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The birth of the global stability theory
and the theory of hidden oscillations
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Kudryashova E.V.2, Kuznetsova O.A.?, Rosenwasser E.N.¢, Abramovich S.M.¢

Abstract— The first mathematical problems of the global
analysis of dynamical models can be traced back to the
engineering problem of the Watt governor design. Engineering
requirements and corresponding mathematical problems led
to the fundamental discoveries in the global stability theory.
Boundaries of global stability in the space of parameters are
limited by the birth of oscillations. The excitation of oscillations
from unstable equilibria can be easily analysed, while the
revealing of oscillations not connected with equilibria is a chal-
lenging task being studied in the theory of hidden oscillations.
In this survey, a brief history of the first global stability criteria
development and corresponding counterexamples with hidden
oscillations are discussed.

I. INTRODUCTION

One of the key tasks of the control systems analysis is
study of stability and limit dynamic regimes. A classical
example of a mathematical approach to this problem is
proposed in I.A. Vyshnegradsky’s work [1] on the analysis of
governors, published in 1877 (see also works of J.C. Maxwell
and A. Stodola [2]-[4]). The design of governors was an
important practical task in the XVIII-XIX centuries. In
1868 Watt governors were used on about 75 000 steam
engines in England alone [5]. However, the absence of a
theoretical framework did not allow for controlling the Watt
governor’s parameters effectively. As a result, the operation
of steam engines was often unstable, and accidents were
quite common. This problem stimulated the development of
stability and control theories.

In his work, Vyshnegradsky, professor of Petersburg In-
stitute of Technology, suggested a mathematical model of
system “steam engine — Watt governor” described by the
system of ordinary differential equations with one discon-
tinuous nonlinearity. For the linearization of this model
(obtained by discarding dry friction) he determined stability
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conditionsﬂ Based on engineering reasonings, he conjectured
that the obtained conditions are sufficient for the absence of
unwanted oscillations and for the transition to sustainable
operation with any initial data.

In 1885, H. Léauté published a paper [7] which showed
that governors with dry friction may exhibit nonstationary
sustainable regimes. Later, the famous Russian scientist
N.Ye. Zhukovsky, referring to H. Léauté’s work, criticized
Vyshnegradsky’s approach [8] and posed problems of rig-
orous nonlocal analysis of discontinuous systems and the
proof of the Vyshnegradsky’s conjecture on the stability of
the Watt governor. This discussion led to the development of
the theory of oscillations (studying all posible limit regimes)
and the theory of global stability (searching for conditions
of the absence of nonstationary limit regimes).

Significant contribution to the study of oscillations and
criteria of its absence was made by A.A. Andronov’s sci-
entific school. The monograph “Theory of oscillations” [9],
first published in 1937, contains the analysis of stability and
oscillations of various continuous and discontinuous two-
dimensional dynamical models.

Developing this theory further, A.A. Andronov and
A.G. Maier studied the three-dimensional nonlinear discon-
tinuous model from [1] and provecﬂ that the Vyshnegrad-
sky’s conjecture is true [11]-[13], i.e., that Vyshnegradsky’s
conditions of local stability imply global stability of the
system.

II. GLOBAL STABILITY

Consider a system of ordinary differential equations
i=f(x), f:R" R (1

and suppose that for any initial state xo there exists a unique
solution x(¢, xo) : x(0, x0) = xo, defined on [0, o).

Definition 1 (Global stability): If any trajectory of system
@ tends to the stationary set, then the sysfem is called
globally stableﬂ

'I.A. Vyshnegradsky’s work [1] became one of the motivations of
A.M. Lyapunov for further work on rigorous justification of the linearization
procedure [6] (in 1877 A.M. Lyapunov was a sophomore in Saint Petersburg
University).

>The significance of the results was noted when A.A. Andronov was
elected as a full member of Academy of Sciences of the Soviet Union and
became the first academician in the field of control theory [10, p.56].

3We use the term “global stability” for simplicity of further presentation,
while in the literature there are used different terms like “globally asymp-
totically stable” [14, p. 137], [15, p. 144], “gradient-like” [16, p. 2], [17,
p. 56], “quasi-gradient-like” [16, p. 2], [17, p. 56] and others, reflecting the
features of the stationary set and the convergence of trajectories to it.



