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We investigate the susceptibility of long-range ordered phases of two-dimensional dry aligning
active matter to population disorder, taken in the form of a distribution of intrinsic individual
chiralities. Using a combination of particle-level models and hydrodynamic theories derived from
them, we show that while in finite systems all ordered phases resist a finite amount of such chirality
disorder, the homogeneous ones (polar flocks and active nematics) are unstable to any amount of
disorder in the infinite-size limit. On the other hand, we find that the inhomogeneous solutions of
the coexistence phase (bands) may resist a finite amount of chirality disorder even asymptotically.

Many if not most active matter systems are made of
interacting units that convert energy gathered from their
environment to displace themselves. In most models and
theories, these self-propelled particles are taken identical
and they evolve in a homogeneous medium. Of course,
particles in real systems are never strictly identical, nor
do they move, in the common case where they are in
direct contact with a substrate, in a pristine space. To
what extent the spectacular collective phenomena of ac-
tive matter uncovered in models and theories resist pop-
ulation or environment disorder is thus a valid question.

Recent works have made significant progress regarding
the effects of heterogeneous substrates (spatial quenched
disorder) on active matter [1–18]. As often, attention
focussed mostly on ‘polar flocks’, the nickname for the
homogeneous collective motion phase exhibited by self-
propelled particles locally aligning their velocities against
some noise, as in the Vicsek model and the Toner-Tu
theory [19–24]. Even though the matter is not yet fully
settled, it was found that the true long-range polar order
present even in two-dimensions (2D) is deeply modified
and sometimes broken by any amount of quenched dis-
order.

Is orientationally-ordered active matter equally suscep-
tible to population disorder? Only a few active systems
with heterogeneous population have been studied so far
[25–35]. Again, most of these works deal with aligning
self-propelled particles and investigate the fate of collec-
tive motion phases. The population disorder considered
takes the form of either two subpopulations, each made
of identical particles, or truly distributed disorder, with
each particle assigned some individual parameter. While
some of these works have revealed interesting phenom-
ena, such as the non-reciprocal phase transitions of [35],
others did consider the robustness of polar flocks and
all concluded, often implicitly, that they resist a finite
amount of disorder. This conclusion was in particular
reached for systems with chirality disorder, in which self-
propelled particles each possess an intrinsic tendency to

turn either clockwise (CW) or counterclockwise (CCW),
but with the total population remaining globally achiral
[30, 31].

In short, polar flocks seem sensitive to spatial quenched
disorder, but robust to finite amounts of population dis-
order. In the latter case, though, only relatively small
systems were considered, and no finite-size study was
provided.

In this Letter, we thoroughly investigate the suscep-
tibility of long-range ordered phases of 2D dry aligning
active matter to chirality disorder. Using both parti-
cle level models and hydrodynamic theories derived from
them, we show that, asymptotically, any amount of this
type of disorder breaks both polarly and nematically or-
dered homogeneous phases. On the other hand, we find
that the traveling Vicsek bands characterizing the coex-
istence phase in the polar case may resist a finite amount
of chirality disorder. We provide a brief description of the
chirality-induced phases replacing the long-range ordered
ones and rough phase diagrams, but defer their detailed
study to a future publication [36].

We consider point particles i = 1, . . . , N , endowed
with an intrinsic frequency ωi, which move at constant
speed v0 in a square domain of linear size L with periodic
boundary conditions. Their positions ri and orientations
θi evolve in continuous time:

ṙi = v0 e(θi) (1a)

θ̇i = ωi + κ 〈sinα(θj − θi)〉j∼i +
√

2Drηi (1b)

where e(θ) is the unit vector along θ, the average 〈. . .〉j∼i
is taken over all particles within unit distance of ri, and
ηi is a uniform white noise drawn in [−π, π]. For α = 1,
particles align ferromagnetically, like in the Vicsek model,
while alignment is nematic for α = 2. Both cases are con-
sidered below. Finally, the individual frequencies ωi are
drawn from a zero-mean distribution. Here we study two
cases: a Gaussian distribution of rms ω0 and a bimodal
distribution where half of the particles have frequency
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FIG. 1. Phase diagrams in the (ω0, Dr) plane (ρ0 = κ =
v0 = 1, L = 256). (a,c) (left column) ferromagnetic align-
ment. (b,d) (right column) nematic alignment. Top row
(a,b): Gaussian distribution; bottom row (c,d): bimodal dis-
tribution. (Details about the numerical protocol used to build
these diagrams are given in [37].)

+ω0 and the other half −ω0.

