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For non-equilibrium systems described by finite Markov processes, we consider the number of times
that a system traverses a cyclic sequence of states (a cycle). The joint distribution of the number of
forward and backward instances of any given cycle is described by universal formulae which depend
on the cycle affinity, but are otherwise independent of system details. We discuss the similarities
and differences of this result to fluctuation theorems, and generalize the result to families of cycles,
relevant under coarse-graining. Finally, we describe the application of large deviation theory to this

cycle counting problem.

I. INTRODUCTION

Fluctuations in non-equilibrium systems continue to
provide surprises and new insight in statistical physics.
Among the most famous examples are fluctuation theo-
rems [IH5], which come in different types. Some of them
(detailed fluctuation theorems) are symmetries of proba-
bility distributions [II [l 4], while others allow the results
of dynamical experiments to be related to (static) quan-
tities such as free energies [2 3]. More recently, ther-
modynamic uncertainty relations (TURs) have been de-
rived [6HIO], which are inequalities that relate the vari-
ances of physical observables to underlying properties of
a system, particularly its entropy production.

These results reflect an elegant mathematical struc-
ture, that underpins the physical models to which they
apply. They also have experimental relevance [I1 [12].
Still, it is notable that fluctuation theorems for non-
equilibrium steady states usually involve quantities such
as affinities or the entropy production, which are difficult
to characterise from experimental (or simulation) data.
There is an ongoing effort to infer such quantities by

TURs [13-15).

In this context, a recent result of Biddle and Gunawar-
dena (BG) [16] offers a potentially new route towards in-
ference of cycle affinities from data. Analyses of steady-
state fluctuations often focus on currents, but BG’s re-
sults concern cycles — sequences of states that begin and
end at the same point. They showed that for long times,
the affinity of a cycle can be computed by counting the
number of times that the cycle is traversed, in each di-
rection. In their approach, completion of a cycle corre-
sponds to the system visiting a particular set of states, in
a particular order. This distinguishes their analysis from
a different body of work, that involves decomposition
of the full stochastic trajectory into a sequence of com-
pleted cycles [I7THI9): in that case, a system’s progress
around a single cycle may include other cycles within it,
see also [20] for a recent example of this decomposition in
practice. Yet another approach [4] is based on Schnaken-

berg network theory [2I], where the probability currents
between pairs of states are decomposed into a minimal
set of cycle currents, see also [22] 23]. However, that con-
struction does not provide information about any specific
cyclic sequence of states.

Given their definition of a cycle as a specific sequence
of states, the approach of [I6] can be interpreted as a
generalization to continuous-time Markov chains of a set
of discrete-time problems, including counting the num-
ber of occurrences of a given word, in a random sequence
of letters. Such problems are relevant for DNA sequence
analysis [24H27]. There are also physical results for cy-
cle counting in discrete-time, at least for unicyclic mod-

els [28].

In this paper, we follow [16], exploring in more detail
the distribution of the number of times that cycles are
traversed, in either direction. The results apply at all
times. Hence they generalize the results of [16], which
concern the mean of the distribution, for long trajec-
tories. We also outline methods for analysis of large-
deviation events [20-31], where the cycle count takes a
non-typical value at very large times. As might be ex-
pected, the cycle affinity plays a central role in the statis-
tics of cycle counts, especially for the cycle current, which
is the difference in counts for forward and reverse cycles.
By contrast, the statistics of the total count have a com-
plex dependence on all model parameters, as expected for
time-reversal symmetric (frenetic) quantities [32]. Some
of the methods used here, particularly renewal theory
and mth order Markov processes, are similar to those
used for sequence analysis, although our results concern
processes in continuous time.

The form of the paper is as follows: Sec. [[I] defines the
models and quantities of interest and Sec. [[I]] describes
the main results for fluctuations of cycle counts, in finite
time intervals. Sec. [[V] discusses these results, including
some possible extensions, and the connection with fluctu-
ation theorems. The relevant theory for large deviations
of cycle counts is outlined in Sec.[V] Finally, Sec.[VI|gives
a short conclusion.



II. MODEL AND DEFINITIONS

Model — We consider non-equilibrium systems that are
modelled as Markov chains with discrete states, in con-
tinuous time. A very simple example system is shown in
Fig. a). The set of states is denoted by I', which in the
example is {A,B,C,D}. The transition rate from state
x to state y is denoted by w(x — y) > 0. We emphasise
that the results apply for any finite set I" so they include
complex systems like (finite) exclusion processes and are
not at all restricted to simple models like the example of
Fig.[1

We restrict to irreducible systems and we also assume
that if w(z — y) > 0 then also w(y — x) > 0 (which is
sometimes called weak reversibility or microreversibility).
This ensures that the steady state is unique and that ev-
ery state x has a non-zero probability in the steady state,
denoted by m(x). Also the average entropy production
rate is finite and non-negative.

Trajectories — A trajectory of the system can be spec-
ified for a time period [0,7], an example is shown in
Fig. b). Let X denote a trajectory, it consists of a
sequence of states

xx = (xo,x1,%2,...,%n) (1)

and the associated transition times
tX:(t17t27"‘7tM) (2)

with 0 < t; <ty < --- <ty < 7. Here each xz; € T', the
system starts in state xo and jumps to state x; at time
t;. The number of transitions M is a random (trajectory-
dependent) quantity.

Words and cycles — We consider sequences of states
visited by the Markov chain. Similar objects have been
studied for models in discrete time, especially in the con-
text of DNA sequence analysis [24H27]. The continuous-
time case is very similar, although it requires some addi-
tional book-keeping.

A sequence of states is called a word. We always re-
strict to words that can occur in trajectories of the sys-
tem. (In the example of Fig. |1} AB or BAC would be suit-
able words, but ABD is excluded because w(B — D) =
0.) A word that begins and ends with the same letter is
called a cycle, and if C is a cycle then C? denotes its time-
reversal. For example if C = ABCA then C}® = ACBA.
The cycle length m¢ is the number of transitions required
to complete a cycle, so me = 3 in this example (one fewer
than the corresponding word length).

Denote by C; the jth statein cycleC,s01 < j < me+1.
Then the cycle affinity for C is

AC—ZIH

which is also the entropy production for one cycle in the
steady state. For allowed cycles then all rates are non-
zero (by the weak reversibility property) so the affinity
is finite.

w(Cj — Cjy1)
(Cjr1 —Cj)’

3)
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FIG. 1. (a) Diagram showing a simple system of four states,
with transitions indicated by straight arrows. The cycle
C = ABCA is also indicated. (b) Example trajectory for a
time period [0, 7], with jumps between states at times tx =
(t1,t2,t3,ts). The sequence of states is xx = (D, A,B,C,A)
50 ne(X) =1 and n¥(X) = 0.

In a trajectory, it is convenient to define the start time
of a word (or cycle) as the time of the jump between
the first two states, and the end time as the time of the
jump between the last two states. So for ABCA the word
starts at the transition A — B and ends at C — A. The
completion time is the difference between the start and
end time.

