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Species: 

Potentials: 

Figure 1. Sketch of a binary mixture of one-dimensional Janus particles. Particles of

species 1 (2) have a white (green) left face and a green (white) right face. In general,

four types of interactions are possible: green–white (φ11), green–green (φ12), white–

white (φ21), and and white–green (φ22). However, in most of this paper we will assume

φ11 = φ22 = φ21. In this particular example, x1 = x2 = 1

2
and N = 6.

1. Introduction

New materials chemical technology allows for the synthesis of colloidal-size particles

with patches exhibiting an interaction pattern different from that of the rest of the

surface [1–3]. When the patch occupies a hemisphere, we are in the presence of so-

called Janus particles [3–8].

One-dimensional fluids play an important role in statistical mechanics because they

often offer integrable systems [9–34]. In a recent paper [35], two of us derived the exact

equilibrium thermodynamic and structural properties of one-dimensional Janus fluids

in the thermodynamic limit (TL). The system consisted in a binary mixture of two-face

Ni = xiN particles of species i = 1, 2, where xi is the mole fraction of species i and

N is the total number of particles. See figure 1 for a sketch of the system. In this

type of systems (henceforth referred to as quenched), the number of particles (N1 and

N2) with each face orientation is kept fixed but of course one needs to average over

all possible microscopic configurations to obtain macroscopic quantities. Interestingly,

the theoretical predictions for quenched systems agreed excellently well with Monte

Carlo (MC) simulations for annealed systems (where at each MC attempt a particle is

assigned the face orientation 1 or 2 with probabilities q1 and q2 = 1 − q1, respectively)

with N = 500.

The investigation of reference [35] stimulates a few questions: (i) can the exact

derivation of the Gibbs free energy in the TL (N → ∞) be extended to quenched and/or

annealed finite-N systems?; (ii) does the quenched↔annealed equivalence break down

at finite N?; (iii) can those theoretical predictions be validated by MC simulations?; (iv)

is the dependence of the average mole fraction 〈x1〉 on the probability q1 robust with

respect to N in annealed MC simulations for biased situations (q1 6= 1
2
)? The main aim

of this paper is to address those questions. As will be seen, the answers are affirmative

in all the cases.

The remainder of this paper is organized as follows. Section 2 presents the

derivation of the configuration integral, and hence of the Gibbs free energy G, for a

finite-size quenched binary mixture in the isothermal-isobaric ensemble. Those results

are then used in section 3 to derive G for an annealed fluid. Since the exact results in
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Figure 2. Illustration of the change of variables (2.7).

sections 2 and 3 apply to any choice of the two nearest-neighbor interaction potentials

φ11 = φ22 = φ21 and φ12 (see figure 1), the expressions are particularized in section 4

to the Kern–Frenkel model [36], where φ11 and φ12 are the hard-rod and square-well

potentials, respectively. The theoretical results are validated and confirmed by MC

simulations in section 5, where also the case of biased annealed systems is addressed.

Finally, the main results of the work are summarized in 6. The most technical parts of

the paper are relegated to five appendices.

2. Finite-N Gibbs free energy of a quenched binary mixture of Janus rods

2.1. The system

Let us consider a one-dimensional binary fluid mixture made of N1 particles of species

1 (right ‘spin’) and N2 = N − N1 particles of species 2 (left ‘spin’) on a line of

length L (see figure 1). Henceforth, we will use Latin and Greek indices for species

and particles, respectively. A particular spatial configuration will be denoted as

x ≡ {xα;α = 1, 2, . . . , N}. Analogously, a particular spin (or species) configuration

will be denoted as s ≡ {sα;α = 1, 2, . . . , N}, where sα = 1, 2 represents the spin of

particle α. Since we are considering a quenched mixture, the number of possible spin

configurations are restricted by the constraint

N
∑

α=1

δsα,1 = N1. (2.1)

The total number of allowed spin configurations is
(

N
N1

)

.

We assume that the rods are impenetrable and that their interaction is restricted

to nearest neighbors. Given s and x, the total potential energy can be written as

ΦN(s,x) =
N−1
∑

α=1

φsα,sα+1(xα+1 − xα) + ωφsN ,s1(x1 + L− xN ), (2.2)

where, without loss of generality, we assume that particles 1, 2, . . . , N are ordered from

left to right. In equation (2.2), ω = 1 if periodic boundary conditions are applied and

ω = 0 otherwise (open systems).
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2.2. Isothermal-isobaric partition function

In the isothermal-isobaric ensemble, the partition function is [32, 37]

ZN1,N2(β, γ) = Z id
N1,N2

(β, γ)QN1,N2(β, γ), (2.3)

where

Z id
N1,N2

(β, γ) =
CN1,N2

Lref [Λ1(β)]
N1 [Λ2(β)]

N2
, CN1,N2(γ) ≡

(

N

N1

)

γ−(N+1), (2.4)

is the ideal-gas partition function and

QN1,N2(β, γ) =
1

CN1,N2(γ)

′
∑

s

∫ ∞

0

dL e−γL
∫

dNx

0<x1<···<xN<L

e−βΦN (s,x) (2.5)

is the configuration integral. Here, β ≡ 1/kBT (kB and T being the Boltzmann constant

and the absolute temperature, respectively) and γ ≡ βp (p being the pressure). In

equation (2.4), Lref is a reference length (introduced to make Z id
N dimensionless) and

Λi(β) ≡ h
√

β/2πmi is the thermal de Broglie wavelength (h being the Planck constant

and mi being the mass of a particle of species i). In equation (2.5), the prime in the

summation denotes the constraint (2.1). Note that, by construction, QN1,N2 = 1 if

ΦN = 0.

