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Distributed Identification of Contracting and/or
Monotone Network Dynamics

Max Revay, Jack Umenberger, Ian R. Manchester

Abstract—This paper proposes methods for identification of
large-scale networked systems with guarantees that the resulting
model will be contracting – a strong form of nonlinear stability
– and/or monotone, i.e. order relations between states are pre-
served. The main challenges that we address are: simultaneously
searching for model parameters and a certificate of stability, and
scalability to networks with hundreds or thousands of nodes. We
propose a model set that admits convex constraints for stability
and monotonicity, and has a separable structure that allows
distributed identification via the alternating directions method
of multipliers (ADMM). The performance and scalability of the
approach is illustrated on a variety of linear and non-linear
case studies, including a nonlinear traffic network with a 200-
dimensional state space.

I. INTRODUCTION

System identification is the process of generating dynamic
models from data [1], and is also referred to as learning
dynamical systems (e.g. [2]). When scaling control and iden-
tification algorithms to large-scale systems, it can be useful
to treat a system as a sparse network of local subsystems
interconnected through a graph [3], [4], [5]. In this paper,
we propose algorithms for identification of such networked
systems in state space form:

xt+1 = a(xt, ut, ut+1), (1)

where xt ∈ Rn and ut ∈ Rm are the state and input respec-
tively, and the model dynamics a(·, ·, ·) can be either linear
or non-linear. We assume that measurements (or estimates) of
state and input sequences are available.

Our approach:
1) uses distributed computation (i.e. network nodes only

share data and parameters with immediate neighbors),
2) can generate models with a strong form of stability called

contraction,
3) can generate monotone models, i.e. ordering relations

between states are preserved.
Imposing contraction and/or monotonicity on models pro-

vides two benefits when identifying systems that are known to
satisfy those properties. Firstly, incorporating prior knowledge
can significantly improve the quality of the identified models.
Secondly, it guarantees that properties of the real system that
are useful for controller design are present in the identified
model.

This work is motivated by the observation that many sys-
tems have the combination of large-scale, sparse dynamics,
monotonicity and stability. Examples include traffic networks
[6], [7], [8], chemical reactions [9], combination therapies

[10], [11], [12], [13], wildfires [14] and power scheduling
[10].

The key technical difficulty we address is the simultane-
ous identification and stability verification of large-scale net-
worked systems. We propose a convex model set with scalable
stability conditions and an algorithm based on ADMM that
decomposes the identification problem into easily solvable,
sub-problems that require only local communication between
subsystems.

A. Networked System Identification

Standard approaches to system identification do not work
well for large-scale networked systems for three reasons [15]:
firstly, the dataset must be collected at a central location,
a process which may be prohibitive for complex systems;
secondly, the computational and memory complexities prohibit
application to large systems; finally, the network structure
may not be preserved by identification. For instance, standard
subspace identification methods have O[n3] an O[n2] compu-
tational and memory complexities respectively, and any sparse
structure in the dynamics is destroyed through an unknown
similarity transformation [16].

Previous work in networked system identification can be
loosely categorized into two areas; the identification of a
network topology [17], [18], [19], and the identification of
a system’s dynamics with known topology. In the latter cat-
egory, almost all prior work has focused on the case where
subsystems are linear time invariant (LTI) and described by
state space models [15], [20], [21] or transfer functions (a.k.a.
modules) [22], [23].

When identifying the subsytem dynamics, states or outputs
of neighbors are treated as exogenous inputs, ignoring feed-
back loops induced by the network topology. This improves
scalability as the identification of each subsystem can be
performed in parallel. However, accurate identification of the
individual subsystems does not imply accurate identification of
the full network, because the ignored feedback loops may have
a strong effect and even introduce instability. A simple case
with two subsystems which has received significant attention
is closed-loop identification [24]

Prior works in networked system identification assume
stable LTI network dynamics and establish identifiability [25]
and consistency [26]. These assumptions then imply model
stability in the infinite data limit. However, model stability is
not guaranteed with finite data sets or in non-linear black-box
identification problems, where the true system is usually not
in the model set.
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B. Identification of Stable Models

Standard methods for system identification do not guarantee
model stability, even if the system from which the data are col-
lected is stable. For linear system identification considerable
attention has been paid to this problem, and several methods
have been suggested based on regularisation or model con-
straints [27], [28], [29], [30]. Even for linear systems, the set of
stable models is not convex using standard parameterisations,
to the authors’ knowledge all existing methods introduce some
bias in the identification procedure.

For linear systems most definitions of stability are equiva-
lent. The nonlinear case is more nuanced, and the definition
used depends on the requirements of the problem at hand.
Standard Lyapunov methods are not appropriate in system
identification as the stability certificate must be constructed
about a known stable solution, whereas the very purpose
of system identification is to predict a system’s response to
previously unseen inputs. Contraction [31] and incremental
stability (e.g. [32]) are more appropriate since they ensure
stability of all possible solutions and consequently, do not
require a-priori knowledge of the inputs and state trajectories.

Stability guarantees have also been investigated for non-
linear system identification. For instance, systems can be
identified using sets of stable recurrent neural networks [33] or
stable Gaussian process state space models [34]. A limitation
of these approaches is that they do not allow joint search for
a model and its stability certificate, which can be conservative
even for linear systems.

This paper builds on previous work in jointly-convex pa-
rameterization of models and their stability certificates via
implicit models [35], [36], [37], [38], [39], [40] and associated
convex bounds for model fidelity via Lagrangian relaxation
[38], [41], [42]. The main development in this paper is to
significantly improve scalability of this approach via a novel
model parametrization and contraction constraint that are
jointly convex and permit a particular upstream/downstream
network decomposition (defined below).

C. Monotone and Positive Systems

Monotone systems are a class of dynamic system charac-
terized by the preservation of an order relation for solutions
(c.f. Definition 2 below). A closely related class is positive
systems, for which state variables remain non-negative for
all non-negative inputs (c.f. Definition 3 below). For linear
systems, positivity and monotonicity are equivalent.

A useful property of monotone systems is that they often
admit simplified stability tests. In particular, for linear positive
systems the existence of separable Lyapunov functions, i.e.
those representable as the sum or maximum over functions
of individual state variables, is necessary and sufficient for
stability [43]. This property has been used to simplify analysis
[44], control [45] and identification [46] of positive systems.
Separable stability certificates have also been shown to exist
for certain classes of nonlinear monotone systems [47], [48],
[49], [50]. and have been used for distributed stability verifi-
cation [51] and control [52]. Monotonicity can also simplify

nonlinear model predictive control [10] and formal verification
using signal temporal logic [53].

There are however, few identification algorithms that guar-
antee monotonicity. In [54], monotone gene networks are
identified using the monotone P-splines developed in [55].
This approach, however, does no guarantee model stability.