In the pure, disorderless case of identical particles
(ωi = 0, ∀i), one finds the typical phase diagram of
Vicsek-style models: at any global density ρ0 = N/L2,
decreasing the noise strength Dr or, equivalently, increas-
ing the coupling strength κ, one transits from a disor-
dered gas to a homogeneous ordered liquid with non-
trivial fluctuations. This transition is not direct, but
via a coexistence phase in which particles organize them-
selves in dense, ordered bands evolving in a residual
sparse gas [24].

Chirality disorder introduces another important pa-
rameter, the distribution width ω0. Below we present
results obtained at fixed density of particles ρ0 = 1,
varying Dr (with fixed κ = 1) and ω0. All simulations
presented here were performed at v0 = 1 using an ex-
plicit Euler scheme with timestep 0.1. Phase diagrams
at fixed, finite size L = 256 in this (ω0, Dr) plane are
presented in Fig. 1 for both ferromagnetic (α = 1) and
nematic (α = 2) alignment, and for both Gaussian and
bimodal distribution of frequencies. Typical snapshots
representing most involved phases are shown in Fig. 2.
Since here we are chiefly concerned with the fate of the
phases present in the pure case under the influence of
chirality disorder, a detailed study of the phase diagrams
is beyond the scope of this paper and will be presented
elsewhere [36]. The next paragraph only provides a brief

synthetic description, stressing the similarities between
the four cases studied.

The homogeneous ordered liquid phases and the coex-
istence band phases are broken at strong enough disorder,
giving way to density-segregated phases unknown in the
pure case. With ferromagnetic alignment (Fig. 1, left),
particles are then also spontaneously chirality-segregated
into dense, locally polarly ordered CW and CCW struc-
tures. In the Gaussian case, only axisymmetric vortices
appear (Fig. 2(c)) [38]. In the bimodal case, vortices
themselves give way, at higher ω0 values, to rotating
polar packets (Fig. 2(d)), which have a global polarity
that rotates in time (contrary to vortices). With nematic
alignment (Fig. 1, right), similarly to the ferromagnetic
case, chirality-sorted rotating polar packets are observed
with bimodal disorder (Fig. 2(h)). Other phases are not
chirality-sorted. For both types of disorder, well-formed
nematic vortices (Fig. 2(g)) are present for Dr values
roughly corresponding to the range over which the ho-
mogeneous nematic is observed in the pure case. For
stronger noise, the nematic bands of the pure case be-
come an active foam, i.e. a constantly-rearranging net-
work of thin nematic bands (Fig. 2(f)).

As seen above for L = 256, the pure-case ordered liquid
phases are observable at finite values of ω0 (examples are
given in Fig. 2(a,e)). The presence of chirality disorder is
reflected in the bimodal distribution of the orientations
of particles (not shown, but see [30]). However, the liq-
uid phases do not survive the L → ∞ limit: choosing
Dr values well into the liquid phase in the pure case, we
estimated, for various system sizes, the maximum disor-
der value ω∗0 beyond which global order breaks down due
to the emergence of vortices [39] As shown in Fig. 3(a),
ω∗0 ∼ L−γ with γ ' 0.6, indicating that the parameter
region where the ordered fluid can be observed shrinks
with increasing system size, both in the ferromagnetic
and nematic cases, for both Gaussian and bimodal dis-
order.

In contrast, ω∗0 does not vanish when L → ∞ at a Dr

value chosen to be at the level of the traveling (Vicsek)
band phase (not shown). For large systems with ferro-
magnetic alignment, one observes the band-vortices tran-
sition at more or less the same ω∗0 value, but with a region
of coexistence between the two phases (Fig. 3(b)). The
Vicsek bands are thus robust structures that can survive
chirality disorder and even coexist with chiral structures.

