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Gapless fracton phases are characterized by the conservation of certain charges and their higher
moments. These charges generically couple to higher rank gauge fields. In this paper we study
systems conserving charge and dipole moment, and construct the corresponding gauge fields prop-
agating in arbitrary curved backgrounds. The relation between the symmetries of these class of
systems and spacetime transformations is discussed. In fact, we argue that higher rank symmetric
gauge theories are closer to gravitational fields than to a standard gauge theory.

In modern physics, symmetries are a fundamental
paradigm to organise degrees of freedom of a given sys-
tem. Typically, the symmetries can be divided in terms of
internal, and spacetime symmetries. For instance, elec-
tric charge and isospin conservation are consequence of
the former, whereas conservation of momentum and an-
gular momentum of the latter. Understanding the dis-
tinction between the two classes of transformations is vi-
tal in order two characterize the force fields associated
to interacting charged matter. At the fundamental level,
matter charged under internal symmetries interact via
gauge fields, whereas gravitational fields carry the ”force”
between fields charged with respect to spacetime symme-
tries, e.g. energy (mass), and/or momentum. Although
physicist have made several attempts to describe gravity
as a gauge theory, and a successful algorithm to gauge
(relativistic or not) spacetime symmetries has been devel-
oped [1–4], strictly speaking gravitational fields are not
gauge fields.
On the other hand, in recent years, a new class of

matter excitations has been proposed named as fractons
[5, 6]. The main feature a quasiparticle needs to show to
be called fractonic is the property of reduced mobility1.
In fact, fracton matter can be classified in terms of gap-
less [8–13] and gapped [14–18] phases. In particular, gap-
less fracton phases are described by the conservation of
certain charges and their higher moments. This peculiar
behavior has as consequence a non-standard continuity
equation (see Eq. (2) for the case of charge and dipole
conservation, and [11, 19] for more general examples).
This class of symmetries naturally arise in the context of
spin liquids [11–13], quantum Hall and elasticity [20–23],
topological defects [22, 24, 25], and beyond the condensed
matter realm in systems with Galileons [26].
For simplicity, we shall focus on the case of systems

preserving a scalar charge and its corresponding dipole
moment. This symmetry has the form of some gener-
alised U(1) symmetry. Actually, is not hard to conclude
that the interaction among such type of charges should be
carried by generalized ’electromagnetic gauge fields’ with

1 Do not confuse with the fractons introduced in [7] in the context
of nuclear interactions.

the spatial vector potential substituted by a symmetric
tensor field [10, 11]. However, if we try to follow the
standard minimal coupling rule to couple charged mat-
ter to these gauge fields we run into problems, and the
only way out proposed so far is with a non-Gaussian the-
ory [19, 27], making analytic computations really hard.
Nonetheless, certain progress has been made in the hy-
drodynamic description for such systems in absence of
gauge fields [27–31].

Furthermore notice, that similarly to angular momen-
tum, the value of a dipole moment depends on the lo-
cation of the origin of the coordinates system, making
it hard to link its conservation to an internal symme-
try group, indicating that charge and dipole conserva-
tion, should be related to a spacetime symmetry group,
rather than to a purely internal one. This observation
was one of the main motivations for the study presented
here. Also notice that the fractonic ’force’ field is a sym-
metric tensor in similarity with the metric which is the
responsible for gravitational forces. Actually, in [21, 32]
a connection between fractons dynamics and linearized
gravity has been discussed. In this paper, we propose a
geometric theory where the symmetric gauge fields play
the role of vielbeins in a vertical space to the physical
spacetime. This construction pave the road to a system-
atic understanding of more generic multipole preserving
gauge theories, and opens up a path for the construction
of low energy, and possibly microscopic, fractonic matter
actions.

