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Abstract

We develop a computational method to identify all pure strategy equilibrium points
in the strategy space of the two-player, two-action repeated games played by Q-learners
with one period memory. In order to approximate the dynamics of these Q-learners,
we construct a graph of pure strategy mutual best-responses. We apply this method to
the iterated prisoner’s dilemma and find that there are exactly three absorbing states.
By analyzing the graph for various values of the discount factor, we find that, in
addition to the absorbing states, limit cycles become possible. We confirm our results
using numerical simulations. Key words and phrases. Q-learning; multi-agent learning;

iterated prisoner’s dilemma; absorbing states.
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1 Introduction

As algorithms are increasingly employed in a variety of settings, more situations will arise in
which algorithms interact. In the case of (reinforcement) learning algorithms, what this in-
teraction will lead to is not easily predictable. This is due to the algorithms being designed
for single-agent settings (or stationary environments). The theoretical foundations for re-
inforcement learning algorithms in multi-agent settings are thin, with very few convergence
results [4].

This article aims at contributing to these theoretical foundations in the case of two-
player, two-action games in two ways: (1) by developing a computational method for de-
termining limiting dynamics of Q-learning algorithms with one period memory and (2) by
constructing a representation of deterministic one-period memory Q-learning dynamics. We
demonstrate the methods using the iterated prisoner’s dilemma (IPD) [13].

The IPD is one of the paradigmatic model for studying the emergence of cooperation
in social dilemma’s [9], pricing duopolies [15] and other economics games [12]. The model’s
simplicity allows for rigorous analysis, giving insights that can be heuristically extended to
more realistic settings. Two simple extensions to the basic model which make significant
steps toward becoming realistic while keeping the model tractable are to include a basic
learning mechanism for the players and to give the players a period one memory.

In realistic games, the players of the game have to learn their optimal strategy by
learning what the payoffs of the game are and how their opponent is behaving. Games in
which both players are learning fall into the field of multi-agent learning (MAL), in which
much recent work has focused on dealing with the learning pathologies that typically arise
in MAL (see[10] and references therein). For surveys of MAL see [5, 7, 11, 18]

One of the distinctions that can be made in the MAL literature is that between single-
state and multi-state settings. A multi-state setting can be thought of as a situation where
multiple games are being played, with probabilistic transitions occurring between the games
[6]. The most simple multi-state settings is the one where the players have a period one
memory. This means that the state the game is in is just the action pair played in the
previous round, which both players can observe. This is economically relevant since many
of the classical strategies developed for the IPD require a one period memory [1]. The Tit-
For-Tat strategy, for example, imitates the action of the opponent in the previous round.
This is the setting we will consider in this paper.

Among the most studied reinforcement learning algorithms for MAL is Q-learning [16].
This is an algorithm designed for Markov decision processes for single agents. In multi-agent
settings, convergence of Q-learning is typically poor due to the many pathologies that can
occur [10]. A promising method for overcoming these pathologies by dealing with the non-
stationarity of MAL is to learn in batches. Both agents keep their strategy fixed during
the batch in order to collect data in a stationary environment and then simultaneously
update their Q-values at the end of the batch. In [3] the authors show that this leads to
deterministic dynamics in the infinite batch size limit. The limiting dynamics are a good
approximation for large, but finite batch sizes.

In this paper, we develop a computational method for determining the absorbing states
of batch Q-learning with period one memory in two-player, two-action iterated games.
These games have been classified for Q-learning without memory in [17]. The method
allows us to plot what we call a pure mutual best-response (pmBR) graph, which gives the
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strategy space dynamics in the infinite batch size limit. We focus on the iterated prisoner’s
dilemma and show that the absorbing states identified in [14] are the only absorbing states.
In addition to the absorbing sates, we find that limit cycles are possible in the pmBR graph.

The absorbing states identified in this way for batch Q-learning must necessarily be
the same as the absorbing states for any successful (in the sense of solving the Bellman
equations) Q-learning algorithm that converges to a fixed strategy (for example by having
a decreasing exploration rate).