Note, that the Lyapunov stability of the stationary set in
Def. |1]is not required. An example of a globally stable two-
dimensional system with unique unstable equilibrium having
a family of homoclinic trajectories can be found in [18], [19].

Within the framework of global stability study, it is
naturally to classify oscillations in control systems as self-
excited or hidden [20]-[22]. Basin of attraction of a hidden
oscillation in the phase space does not intersect with small
neighborhoods of any equilibria, whereas a self-excited oscil-
lation is excited from an unstable equilibrium. A self-excited
oscillation is a nontrivial one if it does not approach the
stationary states (i.e., ®-limit set of corresponding trajectory
does not contain an equilibrium).

The loss of global stability may occur by appearance of
either nontrivial self-excited oscillation (see, e.g., [23]) or a
hidden one. Self-excited oscillations can be identified by the
study of equilibria and computation of trajectories from their
vicinities. However, the revealing of hidden oscillations and
obtaining initial data for their computation are challenging
problems, which are studied in the theory of hidden oscilla-
tions [24]-[29], which represents the genesis of the modern
era of Andronov’s theory of oscillations.

A. Systems with a single equilibrium

In 1944, being in Sverdlovsk (now Yekaterinburg),
AL LurieE] and V.N. Postnikov published an article [32] with
the analysis of the global stability of the following model:

x= Perq(p(rTx), 2)

where P is a matrix, g and r are vectors, and ¢ : R - R is a
continuous scalar nonlinearity such that ¢(0) = 0. Nowadays
such models are called Lurie systems and used to describe
various control systems (including the Vyshnegradsky model
of the Watt governor). In [32] it was suggested to study the
global stability of system (Z) by a Lyapunov function in the
form “quadratic form plus the integral of nonlinearity”. Later,
this class of functions became known as Lyapunov functions
of the Lurie-Postnikov form.

The works by Vyshnegradsky, Andronov-Mayer, and
Lurie-Postnikov led to the problem of describing a class of
Lurie systems for which necessary conditions of stability
(i.e., stability of linearized model) coincide with sufficient
ones (i.e., global stability of nonlinear model). In 1949
M.A. Aizerman, who became acquainted with the Andronov-
Mayer results on the stability of the Watt governor at An-
dronov’s seminar in Moscow [33], formulated the question
[34]: is the Lurie system with one equilibrium globally
stable if the nonlinearity belongs to the sector of linear
stability? Nowadays, this question is known as the Aizer-
man’s conjecture on absolute stability. In 1952, 1.G. Malkirﬂ

4During the wartime in 1941-1944, A.I. Lurie was in evacuation in
Sverdlovsk and chaired the Department of theoretical mechanics at the Ural
Industrial Institute [30], [31]. The Department regularly held seminars on
analytical mechanics and control theory under the guidance of A.l. Lurie.

SL.G. Malkin was the head of the Department of theoretical mechanics
of the Ural University (Sverdlovsk). He organized a scientific seminar on
stability and nonlinear oscillations, which was attended by E.A. Barbashin
and N.N. Krasovsky.

published an article [35] where the method of Lyapunov
functions of the Lurie-Postnikov form was developed for the
Aizerman’s conjecture in the case n = 2. In the same year,
N.N. Krasovsky, referring to Malkin’s method, presented a
counterexample to the Aizerman’s conjecture in the case
n =2 [36] with solutions tending to inﬁnityﬂ

Independently, a similar conjecture was later advanced
by R.E. Kalman in 1957, with the additional requirement
that the derivative of nonlinearity belongs to the linear
stability sector [38]. Counterexamples with hidden periodic
and chaotic oscillations to the Kalman’s conjecture can
be obtained, for instance, in the four-dimensional Keldysh
model of flutter suppression and in model of the Watt
governor with a servo motor [24], [27], [29

The Lurie’s problem and the Aizerman’s conjecture stim-
ulated the development of general global stability theory. In
1952, E.A. Barbashin and N.N. Krasovsky formulated a gen-
eral theorem on global stability via Lyapunov functions for
autonomous systems of ODEs [40]. In that paper, the radial
unboundedness conditiorP was introduced which allows for
conclusions to be made both on local and global stability.