Let us make QN1,N2 more explicit. First,

QN1,N2 =
1

CN1,N2

′
∑

s

∫ ∞

0

dL e−γL
∫ L

0

dx1

∫ L

x1

dx2 · · ·
∫ L

xN−1

dxN e−βΦN (s,x)

=
1

CN1,N2

′
∑

s

∫ ∞

0

dx1

∫ ∞

x1

dx2 · · ·
∫ ∞

xN−1

dxN

∫ ∞

xN

dL e−γL−βΦN (s,x), (2.6)

where in the second step we have changed the order of integration. Next, we perform

the change of variables {x1, x2, . . . , xN , L} → {x1, r2, . . . , rN , rN+1}, where (see figure 2)
ri ≡ xi − xi−1 (i = 2, . . . , N), rN+1 ≡ x1 + L− xN . (2.7)

Note that L =
∑N+1

α=2 rα. With this change of variables, equation (2.6) becomes

QN1,N2 =
1

CN1,N2

′
∑

s

[

N
∏

α=2

∫ ∞

0

drα e
−γrα−βφsα−1,sα(rα)

]

×
∫ ∞

0

dx1

∫ ∞

x1

drN+1e
−γrN+1−βωφsN ,s1 (rN+1)

=
1

CN1,N2

′
∑

s

[

N
∏

α=2

Ωsα−1,sα(β, γ)

]

[

−∂ΩsN ,s1(βω, γ)
∂γ

]

, (2.8)

where

Ωij(β, γ) ≡
∫ ∞

0

dr e−γr−βφij(r). (2.9)

Henceforth, we particularize to open systems (ω = 0), so that

QN1,N2 =
γ−2

CN1,N2

′
∑

s

N
∏

α=2

Ωsα−1,sα. (2.10)
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Table 1. Spin configurations s for N1 = 4 and N2 = 2, organized according to the

number (nij) of pairs ij. The number of spin configurations sharing the same values

of nij is given by w({nij}); analogously, w12(n12) is the number of spin configurations

sharing the same n12, regardless of the values of n11, n22, and n21.

n11 n22 n12 n21 s w w12

3 1 0 1 {221111} 1 }1
3 1 1 0 {111122} 1















8
3 0 1 1 {211112} 1

2 1 1 1 {111221}, {112211}, {122111} 3

2 0 1 2 {211121}, {211211}, {212111} 3

2 0 2 1 {111212}, {112112}, {121112} 3
}

6
1 0 2 2 {112121}, {121121}, {121211} 3

Given a spin configuration s, let us call nij(s) the number of pairs ij. Thus,

N
∏

α=2

Ωsα−1,sα = Ω
n11(s)
11 Ω

n22(s)
22 Ω

n12(s)
12 Ω

n21(s)
21 . (2.11)

Obviously, n11 + n22 + n12 + n21 = N − 1. If we call w(n11, n22, n12, n21) the number of

spin configurations with nij pairs ij, equation (2.10) can be rewritten as

QN1,N2 =
γ−2

CN1,N2

∑

n11,n22,n12,n21

w(n11, n22, n12, n21)Ω
n11
11 Ωn22

22 Ωn12
12 Ωn21

21 . (2.12)

Table 1 shows the possible values of nij and w for the simple example of N1 = 4 and

N2 = 2.

In general, the evaluation of the number of combinations w({nij}) is quite hard.

On the other hand, since in the end we will apply the results to the Kern–Frenkel Janus

model [36], we can particularize to the case where φ11(r) = φ22(r) = φ21(r), what implies

Ω11 = Ω22 = Ω21, so that equation (2.12) reduces to

QN1,N2 =
γN−1

(

N
N1

)

min{N1,N2}
∑

n12=0

w12(n12)Ω
N−1−n12
11 Ωn12

12 , (2.13)

where w12(n12) stands for the number of spin configurations with n12 pairs 12.

To determine w12(n12), imagine that we enumerate particles of each species i = 1

and 2 from left to right as αi = 1, . . . , Ni. Then, each pair of type 12 can be identified

with a label (α1, α2). Thus, given a number n12, each compatible spin configuration s

is characterized by n12 pairs of the form (α1, α2). For example, if N1 = 4 and N2 = 2

(table 1), the spin configuration s = {112121} has n12 = 2 pairs: (α1, α2) = (2, 1) and

(3, 2), while the spin configuration s = {211121} has a single n12 pair: (α1, α2) = (3, 2).

There is a one-to-one correspondence between the n12 pairs of the form (α1, α2) and the

associated spin configuration s. As a consequence, the number of spin configurations

w12(n12) with n12 pairs of type 12 is given by the number of ways of choosing the n12
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labels α1 out of N1 possible values and the n12 labels α2 out of N2 possible values.

Therefore,

w12(n12) =

(

N1

n12

)(

N2

n12

)

. (2.14)

As a test of consistency, note that the total number of spin configurations is recovered

as
∑min{N1,N2}

n12=0 w12(n12) =
(

N
N1

)

. Finally, the configuration integral is

QN1,N2 =
(γΩ11)

N−1

(

N
N1

) ΞN1,N2 , ΞN1,N2 ≡
min{N1,N2}

∑

n=0

ξN1,N2(n), (2.15)

where

ξN1,N2(n) ≡
(

N1

n

)(

N2

n

)

(1− R)−n , R ≡ 1− Ω11

Ω12

. (2.16)

Interestingly, ΞN1,N2 can be formally rewritten in terms of the hypergeometric function:

ΞN1,N2 =2F1

(

−N1,−N2; 1,
1

1−R

)

. (2.17)

2.3. Gibbs free energy, internal energy, and equation of state

The finite-size Gibbs free energy GN(T, p, x1) is related to the partition function

ZN1,N2(β, γ) as GN = −kBT lnZN1,N2 [32, 37]. According to equations (2.3), (2.4), and

(2.15), the finite-size Gibbs free energy per particle gN = GN/N can be decomposed as

gN = gidN + gexN , with

βgidN = x1 ln (γΛ1) + x2 ln (γΛ2)−N−1 ln

(

N

N1

)

+N−1 ln (γLref) , (2.18a)

βgexN = −
(

1−N−1
)

ln (γΩ11)−N−1 ln
ΞN1,N2
(

N
N1

) . (2.18b)

By viewing gN as a function of β and γ (instead of as a function of T and p), it is

easy to obtain the average volume (length) per particle (vN) and the excess energy per

particle (uN) at finite N as

vN =

(

∂βgN
∂γ

)

β

= vidN + vexN , uN =

(

∂βgN
∂β

)

γ

= uid + uexN . (2.19)

From equations (2.18a) and (2.18b), one has

vidN =
1 +N−1

γ
, uid =

1

2β
, (2.20a)

vexN = −
(

1−N−1
)

(

∂ ln (γΩ11)

∂γ

)

β

−N−1∂ ln ΞN1,N2

∂R

(

∂R

∂γ

)

β

, (2.20b)

uexN = −
(

1−N−1
)

(

∂ ln Ω11

∂β

)

γ

−N−1∂ ln ΞN1,N2

∂R

(

∂R

∂β

)

γ

, (2.20c)

where, in view of equation (2.17),

∂ΞN1,N2

∂R
=

N1N2

(1−R)2
2F1

(

−N1 + 1,−N2 + 1; 2,
1

1− R

)

. (2.21)
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2.4. Limit N → ∞

Equations (2.18b), (2.20b), and (2.20c) provide the excess quantities for any finite N .