As noted in Sec. [I} this definition of a cycle [16] (which
might also be called a cyclic word) — and the correspond-
ing start/end times — differ from the definitions used in
other works such as [19] 20, B3, 34]. Our definition leads
to a simpler analysis, but some of the results and meth-
ods are similar.

Counting cycles — Given a trajectory X and a cycle
C, write n¢(X) for the number of occurrences of C in X.
This is the number of times that the word C appears in
the sequence & x. (The hat serves as a reminder that 7
is a random variable.) The cycle must appear exactly
as in its definition, and different occurrences of the cycle
may overlap. (For example the cycle ABABA appears
twice in the sequence ABABABA.) Of course, generic
words can be counted in the same way, not only cycles.
It is convenient to write ﬁCR = fier for the number of
occurrences of the reverse cycle.

Non-revisiting cycles — It will be convenient in the fol-
lowing to distinguish two kinds of cycle. Recalling that
a cycle always begins and ends at the same point, we de-
fine a non-revisiting cycle as one in that does not return
to its initial point, until the end. For example ABA is
a non-revisiting cycle but ABCACBA is not. One sees
that different occurrences of a non-revisiting cycle cannot
overlap each other, and that a general cycle can be de-
composed as the concatenation of non-revisiting cycles.
The class of non-revisiting cycles is larger than that of
simple cycles (for example ABCBCA is non-revisiting),
but it is not as large as the class of non-overlapping cycles
(or words) from [25].



III. RESULTS: FINITE TIME

This Section contains some general results for the prob-
ability distribution of the number of cycle counts, for fi-
nite trajectories with time ¢ € [0, 7]. We first summarise
the results before giving the derivations. The analysis
leading to these results is quite straightforward, but we
argue that the results are interesting for two reasons:
first, as a possible way to infer model parameters (specif-
ically, affinities) from data [16]; and also as a starting
point for more detailed analysis of cycle counts. Both
these directions are discussed in later Sections.

A. Overview

Our results concern the random variables ﬁc,ﬁg, for
cycles as defined above. In the palindromic case C = C?
then none of these results have any content, so we assume
throughout that C # CR®. We are motivated by a result
of [I6], which is that for long trajectories

lim 7§(X) =eAc .
X

T—00 nc( )

(4)

Such formulae require some care because the left hand
side is a random (trajectory-dependent) quantity but the
right hand side is deterministic: the equation holds in the
same sense as a law of large numbers. The physical idea
behind is that the cycle affinity can be inferred by
counting cycles that are traversed in forward and back-
ward directions.

In the following, we derive several results, related to
(4]). First, the derivation of [16] can be easily generalized
to obtain a result for steady-state averages over trajec-
tories of finite length 7, with arbitrary initial condition.
The result is

(ng)

where (-) indicates an average over trajectories of the sys-
tem (the dependence of the cycle counts on X is implicit).
This result states that cycles with positive affinity hap-
pen more often in the forward direction, as expected. As
7 — oo then fg(X) — (f¢) with probability one, this
is a weak law of large numbers. The proposal of [4] was
that might be used to infer affinities from data; in
this case seems also useful since long trajectories are
not required.

We note in passing that the mean number of cycles is
not a simple linear function of the trajectory length, that
is (fe) # Tw(C) in general. (Here w(C) would be a cycle
completion rate.) The reason is that there is typically a
significant lag time between starting and ending a cycle.
So the fact that applies for all 7 is not trivial.

We now consider the joint distribution of n¢, n&, which
we denote by Pr(n¢,ng). Our results for this distribution
are restricted to non-revisiting cycles, but they hold for

<ﬁc> _ _Ac (5)

any trajectory length 7 and for any initial condition (it is
not necessary that the probabilities are evaluated in the
steady state of the system). We show that

nePr(ne,ny —1) = e*ni Py (ne — 1,nd). (6)

The physical origin of @ is that replacing any non-
revisiting cycle C by its time-reversed counterpart C%
changes the trajectory probability by a factor e~*A¢. The
prefactors ne and nCR are of combinatorial origin.

Also, it is straightforward to show that for non-
revisiting cycles

PT(nC,ng“) = PT(nCR,nc) exp [(nc - n?)Ac] , (7)

which has some similarities to the fluctuation theorem of
Andrieux and Gaspard [4], see Sec. [[VB]

Both @ and are direct consequences of a binomial
structure in the distribution P (n¢,nd). In order to state
this property conveniently, identify the total number of

cycles in trajectory X and the corresponding net flux as
Ke(X) = fie(X) +Ag (X)
Je(X) = he(X) - ag (X). (8)

Denoting the joint distribution of these quantities
by P.(K,J) and the marginal of K by P.(K) =
> P.(K,.J), we show in Sec. that the conditional
distribution of .J, namely P, (K,J)/P,(K), is binomial,
so that

K exp(JA/2)
LK + J)> eosh(A/2)K ~ )

Here and in the following, we sometimes omit the label C
for variables and affinities, where there is no ambiguity.
The key point of @ is that the dependence of P, on J
is explicit. This formula holds for all models and for any
non-revisiting cycle C. In discrete time, a similar result is
given in [2§], for the restricted case of unicyclic models.

These results extend the analysis of [16] from the most
likely number of cycles to its full fluctuation spectrum.
However, they are restricted to non-revisiting cycles: we
emphasise that are derived from the more general

, so this restriction is necessary for all these results.
For such cycles, one may then recover previous results
for the mean, in particular is obtained by summing
both sides of @ over ne, nCR.

It is useful to recall that the path weight of trajectory
X in our general model is

Pr(s.) = P ()

M—-1
P[X] = Py(xo) H w(z; — xiﬂ)e_r(“)(t"“_t")
=0
X e*’r‘(XM)(Tft]u) (10)

where tg = 0; also Py(xo) is the (arbitrary) distribution
of the initial state and we introduced the exit rate from
state x, as

r(z) = Z w(r —y) . (11)

y(#x)



From this formula, the result @ can be anticipated by
observing that any instance of a non-revisiting cycle C
in X can be replaced by an instance of C®, so that P[X]
changes by a factor e~#¢. A precise argument along these
lines is given in Sec. [[ITC] see also Fig. 2] Alternatively,
this result [and also (9)] may be derived using renewal
theory, see Appendix [B]

B. Average cycle counts

We now derive . Consider the probability that an
instance of cycle C starts between times ¢ and t + dt and
ends before time 7. For small 0t denote this by Pe (¢, 7)dt.
Considering trajectories for the time period [0, 7], the
average (7i¢) may then be decomposed as

(he) = /O " Pe(t, )t . (12)

Moreover, the probability that a transition C; — Cs oc-
curs between times ¢ and ¢ + 6t is p(Cy, t)w(C1 — C2)dt,
where p(Cy,t) is the probability that the system is in state
Cy at time t. Since every instance of cycle C starts with
such a transition, it follows that