Theorem 1: (Barbashin-Krasovsky theorem [40]) Con-
sider system (I)), where f is a continuously differentiable
vector-function such that f(0) = 0. Let V(x):R" — R be a
continuously differentiable function such that:

(1) V( )>O Vx#0 and V(0)=0;

(11) ) <0 Vx #£0;

(iii) V( ) — oo as  |x]| = oo

Then any solution tends to the equilibrium x =0 (i.e., the
system is globally stable) and it is Lyapunov stable.

Example 1: [40] Consider system (I with
5 +2x2
1
Flx1,x2) = éxj v 3)
(l+x )2 (1+x%)2

. This func-

tion is not radially unbounded, hence, Theorem [T is not
applicable for system (B) with this Lyapunov function. In
[40] it was shown that there is a domain of instability of
system (3).

The Lyapunov theorem on asymptotic stability [6] pro-
vides the existence of transversal level surfaces {x € R" :
V(x) =c} in the vicinity of the origin, which make trajec-
tories to tend to the origin. The additional radial unbound-
edness condition implies that these level surfaces cover the
whole phase space.

Thus, Example [I|demonstrates an importance of the radial
unboundedness condition in the global stability analysis.

Various generalizations of this approach were suggested
later by J. LaSalle [41], [42] and others. The Barbashin-
Krasovsky theorem was modified for non-autonomous sys-
tems by V.M. Matrosov [43].

and the Lyapunov function V (x1,x) = x3 +5 Xz

6See further discussion in [22], [37].

7Regarding counterexamples with hidden oscillations [20], [22], [39],
R.E. Kalman wrote that he is, most certainly, interested in recent devel-
opments in the Aizerman and (very youthful) Kalman conjecture.

8V (x) — 4oo as ||x]| — +oo.



B. Systems with a periodic nonlinearity & multiple equilib-
ria

Consider system (I) and suppose that it has a single
periodic variable o

f(z,o+27) = f(z,0) VzeR" ! VoeR. 4)

Then system (I) may have multiple equilibria, i.e., if
(zeqs Oeq) is an equilibrium of then (zeq,Ceq + 27k)
is an equilibrium point too for all k € Z. System can
be rewritten in the Lurie form (2) with a scalar periodic
nonlinearity @(c) = @(o +27).

The first global analysis of such two-dimensional systems
with one periodic nonlinearity was carried out by F. Tricomi
[44] and A.A. Andronov [9]. They used the phase plane
analysis method. In 1959, for such systems Yu.N. Bakaev
suggested to use the Lurie-Postnikov approach and con-
sidered Lyapunov functions of the Lurie-Postnikov form

o
[45]: V(z,0) = z'Hz+ [¢@(1)dz. It is important to note,
0

that in the cylindrical phase space the Barbashin-Krasovsky

theorem cannot be used with Lyapunov functions of the

Lurie-Postnikov form for the global stability analysis: the

Lyapunov function must be radially unbounded while ¢(0)
(o2

is 2m-periodic function and V(0,0) = [¢@(7)dT /A +oo as
0

|o| — 4o (see also [46], [47]). Moreover, system with
nonlinearity may have multiply equilibria.

Later, Bakaev’s results were generalized and rigorously
justified by G.A. Leonov for system with the cylindrical
phase space [16], [48]-[50].

Theorem 2: (Leonov theorem on global stability for the
cylindrical phase space [48], [50]) Suppose that the station-
ary set of system () consists of isolated points, (@) is fulfilled
and there exists a continuous function V(z,0) : R" — R such
that:

() V(z,0+2m) =V(z,0) YzeR" ! Vo eR;

(ii) for any solution x(¢) = (z(t),0(¢)) of system the
function V(z,0) is nonincreasing;

(iii) if V(z(¢),0(r)) = V(2(0),05(0)), then (z(t),0(¢))
(2(0),0(0));

(iv) V(z,0) + 02 — +oo as ||z]| +|o] = +oo.

Then system (I) is globally stable.

Example 2: [51], [52] Consider a nonlinear mathemat-
ical model of the second-order phase-locked loop with
proportionally-integrating filter in the signal’s phase space:

o1 . T .
7= —sino, 6 = wfee —Kyeo [ z+ —sino |, (5)
Tl Tl

where z(¢) € R is a filter state, o(¢) € R is a phase error,
free

Kyco >0 is a voltage-controlled oscillator (VCO) gain, o,
is a frequency detuning, 7; > 0,7, > 0 are parameters.

mgree
Here ( Ruco
and (%VCO ,T+27k),k € Z are unstable ones. Consider the
following Lyapunov function of the Lurie-Postnikov form:

1 6Ofree
V(z,0) =3 (- 2=+
vco

,27k),k € 7 are asymptotically stable equilibria

o _ 6
Tlcho(l cosO) (6)

Its derivative along the trajectories of system () is
V(z,0) = —(1/7})sin*c <0 Vo & {nk, k€ Z}.