It is important to take the limit N → ∞ to obtain the TL expressions and their first

finite-N corrections.

In Appendix A it is proved that, for large N at fixed mole fractions,

ΞN1,N2 ≈
eNψ̄0

√

2πNy0(2− y0/x1x2)
, (2.22)

where

ψ̄0 = −x1 ln
(

1− y0
x1

)

−x2 ln
(

1− y0
x2

)

, y0 =
1−

√
1− 4x1x2R

2R
.(2.23)

As a consistency test, note that in the case of equal interactions (R → 0), one has

y0 → x1x2 and ψ̄0 → −x1 ln x1 − x2 ln x2, so that ΞN1,N2 → (xN1
1 xN2

2

√
2πNx1x2)

−1. The

latter expression is not but the Stirling approximation of
(

N
N1

)

, as it should be.

Thus, from equation (2.18b) we obtain

βgexN ≈ βgexTL +N−1 ln
[

γΩ11

√

(2− y0/x1x2)y0/x1x2

]

, (2.24)

where

βgexTL = − ln(γΩ11)− ψ̄0 − x1 ln x1 − x2 ln x2 (2.25)

and we have taken into account that N−1 ln
(

N
N1

)

≈ −x1 ln x1 − x2 ln x2 −
N−1 ln

√
2πNx1x2. Obviously, gexTL is the excess Gibbs free energy per particle in the

TL. That quantity was evaluated by a completely independent route in reference [35]

with the result

βgexTL = − ln(γΩ11)− ln
1 +

√
1− 4x1x2R

2
√
1− R

+ |x1 − x2| ln
|x1 − x2|+

√
1− 4x1x2R

(|x1 − x2|+ 1)
√
1− R

.(2.26)

Taking into account the identity (see Appendix B for a proof)

ψ̄0 = − x1 ln x1 − x2 ln x2 + ln
1 +

√
1− 4x1x2R

2
√
1− R

− |x1 − x2| ln
|x1 − x2|+

√
1− 4x1x2R

(|x1 − x2|+ 1)
√
1− R

, (2.27)

it is obvious that equations (2.25) and (2.26) are equivalent. Note, however, that

equation (2.25) is more compact than equation (2.26).

As for the average volume and internal energy per particle, application of equation

(2.19) yields

vexTL = −
(

∂ ln (γΩ11)

∂γ

)

β

− y30/x1x2
(1− y0/x1)(1− y0/x2)

(

∂R

∂γ

)

β

, (2.28a)

uexTL = −
(

∂ ln Ω11

∂β

)

γ

− y30/x1x2
(1− y0/x1)(1− y0/x2)

(

∂R

∂β

)

γ

, (2.28b)
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vexN − vexTL ≈ N−1

(

∂ ln (γΩ11)

∂γ

)

β

+
N−1

2

(1− y0/x1x2)y
2
0/2x1x2

(1− y0/2x1x2)2

(

∂R

∂γ

)

β

, (2.28c)

uexN − uexTL ≈ N−1

(

∂ ln Ω11

∂β

)

γ

+
N−1

2

(1− y0/x1x2)y
2
0/2x1x2

(1− y0/2x1x2)2

(

∂R

∂β

)

γ

. (2.28d)

Note that, while uid has no finite-N contribution, this is not so for vidN . According to

equation (2.20a), vidN = vidTL + (γN)−1, with vidTL = γ−1.

2.5. Equimolar mixture

In the special case of an equimolar binary mixture (x1 = x2 = 1
2
), equations (2.25),

(2.28a), and (2.28b) become

βgexTL = − ln

[

γΩ11

2

(

1 +
1√

1−R

)]

, (2.29a)

vexTL = −
(

∂ ln (γΩ11)

∂γ

)

β

− 1−
√
1−R

2R(1−R)

(

∂R

∂γ

)

β

, (2.29b)

uexTL = −
(

∂ ln Ω11

∂β

)

γ

− 1−
√
1− R

2R(1− R)

(

∂R

∂β

)

γ

. (2.29c)

Analogously, equations (2.24), (2.28c), and (2.28d) simplify to

gexN − gexTL ≈ N−1 ln

[

2γΩ11

(

1−
√
1− R

)

(1−R)1/4

R

]

, (2.30a)

vexN − vexTL ≈ N−1

(

∂ ln (γΩ11)

∂γ

)

β

−N−1

(

1−
√
1−R

)2

4R(1−R)

(

∂R

∂γ

)

β

, (2.30b)

uexN − uexTL ≈ N−1

(

∂ ln Ω11

∂β

)

γ

−N−1

(

1−
√
1− R

)2

4R(1− R)

(

∂R

∂β

)

γ

. (2.30c)

3. Finite-N Gibbs free energy of annealed Janus fluids

In the case of (unbiased) annealed systems, the total number of particles (N) is fixed

but the number of particles (N1 or N2) with either spin orientation species is allowed to

take any value between 0 and N . Thus, the associated configuration integral is

QN(β, γ) =
1

CN(γ)

N
∑

N1=0

′
∑

s

∫ ∞

0

dL e−γL
∫

dNx

0<x1<···<xN<L

e−βΦN (s,x), (3.1)

where now CN(γ) =
∑N

N1=0CN1,N2 = 2Nγ−(N+1) to guarantee that QN = 1 if ΦN = 0.