Pe(t,7) = p(C1,t)w(Ci = C2)Pseq(C) Frn(T —t,C), (13)
where
_ 17 w(C = Ciya)
pseq(c) = ]1;[2 T(Cj) (14)

is the probability that the system follows the correct se-
quence of states, and the factor Fs,(7—1%,C) in is the
probability that the cycle is completed in a time less than
7 —t. [This cycle completion time is a sum of m¢ — 1
exponentially distributed random variables with means
r(C2)7 1, r(Cs)7 Y, ..., 7(Cme) 1] Hence

(nc) = /0 pennren ] W

=1

X Fan(r t,C)}dt. (15)

Repeating the same argument for the reversed cycle
C® one finds

mc

o0 = [ e i %

X Fan (T — t,CR)} dt . (16)

]Jrl —)C)

Note that the time to complete cycle C® is the same sum
of exponentially distributed random variables as for C, so

Fan(T — t,CR) = Fau(r — 1,C) , (17)
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FIG. 2. (Top) A trajectory X of the four-state system in
Fig. |1} and the corresponding sequence of completions of the
cycle C or C®. We keep track of the departure and arrival
times for state A that enclose instances of C or C®. The second
such instance is highlighted in red. (Bottom) Applying time-
reversal to the highlighted part of the trajectory leads to the
trajectory Xo, transforming the cycle C® into C.

see also [33] [34], an explicit formula for Fy, is given in
(A4). Also, the fact that the cycle starts and ends at
the same point means that []7 7(Cj+1) = [} r(C)).
Combining these facts with (BT5[T6]), one recovers ().

Note that there is no restriction here to non-revisiting
cycles, the physical reason is that decomposes the
mean number of cycles into a sum of independent aver-
ages. To see this, recall that the average number of cycles
that start between time t and ¢4 6t and end before time 7
is Pe(t,7)ot. Integrating over ¢ corresponds to summing
these independent averages and gives the average number
of completed cycles within the full trajectory. The possi-
bility of overlapping cycles is important for fluctuations
in their number, but not for the mean.

C. Fluctuations for non-revisiting cycles

We now restrict to non-revisiting cycles, and we de-
rive (6}9). We use a methodology similar to proofs of
fluctuation theorems based on path weights [5], see Ap-
pendix[BT]for a derivation using concepts of renewal the-
ory.

Suppose that the cycle C of interest starts in state A
(this does not lose any generality). For any trajectory X
we can identify the sequence of completions of the cycle
in either forward or backward direction, for example

S[X] = (c.ct.c.c.ch), (18)
along with the sequence of start and end times of the
cycles, denoted by ( 0P 9P ) and (£, 87, .. re-
spectively, see Fig. |2 (The start/end times of the cycle
correspond to the departure/arrival times from/to state
A.) The probability to observe a specific sequence S of
forward and backward cycles within time 7 can be ex-



pressed as

P(S) =Y _ PIX]8(S. S[X)), (19)

X

where the sum runs over all trajectories of length 7,
suitably parameterised as a path integral. The function
§(8,8") =11 § =&, and zero otherwise.

To derive @, we first obtain formulae that relate
the probabilities of specific trajectories; then we sum
over (classes of) trajectories to obtain the distribution
of (K, .J). Note that the sequence S[X] consists of K (X)
elements. For every trajectory X we define a conjugate
trajectory Xy, as follows: If & < K(X) then X} is ob-
tained from X by reversing in time the kth cycle in S[X],
that is:

Xi(t) = (20)

. X8 =t +10P), if 1) <t < 2
otherwise '
See Fig. |2l which shows how X, is obtained from X for
k = 2 by reversing the second instance of the cycle. Simi-
lar partial time-reversal operations have been considered
before in the context of simple chemical reactions [33, 34]
as well as in other works on cycle counting [19] 20]. It is
convenient to extend this definition to include k& > K (X)
by taking X (t) = X (t).
Noting that the sojourn times in each state are unaf-
fected by the partial time-reversal, we see from and

that

(21)

PIX]  Je*Ae, ifk < K(X)
)1 otherwise

P[Xy]

where in the first case we take the plus sign if the kth
entry in S(X) is C, and the minus sign if this entry is CR.

Now define S;[X] = S[Xj]; for example if S =
(C,CR,c,C,CR) and k = 2 then S; = (C,C,C,C,CR). The
mapping between X and X}, is a bijection, which means
that can be expressed as

Pr(8) =Y PIX)]5(S, S[Xk))

=" PXi]6(S, Sk[X]), (22)
X

where the first equality is obtained by relabelling the tra-
jectories and the second uses the definition of S. Using

yields
Po(S) = eTAcP_(Sp), (23)

where we take the plus (or minus) sign if the kth entry
in S(X) is C (or CR), as in . (It is assumed that the
number of entries in S is at least as large as k.) The
result is a special example of a detailed fluctuation
theorem [5].

Now, given a sequence S, one may use and suc-
cessively replace all instances of C® by C to obtain

P.(S) =e AP (C,C,....C) (24)

where n? is the number of occurrences of C® in the se-
quence §. Write Kg for the number of entries in S.
Then the right hand side of is the probability of
K forward cycles and no reverse ones, that is P.(Kg,0)
in the notation of @ The probability Pr(Ks — n,n)
can be obtained by summing over sequences S with
the requisite numbers of forward and reverse cycles: the
number of elements in the sum is a binomial coefficient.
One obtains

R
P, (nc,nd) = (”C TTC”C) e AP (ne +nB,0). (25)

Re-parameterisation in terms of K, J yields @ As noted
in Sec. both @ and follow straightforwardly
from this result.

Finally, we observe that while these results have been
derived for non-revisiting cycles, this is not the most gen-
eral case in which and hence @D apply. Eq. does
not apply for all cycles because if two instances of the
same cycle can overlap each other, then it is not generally
possible to reverse a single instance of the cycle, leaving
all other instances unchanged. [For example, consider
the (revisiting) cycle ABCABCA and a trajectory that
contains the sequence ABCABCABCA.] A similar prob-
lem arises if an instance of C can overlap with an instance
of C®. The assumption of non-revisiting cycles is suffi-
cient to ensure that such overlaps never occur and
holds, but this condition is not necessary. Classes of non-
overlapping words are discussed (for example) in [25]; we
avoid such issues here, to simplify the analysis.

IV. DISCUSSION OF FINITE-TIME RESULTS
A. Coarse-grained measurements: families of cycles

The results derived so far concern the statistics of com-
pletions of a given cycle C, which is a specific sequence of
states. Hence, any measurement of n¢ requires complete
information about the trajectory of the system. Since we
consider “mesoscopic” models that should be defined as
coarse-grained representations of real physical systems,
it is useful to consider how this requirement of complete
information can be reconciled with a coarse-graining op-
eration.

Note first that these results can be generalised to some
situations where incomplete information is available. To
see this, let F represent a family (a set) of cycles, and let

AF(X) =Y hc(X) (26)
CeF

be the total number of occurrences in trajectory X of
all cycles C from that family F. Reversing all cycles in
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FIG. 3. A network where B and B’ form a pair of sub-states.
If the physical driving mechanism does not distinguish be-
tween these sub-states, variations of the cycle C visiting either
B or B’ all have the same affinity and can be lumped together
in a single family of cycles.