Our first result relies on the interpretation of the
Nambu-Goldstone mode in a spontaneously broken
phase, as the embedding coordinate of the physical
spacetime in a higher dimensional Heisenberg spacetime
[33, 34]. In fact, the fracton transformations belong to
the isometry group of such spacetime. Given this inter-
pretation, a minimal (non-linear) theory for the Nambu-
Goldstone field has the form of a Born-Infeld action [see
Eq. (14)]. The second and main result Eq. (26) is a fully
diffeomorphism and gauge invariant higher rank gauge
theory. Actually, the construction suggests that sym-
metric gauge fields will generically become massive on a
curved background, and to preserve the gauge invariance
we need to introduce a Stueckelberg field. In particular,
our theory reduces to the models proposed in [11] once
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the spacetime is assumed to be flat.
The paper is organized as follows: In Sec. I we de-

scribe the conservation laws and symmetry algebra of a
system conserving energy, mometum, angular momen-
tum, and a scalar charge with its corresponding dipole
moment. Next, in Sec. II we discuss the relation of the
symmetries of the system with the so-called Heisenberg
group, and study the spontaneous symmetry breaking of
fracton charges. In Sec. III, we gauge the full symmetry
group obtaining a generalization of the fracton electro-
dynamic gauge theories on curved spacetimes. Then, in
Sec. IV we discuss the outputs of our proposal, possible
implications, and outlooks.

I. CHARGE-DIPOLE CONSERVATION

Gapless fracton phases are characterized by the con-
servation of certain charges and their higher moments.
The simplest case, corresponds with the conservation of a
charge Q and its dipole Qa, which in n space dimensions,
at the macroscopic level, can be formulated in terms of
the charge density ρ as

d

dt

∫

dnx (λ+ β · x) ρ = 0 , (1)

with λ,β arbitrary parameters. In a system with such
conservation law, charges are immobile, whereas dipoles
can freely move. In fact, similarly to what happens with
momentum and angular momentum2, both charges are
conserved once the single (generalized) continuity equa-
tion

∂tρ+ ∂a∂bJ
ab = 0 , a, b = 1, 2, . . . , n , (2)

is satisfied. The distinguishing feature in this class of
systems is that charge is relaxed via a tensorial current.
An immediate consequence of such conservation law, is
that a gauged version of the symmetry would require the
presence of gauge fields A0, Aab with the transformation
rule A0 → A0 − ∂tλ, and Aab → Aab + ∂a∂bλ, and the
’gauge fields’ coupling to the fractonic matter as follows

S = S0[A0, Aab] +

∫

dn+1x
(

ρA0 + JabAab

)

. (3)

Such type of theories have been proposed as a gener-
alization to electrodynamics [11]. However, due to the
unusual transformation law of the fields, it is not clear
in what sense they are actual gauge theories. In addi-
tion, from this perspective, it is not obvious whether it is
possible to put the theory on a curved manifold without
spoiling the gauge symmetry [35].

2 In a system with both momentum and angular momentum con-
servation once momentum is conserved, conservation of angular
momentum follows.

In order to understand the tension between the space-
time transformations and the gauge symmetry intro-
duced above it is useful to notice that the dipole charge
Qa is charged under spatial translations. The main rea-
son, is that its value will change once the origin of the
space is shifted, contrary to what happens to the charge
Q, which is insensitive to the location of the origin. This
is an unusual property for internal symmetries. In fact,
a careful analysis of the action of time and space trans-
lations, rotations, and the transformations generated by
the fracton charges with generators H,Pa, Lab, Q

a, Q re-
spectively, imply that the whole set of transformations
form a continuous Lie group G with its corresponding
Lie algebra satisfying the non-vanishing Lie brackets [29]

[Pa, Q
b] = δbaQ , (4)

[Pa, Lbc] = δacPb − δabPc ,

[Qa, Lbc] = δacQb − δabQc ,

[Lab, Lbc] = δacLbd − δadLbc − δbcLad + δbdLac .

This algebra makes evident that conservation of charge
and dipole are consequence of a spacetime symmetry
group. Contrary to the usual case of U(1) charges.
A similar example is the case of mass conservation in
Galilean invariant theories [4]. Actually, Eqs. (4) show
similarities with the Bargmann algebra once the genera-
tor of Galilean boosts is identified with the dipole gener-
ator Qa, and mass with charge Q. See also [36, 37] for
the similarities with Carroll theories.