By following the same steps as those followed to arrive to equation (2.15), we now

get

QN =
(γΩ11)

N−1

2N
ΞN , ΞN ≡

N
∑

N1=0

ΞN1,N2. (3.2)
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Consequently,

βgexN = −
(

1−N−1
)

ln (γΩ11) + ln 2−N−1 ln ΞN , (3.3a)

vexN = −
(

1−N−1
)

(

∂ ln (γΩ11)

∂γ

)

β

−N−1∂ ln ΞN
∂R

(

∂R

∂γ

)

β

, (3.3b)

uexN = −
(

1−N−1
)

(

∂ lnΩ11

∂β

)

γ

−N−1∂ ln ΞN
∂R

(

∂R

∂β

)

γ

, (3.3c)

where we recall that the quantity R is defined by the second equality in equation (2.16).

In the limit of large N it is proved in Appendix C that

ΞN ≈
(

1 +
1√

1− R

)N
1 +

√
1−R

2
. (3.4)

Therefore,

βgexN − βgexTL ≈ N−1 ln
2γΩ11

1 +
√
1−R

, (3.5a)

vexN − vexTL ≈ N−1

(

∂ ln (γΩ11)

∂γ

)

β

+N−1 1−
√
1−R

2R
√
1− R

(

∂R

∂γ

)

β

, (3.5b)

uexN − uexTL ≈ N−1

(

∂ ln Ω11

∂β

)

γ

+N−1 1−
√
1− R

2R
√
1−R

(

∂R

∂β

)

γ

, (3.5c)

where the TL quantities are given by equations (2.29a)–(2.29c).

Comparison between equations (2.30a)–(2.30c) and equations (3.5a)–(3.5c) shows

that, although the quenched and annealed systems are equivalent in the TL, they differ

in their respective finite-size corrections.

4. Particularization to the Kern–Frenkel model

Thus far, except for the constraint to nearest neighbors, the interaction potentials

φ11(r) and φ12(r) are arbitrary. In the special case of isotropic interactions, one has

φ11(r) = φ12(r), so that R = 0. In that case,

ΞN1,N2 =

(

N1

N2

)

, ΞN = 2N , QN1,N2 = QN = (γΩ11)
N−1 , (4.1a)

βgexN = −
(

1−N−1
)

ln (γΩ11) , (4.1b)

vexN = −
(

1−N−1
)

(

∂ ln (γΩ11)

∂γ

)

β

, uexN = −
(

1−N−1
)

(

∂ ln Ω11

∂β

)

γ

. (4.1c)

Thus, the finite-size effects become almost trivial if the interactions are isotropic and,

of course, no distinction between quenched and annealed systems remains.

The situation becomes much more interesting in the genuine Janus case φ11(r) 6=
φ12(r). We take now the well-known Kern–Frenkel model [7, 36, 38–41], in which case

φ11(r) and φ12(r) correspond to the hard-rod and square-well potentials, respectively,
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i.e.,

φ11(r) =

{

∞, r < σ,

0, r > σ,
φ12(r) =











∞, r < σ,

−ǫ, σ < r < λσ,

0, r > λσ,

(4.2)

where λ ≤ 2. Henceforth, we take σ = 1, ǫ = 1, and ǫ/kB = 1 as units of length, energy,

and temperature, respectively. Therefore,

Ω11 =
e−γ

γ
, Ω12 = eβ

e−γ

γ
−
(

eβ − 1
) e−λγ

γ
, R =

{

1 +
1

(eβ − 1) [1− e−(λ−1)γ ]

}−1

,(4.3a)

(

∂ ln (γΩ11)

∂γ

)

β

= −1,

(

∂ lnΩ11

∂β

)

γ

= 0, (4.3b)

(

∂R

∂γ

)

β

= (1−R)2
(

eβ − 1
)

(λ−1)e−(λ−1)γ ,

(

∂R

∂β

)

γ

= (1−R)2 eβ
[

1− e−(λ−1)γ
]

.(4.3c)

5. Monte Carlo simulations

5.1. Equimolar quenched and unbiased annealed systems

In order to confirm the theoretical results provided by equations (2.20b) and (2.20c) for

quenched systems and by equations (3.3b) and (3.3c) for (unbiased) annealed systems,

we have performed isothermal-isobaric Monte Carlo (MC) simulations. To make contact

between the annealed and quenched results in the TL, we have considered equimolar

mixtures (x1 = 1
2
) in the latter case. Moreover, the Kern–Frenkel model (4.2) with

λ = 1.2 is chosen. Some technical details about the simulation method are given in a

Appendix D.

Tables 2 and 3 give the MC results of vN and −uexN , respectively, for p = 0.6,

T = 1 and 0.2, and N = 4, 10, 20, and 100. Tables 2 and 3 also include the exact

theoretical values given by equations (2.20b) and (3.3b) for vN and by equations (2.20c)

and (3.3c) for −uexN . The deviations from the TL values are displayed in figures 3 and 4,

which also include the asymptotic behaviors obtained from equations (2.30b) and (2.30c)

for (equimolar) quenched systems and from equations (3.5b) and (3.5c) for (unbiased)

annealed systems.

We can observe from tables 2 and 3 and figures 3 and 4 that the simulations nicely

confirm our theoretical results. The differences between quenched and annealed finite-

size corrections are much more important for the energy than for the volume. In the

latter case, there is a change of the sign of vN − vTL when decreasing temperature from

T = 1 to T = 0.2. Interestingly, except for the energy at low temperature (T = 0.2),

the asymptotic behaviors given by equations (2.30b), (2.30c), (3.5b), and (3.5c) apply

very well for any N , including N = 4.
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Table 2. Values of the average volume (length) per particle, vN , in equimolar quenched

mixtures and in annealed systems for N = 4, 10, 20, and 100. In all the cases, λ = 1.2

and p = 0.6. The TL values are vTL = 2.6000 and 1.2265 at T = 1 and 0.2, respectively.