D. Least-Squares Equation Error
Identification typically involves the optimization of a quality

of fit metric over a model set. In this paper we use what
is arguably the simplest and most widely-applied quality-of-
fit metric, least-squares equation error (a.k.a. one step ahead
prediction error):

Jee(θ) =

T−1∑
t=0

|a(x̃t, ũt)− x̃t+1|2, (2)

where x̃t ∈ Rn and ũt ∈ Rm are state and input measurements
or estimates. Least-squares equation error is a natural choice
for short-term prediction if state measurements are available.

If long-term predictions are needed, then simulation error,
defined as

Jse(θ) =

T−1∑
t=0

|xt − x̃t|2, s.t. xt+1 = a(xt, ũt), (3)

is a better measure of performance. The dependence on
simulated states, however, renders the cost function non-
convex [56], [57] and notoriously difficult to optimize [58].
Consequently, equation error optimization is often used to
initialize local search methods (e.g. gradient descent) for
models with good simulation error or used as a surrogate for
simulation error with better numerical properties. In the latter
context, model stability is particularly important since a model
can have small equation error but be unstable and therefore
exhibit very large simulation error. In fact, when a model is
contracting, it can be shown that small equation error implies
small simulation error [35].

In many contexts, system state measurements are not avail-
able. Nevertheless, equation error frequently arises as a sub-
problem via estimated states, e.g. in subspace identification
algorithms [59], [60], [21], where states are estimated using
using matrix factorizations, or in maximum likelihood identifi-
cation via the expectation maximization (EM) algorithm where
they are estimated from the joint smoothing distribution [61],
[62].

E. Contributions
The main contributions of this work as are follows: we pro-

pose a model structure and convex constraints that guarantee
monotonicity, positivity, and/or contraction of the model. For
large scale networked systems, we refine the model and con-
straints to have a separable structure, and we introduce a sep-
arable bound on equation error, so the identification problem
can be solved using distributed computation. The algorithm,
based on ADMM, decomposes into easily solved separable
optimization problems at each step. Data and parameters are
only communicated to immediate neighbours in the network.
Finally, we evaluate the scalability and fitting performance of
the method on a number of numerical examples.
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II. PRELIMINARIES AND PROBLEM SETUP

Notation

A graph G is defined by a set of nodes (vertices) V =
[1, ..., N ] and edges E ⊂ V × V . The vector 1 is the column
vector of ones, with size inferred from context. For vectors
v, v > 0 refers to the element-wise inequality. For matrices
M , M ≥ 0 and M ≤ 0 refer to element-wise inequalities.
For symmetric matrices M , M � 0 means that M is positive
definite. For a vector v, diag(v) is the matrix with the elements
of v along the diagonal. The set of n×n symmetric matrices
is denoted Sn×n. The set of n×n non-singular M-matrices is
denoted Mn. For a matrix A, A ∈Mn means Aij ≤ 0, ∀i 6= j
and real(λi) > 0 for i = 1, ..., n, where λi are the eigenvalues
of A. For brevity, we will sometimes drop the arguments from
a function where the meaning may be inferred from context.

A. Differential Dynamics

The contraction and monotonicity conditions we study can
be verified by way of a systems differential dynamics, a.k.a.
linearized, variational, or prolonged dynamics. For the system
(1), the differential dynamics are

δxt+1
= A(xt, ut, ut+1)δxt +B(xt, ut, ut+1)δut . (4)

where A = ∂a
∂x and B = ∂a

∂u . In conjunction with (1), the
differential dynamics describe the linearized dynamics along
all solutions of the system.

B. Contraction Analysis

We use the following definition of nonlinear stability:

Definition 1 (Contraction). A system is termed contracting
with rate α, where 0 < α < 1, if for any two initial conditions
xa0 , xb0, given the same input sequence ut, and some p ∈
[1,∞], there exists a continuous function bp(xa0 , x

b
0) > 0 such

that the corresponding trajectories xat , x
b
t satisfy |xat −xbt |p <

αtbp(x
a
0 , x

b
0).

Contraction can be proven by finding a contraction metric
which verifies conditions on the differential dynamics [31].
A contraction metric is a function V (t, x, δx) such that:

V (t, x, 0) = 0, V (t, x, δ) ≥ µ|δ|p, (5)
V (t+ 1, xt+1, δxt+1) ≤ αV (t, x, δx). (6)

for some µ > 0
The choice of contraction metric V (t, x, δ) is problem

dependent. Prior works have proposed quadratic contraction
metrics for which (6) is linear in the stability certificate and
can be verified using semi-definite programming. A number
of works have also noted that using a weighted `1 norm can
lead to separable constraints [63], [51] allowing for stability
verification of large-scale networked systems.

In the context of system identification, the joint search for
model a in (1) and contraction metric V is non-convex due
to the nonlinear function composition V (t+ 1, xt+1, δxt+1) =
V (t+ 1, a(x, u), A(x, u)δxt).

C. Monotone and Positive Systems

We now define system monotonicity and positivity of dy-
namical systems.

Definition 2 (Monotone System). A system (1) is termed
monotone if for inputs uat and ubt and initial conditions xa0 ,
xb0, the following implication holds:

xa0 ≥ xb0, uat ≥ ubt ∀t =⇒ xat ≥ xbt ∀t.

Monotonicity results from A(x, u) ≥ 0 and B(x, u) ≥ 0
where A and B come from the differential dynamics (4).

Definition 3 (Positive System). A system (1) is positive if for
all inputs u0, ..., uT ≥ 0 and initial conditions x0 ≥ 0, the
resulting trajectory has x1, ..., xT ≥ 0.

A sufficent condition for a system to positive is for it to
be monotone and admit xt = 0, ut = 0 ∀t as a solution, i.e.
a(0, 0, 0) = 0 in (1).

D. Network Structure

We assume model (1) is partitioned into N subsystems.
The interactions between these subsystems is described by a
directed graph G = (V ,E ). Here, we have a set of nodes
denoted V = {1, ..., N} corresponding to the subsystems.
Each subsystem has its own state denoted xi ∈ Rni and
may take an input denoted ui ∈ Rmi (we allow for the
case mi = 0). The global state and input is attained by
concatenating the states and inputs of each subsystem,

x =

x
1

...
xN

 , u =

u
1

...
uN

 . (7)

The set of edges E ⊆ V ×V describes how the subsystems
interact with each other. In particular, (j, i) ∈ E means that the
state of subsystem j affects the state of subsystem i. The edge
list E may arise naturally from the context of the problem,
e.g. in traffic networks where edges come from the physical
topology of the road network, or may be identified from data
[17], [64].