F yields the family F®, with the number of occurrences
ﬁ% defined analogously. (We assume that if C € F then
Ch ¢ F.)

If all members of F have the same affinity Az then it is
obvious that still holds (with 7, nd, Ac replaced by
nF, 7%, Ax). If all members of F are also non-revisiting
then hold too. [This can be seen by constructing a
modified sequence S[X] in which the symbol C represents
a completion of any member of Ar and C® represents
completion of the any member of the family F®. Then
holds and the analysis follows.]

A simple example of such a family is obtained by in-
cluding repeated forwards and backwards steps within
the cycle. For example, consider the family containing
ABCA, ABCBCA, and all similar cycles obtained by re-
peatedly inserting instances of BC before the final A. All
these cycles obviously have the same affinity and they are
non-revisiting, so still hold for the joint distribution
of (Ay,A%). [To connect the results here with the frame-
work of [I8,[19], it is necessary to consider larger families,
which include cycles that are constructed from a main
(outer) cycle, and also include non-trivial subcycles; one
should also extend the definition of a time-reversed cy-
cle appropriately, so that only the main cycle is reversed,
leaving the subcycles invariant. Such complex families
are not our main concern in this work.]

Families of cycles with equal affinity also arise nat-
urally in physical situations, especially where coarse-
graining is considered. For example, suppose that a given
state comes in two variants (perhaps B, B’) which differ
in a way that is irrelevant for the non-equilibrium driv-
ing force that controls the cycle affinity. Fig.|3|illustrates
how this might appear in a simple model: there are two
cycles that proceed via B, B’ but have the same affinity
(because the driving force is blind to the distinction be-
tween the states). Since these two cycles have the same
affinity, they can be grouped into a family F and
still hold for the combined counts. Moreover, the family
could be extended by cycles that contain arbitrary num-
bers of forward and backward jumps between B and B’,

which would become relevant when the transition rates
between these to states are much faster than all other
rates.

In this example, it is notable that the model may be
coarse-grained exactly by combining the states B, B into
a single mesostate. As such, the example illustrates that
the results presented here are consistent between different
levels of coarse-graining. In fact, it is generally sufficient
to observe the system on a coarse-grained level, as long
the the coarse-graining does not mix cycles with different
affinities. This mitigates the difficulty noted above, that
the full trajectory of a system must be observed in order
to apply our results.

B. Relation to fluctuation theorems

We have emphasised the connection between the re-
sults (6H9) and fluctuation theorems [IH5]. As such, our
derivations place the result of Biddle and Gunawar-
dena [16] in this context (under the restriction to non-
revisiting cycles). The central result that enables this
analysis is , which can be regarded as an instance of
the “master fluctuation theorem” of Ref. [5], employing
our partial time-reversal (20]) as conjugate dynamics.

Nonetheless, the results (7J9) differ from usual fluctu-
ation theorems, as they involve the total count of cycle
completions in either direction, as well as the net flux
around a cycle, see also results for the traffic or fre-
nesy [32, [35].

To connect to the more familiar case, note from @D
that ﬁT(K7 J) = eJACPT(K,—J) and hence (summing
both sides over K):

ZST(J) — eJAc (27)
p‘r(_‘]) 7

similar to . This result is reminiscent of the fluctuation
theorem for currents by Andrieux and Gaspard [4], but
there are several important differences.

In particular, concerns counting observables for
cycle completions: recall that ne and ng are the num-
bers of occurrences of specific sequences of states (for
example C = ABCA and C® = ACBA) and Je is the
difference between these numbers. On the other hand,
the result of [4] concerns numbers of transitions between
states (for example, one might consider a current defined
as the difference between the number C — A transitions
and A — C transitions). From these numbers of transi-
tions, one defines cycle currents by an indirect method
that involves a decomposition of steady-state current dis-
tributions in a basis that comes from Schnakenberg net-
work theory [21].

We emphasise that the cycle currents in [4] are dis-
tinct objects from the counting observables for cycle com-
pletions that we consider here. For example, consider
the model of Fig. if we take ABCA and ACDA as
the fundamental cycles in the sense of [4] (following the



Schnakenberg formalism) then the trajectory ABCDA
would contribute +1 to each of the two cycle currents [4].
However, the trajectory does not complete either of these
cycles in the exact sequence given, so both there are no
cycle completions in the sense considered here (follow-
ing [16]).

As a result of the indirect relationship between cycle
currents and numbers of transitions, the fluctuation theo-
rem of [4] appears as a symmetry of the joint distribution
of all cycle currents. Moreover, the Schnakenberg theory
applies to steady-state currents, which means that the
result of [4] concerns the large-time limit of the current
distribution. The result of [4] is a deep (and abstract)
statement about the action of time-reversal on trajecto-
ries, and its implications for large deviations as 7 — oo.
On the other hand, it does not generally imply a fluctua-
tion theorem for the (marginal) distributions of currents
associated with individual cycles [36H39).

By contrast, is a much simpler result — it applies
for all 7, for individual cycles. The reason is that the
cycle current is counted in a more direct way, by following
the trajectory of the system throughout each instance of
the cycle. Since the initial and final states of the cycle
are always equal, replacing an instance of C by CR} in
trajectory X has an effect on P(X) that is simple, and
does not affect other parts of the trajectory.

For the very special case of a unicyclic network — and
considering the family of cycles that include multiple for-
ward and backward steps, as above — the fluctuation the-
orem of [4] follows from , in the long-time limit, see
also [33[34]. For multicyclic networks, the two results are
distinct. Given that fluctuations of cycle-counting ob-
servables contain new information, it may be that these
results — including that of Biddle and Gunawardena [10]
— may prove useful for thermodynamic inference, follow-
ing [40L 41]. For that purpose, it is likely that inference
based on families of cycles is more practical than counting
instances of a specific cycle; for example, counting cycles
within a family will typically result in larger observed
numbers, improving the statistics.

V. LARGE DEVIATIONS AS 7 — o0

Given the connection to fluctuation theorems [4], and
that the original result of [16] employed a large-time
limit, it is useful to consider how cycle counting observ-
ables behave as 7 — co. One may expect by ergodic-
ity that the cycle completion rate fi¢ /T converges to its
steady state average as 7 — oo, which would be consis-
tent with . Large deviation theory provides a precise
way to analyse this limit, and shows that this expecta-
tion is correct. The relevant large-deviation methods can
be found in [29431], [42] [43], we outline the theory here.

Define empirical time averages k = Ke /T and 7 =

Je /7: these are random (trajectory-dependent) quan-
tities. Their joint probability density behaves for long

times as

Pr(kvj) ~ exp [—TI(];?,j)] ’ (28)

where 7 is the rate function, which is non-negative. Such
formulae are called large deviation principles — they show
that the typical values of k, 7 occur with probability one
(hence Z = 0), while other values have probabilities that
become exponentially small as 7 — oo. They have been
analysed for a different type of cycle counts in [I9].