II. GROUP MANIFOLD AND SPONTANEOUS

SYMMETRY BREAKING

In this section we shall give a geometric interpretation
to the group G in terms of Heisenberg spaces [33, 34]. In
particular, the Heisenberg algebra has 2n+1 dimensions,
and non-vanishing brackets

[Pa, Q
b] = δbaQ. (5)

Therefore, it is a subalgebra of the entire fractonic alge-
bra introduced above (see Eq. (4)). In order to get some
intuition on the relation of the Heisenberg group with an
actual spacetime, we recall that the n−dimensional real
space with additive composition is the coset space of the
Euclidean and rotations groups, i.e. Rn = En/SO(n). In
full analogy, we define the (fractonic) Heisenberg space
H2n+1,1 = G/SO(n).
To construct such space, we parametrize elements of

the coset with coordinates (y0, ya, za, φ) via the expo-
nential map

Ω = ey
0H+yaPaezaQ

a

eφQ, (6)

where y0, and ya are internal coordinates showing cer-
tain resemblance with the comoving time and ”fluid” el-
ements respectively used in fluid dynamics [38]. On the
other hand, za, and φ are the Nambu-Goldstone fields
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parametrizing the spontaneous breaking of the genera-
tors Q,Qa.
Using the left action of the group on itself, we define

the transformed element of the coset as Ω̃ = gΩe−βabLab ,

with g = eζ
0H+ζaPaeβaQ

a+λQeβ
abLab . The infinitesimal

transformations read

δy0 = ζ0 , δya = ybβb
a + ζa , (7)

δza = zbβ
b
a + βa δφ = λ− βay

a .

The Maurer-Cartan form A = Ω−1dΩ reads

A = τH + eaPa + ωaQ
a + vQ, (8)

with τ = dy0, ea = dya, ωa = dza, v = dφ + zady
a. The

Maurer-Cartan equations imply dv = ωa ∧ ea. In addi-
tion, the (invariant) inverse vector fields are

t =
∂

∂y0
, Ea =

∂

∂ya
− za

∂

∂φ
, Ēa =

∂

∂za
, V =

∂

∂φ
.

(9)
Notice, that they define a basis where Ea, Ē

b do not com-
mute. In particular, their Lie bracket is [Ea, Ē

b] = δbaV ,
which corresponds with the Heisenberg Lie algebra Eq.
(5), if we identify Ea → Pa, Ē

a → Qa, and V → Q. From
now on, we will call this space the Heisenberg spacetime
H2n+1,1.
In addition, we introduce the physical spacetime Mn+1

as the base space of a fibre bundle with total space be-
ing H2n+1,1. The projection from H2n+1,1 to Mn+1 can
be fixed as y0 = x0, ya = δaµx

µ, this gauge fixing iden-
tifies the base manifold coordinate transformations with
parameters ξµ to the internal translations and rotations
such that

ξµ = ζµ + δµaδ
b
νβ

a
bx

ν . (10)

In particular, the scalar field φ now transforms as

δφ = λ− βax
a + ζµ∂µφ−

1

2
βab(xa∂b − xb∂a)φ , (11)

also notice that this identification removes the distinc-
tion between internal and base spacetime indices. A
last necessary gauge fixing corresponds with so-called in-
verse Higgs constraint [39–41]. One of the indications we
should introduce it in our system, is the fact that −∂aφ
and za have the same transformation property, suggest-
ing that these fields are not independent. Therefore, we
remove redundant modes by setting za = −∂aφ. Finally,
after the gauge fixing we obtain the covariant derivatives
of the Nambu-Goldstone field are

v0 = ∂0φ , ω0a = −∂a∂0φ , ωab = −∂a∂bφ . (12)

Moreover, we can introduce on H2n+1,1 the metric
Ḡ2n+2 = pτ2 + (ea)2 + (ωa)

2 + v2, with p a sign that
we will fix below. In fact, a possible interpretation, is
that the spontaneously broken phase is captured by the
localization of a n + 1−dimensional ”membrane” at the

points (xµ,−∂aφ(x), φ(x)) . With this embedding, the

induced volume reads voln+1 =
√

|Ḡn+1|d
n+1x.