T = 1 T = 0.2

Quenched Annealed Quenched Annealed

N Exact MC Exact MC Exact MC Exact MC

4 2.7658 2.77(2) 2.7819 2.80(2) 1.0502 1.050(3) 1.0547 1.063(4)

10 2.6664 2.68(1) 2.6728 2.69(1) 1.1540 1.150(4) 1.1591 1.152(4)

20 2.6332 2.646(5) 2.6364 2.647(5) 1.1903 1.189(3) 1.1936 1.193(3)

100 2.6067 2.612(8) 2.6073 2.623(8) 1.2194 1.218(2) 1.2200 1.219(1)

Table 3. Absolute values of the excess energy per particle, −uex

N , in equimolar

quenched mixtures and in annealed systems for N = 4, 10, 20, and 100. In all the

cases, λ = 1.2 and p = 0.6. The TL values are −uex

TL
= 0.06720 and 0.4421 at T = 1

and 0.2, respectively.

T = 1 T = 0.2

Quenched Annealed Quenched Annealed

N Exact MC Exact MC Exact MC Exact MC

4 0.06815 0.0690(8) 0.05183 0.0510(6) 0.4820 0.481(2) 0.4635 0.461(2)

10 0.06752 0.0677(4) 0.06105 0.0610(4) 0.4664 0.468(3) 0.4453 0.447(2)

20 0.06735 0.0676(3) 0.06412 0.0645(3) 0.4539 0.453(2) 0.4402 0.442(2)

100 0.06723 0.0674(3) 0.06658 0.0668(3) 0.4441 0.444(2) 0.4416 0.439(2)

5.2. Biased annealed systems

The MC simulations for annealed systems presented above are unbiased in the sense

that, even though the identities of the particles are not fixed and thus the mole fraction

x1 is a fluctuating quantity, no preference to either spin orientation is imposed, so that

〈x1〉 = 1
2
. As a consequence, the unbiased annealed results become equivalent to the

equimolar quenched ones in the TL.

On the other hand, it is possible to carry out biased annealed simulations by

introducing a parameter q 6= 1
2
which favors one of the two possible spin orientations

(see Appendix D). As observed in reference [35], the average value 〈x1〉 ≡ 〈x〉 does not
coincide with q, but a natural question arises as to whether or not the inequality 〈x〉 6= q

is a finite-size artifact.

To address that question, we have performed MC simulations for biased annealed

systems with q = 0.55, 0.65, 0.75, 0.85, and 0.95. As before, we have fixed λ = 1.2,

p = 0.6, and temperatures T = 1 and 0.2. As for the number of particles, the values

N = 50 and 200 have been chosen. The results are displayed in figure 5, which shows

that the data with N = 50 and 200 practically coincide. Therefore, the property 〈x〉 6= q

(actually, 1
2
≤ 〈x〉 ≤ q or q ≤ 〈x〉 ≤ 1

2
) and the dependence 〈x〉(q) are robust with respect

to N and must hold in the TL. While the derivation of the exact function 〈x〉(q) seems
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Figure 3. Plot of the finite-N correction vN−vTL vs 1/N for λ = 1.2, p = 0.6, and (a)

T = 1 and (b) T = 0.2. The filled circles and solid lines correspond to MC simulations

and exact theoretical results, respectively, for an equimolar (x1 = x2 = 1

2
) quenched

mixture, while the open circles and dashed lines correspond to MC simulations and

exact theoretical results, respectively, for an annealed system. The dotted lines

represent the exact asymptotic behaviors. Note that the asymptotic and full lines

for the quenched and annealed systems are practically indistinguishable in panel (a).

to be rather involved and lies outside of the scope of this work, we have constructed a

simple heuristic approximation in Appendix E. Figure 5 shows that equation (E.7) with

a = 10 displays an excellent agreement with the MC data.

In the MC simulations for biased annealed systems we have also evaluated the

specific volume (v) and the excess internal energy per particle (uex). Once the robustness

of the relationship 〈x〉(q) has been checked, one can take q as a parameter and plot v

and uex as functions of the mole fraction 〈x〉. This is done in figure 6. While in the case

T = 1 the mapped range is 0.55 . 〈x〉 . 0.94, the range shrinks to 0.51 . 〈x〉 . 0.63

if T = 0.2. Again, a very weak influence of N is observed. As a matter of fact,

comparison with the exact theoretical results for non-equimolar mixtures in the TL [see

equations (2.28a) and (2.28b)] presents a very good agreement. It is worth mentioning

that v exhibits a rather weak dependence on the mole fraction, with a local minimum

at 〈x〉 = 1
2
. On the other hand, the excess energy uex is much more sensitive to 〈x〉,

vanishing at 〈x〉 = 0 and 〈x〉 = 1, as expected.

6. Conclusions

This paper has focused on the study of finite-size effects on the thermodynamic

quantities of Janus fluids confined to one-dimensional configurations. Two classes of
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Figure 4. Plot of the finite-N correction uN−uTL vs 1/N for λ = 1.2, p = 0.6, and (a)

T = 1 and (b) T = 0.2. The filled circles and solid lines correspond to MC simulations

and exact theoretical results, respectively, for an equimolar (x1 = x2 = 1

2
) quenched

mixture, while the open circles and dashed lines correspond to MC simulations and

exact theoretical results, respectively, for an annealed system. The dotted lines

represent the exact asymptotic behaviors. Note that the asymptotic and full lines

for the annealed system are practically indistinguishable in panel (a).
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q

Figure 5. Plot of the average mole fraction 〈x〉 vs q for biased annealed systems,

as obtained from MC simulations with N = 50 and 200 for λ = 1.2, p = 0.6, and

T = 1 and 0.2. The size of the symbols is larger than the error bars. The solid lines

represent the simple heuristic approximation given by the solution to equation (E.7)

with a = 10, while the straight dashed line is the reference 〈x〉 = q.
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Figure 6. Plot of (a) the volume v and (b) the excess internal energy uex vs the average

mole fraction 〈x〉 for biased annealed systems, as obtained from MC simulations with

N = 50 and 200 for λ = 1.2, p = 0.6, and T = 1 and 0.2. The size of the symbols is

larger than the error bars. The lines represent the exact theoretical results in the TL.

systems (quenched and annealed) have been considered. In the quenched case, the

fraction xi of particles with a particular face (or spin) orientation is kept fixed. On the

other hand, particles can flip their orientations in annealed systems, so that the mole

fraction xi fluctuates around a value 〈xi〉 = 1
2
(unbiased case, qi =

1
2
) or 〈xi〉 6= 1

2
(biased

case, qi 6= 1
2
).