The rate function may be characterised by the
Gértner-Ellis theorem as

Z(k,7) = su)I\)[sff + 27— (s, N)], (29)

where
1 o
- T—00 ;
U(s,\) = lim log<exp(skf+fAJ)> (30)

is the scaled cumulant generating function (SCGF). Also,
Varadhan’s lemma states that

U(s,\) = 51%1?[815 + A7 —Z(k,7)] - (31)

The marginal distribution for k& obeys
P (k) = exp [-7 L1 (k)] (32)

with Z; (k) = inf; Z(k, 7), by the contraction principle.

A characterisation of ¥ will be given below, as the
largest eigenvalue of a matrix. That analysis also en-
sures that the technical conditions required for are
satisfied, under our assumptions. Before that, we explore
how @ manifests itself in large deviations.

A. Large deviations for non-revisiting cycles

For non-revisiting cycles, we note that for large K, J
then @ gives

1 - 1 _ _
;1ng'r(kaj) ~ ;logP‘F(k)_IQ(j’krA) (33)

where A is the cycle affinity and (by Stirling’s approxi-
mation)

7,(7,k, A) = klog[cosh(A4/2)] — %

+ 5 g (k4 3) + g (k- 3) - (30

Then implies that the rate function is

I(k,7) = T (k) + Io(3, k, A) . (35)

The function Zs is closely related to the rate function
for the time-averaged current 7 of a biased random walk,
which is related in turn to the binomial structure of @D



Now define g()\,A) = k7! Supj—[)\j - IQ(jvkvA)] and
observe that

cosh(A + .A/2)

9 A) = log cosh(A/2)

(36)

(It is important that this object does not depend on k:
while this is not obvious from its definition, it follows
from the relationship of Z; to a random walk.) Also
define W;(s) = W¥(s,0) as the SCGF for k. Then by
the (joint) SCGF ¥ has the simple form

U(s,A\) =Tq1(s+ g\ A)) . (37)

[The right hand side is the function ¥; evaluated at the
point s + g(\,A).] The function g is symmetric with

respect to A = —A/2. This symmetry gets inherited
by the SCGF ¥(s, A), where it reflects the fluctuation
relation .

The expression is simple in that the function g
depends on system parameters only through the affinity
A, while the effects of all other properties of the system
are encoded in a single function ¥;. Similarly in (ED, the
conditional distribution of J (given K) is binomial and
depends only on A, but the distribution P, (K) depends
in a non-trivial way on all system parameters. In this
sense, is the consequence for large deviations of the
detailed result @D for finite times.

Fig. 4] illustrates in the simple example of Fig.
for the cycle C = ABCA. The numerical computation of
the SCGFs was performed using the method described
in Appendix [C2] Contours of the SCGF are the lines
s = g(A, A): we show results for two sets of system pa-
rameters, which lead to the same value of A; hence the
contour lines are the same in both cases, although the
corresponding values of U differ by an order of magni-
tude. Hence, the fact that these figures appear similar
(despite the different model parameters) shows that the
theoretical result does indeed apply. This is a direct
consequence (at the level of large deviations) of the bi-
nomial distribution of (ED, which is the key result from
which the other fluctuation properties are derived, in this
work.

B. Large deviations for words and cycles

This section outlines a general method for analysis of
large deviations of cycle counts. This establishes that
does indeed hold, and provides a method for compu-
tation of SCGFs. Similar methods are used for analysis
of word-counting in DNA sequence analysis [26] and in
the statistics of repeated measurements [44], see also [19].

Similar SCGFs to appear when considering large
deviations of the number of transitions between discrete
states of Markov models — for example one might define
iy as the number of transitions A — B and A} as the
number of transitions B — A. Then consider with

I I N R N ]
1S R S R N TSN

FIG. 4. SCGF ¥(s,A) (colour coded) for the current and
traffic of the cycle C = ABCA in Fig. (a) and (b) dif-
fer in the choice of rates, but the affinity Ac = 3 is fixed.
Lines of constant value of s + g are shown in solid white.
They prescribe the overall shape of the SCGF, including the
symmetry with respect to A = —A¢/2 (dashed white line)
corresponding to the fluctuation symmetry . Parameters:
(a) wA - B) = w(B —- C) = w(C —- A) = 0.5, w(C —

A)=wD — A) =2, wB = A) = wA = C) = 0.5,
w(C — B) = 0.5¢, w(D — C) = w(A — D) = 2% (b)
wA - B) =wB - C) =w(C - A) =1, w(C — D) =
wD — A) =wA - D) =01, wB = A) =w(C = B) =
w(A = C)=e¢ ', wD — C) = 0.1

K, J replaced by Kg = Ty —l—ﬁl; and jg = Ty —ﬁQR respec-
tively. The resulting SCGF can be obtained by estab-
lished methods [29H3T], [42] 43] as the largest eigenvalue
of a particular matrix that is called the tilted generator.

However, the established methodology is not applica-
ble in the current setting because n¢ is not obtained by
counting transitions between pairs of states (nor by con-
sidering state occupancies) — it requires that we count
occurrences of specific words. The solution is to expand
the state space of the original system to obtain an ex-
tended system in which each state is a word of length
m. We illustrate this with the case m = 3. Suppose
that the (original) system is in state C and the previous
two states visited were A,B, in that order. Then the
state of the extended system is the 3-letter word ABC.
If the original process now makes a transition to A then
the extended system makes a transition to BCA. (After
the transition, the state is A and the previous two states
were B, C.) This example is useful because this transi-
tion ABC — BCA in the extended system corresponds
exactly with a completed cycle in the original system. In
other words, the problem of word-counting in the original
model is reduced to a problem of counting transitions be-
tween states of the extended model. Since the extended
model is still Markovian, established methods can then
be used to compute the statistics of the relevant transi-
tions, see below.

As a technical remark: this construction provides a
mapping between trajectories of the original and ex-
tended systems, so that cycle counts of the original sys-
tem can be inferred from the extended one. However, the
initial m —1 states of a trajectory of the extended system
are not fully-determined by a trajectory of the original
system. This issue can cause some ambiguity in cycle



counts; but the problem can easily be rectified to obtain
a one-to-one mapping of trajectories. Since the behav-
ior of the first few states will not affect large-deviation
analysis, we do not discuss this aspect.

To define more precisely the extended system, focus
on a specific cycle and take m = m¢. Each state of
the extended system is an m-letter word (for example
ABC or BCA), we denote these words by w,v,.... The
transition rates of the extended system are denoted by
W(u — v). The rate W(u — v) is non-zero only if the
first m — 1 letters of word u are the same as the first
m — 1 letters of v. In this case W (u — v) = w(ug — vy)
where u¢ is the final letter of word w, and similarly v
(recall that w indicates is a transition rate of the original
system). One sees that construction of this extended
system is a straightforward exercise, although it can be
tedious because the number of states grows quickly with
the word length and the number of states in the original
system. For practical purposes, a milder extension of the
state space is sufficient to establish specific results for
cycle counts, see Appendix

Now write uc¢ for the first me letters of C and ve for
its last mc letters. (In the example C = ABCA then
ue = ABC and ve = BCA.) Then completion of cycle
C corresponds to a transition uc — ve in the extended
system, that is

ﬁC(X) = Nuc—ve (X) (38)

where N,_,,(X) is the number of transitions u — v in
trajectory X of the extended system. In the same way,

AE(X) = Ny s () (39)
where ucR indicates ucr, the first me letters of CR, and
similarly vg.