Having constructed the proper invariants of the sys-
tem, we can write the most general low-energy effective
action for the spontaneously broken phase as

SSSB =

∫

dn+1x
√

|Ḡn+1| L
(

v0, (ω0a)
2, (ωab)

2
)

. (13)

In general, the form of the effective Lagrangian will
depend on the precise microscopic system we consider.
However, it is interesting to notice that the minimal the-
ory with L = −α have an action of the Dirac-Born-Infeld
form

SSSB = −α

∫

dn+1x
√

|det
(

pδ0µδ
0
ν + δaµδ

a
ν +Bµν

)

|.

(14)
with

Bµν(x) = vµ(x)vν (x) + ωµa(x)ωνa(x) . (15)

Actually, if we assume gradients are small, and introduce
the derivative expansion ∂0 ∼ ∇2 the action reads

SSSB ≈ −α

∫
(

1 +
p

2
(∂0φ)

2 +
1

2
(∂a∂bφ)

2 + . . .

)

,

(16)
notice that setting p = −1, will guarantee a positive def-
inite energy for the linearized theory. In next section, we
will see that such condition will also give the right signs
in the action for the symmetric gauge fields.
It is important to emphasize that, although Eq. (14)

has a nice geometric interpretation, because its equation
of motion will extremize the volume of the orbits of the
internal coordinates, in general the precise form of the
action should be model dependent. From now on, we
will call Gµν = −τµτν + eµ

aeν
a the spacetime metric

and Bµν the fracton metric.

III. THE GAUGE THEORY

Previous formulation naturally allows us to gauge the
fractonic symmetry in full analogy with gravitational the-
ories3. This procedure should provide a consistent field
theory for fractonic gauge fields in curved backgrounds.
In order to do so, we will follow the method described
in [1]. Using this technique the spacetime coordinates
are interpreted as the Stueckelberg fields associated to
breaking of local translations. Nonetheless, in our sys-
tem we have embedded the spacetime in a larger space,
therefore, in full analogy we could expect that local frac-
ton translations might be broken with Stueckelberg fields

3 See [37, 42] for similar constructions, although different physical
systems.
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(za(x), φ(x)). In such regime the connection must be de-

fined as A = Ω−1(d+Ã)Ω, with Ω defined in Eq. (6), and

Ã being the corresponding gauge field. Since the compo-
nents of Ã along the algebra directions are independent,
we find convenient to parametrize them as

Ã = τ̃H+ ẽaPa+ ω̃aQ
a+(ṽ+ yaω̃a)Q+

1

2
ωabLab . (17)

By construction A will be invariant with respect to the
broken generators. On the other hand, it will transform
as a gauge field with respect to the unbroken generators,
and reads

A = τH + eaPa + ωaQ
a + vQ +

1

2
ωabLab , (18)

with τ = dy0 + τ̃ , ea = Dya + ẽa, ωa = Dza + ω̃a, v =
dφ+zae

a+ṽ, and the covariant exterior derivativeDpa =
dpa−ωa

b∧pb. In particular, we shall interpret (τ, ea) as
a local basis with inverse vielbeins (tµ, Eµ

a) respectively,
and ωab as the spin connection of the spacetime. With
them we define the spacetime metric Gµν = eµ

aeν
a −

τµτν , and the fracton metric Bµν = vµvν+ωµaωνa. Fields
with internal space indices a, b, c transform as vectors
(tensors) with respect to local SO(n) transformations,
whereas the spin connection as a non-Abelian gauge field
(see Appendix A).
Under an infinitesimal internal translation g(x) = 1 +