Our study allows us to answer affirmatively the four questions initially posed in

section 1:

i Can the exact derivation of the Gibbs free energy in the TL (N → ∞) be extended

to quenched and/or annealed finite-N systems?

By working on the isothermal-isobaric ensemble with open boundary conditions, we

have been able to derive exactly the configuration integral (and hence the Gibbs

free energy, the specific volume, and the internal energy) for quenched systems with

arbitrary values of number of particles N , mole fraction x1, temperature T , pressure

p, and nearest-neighbor interactions φ11 and φ12. The results are summarized by

equations (2.15)–(2.20c).

The exact results for quenched systems are next exploited to get the finite-size

quantities for unbiased annealed systems, as given by equations (3.2)–(3.3c).

ii Does the quenched↔annealed equivalence break down at finite N?

The exact results referred to in the previous point apply to any finite N . An

interesting problem consists in taking the limit N → ∞ in order to obtain well-
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defined expressions for the thermodynamic quantities in the TL, as well as the first

N−1-correction. This is done in Appendix A and Appendix C, the correction results

being given by equations (2.24), (2.28c), and (2.28d) for the quenched case and by

equations (3.5a)–(3.5c) for the unbiased annealed case.

The quenched quantities in the TL are provided by equations (2.25), (2.28a), and

(2.28b). As proved in Appendix B, equation (2.25) is equivalent to (but more

compact than) the Gibbs free energy derived in reference [35] from a completely

different method. While in reference [35] the thermodynamic results were derived

firectly in the TL from the structural correlation functions, here they have been

derived by carefully taking the limit N → ∞ from the configuration integral. The

equivalence between both routes reinforces the exact character of the results.

The results for equimolar quenched systems and those for unbiased annealed systems

agree in the TL [equations (2.29a)–(2.29c)], but they differ in the firstN−1-correction

[compare equations (2.30a)–(2.30c) with equations (3.5a)–(3.5c)]. Therefore, the

quenched↔annealed equivalence does break down at finite N .

iii Can those theoretical predictions be validated by MC simulations?

The conclusions summarized by the two preceding points apply to any choice of the

interaction potentials φ11 and φ12. In order to validate them by simulations, we

have specialized to the Kern–Frenkel model [36], as defined by equation (4.2). MC

results have been measured for a well range λ = 1.2, a common pressure p = 0.6, two

temperatures (T = 1 and 0.2), and four values of the number of particles (N = 4, 10,

20, and 100). As shown by figures 3 and 4, the agreement is very good. Interestingly,

except for the case of the internal energy at T = 0.2, the deviations from the TL

values closely follow the N−1 rule even for system sizes as small as N = 4.

iv Is the dependence of the average mole fraction 〈x〉 on the probability q robust with

respect to N in annealed MC simulations for biased situations (q 6= 1
2
)?

The finite-size corrections mentioned above for annealed systems apply to unbiased

situations. In particular, in each MC step an attempt to assign the orientation

identity i = 1 to a given particle is carried out with a probability q = 1
2
, what

results in an average mole fraction 〈x〉 = 1
2
. The procedure can be extended in a

straightforward way to a biased choice q 6= 1
2
, which gives rise to 〈x〉 6= 1

2
. The

naive expectation would be 〈x〉 = q, but preliminary results in reference [35] showed

that either 1
2
< 〈x〉 < q or 1

2
> 〈x〉 > q, depending on whether q > 1

2
or q < 1

2
,

respectively. One might reasonable wonder whether the property 〈x〉 6= q is a finite-

size effect that would disappear in the TL.

However, our MC results provide strong evidence about the robustness of the

inequality 〈x〉 6= q and the dependence of 〈x〉 on q (see figure 5). This can be

qualitatively explained as follows. In the quenched case, the configuration integral

presents a peaked local maximum at N1 = N/2, i.e., x = 1
2
, as can be seen from

equations (2.15), (2.22), and (E.1). For annealed systems, this competes against a

weight function wN(x) exhibiting a peaked local maximum at x = q. The annealed

probability density PN(x) is proportional to the product of both functions and then it
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has a peaked maximum at an intermediate value x = 〈x〉. Based on these arguments,

a heuristic approach has been put forward in Appendix E. Its theoretical predictions

(with a single fitting parameter a = 10 independent of T and q) agree excellently

well with MC simulations, as figure 5 shows.

As a bonus of the biased annealed simulations, and given the weak influence of N

observed in figure 5, we have compared the measured MC values of volume and

energy with the theoretical exact results in the TL as functions of the mole fraction.

The results displayed by figure 6 show again an excellent agreement.

To put our findings in a proper context, some of their limitations should be

remarked. First, the theoretical results have been obtained for open boundary conditions

[ω = 0 in equation (2.2)]. As shown by equation (2.8), application of periodic boundary

conditions (ω = 1) significantly hampers the quest for an exact treatment at finite N .

While the choice of the boundary conditions (open or periodic) becomes irrelevant in

the TL, finite-size effects are affected by such a choice.

A second limitation arises from the use of the isothermal-isobaric ensemble rather

than the standard canonical ensemble. Of course, the partition function and its

associated configuration integral can be formally written in the canonical ensemble

[consider equation (2.5) with the integration over L removed], but then it is much more

difficult to reduce the problem to a purely combinatorial one at finite N , as happens,

however, with equations (2.10)–(2.13). One might believe that it would be possible to get

the finite-size Helmholtz free energy from the finite-size Gibbs free energy derived here

by means of the conventional Legendre transformation. However, this transformation

is justified in the TL only and washes out finite-size effects, as we have checked by

comparison with canonical MC simulations (not shown).

Third, we have not addressed in the present paper the problem of deriving the

exact relationship between 〈x〉 and q in biased annealed systems, even in the TL. The

theoretical approach in Appendix E is heuristic and depends upon a parameter a whose

value must be obtained by a fitting procedure. It would be very interesting to analyze

in detail the random walk represented by the annealed MC simulations and derive the

dependence 〈x〉(q), at least in the TL. However, this goal is outside of the scope of the

present work.

The last limitation refers to the choice of the one-dimensional geometry itself.

Of course, two- and three-dimensional systems are much more realistic, but the one-

dimensional setting, apart from being applicable to single-file confinement situations,

has the enormous advantage of allowing for the derivation of nontrivial exact results.