The extended system is itself Markovian, so standard
methods can be used to analyse its large deviations. In
particular, a method for counting transitions N(u — v)
between states is well-established [29-31], 2], [43], we give
an outline, with details in Appendix [C1} The master
equation of the extended system takes the standard form

0

ot
v(Fu)

(40)
Now define a matrix W with off-diagonal elements
[WO,, = W(u — v) and diagonal elements [W°],, =
—> ,W(u — v). Then the master equation is 9,P =
WOP, where P is interpreted as a vector with elements
P(u). The SCGF can be obtained as the largest eigen-
value of the (“tilted”) matrix

W(s,A) = W° +V(s, ), (41)
where V(s, \) has only two elements that are non-zero:

[V(s, Mo ,ue = (es+/\ - 1)[W0]vc,w )
V(s Mg = (@ = D g . (42)

K" Ve UG

—P(u,t) = Y [P, )W (v = u) — Plu,t)W(u— v)].

To establish that (28)30) hold, a few technical condi-
tions are required on W(s,\). Note that the extended
process is Markov with a finite state space. In this case
it is sufficient for it to have a unique steady state, which
must hold if the original system is irreducible, as assumed
above. Hence one has a large deviation result of the form
[3).

Note that this construction is fully general, there was
no assumption of non-revisiting cycles. If one does as-
sume that C is non-revisiting, the largest eigenvalue of
W(s,A) must be of the form ([37). An explicit derivation
of this result is deferred to future work, which might also
consider how large-deviation properties can be computed
from the representation of the cycle-counting problem as
a kind of renewal process via 7 and what general-
izations of the fluctuation theorems are possible for re-
visiting cycles.

VI. CONCLUSION

We have analysed the joint distribution of cycle counts
for forward and backward instances of a cycle C in a
discrete Markov process, as commonly used for analysis
of non-equilibrium systems. The distribution is naturally
characterised in terms of the cycle current J and the
total count K. For non-revisiting cycles (which are those
of primary physical relevance), the central result is @D,
which shows that the conditional distribution of J given
K is binomial and the only relevant parameter is the
affinity. This shows that the conditional distribution of
J is universal, with the affinity as its only parameter,
while the distribution of K is free and depends on all
system details.

For practical purposes, we point to as a finite-time
generalisation of , which might be useful as a way
to infer affinities, as proposed in [16]. The counting of
instances of cycle families rather than individual cycles,
as discussed in Sec. might also help to improve this
method.

We have also explained how large deviation theory can
be applied to cycle counts. In particular, they do obey a
large-deviation principle, whose properties can be com-
puted from the extended system described here, by solv-
ing an eigenvalue problem.

These results suggest that further interesting structure
may be present in distributions of cycle counts, either by
analysis of the extended system, or by considering joint
distributions of counts across more than one cycle. We
look forward to future work in this direction.

ACKNOWLEDGMENTS

We thank Jeremy Gunawardena and John Biddle for
helpful discussions. J.G. acknowledges funding from the
Royal Society under grant No. RP17002. This work was



funded in part by the European Research Council under
the EU’s Horizon 2020 Program, Grant No. 740269.

Appendix A: Derivation of ([1L3}{17))

For completeness, we derive (13l|17)), starting from .

First note that for any trajectory X starting at time ¢ and
ending at time 7, the analogue of the path weight
can be written as

M—1
PX] = p(xo,t) | [] wlwi = @ipa)emmtw0a
i=0
w o~ T(Xa)(T—tm) (A1)
where A; = t;41 — t; is the sojourn time in state x;
and p(zo,t) is the probability distribution of the initial
state (at time t). The states (xg,1,...,2) and times
(t1,...,ty) are indexed from time ¢, note also tg = t.
This distribution P[X] is normalised in the sense that

1:i > /OTdm/tTdtg..-/T dty P[X] . (A2)

M=0zg...T tam—1

Using this distribution, and given a cycle C, we com-
pute the probability Pe(t,7)dt of the following event:
the trajectory has t,,, < 7 (from which it follows that
M > me); also (2o, 1, Zme) = (C1,Cay ..., Cime, C1),
and t; € [t,t + 6t]. We use and sum over those
xp with & > me, and integrate all the A;, to obtain [at
leading order in 6t]:

mce
Pe(t,m)6t = p(C1, hw(Cy — C2)dt [ [ w(C; = Cjp1)

Jj=2

me
x/dAQ...dAmc@ T—t=Y A e” L r(C)A;
j=2

(A3)

Here © is the Heaviside (step) function; the A; are in-
tegrated over [0,00); we used that the integral for Ag
runs over [t,t + 0t], which yields the factor §t. Eq.
coincides with if we identify

mec

Fﬁn(T_t,C):/dAQ...dAmC@ T_t_ZAj

j=2
X ﬁ [T(Cj)e_r(cjmf} . (A4)
j=2

To interpret this result, we identify Aoy = Z;n:CZ Aj as
the sum of me¢ — 1 exponential random variables with
means 7(C2) ™1, ..., 7(Cpne) L. As advertised in the main
text, the result is simply the probability that this
Atot is less than 7—t. For any given m¢, the integrals can
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be performed, but we retain here the integral form, which
shows the structure of the result. In particular, it is clear
from that holds, because C® contains the same
states as C (only the order is reversed), and the factor
Fan(T—1t,C) from is invariant under permutation of
the states Cs, ..., Cp within the cycle C.

Appendix B: Connection to renewal theory
1. Alternative derivation of @ by renewal theory

The results for non-revisiting cycles can also be
proven using a methodology similar to renewal processes.
We include this analysis for completeness, and because
the results provide additional information on the statis-
tics of cycle completions, that may be useful for future
work.

Suppose that the cycle C of interest starts in state A.
Any trajectory X can be decomposed into several pieces
as in Fig.[5} an initial transient before the first visit to A,
the time periods spent in A, the complete cycles between
visits to A, and a final period between the last visit to
A and the end of the trajectory at time 7. Moreover,
for any cycle C, one can classify the complete cycles as
instances of either C, or C®, or some other cycle.

Hence, any trajectory X can be associated to a reduced
trajectory Y, which is is characterised by the sequences of
arrival and departure times to/from A and the sequence
of cycle types, for example

Sy = (C,0,¢,C*,0,...) (B1)

where O denotes any cycle other than C,CR. (Separate
occurrences of @ may indicate different cycles.) It is as-
sumed that the cycle begins and ends with generic words
that are indicated by W in Fig. [5] these are not included
in Sy. If the trajectory starts or ends in A then one or
both of the Ws will have zero length. Compared with
, this Sy is different in that it includes a separate
element for every departure from A, not only those de-
partures that lead to cycles C or CR. Similarly, we use
t3°? and 2 in this Section to indicate the times of (all)
departures/arrivals from/to A.