For each subsystem i ∈ V , we define the set of upstream
neighbours V i

u = {j|(j, i) ∈ E } and the set of downstream
neighbours V i

d = {j|(i, j) ∈ E }. The term upstream neigh-
bours of i refers to the subsystems whose state affects the state
of subsystem i, and the term downstream neighbours refers to
the subsystems whose state is affected by subsystem i’s state.
In general, we allow self-loops so that a node can be both
upstream and downstream to itself. This notation is illustrated
in Fig. 1.

We can write the dynamics of the individual interacting
subsystems as follows:

xit+1 = ai(x̆it, ŭ
i
t, ŭ

i
t+1), i = 1, ..., N. (8)

where ai corresponds to the ith element in (1) and x̆i =
{xj | j ∈ V i

u} and ŭi = {uj | j ∈ V i
u}.
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Fig. 1: Illustration of upstream/downstream notation.

E. Separable Optimization using ADMM

Consider an optimization problem of the form,

min
θ

J(θ), (9)

which may include constraints on θ via indicator functions
appearing in J . The indicator function for the constraint θ ∈ Θ
is the function IΘ(θ) which is zero for θ ∈ Θ and infinite
otherwise.

Definition 4 (Separable). The problem (9) is termed separable
with respect to the partitioning θ = {θi | i = 1, .., N} if it
can be written as J(θ) =

∑N
i=1 J

i(θi).

In this paper we encounter problems of the form:

min
θ

N∑
i=1

J ia(θia) +

M∑
j=1

Jjb (θjb), (10)

where {θia | i = 1, ..., N} and {θjb | j = 1, ...,M} are
two different partitions of the same vector θ. In our context,
these partitionings correspond to the sets of upstream or
downstream neighbors discussed in the previous section. For
such problems, the alternating directions method of multipliers
(ADMM) can be applied [65]. We write (10) as

min
θ,φ

N∑
i=1

J ia(θia) +

M∑
j=1

Jjb (φjb), (11)

s.t. θ − φ = 0.

Applying ADMM results in iterations in which each step is
separable with respect to the partition θa or θb, and can thus
be solved via distributed computing. For convex problems,
ADMM is guaranteed to converge to the optimal solution [65].

F. Problem Statement

To summarise, the main objective of this paper is as follows.
Given state and input measurements {x̃t, ũt | t = 1, .., T}, and
a graph G describing the network topology, identify models
(8) at each node such that:
• during the identification procedure, each subsystem only

communicates with immediate (upstream and down-
stream) neighbours;

• convergence is guaranteed and least-squares equation
error is small at each subsystem;

• model behavioural constraints such as contraction, mono-
tonicity, and/or positivity can be guaranteed for the inter-
connected system (1).

III. CONVEX BEHAVIORAL CONSTRAINTS

In this section we develop a convex parametrization of mod-
els with contraction, monotonicity and/or positivity guarantees.
As described in subsection II-B, jointly searching for a model
(1) and contraction metric is non-convex.

Following [37], [38], we solve this problem by instead
searching for models in the following implicit form:

e(xt+1, ut+1) = f(xt, ut). (12)

The differential dynamics of (12) are:

E(xt+1, ut+1)δxt+1
= F (xt, ut)δxt +K(xt, ut)δut , (13)

where E = ∂e
∂x , F = ∂f

∂x and K = ∂f
∂u .

Definition 5 (Well-Posed). An implicit model of the form (12)
is termed well-posed if for every xt, ut, ut+1 there is a unique
xt+1 satisfying (12).

I.e., well-posedness means that e(x, u) is a bijection with
respect to its first argument, and implies the existence of an
explicit model of the form (1) where a = e−1◦f . Furthermore,
it implies that for any initial condition x0 and sequence of
inputs u0, ..., uT , there exists a unique trajectory x1, ..., xT
satisfying (12).

A. Stability and Monotonicity Constraints

In this section, we develop convex conditions on the implicit
model (12) that guarantee well-posedness, monotonicity, pos-
itivity, and contraction. The main result is the following:

Theorem 1. A model of the form (12) is:
(a) well-posed if there exists ε > 0 such that for all (x, u),

E(x, u) + E(x, u)T � εI, (14)

(b) contracting with rate α if (a) holds and there exists a
matrix function S(x, u) : Rn × Rm → Rn×m such that
for all (x, u):

− S(x, u) ≤ F (x, u) ≤ S(x, u), (15)

1>(αE(x, u)− S(x, u)) ≥ 0, (16)

(c) monotone if (a) holds and for all (x, u):

F (x, u) ≥ 0, K(x, u) ≥ 0, E(x, u) ∈Mn, (17)

(d) positive if (c) holds and:

e(0) = f(0, 0), (18)

(e) contracting and monotone if (a) and (c) hold, and for
all (x, u)

1>(αE(x, u)− F (x, u)) ≥ 0. (19)

Positivity is also enforced if (18) holds.
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Proof. See appendix A.

We refer to the stability conditions in Theorem 1 (b) or
(e) as `1 contraction conditions as they ensure contraction
using a state dependent weighted `1 norm of the differentials:
V (t, x, δ) = |E(x, u)δ|1, noting that for the purpose of
contraction analysis the exogenous input u can be considered
as a time-variation.

Remark 1. Theorem 1 requires an exponential contraction
rate α to be specified. A weaker form of incremental stability
can also be imposed by replacing (16) with

1>(E(x, u)− S(x, u)) ≥ µ1> (20)

for some µ > 0, and similarly for (19). This implies that∑∞
t=0 |xat − xbt |1 < ∞, following a line of reasoning similar

to [38].

B. Model Parametrizations

As formulated above, Theorem 1 applies to models rep-
resented by the infinite dimensional space of continuously
differentiable functions e and f . In practice, these functions
are usually parametrized by a finite-dimensional vector. In this
section we briefly discuss some common model parametriza-
tions and how the constraints can be enforced.

For linear models, (14) is a semidefinite constraint, (15)-
(19) are linear and can be enforced using semidefinite pro-
gramming. Furthermore, if E is diagonal, then (14) is also
linear and the model set is polytopic.

If the functions e and f are multivariate polynomials or
trigonometric polynomials, then the constraints can be en-
forced using sum of squares programming [66], [67].

The model set (12) also contains a class of recurrent neural
networks with slope-restricted, invertible activation functions.
In this case, e(x) is the inverse of the activation functions,
f(x, u) is affine, and simulation of the explicit model a =
e−1 ◦ f yields the equation of a standard recurrent neural
network [68]. The conditions in Theorem 1 (b) or (d) then
correspond to diagonal dominance conditions on the weight
matrices which can be enforced via linear constraints.

Finally, if the requirement for global verification of these
properties is relaxed, then these constraints can be applied
pointwise for arbitrary parametrizations e and f , which
amount to linear and semidefinite constraints if e and f are
linearly parametrized.