In Section 2 we identify notation, define the model and introduce Q-learning. In Section
3 we describe the methods we develop. In Section 4 and 5 we give the theoretical and
numerical results respectively. Finally, in Section 6 we conclude and discuss future research.

2 Setting

2.1 Model

We consider the same setting as [14] and we will employ broadly similar notation for ease
of reference. The setting is that of an IPD played by two Q-learners, labeled a ∈ {1, 2} and
using the convention −a = {1, 2}\a, with one period memory. Each Q-learner has a choice
between two actions: defect (D) or cooperate (C). We denote the actions by σa ∈ {C,D}.
Due to the one period memory this becomes a multi-state game with the possible states
being σ = (σ1, σ2) ∈ {(D,D), (D,C), (C,D), (C,C)}, where the first component of the
vector denotes the action of player one and the second component denotes the action of
player two. The payoff (or reward) for player a when the game is in state σ is denoted by
ra(σ) and takes the following form for the IPD:(

r1(1), r2(1) r1(2), r2(2)
r1(3), r2(3) r1(4), r2(4)

)
=

(
p, p t, s
s, t r, r

)
, (2.1)

where we have enumerated the states as (D,D)→ 1, (D,C)→ 2, (C,D)→ 3, and (C,C)→
4. In addition, we make the standard assumptions that t > r > p > s and 2r > t + s.
When considering examples, we will use the normalized version where r = 1 and p = 0.

2.2 Learning

Each player chooses their actions according to a strategy πa, which in the Q-learning with
period one memory setting is the conditional probability of playing action σa given that
the game is in state σ′, i.e. πa(σa|σ′).

The strategies of the players are updated through a reinforcement learning process. We
specifically consider Q-learning type algorithms, which are designed to learn the actions
that maximize the discounted future rewards, i.e.

∞∑
n=1

δnra(σ(n)), (2.2)

with 0 < δ < 1 being the discount factor and n denoting the time.
It has been shown that maximizing (2.2) can be achieved by solving

Qa,σ(t),σa(t) = E[ra(σ(t+ 1))|σ(t), σa(t)] + δE
[

max
i∈{C,D}

{Qa,σ(t+1),i}| σ(t), σa(t)
]
. (2.3)
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Note that since the actions taken in the previous round determine the current state, we have
used the notation that σ(t) = (σ1(t− 1), σ2(t− 1)). The first term on the right-hand side
is the expected reward from taking action σa(t) while in state σ(t) and the second term is
the discounted expected maximum reward of behaving optimally (according to the current
estimate) in the state σ(t+1) reached by taking action σa(t) in state σ(t). The Q-function
defined by (2.3) is related to Bellman’s value function by Va(σ) = maxi∈{C,D}{Qa,σ,i}.

The Q-learner a solves (2.3) by initializing a Q-matrix
Qa,1,D Qa,1,C
Qa,2,D Qa,2,C
Qa,3,D Qa,3,C
Qa,4,D Qa,4,C

 (2.4)

and updating the entries according to

Qa,σ,σa(t+ 1) = (1− α(t))Qa,σ,σa(t) + α(t)
[
ra(σ(t+ 1)) + δ max

i∈{C,D}
{Qa,σ(t+1),i}

]
, (2.5)

where

α(t) =

{
α if (σ, σa) = (σ(t), σa(t))

0 otherwise
(2.6)

is the learning rate. Note that ra(σ(t + 1)) is the reward obtained in period t (i.e. the
reward of taking action σa(t) while in state σ(t), which leads to state σ(t+1)). In stationary
environments the iterative process defined by (2.5) has been shown to converge under some
general conditions, for example, in [8].

