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ADDENDUM TO ”ON TRIANGULAR BILLARD”

JAN-CHRISTOPH SCHLAGE-PUCHTA

In [2], the authors classified non-isosceles rational-angled triangles with the lat-
tice property subject to the following assumption.

Conjecture 1. Let 1 ≤ s, t ≤ n be integers such that (n, s, t) = 1. Assume that for
all a with (a, n) = 1 we have n

2 < as mod n+ at mod n < 3n
2 . Then one of n ≤ 78,

s+ t = n, s+ 2t = n, 2s+ t = n, or n even, |s− t| = n
2 holds true.

In [3] the present author proved this statement under the additional assumption
that (n, s) = 1. Due to some misunderstanding it appeared that this was sufficient
for the classification of triangles with the lattice property. Recently, Wright pointed
out that the proof of the classification is in fact incomplete. Here we remedy this
by proving Conjecture 1 in the form given above.

The status of the conjecture before this note is the following.

Lemma 1. (1) Conjecture 1 holds true if (n, s) = 1 (cf. [3]);
(2) Conjecture 1 holds true if n < 10000 (cf. [2]).

The first result will be used at the end of section 1, while the second will be used
without further mentioning at various places. It turns out that the case (n, s) = 1 is
more difficult than the general case. The reason is that a common divisor introduces
some additional symmetry, which greatly simplifies our argument. In particular the
bound n ≥ 10000 is more than sufficient in our argument, whereas in [3] several
special cases with n ranging up to 300000 had to be checked numerically.

1. Reduction to the case s = 3

As usual, put θ(x, q, a) =
∑

p≤x
p≡a (mod q)

log p.

Lemma 2. Let q ≤ 10 be an integer, (a, q) = 1, and assume that x ≥ 89. Then
θ(x, q, a) ≥ x

2ϕ(q) .

Proof. For x > 1010 this follows from effective estimates for the prime number
theorem in arithmetic progressions by Ramaré and Rumely, see [4, Theorem 1].

For x < 1010 we have
∣

∣

∣

θ(x, q, a)− x
ϕ(q)

∣

∣

∣

< 2.072
√
x, see [4, Theorem 2]. This

implies our claim for x ≥ 619. Checking the missing range is a trivial task. �

For an integer n denote by g(n) Jacobsthal’s function, i.e. the maximal difference
between consecutive integers, which are coprime to n.

Lemma 3. For n 6∈ {1, 2, 3, 4, 6} we have g(n) ≤ 2
5n.

Proof. Let q be the largest prime power divisor of n. Consider the integers an
q +1.

We have (anq + 1, n) = (anq + 1, q). Moreover we have that n
q is coprime to q, thus

for any a we obtain that one of an
q + 1 and (a+1)n

q + 1 is coprime to n. Hence the
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largest difference between consecutive integers coprime to n is ≤ 2n
q , and our claim

follows, provided that q ≥ 5. If q < 5, then n = 2a3b with a ≤ 2 and b ≤ 1. For
n = 12 we check directly that g(12) = 4 < 24

5 , while the other combinations are
listed in the Lemma. �

Lemma 4. Suppose that 6 < (n, t) < n
10 or t = 5. Then our claim holds true.

Proof. By multiplying with a suitable a ∈ Z∗
n we may assume that t = (n, t).

Suppose that a ≡ 1 (mod n/t) satisfies (a, n) = 1. Then a · ( t
n ,

s
n ) mod 1 = ( t

n ,
as
n ).

Write a = 1 + k n
t . If our claim was not true, then the points as

n mod 1 = s
n +

k s
t mod 1 with (1 + k n

t , n) = 1 do not hit the interval [0, n/2 − t]. Since 1 + k n
t

is coprime to n
t , we have (1 + k n

t , n) = (1 + k n
t , t). If k ranges over an interval of

length > g(t), then this expression has to become 1 for at least one value of k in this
interval. Hence for t > 6 or t = 5 we obtain that { s

n + k s
t mod 1 : (1 + k n

t , n) = 1}
can only avoid an interval of length ≤ g(t)

t n ≤ 2
5n. But we have that this set avoids

an interval of length n
2 − t, thus we obtain t ≥ n

10 . �

Lemma 5. Suppose that n
10 ≤ (n, t) < n

2 . Then our claim holds true.

Proof. If (s, n) ≥ n
10 , then from (s, t, n) = 1 we obtain n ≤ 100. Hence we may

assume that (n, s) ≤ 6. We normalize in such a way that s = (n, s). Put q = n
(n,t) ,

and let u ∈ Zn/(n,t) be the solution of ut ≡ (t, n) (mod n). Let a be the smallest
integer satisfying (n, a) = 1 and a ≡ u (mod q). Then our claim follows, unless
(n, s)a + (n, t) ≥ n/2. If the last condition is not true, then n is divisible by all
prime numbers p ≤ n

6 which satisfy p ≡ u (mod q). Hence log n ≥ θ(n/6, u, q). If
we can apply Lemma 2, then logn ≥ n

12ϕ(q) ≥ n
72 , thus n < 440, which is sufficiently

small. If on the other hand the lower bound for θ is not applicable, then n/6 < 89,
which is also sufficiently small. �

Hence we may restrict ourselves to the case (n, s), (n, t) ∈ {1, 2, 3, 4, 6}. For
(n, s) = 1 the theorem is Lemma 1, and by symmetry we may assume that (n, s), (n, t) ∈
{2, 3, 4, 6}. But 1 = (n, s, t) = ((n, s), (n, t)), thus without loss it suffices to consider
the case (n, s) = 3, (n, t) ∈ {2, 4}. In particular we have 6|n. Multyplying by a
suitable integer coprime to n we may assume that s = 3.