Thus, Lyapunov function (6) satisfies the conditions of
Theorem [2] and system (5) is globally stable. In this case,
the model is globally stable for any values of parameters;
however, the phase-locked loops with lead-lag filter has
only a bounded domain of global stability and it is partly
determined by the birth of hidden oscillations (see, e.g., [22],
[46], [53]).

C. Systems with discontinuous nonlinearities

Consider system (I)), where f is a piecewise-continuous
function with the set of discontinuity points of zero Lebesgue
measure. Discontinuous right-hand side of system (I)) caused
a problem of defining a solution of (I)) in the discontinuity
points. Thus, it was suggested to consider the solutions as
absolutely continuous functions satisfying differential inclu-
sion

X € F(x). @)

A set F(x) equals to f(x) at continuity points of function
f. At discontinuity points F(x) is defined in a special way.
We consider solutions of differential inclusions in Filippov’s
sense [17], [54].

The generalization of the global stability theorems for the
discontinuous systems and the differential inclusions was
carried out by A.Kh. Gelig and G.A. Leonov [17], [55], [56]
in 1960’3—70’5@ Later, similar results were published in [60].

Theorem 3: (Gelig-Leonov theorem on global stability
for the differential inclusions [17], [55]). Let a continuous
function V (x) defined in R”" have the following properties:

(i) V(x(¢)) is nonincreasing in ¢ for any solution x(¢) of
(7);

(ii) if the identity V(x(¢)) = const is valid for all 7 € R
and for some solution x(¢), bounded when 7 € R, then the
solution x(¢) is a stationary vector;

(iii) V(x) — +oo as ||x|| — +oo.

Then differential inclusion is globally stable.

Applying ideas of Theorem [3] it is also possible to use
discontinuous Lyapunov functions for global analysis (see,
e.g., [61] and the proof of the Vyshnegradsky’s conjecture
on global stability of Watt governor). Also the global stability
analysis by discontinuous Lyapunov functions is discussed,
e.g., in [62], [63].

Example 3: [24], [64], [65] Consider system with
()= (u(), »() e R,

-1
= <—Ok —LJ‘)’ - <_01>’ =0 ), @

representing a two-dimensional (with one degree of free-
dom) Keldysh model of flutter suppression. Here, J >
0 is the moment of inertia, k > 0 1is the stiffness,
¢(c) = (®+ x0?) signo is the nonlinear characteristic of

9G.A. Leonov was a doctoral student at the department chaired by
V.A. Yakubovich and worked on this topic under the guidance of
AKh. Gelig [57]-[59].



Fig. 1.

Numerical analysis of model (8), J =k = x = 1. Left subfigure: the outer trajectory winds onto the stable limit cycle, the inner trajectory unwinds

h

from the unstable limit cycle and winds onto the stable one (hidden attractor). Parameters: ® = 0.2, A —h ~ —1.2987 (; ~ —2.9, i.e., Keldysh’s

K
condition (9) is fulfilled). Right subfigure: the outer trajectory approaches the stationary segment, both limit cycles obtained by the harmonic balance
—h
method have disappeared (the dash circles). Parameters: @ =3, A —h~ —0.937 (—= = —2.095, i.e., Keldysh’s condition (@) is fulfilled).

the hydraulic damper with dry friction, ® is the dry friction
coefficient, 4 = A —h, h is the proportionality constant,
A >0 and k > 0 are the damper parameters.

M.V. Keldysh used the harmonic balance method, which
is known as an approximate one, to get practically important
results on the flatter suppression. In work [66] it was state
that under condition

A—h< —%\/ZCDK'/?)%—Z.OS\/CDK 9

system (8) has two periodic trajectories (limit cycles), other-
wise all trajectories of the system converge to the stationary
segment.