In contrast to the standard multi-state setting, the transitions between states here hap-
pen deterministically given the actions of the players. This means that the only stochasticity
comes from the action-selection mechanism, i.e. the strategies. Such an action-selection
mechanism must take into account the exploration-exploitation trade-off, where exploratory
actions are conducive to learning and exploitatory actions maximize the reward. The meth-
ods used in Q-learning for this balancing act can be split into two main categories: the
ε-greedy mechanisms and the softmax or Boltzman mechanisms. We will focus on mecha-
nisms of the first type, as these are more commonly used in practice due to the ease with
which hyperparameters of the algorithms are tuned in this case. We further distinguish be-
tween ε-greedy mechanisms that either have a constant ε or a time dependent ε(n), which
decreases in time.

With an ε-greedy action-selection mechanism, the player chooses the action which it
considers to be maximizing its reward with probability 1 − ε(n) and chooses an action
uniformly at random with probability ε(n).

Q-learning converges to a solution of the Bellman equations in stationary environments.
A Q-learner in a multi-agent setting is however facing a non-stationary environment since
the strategy of the opponent changes in time. In the case of a decreasing ε(n), both agents
will eventually find themselves in an environment that is stationary, since the opponent’s
strategy converges to a deterministic (pure) strategy.

In order to identify equilibrium points of multi-agent Q-learning, it thus makes sense
to study the dynamics of Q-learning type algorithms that are focused on learning pure
strategies, since the equilibrium points should be the same. To this end, [14] conceive of a
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Q-learning algorithm in which the players alternate between either learning with the use of
Q-learning or keeping their strategy fixed. This ensures that the environment is stationary
during the learning process for both players. In this way, the players sequentially learn a
best-response to a pure strategy.

As an alternative algorithm that has been suggested for multi-agent settings, we consider
a batch learning algorithm as in [3], in which both players act according to a fixed strategy
for the duration of the batch and then update their strategies simultaneously. In the infinite
batch size limit, this leads to both players simultaneously taking a step towards the best-
response given the strategy of the opponent. The absorbing states of this algorithm are the
same as the absorbing states of the algorithm in [14].

3 Method

3.1 Self-consistent solutions to the Bellman equations

If we restrict ourselves to pure strategies, each player can pick one of two actions for each
of the four states, leading to a total of 24 strategies. As a result, the total number of pure
strategy pairs is 28 = 256. It is not feasible to repeat the calculations in [14] performed
for the 16 symmetric strategy pairs for all possible pairs in order to identify asymmetric
equilibria. This process can however be automated using software such as Mathematica.

To this end, we identify each strategy pair with an 8-bit digit. The first four bits
encode the strategy of player one, and the last four bits the strategy of player two. A zero
in the first entry means that Q1,1,D > Q1,1,C , while a one means that Q1,1,D < Q1,1,C .
The digit (0, 0, 0, 0, 0, 0, 0, 0), for example, represents the strategy pair where both players
play according to the all defect (All-D) strategy. The digit (1, 0, 0, 1, 1, 0, 0, 1) in contrast
represents the strategy pair where both players play according to the Win-Stay-Loose-Shift
(WSLS) strategy.

Each 8-bit digit leads to a system of sixteen equations which can be solved simulta-
neously for the sixteen Q-values. The Q-values are then expressed in terms of the model
parameters t, r, p and s. The 8-bit digit however also encodes an assumption on the inequal-
ities obtaining between the Q-values. By using the Boole function in Mathematica we can
check if the expressions for the Q-values satisfy these inequalities given the assumptions on
the model parameters. In this way, we can determine whether there is a valid solution to
the Bellman equations given the strategy pair for all possible strategy pairs.