βa(x)Q
a+(λ(x)+yaβa(x))Q, the Stueckelberg and gauge

fields transform as

δφ = λ , δza = βa , δωab = 0 , (19)

δω̃a = −Dβa , δṽ = −dλ− eaβa . (20)

As in the previous section we identify the internal and
physical coordinates as (y0 = x0, ya = δaµx

µ) and fix the
Stueckelberg to be za = −Eµ

a∂µφ, this condition re-
quires βa = −Eµ

a∂µλ. After doing so, we notice that
Eµ

aṽµ will not transform under fracton gauge transfor-
mations. Therefore, we set them to zero (ṽ = A0τ) be-
cause those components will not couple to the fractons
current.
The curvature two-form of the theory is then defined

as R = dA+A ∧A which can be expanded as

R =dτH +DeaPa +
1

2
RabLab + (Fa + zbR

b
a)Q

a+

(f + zaDea)Q , (21)

where Rab = Dωab is the curvature associated to the spin
connection, and the fractons field strengths

Fa = Dω̃a , f = dṽ + ea ∧ ω̃a . (22)

Fa and f are not invariant under internal translations if
the curvature Rab and the spatial torsion Dea are not
vanishing (see Appendix A), which justify the presence
of the Stueckelberg fields. From this perspective, the
breaking of dipole conservation has the same origin as the

breaking of translational invariance in curved spacetime
[1, 2]. In odd spacetime dimensions local translations can
be preserved, and gravitational theories can be related to
Chern-Simons models with Poincaré as gauge group [43].
Nonetheless, studying the generalization to our problem
goes beyond the scope of this paper, and shall be left for
future studies.
For simplicity, we assume the spacetime to be torsion-

less (dτ = Dea = 0). Such constraints, fix τ to be a
closed form, and allow us to express the spin connection
in terms of the vielbeins. In the Appendix B the spin
connection in terms of the vielbeins is shown. When the
torsion vanishes f becomes gauge invariant, and for con-
venience we parametrize the dipole gauge field as

ω̃a = (θa − Eµ
a∂µA0)τ + Cbae

b +Aabe
b , (23)

with Aab = Aba, and Cab = −Cba. Using that
parametrization the monopole field strength reads

f = θae
a ∧ τ − Cabe

a ∧ eb , (24)

which implies that under fracton gauge transformations
δθa = δCab = 0. Generically, even in flat space those
fields will be massive. Therefore, requiring f = 0 we set
them to zero. Finally, we end up we the set of gauge
fields (A0, Aab), and using Eqs. (20) we conclude their
transformation rule is

δAab = Eµ
aE

ν
b∇µ∇νλ , δA0 = −tµ∂µλ , (25)

with ∇µζν = ∂µζν − Γα
µνζα, and the connection Γα

µν =
tα∂µτν + Eα

aDµeν
a.

The last necessary ingredient is an invariant volume
form, that we defined as voln+1 ≡ ⋆1 =

√

|G|dn+1x.
With all this, a quadratic diffeomorphism and gauge in-
variant action for the theory can be expressed as4

S = −
1

2

∫

⋆(Fa + zbR
b
a) ∧ (Fa + zcR

c
a) + SSSB[Bµν ] .

(26)
In fact notice, that if we take the flat space limit

(ea = dxa, τ = dx0) the action become independent
of za, which allows for massless fracton gauge fields, and
we can safely write an invariant theory under the full
fractonic gauge group

S = −
1

2

∫

⋆Fa ∧ Fa =

∫
[

F0abF0ab −
1

2
FabcFabc

]

,

(27)

which has the form of a generalized electrodynamics the-
ory, with the electric and magnetic fields being

F0ab = ∂0Aab + ∂a∂bA0 , (28)

Fabc = ∂aAbc − ∂bAac , (29)

in full agreement with previous results [11].