For instance, we have explicitly shown in a clean way that the first corrections to the

TL values are of order N−1, as usually assumed in the literature to get rid of finite-

size effects and extrapolate the simulation data to the TL. Moreover, exact results are

utterly important to test simulation methods and/or theoretical approaches that can

then be extended to scenarios where exact solutions are absent.
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Appendix A. Function ΞN1,N2 for large N

In this appendix, we prove that the function ΞN1,N2 defined in equations (2.15) and

(2.16) reduces to equation (2.22) in the limit N → ∞.

First, application of the Stirling approximation x! ≈
√
2πx(x/e)x yields

ξN1,N2(n = Ny) ≈ exp [Nψ(y)] , ψ(y) = ψ0(y) +N−1ψ1(y), (A.1)

where

ψ0(y) = −x1 ln
(

1− y

x1

)

− x2 ln

(

1− y

x2

)

+ y ln
(x1 − y)(x2 − y)

y2(1−R)
, (A.2)

ψ1(y) = − ln

[

2πNy

√

(

1− y

x1

)(

1− y

x1

)

]

. (A.3)

Equating to zero the first derivative of ψ(y) with respect to y, one can find that the

maximum value of ψ(y) corresponds to

ymax ≈ y0 +N−1y1, (A.4)

where

y0 =
1−

√
1− 4x1x2R

2R
, y1 = −1 + (4y0 − 3)y0/2x1x2

2− y0/x1x2
. (A.5)

Note that ψ′
0(y0) = 0 and y1 = −ψ′

1(y0)/ψ
′′
0(y0), where the second derivative of the ψ0(y)

is

ψ′′
0(y) = − 2− y/x1x2

y(1− y/x1)(1− y/x2)
. (A.6)

Note also that the last term on the right-hand side of equation (A.2) vanishes at y = y0,

so that ψ̄0 ≡ ψ0(y0) is given by equation (2.23)

As a second step, let us expand ψ(y) around y = ymax to get

ψ(y) ≈ ψ(ymax) +
ψ′′(ymax)

2
(y − ymax)

2 . (A.7)

Next, we replace the sum in ΞN1,N2 by an integral:

ΞN1,N2 ≈ N

∫ ∞

−∞
dy ξN1,N2(Ny)

≈ NeNψ(ymax)

∫ ∞

−∞
dy e

Nψ′′(ymax)
2

(y−ymax)
2

= NeNψ(ymax)

√

2π

−Nψ′′(ymax)
, (A.8)
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where in the second step use has been made of equation (A.7). Finally, taking into

account that ψ(ymax) ≈ ψ0(y0) + N−1ψ1(y0) and ψ′′(ymax) ≈ ψ′′
0(y0), equation (A.8)

becomes

ΞN1,N2 ≈ NeNψ0(y0)+ψ1(y0)

√

2π

−Nψ′′
0 (y0)

. (A.9)

Insertion of equations (A.3) and (A.6) into equation (A.9) yields equation (2.22).

Appendix B. Proof of equation (2.27)

While ψ̄0 is expressed in terms of y0 [see equation (2.23)], the right-hand side of equation

(2.27) is expressed in terms of R. The latter quantity is related to y0 by the identities

R =
y0 − x1x2

y20
,

√

1− 4x1x2R =
2x1x2
y0

− 1,
√
1− R =

√

(x1 − y0)(x2 − y0)

y0
, (B.1)

1 +
√
1− 4x1x2R

2
√
1−R

=
x1x2

√

(x1 − y0)(x2 − y0)
, (B.2)

|x1 − x2|+
√
1− 4x1x2R

(|x1 − x2|+ 1)
√
1− R

=
x2
x1

√

x1 − y0
x2 − y0

, (B.3)

where, without loss of generality, we have assumed x1 ≥ x2 in equation (B.3).

The right-hand side of equation (2.27) can be rewritten as

r.h.s. = − x1 ln

[

x1
2
√
1− R

1 +
√
1− 4x1x2R

x1 − x2 +
√
1− 4x1x2R

(x1 − x2 + 1)
√
1−R

]

− x2 ln

[

x2
2
√
1− R

1 +
√
1− 4x1x2R

(x1 − x2 + 1)
√
1−R

x1 − x2 +
√
1− 4x1x2R

]

= − x1 ln

(

1− y0
x1

)

− x2 ln

(

1− y0
x2

)

, (B.4)

where we have made use of equations (B.2) and (B.3). Comparison with equation (2.23)

closes the proof of equation (2.27).

Appendix C. Function ΞN for large N

The method is analogous to the one followed in appendix Appendix A. The quantities

ψ̄0 and y0 defined in equation (2.23) are functions of the mole fraction x1. It can be

checked that ψ̄0 presents a maximum at x1 =
1
2
. Expanding in powers of x1 − 1

2
,

ψ̄0 ≈ ln

(

1 +
1√

1−R

)

− 2√
1− R

(

x1 −
1

2

)2

. (C.1)

Combination of equations (2.22) and (C.1) yields

ΞN1,N2 ≈
(

1 +
1√

1−R

)N
1 +

√
1−R

√

2πN
√
1− R

e−2N(x1− 1
2)

2
/
√
1−R. (C.2)
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As a second step, for large N the summation of ΞN1,N2 over N1 can be approximated

by an integral over x1:

N
∑

N1=0

ΞN1,N2 ≈
(

1 +
1√

1− R

)N
1 +

√
1− R

√

2πN
√
1− R

N

∫ ∞

−∞
dx1 e

−2N(x1− 1
2)

2
/
√
1−R. (C.3)

This finally gives equation (3.4).

Appendix D. Technical details of the MC simulations

Since our exact finite-size results are found in the isothermal-isobaric ensemble and the

Legendre transform ‘washes out’ the finite-size effects, we found it necessary to perform

our numerical experiments also in the isothermal-isobaric ensemble [42]. Moreover, in

order to find agreement with our theoretical exact results, open boundary conditions

were used. Of course, only in the TL open and periodic boundary conditions become

equivalent.

We performed two kinds of MC experiments, which we label as MCa and MCq for

annealed and quenched systems, respectively.