To be complete, let us describe the fate of the nematic
coexistence phase. In systems of moderate size, one typ-
ically observes a single nematic band in the pure case,
but it is well known that nematic bands are inherently
unstable, with this instability leading to band spatiotem-
poral chaos [40–42]. Thus the nematic coexistence phase
is intrinsically disordered even in the pure case. Chiral-
ity disorder, as indicated in our phase diagrams (Fig. 1),
leads to the dynamic active foam illustrated in Fig. 2(f).
This regime appears to be different from band chaos, and
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FIG. 2. Typical snapshots of phases reported in Fig. 1 taken after transients following random initial conditions. These images
were obtained in the Gaussian case, except the polar rotating packets (panels (d,h)), which are only observed in the bimodal
case. For each phase, two subpanels are shown: particles’ orientation (left) and intrinsic chirality (right) are represented as
small colored segments (colormaps are in panel (g)). For (e,f,g), which have local nematic order, 2θ is represented in the left
subpanel. For the other phases, the polar angle θ is shown. In the right subpanels, chirality-segregated structures appear red
(CW) or blue (CCW), while mixed chirality regions appear purple. The chirality colormap goes from −ωmax to +ωmax, with
ωmax adapted for each panel for better legibility. (a) polar liquid (ω0 = 0.004, Dr = 0.03, ωmax = 0.005). (b) polar (Vicsek)
bands (ω0 = 0.004, Dr = 0.06, ωmax = 0.005). (c) polar vortices (ω0 = 0.054, Dr = 0.03, ωmax = 0.05). (d) rotating polar
packets (ω0 = 0.167, Dr = 0.03, ωmax = 0.5). (e) nematic liquid (ω0 = 0.004, Dr = 0.008, ωmax = 0.005). (f) active foam
(ω0 = 0.03, Dr = 0.016, ωmax = 0.02). (g) nematic vortices (ω0 = 0.118, Dr = 0.012, ωmax = 0.05). (h) rotating polar packets
(ω0 = 0.05, Dr = 0.002, ωmax = 0.1).

is reminiscent of the active foams described in [43, 44] but
this point will be studied elsewhere [36]

A major conclusion of the numerical study above is
that the homogeneous ordered phases (polar flocks and
nematic) seem to be broken, asymptotically, by any
amount of chirality disorder. We now turn to a theo-
retical understanding of this at the continuous level. We
focus on the case of ferromagnetic alignment and bimodal
distribution of chiralities for which it is easiest to con-
struct a hydrodynamic theory starting from our micro-
scopic model (1). We follow the Boltzmann-Ginzburg-
Landau approach [24, 45–47]. Details are given in [37].
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FIG. 3. (a) Variation of the [0, ω∗0(L)] domain of existence
of the homogeneous ordered phases with system size L (fer-
romagnetic cases Dr = 0.03, nematic cases Dr = 0.004). (b)
snapshot taken in the region of coexistence between Vicsek
bands and polar vortices (ferromagnetic alignment, Gaussian
distribution of chiralities, ω0 = 0.06, Dr = 0.054, L = 256,
colors indicate particles’ orientation as in Fig. 2(a-d) left sub-
panels).

In the bimodal case, it is quite natural to separate the
+ω0 and −ω0 subpopulations. We write 2 coupled Boltz-
mann equations ruling the evolution of their one-body
probability density functions f+(r, θ, t) and f−(r, θ, t):

∂tf
±+v0e(θ)·∇f±±ω0∂θf

± = Isd[f±]+ Ico[f±, f ], (2)

where f = f+ + f−, and Isd and Ico are self-diffusion
and collision integrals given in [37]. Note that the two
equations are only coupled via the collision integral, and
each of them is thus similar to the Boltzmann equation
for the pure case [46]. Expanding f± in Fourier series of
θ (i.e. f±(r, θ, t) = 1

2π

∑+∞
k=−∞ f±k (r, t)e−ikθ) the Boltz-

mann equations are de-dimensionalized and transformed
into a hierarchy of partial differential equations for the
complex fields f+k and f−k . Linear stability analysis of
the disordered solution ρ± ≡ f±0 = 1

2ρ0, f±k 6=0 = 0 reveals

that it is unstable to f±1 perturbations at large density
and/or weak noise. Thus, unsurprisingly, local polar or-
der emerges at onset and one can truncate and close the
hierarchy of equations using the same Ginzburg-Landau
scaling ansatz as in the pure case. Denoting, for legibility,
p ≡ f+1 and m ≡ f−1 , we obtain:

∂tρ
+ =− Re[O∗p] , (3a)

∂tp =
(
µ[ρ+, ρ−]− iω0 − ξ|p|2

)
p+ ν∆p

+κ1O
∗p2 + κ2p

∗Op− 1
2Oρ

+

+(µ̃[ρ+]− ξ̃|m|2)m+ ν̃∆m+ κ̃1O
∗m2 + κ̃2m

∗Om

+γ1|m|2p+ γ2m
2p∗ + γ̃1|p|2m+ γ̃2p

2m∗

+δ1O
∗(pm) + δ2p

∗Om+ δ̃2m
∗Op , (3b)

where O ≡ ∂x + i∂y denotes the complex gradient,
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∆ = OO∗ is the Laplacian in this complex notation, and
the dependence of coefficients on local density have been
explicited. (The equations for ρ− and m are obtained by
performing the swaps ρ+ ↔ ρ−, p↔ m, and ω0 ↔ −ω0.)
A few comments are in order: (3a) is the usual exact
conservation equation (∂tρ + ∇(ρv) = 0). In contrast
with the Toner-Tu equation of the pure case, almost all
coefficients in (3b) are complex, as shown in [37] where
their expression in terms of the microscopic parameters
is given. The first two lines of (3b) are the Toner-Tu
equation of the pure case (up to the iω0 term and the
complex nature of some coefficients); the next line has
similar terms but for the m field, while the last two lines
regroup the terms coupling p and m.