The mapping from X to the reduced trajectory Y is
many-to-one because the times for transitions inside the
cycles are not preserved, and nor are the sequences of
states inside the generic cycles/words O, . In the fol-
lowing, we consider the probabilities of the reduced tra-
jectories Y, which are obtained by integrating over all
possible trajectories X that reduce to Y. One sees that
fie(X) is the number of occurrences of € in Sy (and sim-
ilarly for C®), so the full statistics of fi¢c, P& can be com-
puted from the statistics of the reduced trajectories Y.

The probabilities of the reduced trajectories have sev-
eral useful properties, which are summarized here, with
extra detail in Appendix [B2] First, the times between
each arrival in A and the next departure are all inde-
pendent, they are exponentially distributed with mean
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FIG. 5. A trajectory X of the four-state system in Fig.
and the corresponding reduced trajectory Y. The reduced
trajectory keeps track of the arrival and departure times for
state A, and on whether excursions from A are instances of C
or C® or some other cycle (indicated as ©). The initial and
final parts of the trajectory consist of generic words (indicated
by W). This reduced trajectory has Sy = (C,0,CR,C)

r(A)~!. Second, on departure from A at time tqep, the
subsequent behaviour is Markovian (independent of the
previous history), as also occurs in renewal processes.
The probability that any departure from A leads to a
complete cycle C is [similar to (L3)]

R = ta) = =g

pseq(C)Fﬁn (T - tdep7 C) .

(B2)
Also, given that such a cycle is completed, the time ¢,
for the next arrival in A (which is the end time of the
cycle) has cumulative distribution function

Fan(AL,C
Ptarr < taep + AL|C) = —— (A4,0)

=77 B3
Fﬁn(T - 2‘;depvc) ( )

Hence, given that the system departs from A at time
tdep, the probability density that it completes an instance
of cycle C and returns to A a time At later is

A— Cg)
r(A)

fe(At) = w( Pseq(€) Fan(AL,C) . (B4)

0
O(At)
Using and , the corresponding quantity for C® is

fer(At) = e™ 4 fe(At) . (B5)
Following similar arguments, a formula is available for
the probability of any reduced trajectory. This is given
in Appendix

Notwithstanding that derivation, an important fact is
already apparent from : Given any reduced trajec-
tory Y, one may obtain a new trajectory Y’ by replacing
any instance of C in Sy by C® (keeping all other aspects
of the trajectory fixed). The resulting trajectory proba-
bilities are related as

PY') =P(Y)e e (B6)

[See also Appendix and note that this is analogous
to (23).]
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Recalling from that K is the total number of in-
stances of C and C " one may define a set A containing
2K (reduced) trajectories, formed by all possible replace-
ments of C by C®, and vice versa. Then the conditional
probability of trajectory Y within this set is

e—Achg(Y)

PY|A) = m

(B7)
where K is the value of K for all trajectories in A. These
trajectories have different values of J; the number of tra-

jectories with any given value is a binomial coefficient.
Hence [using (8)] the conditional distribution of J is

B K exp(J.A/2)
P(JIA) = <§(KAA+ J)) [2cosh(A/2)]Kx

Finally, the distribution JBT(K ,J) of @ can be ob-
tained by conditional probability as P (K,J) =
>_aj P(JIA)P(A) where the sum (which might alterna-
tively be expressed as an integral) is over all sets A with
Ky = K, and P(A) is the probability that a random
trajectory is in the set A. This yields @

(B8)

2. Probabilities of reduced trajectories

We derive the probability of a reduced trajectory Y,
whose definition is illustrated in Fig. On each visit
to state A, the system loses all memory of its previous
history: this is a renewal. It follows that the probability
of trajectory Y is given by a product of terms, one from
each of its components. Denote the number of visits to
A by N, this is a random quantity but we do not write
any hats, to lighten the notation. Hence Y is specified by
N arrival times and A departure times, and the A/ — 1
elements of Sy . If the trajectory starts in A then we take
#3" = 0 and if it ends in A then #\® = 7. The initial
condition of the system is given by a distribution pj,; over
its states (it is not assumed that py,; corresponds to the
steady state).

The first contribution to the trajectory probability
comes from the transient period before the first visit to
A, it is a probability density for ¢§**, which we write as
foeg(t3™). This probability has two contributions, the
first is pini(A)JI(t3™) because the system may start in A.
The second is the probability density that the system
first reaches A at time t{"*. This distribution can be
computed if necessary, for the purposes of this work it
is sufficient that fieg (™) exists, but the specific form is
not required.

The next contribution comes from the visits to A. Af-
ter each arrival, the system stays in A for a time tgep —tarr
whose probability density is

fA (tdep - tarr) = T(A)e_(tdEP_ta”)T(A)' (BQ)

The next contribution comes from completed cycles. On
leaving A at time t4ep, the probability to complete a cy-
cle C and return a time At later is fe(At|tgep) as given in



. A similar expression holds for cycle CR, see (B5).
One must also consider the probability density to return
to A by a different cycle (neither C or CR?) after time At,
which is denoted by fo(At|tdep). The precise form of
this function is not needed for the current purpose, only
that it is well-defined (similar to fheg). Still, if one con-
siders very long trajectories, a system that departs from
A must eventually return to it, from which one deduces
the normalization constraint

/ Tt lfel) + fon () + fold] = 1. (B10)

Finally one must consider the contribution to the tra-
jectory probability from the final component, between
the last departure from A and time 7. This is denoted
by pend (T — tjl\?p). The form of this contribution depends
on whether the system ends the trajectory in state A (so
T = tjl\?p) or not. In the latter case, pend(t) is the prob-
ability that a system departing from state A does not
return to it within time ¢. In the case 7 = tji\?p then pena
has a contribution 7(A)~1§(t), this factor combines with
the fa contributions to the trajectory probability to en-
sure that the distribution of times spent in A is correctly
accounted for.

Combining all these ingredients, the probability den-
sity for the reduced trajectory Y is

N
P(Y) = fbeg(t?rr) [H fA (t?ep - t?rr)] fend (T - t,(/i/(?p)

=1
N—-1
arr de
X H f(SY)i(ti+1 -t p) (B11)
=1

Here f(s,), is one of fe, fer, fo, according to which kind
of cycle appears in the ith element of Sy.

From this final result one may directly check 7 be-
cause the only change on replacing an instance of C in
Y by C® is to exchange a factor of fe(t¥F, — t9°P) for

for (827, — t2°P). Using this with (B5) yields (BG).

Appendix C: Large deviation computation
1. SCGF for large deviations for cycle counts

We outline the derivation of the SCGF from as the
largest eigenvalue of the matrix W(s, A) in (41]). We also
explain why this SCGF cannot be derived by applying a
“standard” tilting method to the original system.