2. The case s = 3

For an integer n, denote by f(n) the least integer a, such that a(a+2) is coprime
to n.

Lemma 6. Let p1, p2 be the two largest prime divisors of n. If both are greater
than 3, then f(n) ≤ 5n

p1p2
.

Proof. Let n′ be the largest divisor of n coprime to p1p2. Then n′ ≤ n
p1p2

. Pick an

integer a such that a(a + 2) is coprime to n′. Since (n′, p1p2) = 1 and p1, p2 ≥ 5,
we have that the five integers a, a+ n′, . . . a+4n′ are distinct modulo p1 as well as
modulo p2. Hence at most two of them are 0 or −2 modulo p1, and at most two are
0 or −2 modulo p2, hence for some ν ∈ {0, . . . , 4} we have that (a+νn′)(a+νn′+2)
is coprime to p1p2. But then (a+νn′)(a+νn′+2) is coprime to n, and we conclude
that

f(n) ≤ a+ 4n′ ≤ 5n′ ≤ 5n

p1p2
.
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Lemma 7. Suppose that n is a counterexample to Theorem 1. Then f(n) ≥ n−12
18 .

Proof. We already know that we may assume that s = 3 and 6|n. We have (n, n
3 +

1)|3, thus, if 9 ∤ n, then t, t · (n3 + 1), t(2n3 + 1) are 3 integers, which modulo n are
contained in [n2 − 2, n]. But then n

3 ≥ n
2 − 2, which is impossible. Now define

d ∈ {1, 2} by means of the congruence n ≡ 3d (mod 9). Then (dn3 + 1, n) = 1, and

we obtain that both t and t · (dn3 + 1) mod n are contained in [n2 − 2, n]. Suppose

without loss that t < t · (dn3 + 1) mod n, thus t ∈ [n2 − 2, 2n3 ]. Then we have
tdn
3 + t ≡ n

3 + t (mod n), thus td ≡ 1 (mod 3), and therefore t ≡ n
3 (mod 3).

Let a be an integer such that a(a + 2) is coprime to n. Then we have a ≡ 2
(mod 3), thus at ≡ −n

3 (mod 3), and therefore at mod n ∈ [ 5n6 − 3a + 1, n − 1].

Similarly (a+ 2)t ≡ n
3 (mod 3), thus (a+ 2)t mod n ∈ [n2 − 3a− 5, 2n

3 − 1]. Hence

2t ∈ [
n

2
− 3a− 5,

2n

3
− 1]− [

5n

6
− 3a+ 1, n− 1] = [−n

6
+ 3a− 2,−n

2
− 3a− 4].

On the other hand

2t ∈ 2[
n

2
− 2,

2n

3
− 1] = [n− 4,

4n

3
− 2].

These two intervals intersect modulo n if and only if either n
6 − 3a + 2 ≤ 4, or

n
3 − 2 ≥ n

2 − 3a − 4. Both conditions are equivalent to n
6 ≤ 3a + 2, solving for a

yields our claim. �

We can now prove Theorem 1. Suppose n is a counterexample, and let p1, p2 be
the largest prime divisors of n. Either at most one of them is ≥ 5, or we have

5n

p1p2
≥ f(n) ≥ n− 12

18
>

n

19
,

provided that n > 18 · 19. This implies that the product of the two largest prime
divisors of n is < 95, thus either n has at most one prime divisor ≥ 5, or the product
of the two largest prime divisors is < 100. In any case we obtain that n has at most
one prime factor ≥ 10. But then n is coprime to at least one of 11 · 13 or 17 · 19,
thus f(n) ≤ 17 and therefore n ≤ 18 · 17 + 12 = 318, which is impossible.

We would like to use this opportunity to correct an error in [3]. In Lemma 4.4
it was falsely claimed that if g is the Jacobsthal function as defined above, Pk is
the product of the first k prime numbers, and n is an integer with k distinct prime
divisors, then g(n) ≤ g(Pk). In general this inequality does not hold, however, in
[3] it was only used for k ≤ 8, where it can be verified directly. In fact, denoting
by ω(n) the number of prime divisors of n, Hajdu and Saradha have computed
max{g(n)|ω(n) = k} for all k ≤ 24, and they showed that the maximum is attained
for n equal to the product of the first k primes, if k ≤ 23, while for k = 24 the
product of the first 21 primes with 73, 89 and 101 yields a larger value than the
product of the first 24 primes. I would like to thank Pasemann for making me
aware of this mistake.
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