4 Notice that defining the volume as voln+1 =
√

|G+B|dn+1x

would produce higher order in fields corrections in the action.
Nonetheless, we are interested in constructing a quadratic action.
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IV. DISCUSSION

We have given a geometric interpretation to the sym-
metry group associated to the conservation of charge and
dipole charge. In this picture the group is associated
with a 2n + 2 dimensional space with the actual physi-
cal spacetime of dimension n+ 1 contained in the larger
space. The Nambu-Goldstone mode φ(x) appearing in
the system can be understood as the breathing mode of
the physical space inside the larger one. The advantage
of that picture is that it allows us to construct consis-
tently a gauge theory associated to the symmetry under
discussion, in either flat or curved spacetime. Our re-
sults explain the incompatibility of the fractonic symme-
try with spatial curvature, since a fully invariant theory
requires a Stueckelberg field. Therefore, we conclude that
a fractonic system on a curved manifold will generically
suffer spontaneous symmetry breaking due to curvature
effects. This analysis pave the road for a more systematic
analysis of theories preserving charges and their corre-
sponding higher moments. In addition, it may help with
the construction of low-energy effective fracton theories,
because it provides a recipe to construct diffeomorphism
and ”gauge” invariant actions. Invariance will allow to
derive covariant Ward identities for fracton charge, en-
ergy and momentum conservation. For instance, under-
standing how to couple the class of fractonic theories con-
sidered here to curved backgrounds, and the knowledge
of the corresponding Ward identities could be fundamen-
tal to systematically construct fracton partition functions
and in general hydrodynamics theories [44–47].
In the context of elasticity, this construction may help

going beyond the current fractons/elasticity duality [13].
In fact, it would be interesting to explore within our ge-
ometric context the recently proposed generalization of
such duality to the case of quasi-crystals [48].
On the other hand, in quantum Hall systems, volume

preserving diffeomorphisms have been related to the frac-
tonic symmetry group discussed here [23]. In fact, since
the entire symmetry group preserve the two-form dv, it
seems possible to connect our approach with volume pre-
serving diffeos. However, an important difference be-
tween the two approaches is that the symmetric gauge
field in [23] are directly interpreted as a metric field,
whereas, our fracton metric Bµν depends quadratically
on Aab. Another interesting direction would be the con-
struction of Chern-Simons actions. We leave the study
of all these aspects for future investigations.

Acknowledgements The author thanks Carlos Hoyos,
Piotr Surowka, Kevin Grosvenor, and Karl Landsteiner
for discussions. The author acknowledges financial sup-
port by the Deutsche Forschungs-gemeinschaft (DFG,
German Research Foundation) under Germany’s Excel-
lence Strategy through Würzburg-Dresden Cluster of Ex-
cellence on Complexity and Topology in Quantum Mat-
ter - ct.qmat (EXC 2147, Project Id 390858490), and the
Norwegian Financial Mechanism 2014-2021 via the NCN
POLS grant 2020/37/K/ST3/03390.

Appendix A: Gauge Transformations

The gauge field associated to the fractonic symmetry
group G discussed in the main text can be expanded as

Ã = τ̃H + ẽaPa + ω̃aQ
a + sQ+

1

2
ωabLab , (A1)

and its corresponding curvature R̃ = dÃ+ Ã ∧ Ã reads

R̃ = dτ̃H+DẽaPa+FaQ
a+(ds+ ẽa∧ ω̃a)Q+

1

2
RabLab ,

(A2)
notice that the differential operator D acts as a covariant
exterior derivative, and is defined asDpa = dpa−ωa

b∧p
b.

In addition, the fractonic and rotational field strengths
are

Rab = Dωab , Fa = Dω̃a . (A3)

Since we are working with a non-Abelian symme-
try group, under infinitesimal gauge transformations the
gauge field and field strength transform as δÃ = −dÃ −
[Ã,Λ], δR̃ = −[R̃,Λ] respectively, with the gauge param-
eter

Λ = ζ0(x)H+ζa(x)Pa+βa(x)Q
a+α(x)Q+

1

2
βab(x)Lab .