This can be done for all two-player, two-action repeated games. To illustrate the com-
putation, we will consider the IPD where both players are playing the all defect strategy.
The Bellman equations (2.3) for player 1 can be written in terms of indicator functions
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when the considering pure strategies. The equations for firm 1 become

Q1,1,D =1{Q2,1,D>Q2,1,C}(p+ δQ1,1,D1{Q1,1,D>Q1,1,C} + δQ1,1,C1{Q1,1,D<Q1,1,C})

+ 1{Q2,1,D<Q2,1,C}(t+ δQ1,2,D1{Q1,2,D>Q1,2,C} + δQ1,2,C1{Q1,2,D<Q1,2,C}) (3.1)

Q1,1,C =1{Q2,1,D>Q2,1,C}(s+ δQ1,3,D1{Q1,3,D>Q1,3,C} + δQ1,3,C1{Q1,3,D<Q1,3,C})

+ 1{Q2,1,D<Q2,1,C}(r + δQ1,4,D1{Q1,4,D>Q1,4,C} + δQ1,4,C1{Q1,4,D<Q1,4,C}) (3.2)

Q1,2,D =1{Q2,2,D>Q2,2,C}(p+ δQ1,1,D1{Q1,1,D>Q1,1,C} + δQ1,1,C1{Q1,1,D<Q1,1,C})

+ 1{Q2,2,D<Q2,2,C}(t+ δQ1,2,D1{Q1,2,D>Q1,2,C} + δQ1,2,C1{Q1,2,D<Q1,2,C}) (3.3)

Q1,2,C =1{Q2,2,D>Q2,2,C}(s+ δQ1,3,D1{Q1,3,D>Q1,3,C} + δQ1,3,C1{Q1,3,D<Q1,3,C})

+ 1{Q2,2,D<Q2,2,C}(r + δQ1,4,D1{Q1,4,D>Q1,4,C} + δQ1,4,C1{Q1,4,D<Q1,4,C}) (3.4)

Q1,3,D =1{Q2,3,D>Q2,3,C}(p+ δQ1,1,D1{Q1,1,D>Q1,1,C} + δQ1,1,C1{Q1,1,D<Q1,1,C})

+ 1{Q2,3,D<Q2,3,C}(t+ δQ1,2,D1{Q1,2,D>Q1,2,C} + δQ1,2,C1{Q1,2,D<Q1,2,C}) (3.5)

Q1,3,C =1{Q2,3,D>Q2,3,C}(s+ δQ1,3,D1{Q1,3,D>Q1,3,C} + δQ1,3,C1{Q1,3,D<Q1,3,C})

+ 1{Q2,3,D<Q2,3,C}(r + δQ1,4,D1{Q1,4,D>Q1,4,C} + δQ1,4,C1{Q1,4,D<Q1,4,C}) (3.6)

Q1,4,D =1{Q2,4,D>Q2,4,C}(p+ δQ1,1,D1{Q1,1,D>Q1,1,C} + δQ1,1,C1{Q1,1,D<Q1,1,C})

+ 1{Q2,4,D<Q2,4,C}(t+ δQ1,2,D1{Q1,2,D>Q1,2,C} + δQ1,2,C1{Q1,2,D<Q1,2,C}) (3.7)

Q1,4,C =1{Q2,4,D>Q2,4,C}(s+ δQ1,3,D1{Q1,3,D>Q1,3,C} + δQ1,3,C1{Q1,3,D<Q1,3,C})

+ 1{Q2,4,D<Q2,4,C}(r + δQ1,4,D1{Q1,4,D>Q1,4,C} + δQ1,4,C1{Q1,4,D<Q1,4,C}). (3.8)

These are reduced to

Q1,1,D = p+ δQ1,1,D, Q1,1,C = s+ δQ1,3,D, Q1,2,D = p+ δQ1,1,D, Q1,2,C = s+ δQ1,3,D,

Q1,3,D = p+ δQ1,1,D, Q1,3,C = s+ δQ1,3,D, Q1,4,D = p+ δQ1,1,D, Q1,4,C = s+ δQ1,3,D

(3.9)

when considering the strategy pair of both players using the All-D strategy. Solving (3.9)
leads to

Q1,1,D = Q1,2,D = Q1,3,D = Q1,4,D =
p

1− δ
(3.10)

Q1,1,C = Q1,2,C = Q1,3,C = Q1,4,C = s+
δp

1− δ
. (3.11)

Since this is a symmetric strategy pair, the solutions to the Bellman equations for player 2
are the same.