IV. DISTRIBUTED IDENTIFICATION

In this section we consider the problem of distributed
identification of networked systems with the behavioral con-
straints introduced in Theorem 1. First, we propose a particular
structure for (12) for which the constraints in Theorem 1
are separable. We then propose an objective function that is
separable (with respect to a different partition). Finally we
propose an algorithm for fitting the proposed models that
requires only local communication between subsystems at
each step.

A. Distributed Model
We propose the following model structure for distributed

identification, in which e depends only on local states and
inputs, and f is a summation of nonlinear functions of states
and inputs from upstream neighbours:

ei(xit+1, u
i
t+1) =

∑
j∈V i

u

f ij(xj , uj). (21)

Models of the form (21) are widely used for statistical
modelling, and are referred to as generalized additive models
(GAMs) [69]. This class of models also includes linear sys-
tems, and a class of recurrent neural networks. We assume
that each of the functions ei : Rni × Rmi 7→ Rni and
f ij : Rnj × Rmi 7→ Rni are linearly parametrized by θie and
θijf respectively.

We define two partitions of the model parameters; the sets
of upstream and downstream parameters. These are denoted
θiu = {θie, θ

ij
f |j ∈ V i

u} and θid = {θie, θ
ji
f |j ∈ V i

d } respectively.
Objective functions, constraints and optimization problems are
called upstream-separable or downstream-separable if they
are separable with respect to these partitions. Upstream and
downstream separable optimization problems are closely re-
lated to the column-wise and row-wise separable optimization
problems used in [70].

For the parametrization (21), the differential dynamics have
a sparsity pattern determined by the network topology. In
particular, the (i, k)th block of F is:

F ik =
∂

∂xk

∑
j∈V i

u

f ij(xj , uj) =

{
∂fik

∂xk
, k ∈ V i

u

0, k /∈ V i
u

.

and E is block diagonal. This means F ik depends only on
parameters θikf and the block Eii depends only on θie. As
each block of E and F has an independent parametrization,
functions of disjoint sets of elements of E or F will be
separable.

B. Convex Bounds for Equation Error
In Section IV-A we propose a convex set of implicit models.

However, this approach shifts the convexity problem from the
model set to the objective function as equation error (2), s.t.
a = e−1 ◦ f , is no longer convex in the model parameters.

One approach might be to minimize the implicit equation
error

Jiee =

T−1∑
t=1

|e(x̃t+1, ũt+1)− f(x̃t, ũt)|2 (22)

as a surrogate for equation error. This approach however,
strongly biases the resulting model and leads to poor per-
formance [42]. Instead we use the convex upper bound for
equation error proposed in [42], which is based on Lagrangian
relaxation.

The least-squares equation error (2) for the implicit model
(12) is:

min
θ,x2,...,xT

Jee(θ) =

T−1∑
t=1

|xt+1 − x̃t+1|2 (23)

s.t. e(xt+1, ũt+1) = f(x̃t, ũt), ∀t = 1, ..., T − 1.
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Note that this problem is not jointly convex in xt+1 and θ.
The following convex upper bound was proposed in [42]:

Jee ≤ Ĵee(θ) =

T−1∑
t=1

sup
xt+1

{
|xt+1 − x̃t+1|2

− 2λ(xt+1)>(e(xt+1, ũt+1)− f(x̃t, ũt))

}
, (24)

where λt(xt+1) = xt+1 − x̃t+1 is a Lagrange multiplier. The
function (24) is convex in θ as it is the supremum of an infinite
family of convex functions [38].

For our parametrization (21), E is block diagonal which
then implies that (24) is upstream separable so it can be written
as

Ĵee(θ) =

N∑
i=1

Ĵ iee(θ
i
u), (25)

where

Ĵ iee(θ
i
u) =

T−1∑
t=1

sup
xit

{
|xit+1 − x̃it+1|2

− 2(xit+1− x̃it+1)>
(
ei(xit+1, ũ

i
t+1)−

∑
j∈V i

u

f ij(x̃jt , ũ
j
t )

)}
.

The evaluation of Ĵ iee is not trivial as it involves the calcu-
lation of the supremum of a non-linear multivariate function.
In this work we linearise (25) with respect to xit and solved
for the supremum of the resulting concave quadratic function,
giving:

Ĵ iee(θ
i
u) ≈ J̄ il (θiu) =

T−1∑
t=1

εit
>

(Eit + Eit
> − I)−1εit, (26)

where εit = ei(xit+1, ũ
i
t+1) −

∑
j∈V i

u
f ij(x̃jt , ũ

j
t ) is the im-

plicit equation error and Ei(xi, ui) = ∂ei/∂xi and Eit =
Ei(x̃it, ũ

i
t). The cost function (26) can be optimized via a

semidefinite program. Alternative methods for minimizing
LREE can also be found in [42].

C. Alternating Directions Method of Multipliers (ADMM)

In Section IV-A we introduced a model set for which the
constraints in Theorem 1 are downstream separable and in
Section IV-B we introduced an upstream separable objective
function. Note however, that the constraints and objective are
not jointly separable with respect to the same partition. We
use ADMM to solve this problem.

We now develop the algorithm for the case where (12)
is well-posed, monotone and contracting, however, a parallel
construction without monotonicity or contraction constraints
introduces no additional complexity. Consider the following
set of parameters

Θm`1 = {θ | (14), (17), (18), (19)}. (27)

Applying ADMM as discussed in Section II-E to the prob-
lem minθ∈Θm`1

Ĵee gives the following iteration scheme for
iteration k:

θ(k + 1) = arg min
θ

Ĵee(θ) +
ρ

2
||θ − φ(k) + v(k)||2, (28)

φ(k + 1) = arg min
φ∈Θm`1

ρ

2
||θ(k + 1)− φ− v(k)||2, (29)

v(k + 1) = v(k)− θ(k + 1) + φ(k + 1). (30)

for ρ > 0.
When using a GAM structure (21), we have the following

result:

Proposition 1. For the model structure (21), the ADMM iter-
ation (28) separates into N upstream-separable optimization
problems of the form (31) and the ADMM iteration (29) sepa-
rates into N downstream-separable optimization problems of
the form (32).

Proof. See Appendix B.

In particular, the ADMM approach corresponds to perform-
ing the following iterations locally at each node i = 1, ..., N :

θiu(k + 1) = arg min
θiu

Ĵ iee(θ
i
u)

+
ρ

2
||θiu − φiu(k) + viu(k)||2,

(31)

φid(k + 1) = arg min
φid

IΘm`1
(φid)

+
ρ

2
||θid(k + 1)− φid + vid(k)||2,

(32)

viu(k + 1) = viu(k)− θiu(k + 1) + φiu(k + 1). (33)

The distributed algorithm is listed in Algorithm 1. The steps
(31) and (32) require access to the upstream and downstream
parameters respectively. These can be solved by the nodes in
the graph, however, communication between both upstream
and downstream parameters is necessary between steps. The
update (33) is trivially separable and can be solved as either
an upstream or downstream separable problem.