(A4)
After some tedious but straightforward computation it

is possible to derive the following set of transformation
rules

δτ̃ = −dζ0 , (A5)

δẽa = −Dζa + ẽbβb
a , (A6)

δω̃a = −Dβa + ω̃bβ
b
a , (A7)

δs =− dα− ẽaβa + ω̃aζ
a , (A8)

δω̃ab = −Dβab , (A9)

whereas the curvature fields transform as

δ(Dẽa) = Ra
bζ

b +Dẽbβb
a , (A10)

δRab = Dωab (A11)

δFa = Ra
bβb + Fbβ

b
a , (A12)

δ(ds+ ẽa ∧ ω̃a) = −Dẽaβa + Faζ
a . (A13)

Notice that the transformation properties of the the
fractonic gauge fields do not allow for a local gauge in-
variant action. Therefore, following [39] we introduce
Stueckelberg fields to compensate such non-invariance.
To do so, we introduce the Maurer-Cartan form, and its
corresponding curvature

A = Ω−1(d+ Ã)Ω = τH + eaPa + (ω̃a +Dza)Q
a

+ (ṽ + zae
a + dφ)Q +

1

2
ωabLab , (A14)

R = dτH +DeaPa + (Fa + zbR
b
a)Q

a + (f + zaDea)Q

+
1

2
RabLab . (A15)
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where the new fields τ, ea, ṽ, f are defied as

τ = dx0 + τ̃ , (A16)

ea = Dxa + ẽa , (A17)

s = ṽ + yaω̃a , (A18)

f = dṽ + ea ∧ ω̃a . (A19)

It is convenient to redefine the monopole gauge param-
eter as α = λ + yaβa, such that gauge transformations
act on the new fields as

δφ = λ , (A20)

δza = βa + zbβ
b
a , (A21)

δωab = −Dβab , (A22)

δea = ebβb
a , (A23)

δω̃a = −Dβa + ω̃bβ
b
a , (A24)

δFa = −βaR
b
a + Fbβ

b
a , (A25)

δṽ = −dλ− eaβa , (A26)

δf = −βaDea . (A27)

Appendix B: Constraints

For simplicity we set the timelike and spatial torsions
to zero

dτ = 0 =⇒ τ = d(scalar function) , (B1)

Dea = 0 =⇒ ωµ
ab =

1

2
Eν[a∂µeν

b] +
1

2
EρaEνb∂[νeρ]

c eµc .

(B2)

On the other hand the inverse Higgs constraint [40, 41]
together with the fixing Eµ

aṽµ = 0 imply

za = −Eµ
a∂µφ , (B3)

ṽµ = A0τµ , (B4)

After such gauge fixing, the remaining gauge freedom is
βa = −Eµ

a∂µλ.
The last constraint introduced is f = 0, which fixes

the dipole gauge field in terms of the monopole field ṽ
modulo a symmetric tensor

ω̃a = 2tµEν
a∂[µṽν]τ +

(

Eµ
bE

ν
a∂[µṽν] +Aab

)

eb , (B5)

with Aab = Aba. Consistency of the gauge transforma-
tions of the dipole and monopole gauge fields demands

[tµ∂µ, E
ν
a∂ν ]λ = 0 [Eµ

a∂µ, E
ν
b∂ν ]λ = 0 , (B6)

which is automatically satisfied due to the torsionless
condition. Therefore, the symmetric field has the trans-
formation rule

δAab = Eν
aDν(E

µ
b∂µλ) = Eµ

aE
ν
b∇µ∇νλ , (B7)

with the diffeomorphism covariant derivative ∇µζν =
∂µζν − Γα

µνζα, and the connection Γα
µν = tα∂µτν +

Eα
aDµeν

a. This covariant derivative satisfies

∇µτν = 0, ∇µt
ν = 0 , (B8)

∇µE
ν
a + Eν

bωµ
b
a = 0 , (B9)

∇µeν
a − ωµ

a
beν

b = 0 , (B10)

and the metric is covariantly constant ∇αGµν = 0.
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