To see if this is a valid solution or not, we check that the inequalities of the assumed
strategy pair are satisfiable by the model parameters. In this case, the inequalities require
that

Qa,i,D > Qa,i,C for all a ∈ {1, 2} and i ∈ {1, 2, 3, 4}, (3.12)
so that we must have

p

1− δ
> s+

δp

1− δ
, (3.13)

or equivalently
p(1− δ) > s(1− δ). (3.14)

This is always satisfied given that we assume that p > s.
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1

23

4

Figure 1: Game state transitions of the symmetric TFT pure strategy pair

3.2 Pure mutual best-response

Using the same encoding as before, but now for a single player (i.e. a 4-bit digit), we can
calculate the Q-values that are a best-response to the pure strategy encoded by the 4-bit
digit. These Q-values can be translated into a 4-bit digit. Given these best-responses we
can construct a directed graph between the 256 8-bit digits (nodes) where a directed edge
means that the first four bits of a target node contain a best-response of player one against
the pure strategy of player two given by the last four bits of the source node and vice versa
for the remaining two four bit digits.

We call the dynamics represented by the graph constructed in this way the pure mutual
best-response dynamics (pmBR). The solutions to the Bellman equations identified in the
previous subsection will appear as absorbing nodes in the pmBR graph.

3.3 From strategies to actions

Knowing which strategy pair is being played is still not necessarily informative as to which
actions will be taken by the algorithms. As an example, consider the symmetric strategy
pair of both players using the Tit-For-Tat strategy. If the system starts in the CC or DD
state, it will remain there until one of the players explores and picks D or C, respectively.
Then the system will oscillate between the DC and CD states until one of the players again
explores to synchronize their action with that of the opponent. This means that the state
graph of the game has three disconnected components. Transitions between components
occur only due to exploration.

The vector for this state is given by (0, 1, 0, 1, 0, 0, 1, 1) (note that states 2 and 3 require
opposite responses from players 1 and 2). The transitions between states of the game when
both players play a pure strategy are shown in Figure 1.

We can include the transitions due to exploration as follows. Let the probability that
no one explores be (1− ε)(1− ε) = A, the probability that player 1 explores be ε(1− ε) = B
(this is the same as the probability that player 2 explores) and the probability that both
explore be ε2 = C. Then the transition (stochastic) matrix for the game with the symmetric
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TFT strategy pair and ε-greedy exploration is given by

P =


A+B + C

4
B
2 + C

4
B
2 + C

4
C
4

B
2 + C

4
C
4 A+B + C

4
B
2 + C

4
B
2 + C

4 A+B + C
4

C
4

B
2 + C

4
C
4

B
2 + C

4
B
2 + C

4 A+B + C
4

 . (3.15)

The eigenvector of P with eigenvalue 1 will give the stationary distribution on the game
states and therefore tell us how much time is spent in each state. For this matrix the
stationary distribution is the uniform distribution on the states, i.e., (1/4, 1/4, 1/4, 1/4).
This means that the game spends equal amounts of time at each state.

A similar calculation yields the following stationary distribution for the symmetric GT
strategy pair:

N
(
4−5ε−2ε2

ε 2− ε 2− ε 1
)
, (3.16)

where N is a normalizing constant. For ε = 0.1 this is (0.997, 0.054, 0.054, 0.028), which
shows that even though coordination is possible in the GT symmetric strategy pair it occurs
very little (as evidence by the 0.028 probability of being in state 4).

By calculating the stationary distributions of the pure strategy pairs, we can identify
which states the game will spend the most time in, giving us an idea of the actions used
and the expected payoff.