Algorithm 1: Distributed Algorithm
Result: φ
Initialize ρ > 0;
Initialize: θ(0), φ(0), v(0);
for k = 1, ... do

for i = 1, ..., N do
Get: {x̆it}Tt=1;
Compute θiu(k + 1) using (31);
Send θiu(k + 1) to upstream neighbours;
Compute φid(k + 1) using (32);
Send φid(k + 1) to downstream neighbours;
Compute viu using (33);
Send viu(k + 1) to upstream neighbours;

end
end

Termination of ADMM after a finite number of iterations
means that the two parameter vectors θ and φ will disagree.
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For this reason, we take φ as the solution to ensure that the
well-posedness, monotonicity and contraction constraints (14),
(17), (19) are satisfied.

V. DISCUSSION

A. Conservatism of the Separable Model Structure

We have proposed searching over the model set (21) with
θ ∈ Θm`1 (27), and it is important to understand which
systems may fall into this model set. A particular question
of interest is whether there are contracting and monotone
systems which cannot be represented by this structure, and
there are two main reasons why this may occur: the separable
structure of the model (21), and the assumption of a separable
contraction metric in condition (19).

An exact characterization of the functions functions that be
approximated via the GAM structure (21) is difficult to give,
however, they have widely applied in statistical modelling, see
[69] for details. Note that while the functions in the implicit
system (21) are additive, the resulting explicit system (8) may
not be. For example, the scalar functions e(x) =

√
x and

f(x, y) = (x + y). Both e and f are additive; however, the
function e−1 ◦ f(x, y) = x2 + 2xy + y2 is not.

Conservatism may also be introduced by the assumption of
a separable contraction metric. For the case of linear positive
systems, it is has been shown that the existence of a separable
Lyapunov functions is both necessary and sufficient [43]. This
means that Θm`1 contains all positive linear systems [46]:

Theorem 2. For the system (21), if e and f are affine in
(x, u), then the model set characterised by (14), (17) and (19)
is a parametrization of all stable, discrete-time, positive linear
systems.

Proof. See Appendix C.

Things are more complicated for nonlinear monotone sys-
tems. Separable contraction metrics have been shown to exist
for certain classes of monotone systems [49] and separa-
ble weighted `1 contraction metrics have been used for the
analysis of monotone systems [6], [51]. For incrementally
exponentially stable systems, it has been shown that the
existence of weighted `1 contraction metrics, are necessary
and sufficient [50], however the state-dependant weighting
depends on the all system states and is therefore not separable
in the sense we use. To the authors’ knowledge, a complete
characterisation of the class of contracting monotone systems
that admit separable metrics is still an open problem.

B. Consistency

It has be previously noted that system identification ap-
proaches that guarantee stability lead to a bias towards systems
that are too stable [28], [29], [71]. Empirical evidence suggests
that for methods based on Lagrangian relaxation [41], [42] this
bias is smaller.

There are a number of situations that lend themselves
towards consistent identification. Firstly, consider the situa-
tion where we have noiseless state and input measurements
produced by a model with θ∗ ∈ Θm`1 such that Jee(θ∗) = 0.

Then we also have J̄l(θ)∗ = 0 so the bound is tight and LREE
recovers the true minimizer of equation error.

Now, consider the situation where the unconstrained mini-
mizer of equation error (2), is a monotone, additive function
that is contracting in the identity metric. That is, for the
function aφ∗(x, u) where φ∗ = arg min Jee(φ), the following
hold:

1) aφ∗(x, u) is additive so that (8) can be written as
ai(x, u) =

∑
j∈V i

u
aij(xj , uj),

2) 1>(αI −A(x, u)) ≥ 0,
3) A(x, u) ≥ 0.

where A = ∂a
∂x . Then, optimizing (26) returns the same

solution as the unconstrained least squares minimizer of Jee.

Proposition 2. Consider models of the form (21) with
eθ(x, u) = Ex and fθ(x, u) = aφ∗(x, u) for some θ. If proper-
ties 1, 2, 3 hold for aφ∗(x, u) where φ∗ = arg min Jee(φ), then
for θ∗ = arg min

θ∈Θm`1

J̄l(θ), we have aφ∗(x, u) = e−1
θ∗ fθ∗(x, u).

Proof. Our proof mirrors that of [42, Sec. IV Proposition 1].

C. Iteration Complexity of Distributed Algorithm

In this section, we investigate the computational complexity
of each step in the distributed algorithm. In general, the com-
plexity depends on the model parametrization used, however,
we limit our discussion to the case where the models are
parametrized by polynomials and the constraints are enforced
using sum of squares programming.

The first step, (31), is a semi-definite program and can
be solved using standard solvers. If no structural properties
are exploited, a primal-dual interior point method (IPM),
would require O

[
max{n3

θiu
, nθiuni

3, n2
θiu
n2
i }
]

operations per
iteration per node [72], where nθiu is the number of upstream
free parameters .

The second step, (32), is a sum-of-squares problem that can
solved as a semi-definite program. If e and f both have degree
2d, then the size of Gram matrix corresponding to (19) for
the additive model (21) is p = 1 +

∑
j∈V i

d

[(
nj+mi+d

d

)
− 1
]
.

Solving (32) using a primal-dual IPM requires approximately
O
[
max{n3

θid
, nθidp

3, n2
θid
p2}
]

operations per iteration per
node [72], where nθid is the number of downstream free
parameters.

If a local computational resource is associated with each
node in the network, and the number of neighbours for
each node satisfies a uniform bound, then the time taken for
each iteration will not increase with the number of nodes.
However, computation time will grow quickly with the number
neighbours, the size of the local states and the degrees of the
polynomials used in the model.

D. Other Quality of Fit Criteria

Lagrangian relaxation of least-squares equation error was
chosen as it is convex, upstream separable, quick to compute,
and leads to a simple implementation of ADMM. Any method
that treats neighbouring states as exogenous inputs will be
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upstream separable. However, any such approach will also
be susceptible to instability due to the introduction of new
feedback loops via the network topology, even if it guarantees
stability of the local models. Consequently, one can similarly
apply any convex quality of fit criteria such us convex upper
bounds on simulation error [38], [41] and still guarantee
convergence of ADMM. Alternatively, a non-convex quality
of fit criteria like simulation error can be used at the expense
of ADMM’s convergence guarantees.

If a model structure does not permit distributed identifica-
tion, the conditions proposed in Section III can still be used
to ensure stability and/or monotonicity. Joint convexity of the
model set and stability constraints is still an important as
it simplifies constrained optimization allowing for the easy
application of penalty, barrier or projected gradient methods
[39].

VI. NUMERICAL EXPERIMENTS

In this section we present numerical results exploring the
scalability and identification performance the proposed ap-
proach.