The numerical analysis (see Fig. [I) shows that the har-
monic balance method can lead to wrong conclusions. Two
coexisting limit cycles are shown in the left subfigure of
Fig. [1] Since there does not exist an open neighbourhood of
the stationary segment, which intersects with the outer limit
cycle’s basin of attraction, then this limit cycle is a hidden
oscillation. In the right subfigure of Fig. [T| both limit cycles
have disappeared and the trajectories tend to the stationary
segment, while Keldysh’s estimate () holds.

A rigorous study of the Keldysh model (8) was performed
in [64], [65], [67]. It was shown that S = {x:x, =0} is a
discontinuity manifold, A = {—®/k <x; < ®/k, x, =0} is
a stationary segment. System (8) was turned to studying the
following differential inclusion:

o #0,
o=0.

»(0),

y(o) = .,

X € Px+qy(rix),
Application of the Lyapunov function V (x1,x2) = 1 (kx? +

J _1x%) and Theoremleads to the global stability condition:
A—h>-2V/k.

101 his paper [66] M.V. Keldysh wrote that he does not give a rigorous
mathematical proof and a number of conclusions are drawn by the intuitive
analysis.

VoK

III. CONCLUSIONS

As it was noted by Barbashin at the first IFAC World
Congress, the methods of constructing Lyapunov functions ...
were not sufficiently effective for their use in the investigation
of a concrete system [68]. To overcome this difficulty, the
further development of considered methods has begun and a
number of effective global stability criteria was suggested.

One of the first effective criteria of the existence of a
Lyapunov function for the systems with smooth right-hand
side was obtained in 1954 by Krasovsky [69], [70]. His
criterion on the existence of a Lyapunov function is based
on the stability of the symmetrized Jacobi matrix (similar
ideas are related to the Markus-Yamabe conjecture [71]
and the corresponding counterexamples with hidden oscil-
lations [22], [72]). Generalizations of the ideas of stability
by the first approximation for nonautonomous non-periodic
linearizations is a challenging problem because of Perron
effects [73].

For Lurie systems the development of Lurie-Postnikov
approach and the existence of Lyapunov functions are
connected with the Popov criterion [74]-[76] and famous
Kalman-Yakubovich-Popov lemma (KYP lemma) [77], [78]
(see also [79]). In 1959, V.M. Popov suggested his criterion
on absolute stability via frequency characteristic (as an elec-
trical engineer he was familiar with frequency characteristics
and originally his criterion was not connected with Lyapunov
functions). In 1960, Popov presented this result at the first
IFAC World Congresq'!| [75].

In 1961, Popov proved that the existence of a Lyapunov
function of the Lurie-Postnikov form is a sufficient condition

'y M. Popov’s results raised some doubts of M.A. Aizerman and he
asked a young postdoc E.N. Rosenwasser to find a gap in the Popov’s paper.
However, Rosenwasser confirmed the validity of the criterion. Also, at the
first IFAC World Congress, A.IL. Lurie and E.N. Rosenwasser presented the
method of Lyapunov functions construction based on the solvability of so-
called Lurie equations [80].



for his criterion fulfillment [76]. In 1962, V.A. Yakubovich
formulated the first version of KYP lemma and stated that
the converse statement (the necessity of a Lyapunov function
existing for the Popov criterion fulfillment) follows from the
lemma with some additions [77] (next year E.N. Rosen-
wasser published a paper [81] with detailed explanation
of required additions). Thus, the equivalence of the two
approaches was shown.

In 1962, Rosenwasser also noted that the same approach
with a Lyapunov function of the quadratic form allows
one to obtain the similar criterion for nonautonomous sys-
tems [81] and presented the result at Yakubovich’s semi-
nar. Yakubovich generalized this criterion for systems with
hysteresis nonlinearities [SZE Nowadays the criterion is
known as circle criterion, and it is sometimes called the
Rosenwasser-Yakubovich-Bongiorno criterion [83].

Frequency-domain criteria for systems with discontinuous
right-hand sides and for systems with the cylindrical phase
space were suggested by Gelig and Leonov (see [17] and
refs within).

Remark that the described criteria and its modifications
provide only sufficient conditions for global stability, and
obtaining necessary and sufficient conditions of global sta-
bility is a challenging problem related to the analysis of
the boundaries of the global stability in the parameters’
space and the birth of oscillations. While the birth of self-
excited oscillations can be effectively identified analytically
or numerically, the study of hidden oscillations demands
the application of special analytical-numerical methods being
developed in the theory of hidden oscillations.
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