4 Results

4.1 Absorbing strategy pairs

By automating the process of solving the Bellman equations and self-consistently checking
that the resulting Q-values satisfy the assumptions on the model parameters 1, we find that
the symmetric solutions found by [14] are the only possible solutions. This means that
there are no asymmetric strategy pairs that solve the Bellman equations in this setting.

The only possible pure strategy solutions pairs are the symmetric all defect (All-D)
strategy, Grimm Trigger (GT) strategy and Win-Stay-Loose-Shift (WSLS) strategy (the
last strategy is also known as the one-period-punishment strategy or the Pavlov strategy).
The All-D strategy is always possible, while there are restrictions on the values of the model
parameters for when the other two are possible. This is summarized in Table 1.

Strategy Conditions

All D None
GT δ > t−r

t−p
WSLS δ > t−r

r−p

Table 1: All possible strategies solving the Bellman equations self-consistently.

To illustrate what the conditions on the parameters imply, we plot the phase diagram in
the normalized PD (i.e. r = 1 and p = 0) in Figure 2. As expected, we see that increasing δ

1MATHEMATICA code available on request.
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1

2

3

4

5

δ

t

Figure 2: Phase diagram for the normalized prisoner’s dilemma. The numbers indicate the
number of solutions possible in that region. In the white region only the All-D solution is
possible, in the blue region both the All-D and the GT solutions are possible and in the
orange region All-D, GT and WSLS are possible.

(the parameter controlling how much the players value future rewards) increases the number
of possible solutions. In the limit as t goes to infinity, the line determining the existence of
the GT strategy goes to one. This means that for any given t, there exists a δ for which
this is a solution. For the line determining the existence of the WSLS strategy there is a
critical value of t (tc = 2 in the normalized prisoner’s dilemma) above which there is no
value of δ for which the WSLS strategy is a solution.

By applying the methods of Section 3.3 we can identify what action pairs are most likely
to be played in the three absorbing states given an exploration rate ε (taken to be 0.1 unless
stated otherwise). In both the All-D and GT strategy pair, the DD action pair is played
more than 99% of the time. The WSLS strategy pair, in contrast, results in the CC action
being played more than 99% of the time. Based on this, the WSLS strategy pair is the only
cooperative outcome, with both All-D and GT being effectively competitive outcomes.

4.2 Pure best-response dynamics

By the method outlined in Section 3.2, we obtain directed graphs for various values of δ
representing the pmBR dynamics2. We do this for the normalized version of the prisoner’s
dilemma so that t = 1.5, r = 1, p = 0, s = −0.5 and for three values of δ, namely δ = 0.2
(Figure 3), δ = 0.4 (Figure 4) and δ = 0.5 (Figure 5). This covers the three regions shown
in the phase diagram Figure 2.

In the small δ case (Figure 3) we find that all nodes lead to the absorbing node 1, which
represents the symmetric All-D strategy pair. Interestingly, node 1 is at most two edges
away from any other node.

For medium δ (Figure 4) we see that the symmetric GT strategy pair represented by
node 18 becomes a possible solution in addition to the symmetric All-D strategy pair, but
that it is an isolated node in the pmBR dynamics. Surprisingly, we find a limit cycle

2MATHEMATICA code available on request.
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Figure 4: pmBR graph when t = 1.5, r = 1, p = 0, s = −0.5 and δ = 0.4.
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Figure 5: pmBR graph when t = 1.5, r = 1, p = 0, s = −0.5 and δ = 0.8.
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between nodes 2 and 17. These nodes represent the two strategy pairs where one of the
players uses the All-D strategy and the other uses the GT strategy.

For large δ (Figure 5) we see all three of the possible absorbing strategy pairs with
node 154 representing the symmetric WSLS strategy pair. In this case there are three
limit cycles: between nodes 2 and 17, nodes 10 and 145 and nodes 26 and 146. The first
limit cycle is the same as in the medium δ case, the second (between nodes 10 and 145) is
between the two nodes that represent the strategy pairs where one player is using the All-D
strategy and the other is using the WSLS strategy and the last (between nodes 26 and 146)
is between the two nodes that represent the strategy pairs where one player is using the
GT strategy and the other is using the WSLS strategy.