This section is structured as follows: first, we look at
the identification of positive linear systems, and explore the
computational complexity of the `1 and `2 contraction con-
ditions; we then explore the consistency of fitting nonlinear
models when the true system lies in the model set, essentially
analysing the effect of convex bound on equation error; finally,
we apply the method to the identification of a (simulated)
nonlinear traffic network. The traffic network does not lie in
the model set so only an approximate model can be identified.
We explore the regularising effect of the model constraints and
scalability of the method to large networks.

Previous methods for the identification of models with
stability guarantees have ensured contraction using a quadratic
metric [38], [41], [42]. Contraction is implied by the following
semidefinite constraint:

W (x, u, θ) � 0 ∀(x, u), (34)

W (x, u, θ) =

[
E(x, u) + E(x, u)> − P − ηI F (x, u)>

F (x, u) P

]
where P ∈ Sn×n, P � 0, η > 0. We refer to (34) as an `2
contraction condition as it implies the contraction conditions
(6) with a state dependent weighted `2 norm of the differentials
V = δ>xtE(xt, ut)

>P−1E(xt, ut)δxt .
We will make future reference to the following convex sets

of parameters, in addition to θml1 defined in (27):

Θu = {θ | (14), (18)}, Θm = {θ | (14), (17), (18)}
Θm`2 = {θ | (17), (18), (34)}

Here the subscripts refer to the following properties:
• m`1 - Monotone `1 contracting models i.e. θ ∈ Θm`1 ,
• m - Monotone models i.e. θ ∈ Θm,
• u - Models that are not constrained to be contracting or

monotone i.e. θ ∈ Θu,
• m`2 - Models that are monotone and contracting in `2,

i.e. θ ∈ Θm`2 ,

All functions ei, and f ij are polynomials in all monomials of
their arguments up to a certain degree.

As a baseline for comparison, we will also compare to
models denoted Poly, with explicit polyonomial models (1) fit
by least-squares without any separable structure imposed. We
will also compare to standard wavelet and sigmoid Nonlinear
AutoRegressive with Exogenous input (NARX) models imple-
mented as part of the Matlab system identification toolbox.

For the implicit models, the model class prefix is followed
by the degrees of the polynomials in e and f in parenthesis.
For example, the notation u(3, 5) refers to unconstrained
models with e having degree 3 and f having degree 5. For
the explicit polynomial models Poly, the degree used follows
in parenthesis, so Poly(5) are explicit polynomial models of
degree 5 in all arguments.

The NARX models were fit at each node using the regres-
sors (x̆it, ŭ

i
t, ŭ

i
t+1). The wavelet NARX models were set to

automatically choose the number of basis functions and the
sigmoid NARX models were set to use 10 basis functions. The
focus for each model was set to produce the best performance.
For the wavelet network, we used a focus on simulation and
for the sigmoid network, we used a focus on prediction.

The constraints (14), (17), (18), (19) and (34) are enforced
using sum of squares programming [66]. All programs are
solved using the SDP solver MOSEK with the parser YALMIP
[73] on a standard desktop computer (intel core i7, 16GB
RAM).

A. Identification of Linear Positive Systems

In this subsection we study the scalability of the proposed
method for the identification of linear positive systems.

We compare the computation time using the proposed `1
contraction constraint to a previously proposed `2 contraction
constraint (i.e. quadratic Lyapunov function). Note that for
linear systems, the model sets m`1 and m`2 both are parame-
terizations of all stable positive linear systems so no difference
in quality of fit is observed.

1) Scalability of Separable Linear and Quadratic Metrics:
We illustrate the difference in scalability between the models
m`1(1, 1) and m`2(1, 1). Each experimental trial consists of
the following steps:

1) A stable positive system with state dimension nx is
randomly generated using Matlab’s rand function; A ∈
Rnx×nx has a banded structure with band width equal to
9. Stability was ensured by rescaling A to have a spectral
radius of 0.95.

2) The system is simulated for T = 104 time steps; x̃1:T is
obtained by adding white noise to the simulated states at
SNR equal to 40dB.

3) This process is repeated 5 times for each nx.

The time taken to solve each optimization problem is shown
in Fig. 2. Here, we see a significant improvement in the
computational complexity from approximately cubic growth
for m`2 to linear growth for m`1. The networked approach
allows us to solve stable identification problems with at least
3000 states.
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Fig. 2: Computation time as function of system size. The
slopes of the lines of best fit are: m`2(1, 1) - 2.66, m`1(1, 1)
- 1.04 .

Note that no explicit attempts to exploit the sparsity of the
system were made; use of solvers and parsers designed to
exploit sparsity could improve performance, especially for the
SDPs associated with the LMI parametrization, e.g. [74].

B. Identification of Nonlinear Models

In this section we study the consistency of fitting nonlinear
implicit models via the LREE bound on equation error. In
Section V-B we saw that in the noiseless case, optimization
of LREE will return the true model parameters. We will now
explore the effect of introducing noise on the model estimates.
The experiments in this section can be seen to supplement
those in [42, Sec. IV] which studied the effects of noise and
model stability on consistency in the linear setting.

We generate models a∗(x, u) by sampling a parameter
vector θ and then projecting onto the set Θm`1 . The models
have degree 3, state size n = 2 and m = 1. We then generate
training data with T samples by randomly sampling (x̃t, ũt)
from the uniform distribution on [0, 1] and generated noisy
measurements of xt+1 by x̃t+1 = a∗(x̃t, ũt) + vt, where vt
is normally distributed noise with a specified Signal to Noise
Ratio (SNR). Models a(x, u) are then trained by minimizing J̄l
with θ ∈ Θm`1 and performance measured using Normalized
Equation Error (NEE):

NEE =
|a(x, u)− a∗(x, u)|22

|a∗(x, u)|22
(35)

where a(x, u) is the identified dynamic model and a∗(x, u)
is the true where |f(x)|2 =

∫
x∈D |f(x)|2dx is the sample

estimate of the 2-norm of the function f .
In Figure 3, we have plotted the NEE that results from fitting

models from m`1(3, 3) by optimizing LREE (26) and implicit
equation error (22). We can see that LREE provides a much
better fit than implicit equation error, especially as the number
of data points increases.

To explore the effect of noise on the consistency of LREE,
we have plotted NEE versus the size of the dataset for varying
noise level (measured in decibels) in Figure 4. If we had a

102 103

10-4

10-3

Fig. 3: Comparison of implicit equation error and LREE: Nor-
malized equation error versus number of training data points.
The training data has gaussian noise with SNR = 30dB. For
each method, the central line shows the median NEE for 50
model realizations and the shaded region shows the upper and
lower quartiles.