Following (for example) [42] 45], we generalise the
probability P(u,t) from by defining P(u,n¢,n&,t)
as the probability for the extended system to be in state
u at time ¢, having made ne completions of cycle C and
nd completions of CR. It is crucial that this P obeys its
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own master equation:

%P(u,nc,ng,t) = Z P(v,ne,ng, t)W (v — u)
o(Fw)
- Z P(u,ne,nd, )W (u — v)
v(Fu)
+[P(uc,ne—1,n8,t)—P(uc, ne, ng, )W (ue — ve)du,ve

+[P(uc,nc,nE—1,t)—P(uc, ne,ns, t)]W(ul — vCR)(Su)vg.

(C1)

where the 3rd and 4th lines account for the fact that
transitions uc — ve and uf — v§ correspond to cycle
completion events, in which the value of either n¢ or nCR
changes. [Recall Eq. (38).] Now define

P(u,s,\t) = Z P(u,ne,ng, t)e(‘9+”\)7"c+($_>‘)”§
ne,ng
(C2)
(the sums run from 0 to co). Note that P is a normalised

probability distribution over (u, n¢, n&) but P is not nor-
malised. Then by (C1) one has

O P50 t) = 3 [W(s, Maw Pl0, 5,0, 1)

5 (C3)

v

where the matrix W(s, \) is defined in (4I]). This equa-
tion corresponds to 8, P = Woo(s, )\)15 from which one
sees that the long-time behaviour of Pis dominated by
the largest eigenvalue of W(s, \), that is P(u, s, A, t) ~
Poo(u, 5,\)etYA) for large times, where (s, \) is the
largest eigenvalue. Summing over u, one may establish
that the SCGF (30) coincides with this ¥, as in [42] [45].

To see that this method requires the extended system,
note that describes a Markovian dynamics for the
evolution of (u,nc,nd), where u is the state of the ex-
tended system. By contrast, if one considers the original
system (whose state is ), the evolution of (z,nc,n%) is
not Markovian: the probability of an event where n¢ in-
creases depends on the history of recently-visited states,
and not only on the current state x. (Specifically, n¢ can
only increase if the current state is C,,, and the previous
me — 1 states were Cq,...,Cpo—1.) As aresult, the recipe
given here — which connects SCGFs to eigenvalues — is
only applicable at the level of the extended system.

In fact, the evolution of the state (z,n¢,nd) is an ex-
ample of an mth order Markov process (we refer to [26]
for applications of such models to word counting in dis-
crete time, and to [46] for a discussion of large deviations
in mth order Markov processes).

2. Practical calculation of large deviations for cycle
counts

As discussed in Sec. [V B] the SCGF ¥ for cycle counts
can be characterised as the the largest eigenvalue of a
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FIG. 6. Transitions in the extended state space for counting
completions of the cycles C and C® for the network of Fig.
Transitions within the original state space ' (circled states)
are shown in black. Additional states (boxed) are the par-
tial completions of cycles C (solid) and C® (dashed). Yellow
arrows indicate attempted completions of cycles. These at-
tempts may fail (via the transitions shown in red) or lead to
a successful completion of a cycle (via the transitions shown
in green).

matrix, which is a tilted generator for a Markov process
on an extended state space. The size of this state space
grows quickly with the model complexity, which makes
explicit computations tedious. We explain here that a
milder extension to the state space is already sufficient
to obtain the SCGF (at least for non-revisiting cycles).

This (extended) state space contains all the elements
of the original space I', along with states corresponding
to progressive partial completions Cs,...,C,, of any cy-
cle of interest (with length m). As an example, we con-
sider the cycles C = ABCA and C® = ACBA, in which
case the state space is extended by the states Cy = AB,
C3 = ABC, and C} = AC, C}' = ACB. A network rep-
resentation of a Markov process on this extended space
is shown in Fig. [ Note that this extended state space
grows only linearly with the length of the cycle of interest,
as opposed to the exponential growth of the correspond-
ing m-word space.

We order the three sub-spaces of the extended state
space as (T',Ca, . ..,Cpm,CY,...,CR) and accordingly con-
struct a rate matrix of the block form

Wr Wre Wrer
W= | Wer We O (C4)
Werp 0 Wen

We use the notation [W°],, = W(u — v) to label off-
diagonal elements with column g and row v of the full
matrix WO in the extended state space.

The block Wr describes transitions within I', that do
not mark the start of an attempted cycle, i.e., W(x —
y) =w(z — y) for all z,y € T', except for W(C; — C3) =
0 and W(C} — C}) = 0. These transitions are marked
in black in Fig. [6| [It is understood that w(C — C) =0
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in the formulae of this Section, because transitions only
take place between distinct states.]

The blocks Wer and Werp have one non-zero entry
each, marking the start of an attempted cycle. They
have the rates W (C; — Cz) = w(C; — C2) and W(CR —
CHy = w(C} — C}). Fig. Efshows the relevant transitions
for example system as yellow arrows leaving A.

The blocks W¢e and Wer convey the successful contin-
uation of the attempted cycle. Their non-zero rates are

(C — Cl+1) = w(Cl — Ci+1) and W(CR — Cz—i—l) =

w(C} — CZ“) for 2 < i < m, corresponding to the other
yellow arrows in Fig. [6]

The blocks Wpe and Wprer convey transitions that
mark the end of an (attempted) cycle. These are mostly
unsuccessful terminations of an attempted cycle (shown
in red in Fig. @, except for a single transition for each
cycle that closes it correctly (shown in green). The tran-
sition rates are W(C; — y) = w(C; — y) for 2 <i < m
and y € I', except for W((,;Z — Cit1) = 0 when @ < m;
and likewise for C.

Finally, the diagonal elements of the transition ma-
trix are set to [W°],, = =37 [W],,. The SCGF is
obtained as the largest eigenvalue of the tilted matrix
W(s,A) = WY + V(s, A), analogously to Eq. (1)), where
we count successful transitions from C,, to Ciny1 or from
CR to CR .1 by setting

V(s Ve, e, = (€ =
(Vs Aler

1)[W0]cm+1,ém ’
C~R = (eS_A — 1)[WO]CR C"R 5

m+1

(C5)
and all other entries of [V(s, \)],, to zero.

For the particular example of Fig. |6} writing w., =
w(z — y) and r, = r(z), we obtain the tilted matrix
(omitting zero elements):

W(s, /\) =
M S+ s5—A\
TA WBA WCA WDA |WBA WCA€ WCA WBAEC
—TB WCB wCeB
wpc —TCc WDC WBC
WAD wcp —TD wWcD wcD
WAB —TB
WBC —rc
WAC —rc
L wcB —TB
(C6)

If s, A = 0, this is a stochastic matrix — its columns sum
to zero. Rows and columns correspond to the extended
state space

(A,B,C,D,AB, ABC, AC, ACB). (C7)

The SCGFs in Fig. [l were obtained by finding the largest
eigenvalue of this matrix (for various s, A).
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