write it
in the form VAV ! with A diagonal.

S S n = + HGo) ™

= (I +0F Gy PF,GoFl Gy P FFIGoF) !

= (I +0F Gy P F.GoFl Gy )~

= (T +n(FIGy P FL G Go (G P FLGY 2 )

= (Gy PFLGY P )T I+ nGo) U (FI Gy ARGy
=VAV!

Hence we arrive at the eigendecomposition:
1

1+ nGo(u)

In the main text, we refrain from writing V' as a kernel V1 (u, x), because it is discontinuous and divergent. This
is more evident when it is expressed in integral form:

Viu,z) = [GYPFLGy Y Fl(u, )

1 .
= (—2misin a)*d/2(27r)*d/21 / Tra2 / d%q /14 q2exp |iq- (ucsca — ) — %Cot(oz)(q2 +u?)
u

Where, e.g., u? = u-u = u? + u3 + ... +u§.

V(z,u) = [F1Gy P FaGy*|(w,u),  Au) =
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