102 103
10-7

10-6

10-5

10-4

10-3

Fig. 4: Normalized equation error versus number of training
data points for three different SNRs. The central line shows the
median NEE for 25 model realisations and the shaded region
shows the upper and lower quartiles. The SNR is measured in
decibels.

consistent estimator of the explicit model (1), we would expect
to see lim

T→∞
NEE = 0 with consistent slope for all SNR levels.

What we in fact observe, however, is that in noisier conditions
the NEE initially decreases and then plateaus at a certain level.
This phenomena can also be seen in [75, Sec. IV], where
LREE produces models biased towards being too stable, even
in the infinite data limit.
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C. Identification of Traffic Networks

In this section we examine a potential application of our
approach, the identification of a traffic network. The dynamics
of traffic networks are thought to be monotone when operating
in the free flow regime [7]. Note that monotonicity of some
traffic models is lost when certain nodes are congested [76].

The data are generated using the model in [7], which is
not in the proposed model set. Hence this section provides
a test of robustness of the proposed approach to modelling
assumptions.

For this application, we consider using equation error as a
surrogate for simulation error. Model performance is therefore
measured using Normalized Simulation Error (NSE):

NSE =

∑
t |xt − x̃t|2∑

t |x̃t|2
, (36)

where xt are the simulated states.
We will first introduce the model, then study the effect of

the model constraints by comparison to existing methods, and
finally examine scalability to large networks.

1) Simulation of a traffic network : The dynamics are
simulated over a graph (e.g. Fig. 6), where, each node i
represents a road with state corresponding to the density of
traffic on the road, denoted ρi. Nodes marked in allow cars
to flow into the network, and nodes marked out allow cars to
flow out of the network. Each edge (i, j) is randomly assigned
a turning preference denoted Rij such that

∑
iRij = 1 (this

ensures that the total number of cars at each intersection is
conserved). Each node i has a capacity of Ci = 1. Vehicles
transfer from roads i to j according to the routing policy,

fi→j(ρ) = Rjidi(ρ
i) min

{
1,

sj(ρj)∑
k∈V i

u
Rkjdk(ρj)

}
,

where di(ρ) = min(10, ρ) and si(ρ) = max(2Ci − ρ, 0) are
monotone demand and supply curves for road i. The dynamics
of the complete system are then found to be

ρ̇i = f iin − f iout, (37)

where

f iin =

{
ui , i ∈ in∑
j∈V i

u
fj→i , i /∈ in

f iout =

{
di(ρi) , i ∈ out∑
j∈V i

d
fi→j , i /∈ out.

The input nodes i ∈ in take a time varying input ui. We
use the following method to generate data sets of size T :

(i) First, we generate an input signal for each ui of size T .
This signal changes value every 5 seconds to a new value
that is normally distributed with mean µu and standard
deviation σu. Negative values of u are set to zero. An
example input signal is shown in Fig. 5.

(ii) The dynamics (37) are integrated over tf seconds.
(iii) A training set of size T = 2tf is generated by sampling

every 0.5 seconds.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 5: Example input signal to network (µu = 0, σu = 0.2).

Fig. 6: A small traffic network. Each node represents a road
and each link represents an intersection.

2) Regularization Effect of Model Constraints: In this sec-
tion we will explore the effects of introducing monotonicity,
positivity, and contraction constraints.

Introducing model constraints limits the expressivity of our
model. Consequently, one might expect the estimator bias
to increase and the variance to decrease [77, Chapter 7].
Empirical evidence in this section suggests that a judicious
choice of constraints can reduce the variance with a minimal
increase in bias.

Using the method outlined in Section VI-C1 for simulating
a traffic network and the graph depicted in Fig. 6, we generate
100 different training sets of size T = 1000 with µu =
0, σu = 0.2 and then compare the results on three different
validation sets. The first validation set has inputs generated
with parameters µu = 0, σu = 0.2 (the same as the training
set). The second and third validation sets have parameters
µu = 0, σu = 0.3 and µu = 0, σu = 0.4 respectively. These
are used to test the generalizability of our model to inputs
outside the training set.

In figures 7 and 8, we have plotted the NSE on both
the training set and validation sets 1 and 2 for our proposed
model sets, the polynomial model, the NARX models and the
model set m`2. The percentage of total models that displayed
instability is indicated in both the bar graph in the upper
portion of the figures.

In all cases, the identified linear models performed poorly.
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(a) Training set (σu = 0.2, µu = 0) over 100 realizations.
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(b) Validation set 1 (σu = 0.2, µu = 0) over 100 realizations.
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(c) Validation set 2 (σu = 0.3, µu = 0) over 100 realizations.

Fig. 7: Box plots showing normalized simulation error for
100 model realizations for different behavioural constraints.
The bar graph shows the percentage of models that displayed
instability.
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(a) Training set (σu = 0.2, µu = 0) over 100 realizations.
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(b) Validation set 1 (σu = 0.2, µu = 0) over 100 realizations.
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(c) Validation set 2 (σu = 0.3, µu = 0) over 100 realizations.

Fig. 8: Box plots showing normalized simulation error for
100 model realizations for different model structures. The
bar graph shows the percentage of models that displayed
instability.



12

This is unsurprising as the true system is highly non-linear.
Comparing the models m`1 and m`2 with the remaining

models, we can see that the stability constraints have a regu-
larizing effect where increasing the degree of the polynomials
reduces the median NSE; in other words, increasing model
complexity improves model fidelity. The other models on the
other hand perform worse with increasing the complexity.
This is most clearly seen in the models u, where increase
the polynomial degree results in poorer fits on validation data.

Our results also suggest that model stability constraints
significantly improve robustness. Without stability constraints,
a model that appears stable during training may turn out to
be unstable under a slight shift in the input data distribution.
This can be seen most clearly in the models m(5, 5) and
Poly(3), where on the training data distribution, most models
are stable. However, increasing the variance of the inputs to
the network results a large number of unstable models with
unbounded NSE, c.f. Fig. 7c and Fig. 8c. Further evidence is
shown in Table I, where we can see that once the variance
of the input data doubles, almost all models that do not have
stability constraints are unstable.

To compare to a standard approach, we also compare to
wavelet and sigmoid NARX models fit using the Matlab
system identification tool box. The resulting NSE is shown
in Fig. 8 and show the number of models producing unstable
models and negative state estimates in tables I and II re-
spectively. While we observed extremely high performance of
the individually identified sub-systems, simulating the network
interconnection of those sub-systems produces many unstable
models, many negative state estimates and poor quality of fit.

For positive linear systems, both Θm`1 and Θm`2 are param-
eterizations of the same set of models. This is not the case for
nonlinear monotone systems and the choice of parametrization
impacts the resulting model performance. This can be seen in
Fig. 8a, Fig. 8b and Fig. 8c where the models fit using our
proposed `1 contraction constraint outperform those fit using
the previously-proposed `2 contraction constraint.