The MCa transition rule consists of single particle MC moves (one MC step), which

are the combination of a particle position displacement xα → xα + (2η − 1)δ, where η

is a pseudo-random number in [0, 1] and δ < σ is the maximum displacement (to be

kept fixed during the whole simulation to preserve detailed balance) and a particle

assignment to species i = 1, 2 with probability qi (where q1 = q and q2 = 1− q). Open

boundary conditions were enforced by generating a new position until it falls inside the

segment xα ∈ [−L/2, L/2]. According to the Metropolis algorithm [43, 44] the move

is accepted with probability e−β∆ΦN , ∆ΦN being the change in potential energy due

to the combined move. This would be enough in the canonical ensemble, while in the

isothermal-isobaric ensemble we also need to perform a volume move. The latter is

computationally the most expensive one, since it requires a full energy calculation at

each attempt and therefore should be used with a low frequency during the run. We

chose 30% for the frequency of the volume move in all our simulations. For the transition

and acceptance probability for this volume move, see for example reference [42].

In contrast to the MCa case, in the MCq simulations the particles are assigned an

identity i = 1, 2 with probability xi = qi from the start and the species assignment is

never changed afterwards. The MCq transition rule consists of single particle MC moves

that amount to a particle position displacement with δ > σ (note that this condition

may be relieved in dimensions higher than one), which is accepted with probability

e−β∆ΦN , ∆ΦN being the change in potential energy due to the displacement. Again, in

the isothermal-isobaric ensemble we also have the volume move [42].

Notice that we can obtain the same result for quenched systems by using a third

simulation strategy that we will call MCaq. The MCaq transition rule consists of single

particle MC moves that are the combination of a particle position displacement (with

δ > σ), which is accepted with probability e−β∆ΦN (where ∆ΦN is the change in potential
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energy due to the displacement only), followed by a particle assignment to species i = 1, 2

with probability qi, which is always accepted and therefore completely disentangled from

the displacement move. As before, we also have the volume move [42] in the isothermal-

isobaric ensemble.

In all cases we chose δ so to have acceptance ratios as close as possible to 1
2
. The

equilibration time for MCa was much longer than for MCq.

Given an observable O, its statistical-mechanical average 〈O〉 was evaluated by

averaging O over a sufficiently large number of MC configurations after a sufficiently

long equilibration time. The measured observables were the mole fraction x =

N−1
∑N

α=1 δsα,1, the specific volume (or reciprocal density) v = L/N , and the excess

internal energy per particle uex = ΦN/N .

The statistical error on 〈O〉 is as usual given by σ〈O〉 =
√

σ2
OτO/M , where M is the

number of MC steps, σ2
O is the intrinsic variance of O, and τO is the correlation time

for the observable O [44]. The latter quantity depends crucially on the transition rule

and has a minimum value equal to 1 if one can move so far in configuration space that

successive values become uncorrelated. In general, the number of independent steps

which contribute to reducing the error bar is not M but M/τO. Hence, to determine

the true statistical error in the random walk, one needs to estimate the correlation time.

To do this, it is very important that the total length of the random walk be much

greater than τO. Otherwise, the result and its error bar will not be reliable. In general,

there is no mathematically rigorous procedure to determine τO, so that usually one must

determine it from the random walk itself. It is a good practice occasionally to carry out

very long runs to test that the results are well converged. In order to equilibrate the

random walk, we generally found it necessary to use 106 MC steps at high temperature

(T = 1) and 2 × 107 MC steps at low temperature (T = 0.2), and collect averages over

M = 105 MC steps.

Appendix E. A heuristic approximation for the dependence of 〈x〉 on q for

biased annealed systems

From equations (C.2) and (3.4), we have that, for large N , the probability that the mole

fraction x1 lies between x and x+ dx in the unbiased annealed system is

PN(x)dx =
1

ΞN

N(x+dx)
∑

N1=Nx

ΞN1,N2 ≈
NΞNx,N(1−x)

ΞN
dx ≈ e−2N(x− 1

2)
2
/
√
1−R

√

π
√
1− R/2N

dx. (E.1)

Obviously, 〈x〉 = 1
2
.

Imagine now a biased annealed system where each value of x = N1/N is weighed

with a certain function wN(x) centered around a value x = q 6= 1
2
. In that case,

PN(x) ∝ wN(x)ΞNx,N(1−x), (E.2)

which, for large N , would be extremely peaked around a value (comprised between 1
2

and q) that coincides with the average 〈x〉 =
∫ 1

0
dxxPN (x). Thus, the value 〈x〉 can be
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determined as the solution to the equation

0 =
∂

∂x
lim
N→∞

N−1
[

lnwN(x) + lnΞNx,N(1−x)
]

=
∂

∂x
lim
N→∞

N−1 lnwN(x) +
∂ψ̄0

∂x
, (E.3)

where in the second step we have made use of equation (2.22). Note that here, in

contrast to equation (E.1), we need to take into account the full dependence of ψ̄0 on

x because the solution to equation (E.3) is not, in general, close to 1
2
. According to

equation (2.23),

∂ψ̄0

∂x
= − ln

[

1− 1−
√

1− 4x(1− x)R

2xR

]

+ ln

[

1− 1−
√

1− 4x(1− x)R

2(1− x)R

]

. (E.4)

The simplest choice for the weight function wN(x) is the binomial distribution

wN(x) =
(

Neff

Neffx

)

qNeffx(1 − q)Neff (1−x), where Neff ≡ Nb, b being an effective factor

accounting for the expected dependence of wN(x) on the thermodynamic state (T and

p). In that case,

lim
N→∞

N−1 lnwN(x) = b

[

x ln
q

x
+ (1− x) ln

1− q

1− x

]

, (E.5)

∂

∂x
lim
N→∞

N−1 lnwN(x) = b ln
q(1− x)

x(1 − q)
. (E.6)

Therefore, equation (E.3) becomes

0 = − ln

[

1− 1−
√

1− 4x(1− x)R

2xR

]

+ ln

[

1− 1−
√

1− 4x(1− x)R

2(1− x)R

]

+ a
√
1− R ln

q(1− x)

x(1 − q)
, (E.7)

where we have taken b = a
√
1− R, a being a constant to be empirically determined. A

simple and yet optimal value is a = 10.
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