In addition, we see that the finer structure of the sub-networks changes as the model
parameters are changed. The existence of the absorbing states and limit cycles is however
robust.

5 Numerical results

In this section, we confirm our results by sampling single Batch Q-learning updates for
increasing batch size, in order to show that the update converges to a pure strategy best-
response as the batch size grows to infinity.

We will make use of the Q-learning variant of the Q-learning algorithm introduced in
[2, 3] (specifically Algorithm 1 in [2]). Since we will only be simulating a single batch and
are interested in the direction in which the Q-value update following the batch takes the
learner, we will set the learning rate α = 1 for the update. In order to estimate the Q-value
of the next state in the post-batch update, the algorithm needs to estimate the Q-values
during the batch. We introduce an auxiliary learning rate αaux = 0.2 for these estimates
so that there are two learning rates, one for learning during the batch and one for the
post-batch update.

Since the environment is fixed for both players during a batch, we can rely on conver-
gence results from the single-agent Q-learning literature. This is what [2, 3] do to show
that the infinite batch size limit gives rise to deterministic dynamics. A condition for this
to occur is for the system to be ergodic during the batch, so that each state-action pair is
visited infinitely often. In order to satisfy this condition while ensuring that the environ-
ment is that of playing against a fixed strategy opponent, we choose a constant (but small)
exploration rate. In the case of the experiments of Table 2 we set ε = 0.1.

We are interested in how the combination of fixed strategies being played during a batch
lead to an update that is a best-response. Since the initial Q-values influence the estimate
of the discounted future Q-value, we initialize the Q-values uniformly at random over an
interval close to the correct Q-values. This ensures that we sample uniformly from the fixed
strategies, but reduce the influence of the magnitude of the initial condition.

In Table 2 we see that the percentage increases with the batch size. A batch size of
16 000 basically guarantees a step in the direction of a best-response. This means that
the dynamics of a Batch version of Q-learning, with a learning rate of α = 1.0 for the
post-batch update and a batch size of 16 000 should be well approximated by the pmBR
graphs developed in this paper.

Furthermore, since the standard Q-learning algorithm is a batched algorithm with batch
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size one, the goal of an update in Q-learning is to make a small step in the direction of
the pmBR. Understanding these idealized dynamics better can thus lead to insight into the
true dynamics.

Batch Size WSLS GT All-D

1000 56 55 77
2000 65 74 86
4000 74 78 88
8000 82 89 94
16000 92 94 99

Table 2: Percentage of best-response updates in a sample of 100 experiments with increasing
batch size. Here the best-response is always the same as the fixed strategy of the opponent,
i.e., WSLS is a best-response to WSLS etc.

6 Conclusion

We have developed a computational method to identify absorbing states for two-player,
two-action repeated games played by Q-learners with memory one. For the IPD we have
shown that the three symmetric solutions to the Bellman equations identified by [14] (All-D,
GT and WSLS) are the only pure strategy pair solutions possible.

Furthermore, we have developed a graphical representation of the dynamics one would
expect under simultaneous batch Q-learning algorithms with infinite batch size. The rep-
resentation shows that there are limit cycles possible in the dynamics. This is an artifact
of the Q-value updates taking place simultaneously in Batch Q-learning, as opposed to the
sequential Q-value updates in the algorithm proposed in [14].

The absorbing states identified using these methods can be used to establish (rather
stringent) learning goals for Q-learning algorithms with memory in these settings. The
advantage of using these as learning goals is that the pmBR dynamics could provide a
method for establishing convergence results which would not be possible under weaker
learning goals.

The methods developed here lend themselves to extensions such as considering two
period memory algorithms, considering three action games or placing alternative conditions
on the model parameters (such as in the stag hunt, chicken or snow drift games).
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