Below, we only study the linear stability of the sta-
tionary homogeneous solutions of the above equations.
The comprehensive numerical study at the nonlinear, in-
homogeneous level is ongoing work that will appear else-
where [36]. Apart from the trivial disordered solution
ρ± = ρ0

2 , p = m = 0, Eqs. (3a,3b) and their counterparts
governing ρ− and m have another homogeneous solution
with |p| = |m| = P,m/p = exp(iΩ). This ordered so-
lution, described in [30] in some limit case of the above
hydrodynamic equations, reduces to the polar flock solu-
tion of the Toner-Tu equations in the ω0 → 0 limit where
Ω = 0. It corresponds to the polar flock phase observed
at particle level (Fig. 1(c)). Its expression in closed form
is cumbersome, and in practice we calculate it numer-
ically at arbitrary precision from the simple equations
defining P and Ω. This allows to determine not only its
existence domain, but also its full linear stability analy-
sis. While all details are provided in [37], we only sketch
here how this is done. We first linearize the equations
around the ordered solution and write the resulting 6×6
matrix in Fourier space, where its coefficients depend on
a wavenumber q = (q‖, q⊥), here expressed in the co-
ordinates relative to the order of the solution [48]. For
each parameter set of interest, we solve the matrix and
determine the most unstable (or least stable) mode q∗,
i.e. the mode with the highest growth rate σ∗. We find
that the solution is unstable (σ∗ > 0) everywhere in its
domain of existence (Fig. 4(a)). This indicates that the
instability of the polar flock solution found at particle
level (Fig. 3(a)) is probably due to this linear instability
at (deterministic) hydrodynamic level.

We also determined the wavevectors separating stable
from unstable modes, and in particular that with the
largest wavenumber q† = |q†|, which is of interest since
L† = 1/q† is the maximum system size at which the or-
dered solution is stable. We find that L† varies like 1/ω0

(Fig. 4(b)). We believe this algebraic law is at the root
of the one observed at microscopic level (Fig. 3(a)). The
fact that the scaling exponent takes a ’non-trivial’ value
in this last case maybe due to fluctuations and nonlinear
effects.

To summarize, we have shown that the homogeneous
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FIG. 4. Linear stability analysis of the homogeneous ordered
solution of the hydrodynamic theory (ρ+ = ρ− = 1). (a): di-
rection of most unstable mode in (ω0, Dr) plane (in the grey
area, the solution does not exist; the homogeneous disordered
solution is linearly unstable below the dashed line). (b): vari-
ation of L† (size of largest stable system) with ω0 at fixed
Dr = 0.4.

orientationally-ordered phases of dry aligning active mat-
ter, be they polarly or nematically ordered, are suscep-
tible to any amount of population heterogeneity intro-
duced in the form of chirality disorder. Even though
finite systems may resist a finite amount of such disor-
der, the maximum disorder strength that can be sup-
ported by the ordered liquid vanishes in the infinite-size
limit. We have traced this back, in the polar case, to the
generic instability of the ordered homogeneous solution
of the hydrodynamic theory that we derived from our
particle-level model. Our results (in the polar, ferromag-
netic case) contradict the “activity-induced synchronisa-
tion” put forward in [30]. This paper, though, did not
present a finite-size study such as that shown in Fig. 3,
nor a linear stability analysis of the ordered solution as
in Fig. 4 [49].

Thus, as in variants of the Kuramoto model where ran-
dom oscillators are locally coupled, synchronization of
random frequency/chirality active particles is impossible
in 2D, in spite of the true long-range order (aka synchro-
nization) proven by Toner and Tu in the pure case. In this
context, the study of higher-dimensional systems would
be interesting since it is known that, for the locally-
coupled Kuramoto model, frequency-synchronization is
possible in three and four dimensions, whereas phase-
synchronisation occurs above [50]. Ongoing work in-
vestigates “flocking” versions of the models of globally-
cioupled high-dimension oscillators studied in [51, 52].
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