Finally, looking at Table II, we can see that when models
were not constrained to be positive u and Poly, a large number
of models producing negative state estimates were identified.
This can lead to non-sensical results in many applications, and
prevents the application of synthesis methods that depend on
monotonicity.

3) Scalability Comparison of `1 and `2 contraction: We
now explore the scalability of the `1 and `2 contraction
constraints for nonlinear models.

We construct traffic networks consisting of N = P + 2M
nodes by placing P points randomly in a unit square and
triangulating. M in nodes and M out nodes are then randomly
assigned throughout the network. We generate training data
using the method described in Section VI with T = 600, µu =
0, σu = 0.4 and a corresponding validation set. We then
fit models m`1(3, 3) and m`2(3, 3) using an interior point
method. This is repeated 5 times for a varying number of
nodes.

Figure 9 shows a plot of the time taken to solve each
problem versus the total number of nodes. We observe that
fitting models with an `2 contraction constraint has a com-

101 102
100

105

Fig. 9: Computation time for models m`2(3, 3) and m`1(3, 3)
for a varying system size. The slopes of the lines are 3.06 and
1.49 respectively.
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Fig. 10: NSE for models m`1(3, 3) for varying system size.

plexity O[N3] in the number of nodes while models using
the `1 contraction constraint have a complexity of O[N1.5]
in the number of nodes. The improved complexity of the `1
constraint is a result of its separable structure.

The validation NSE versus the number of agents is shown
in Fig. 10 for the model set in m`1(3, 3). We observe no
deterioration of model performance as the number of agents
increases, suggesting that our method can be effective when
scaled to large networks.

4) Scalability Compared to Interior Point Methods: We
conclude our numerical experiments with a comparison of the
computational complexity of the proposed distributed algo-
rithm to centralized optimization via standard interior point
methods.

We introduce additional notation to distinguish between the
centralized and distributed algorithms. We will use a subscript
C to refer to models fit using the off-the-shelf interior point
method. The subscript D is used to denote models fit using
ADMM. For example, m`1(3, 3)D is the problem of fitting
the model m`1(3, 3) solved using the distributed algorithm.

To control for the number of neighbors of each node, we
generate random, connected, regular graphs of size N and
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m`1(1,1) m(1, 1) u(1, 1) m`1(3,3) m(3, 3) u(3, 3) m`1(5,5) m(5, 5) u(5, 5) Wavelet Sigmoid
train. (σu = 0.2) 0% 0% 2% 0% 0% 66% 0% 0% 89% 88% 36%
val. 1 (σu = 0.2) 0% 0% 0% 0% 5% 65% 0% 6% 84% 87% 31%
val. 2 (σu = 0.3) 0% 0% 0% 0% 64% 90% 0% 78% 94% 88% 51%
val. 3 (σu = 0.4) 0% 0% 0% 0% 88% 95% 0% 97% 89% 88% 63%

TABLE I: Percentage of unstable models that diverged on training and validation data. In each case the input u has µu = 0.

m`1(1,1) m(1, 1) u(1, 1) m`1(3,3) m(3, 3) u(3, 3) m`1(5,5) m(5, 5) u(5, 5) Wavelet Sigmoid
train. (σu = 0.2) 0% 0% 2% 0% 0% 66% 0% 0% 89% 100% 91%
val. 1 (σu = 0.2) 0% 0% 0% 0% 0% 65% 0% 0% 84% 100 % 93%
val. 2 (σu = 0.3) 0% 0% 2% 0% 0% 90% 0% 0% 94% 100 % 99%
val. 3 (σu = 0.4) 0% 0% 1% 0% 0% 95% 0% 0% 99% 100 % 100%

TABLE II: Percentage of total models that predicted negative states. In each case the input u has µu = 0.

degree 4 and randomly assign P
2 in nodes and P

2 out nodes.
Training data is generated according to Section VI-C1 with
T = 500 and σu = 0.2.

We then solve the problems m`1(3, 3)C and m`1(3, 3)D us-
ing the stopping criteria from [65, Section 3.3] (εabs = 10−4,
εrel = 10−3).

The results are displayed in Fig. 11. The line
m`1(3, 3)D−serial indicates the total time taken to fit a
model using ADMM, where the sub-problems (31), (32)
are solved without parallelization (consecutively, on a single
computer). Additionally, we calculate the total time that
would be taken if the computation had been distributed
among N nodes, indicated by the line m`1(3, 3)D−parallel.

While the program m`1(3, 3)D−serial takes longer on the
selected problems than m`1(3, 3)C , it has superior scalability
with O[N1.05] compared to O[N1.36], suggesting that for a
larger number of nodes, it will be faster.

Of more interest is m`1(3, 3)D−parallel with an observed
complexity of O[N0.05] in the number of nodes. This suggests
that if the computation is distributed, the problem can be
solved in near constant time. It is important to note, however,
that this does not take into account many of the complexities
of distributed computing, for example the overhead associated
with communication between nodes.

VII. CONCLUSION

In this paper we have proposed a model set for system
identification that allows model behavioural guarantees such
as stability (contraction), monotonicity, and positivity. Fur-
thermore, we have introduced a particular separable structure
that allows distributed identification and scalability to large
networked systems via local node-to-node communication.

We have examined the proposed approach via a selection of
numerical case studies including a nonlinear traffic network.
The main conclusions are that the approach scales much
better than previous approaches guaranteeing stability, and
that behavioural constraints such as stability and monotonicity
can have a regularising effect that leads to superior model
predictions.

APPENDIX

A. Theorem 1

We use the following lemma in the proof of Theorem 1:

10 1 10 210 0

10 1

10 2

10 3

Fig. 11: Runtime of ADMM compared to IPM where the
number of threads is one or equal to the number of nodes.
When calculating the results for ”simulated” distributed com-
puting, ADMM is run in series and time per iteration is taken
to be the sum of the maximum times to solve each step. The
slopes of the lines are 1.05, 1.36 and 0.047 respectively.

Lemma 1. Suppose that for the system (21), there exists a
weighted differential `1 storage function Vt = |E(xt, ut)δt|1,
where E : Rn × Rm → Mn such that Vt+1 ≤ αVt and there
exists some K � 0 such that |δt|1 ≺ K|Etδt|1, then the system
is contracting in the sense of definition 1.

Proof. Consider the family of solutions to (21), parametrized
by ρ ∈ [0, 1], having initial conditions ρx1(0) + (1− ρ)x2(0)
and input u(t), denoted xρ(t).

Define δρ(t) =
∂xρ(t)
∂ρ . Now, consider:

|x1(t)− x2(t)|1 =

∣∣∣∣∫ 1

0

δρ(t)dρ

∣∣∣∣
1

≤
∫ 1

0

|δρ(t)|1dρ

≤
∫ 1

0

K|Etδρ(t)|1dρ

By assumption, Vt+1 ≤ αVt which means that |Etδ(t)|1 ≤
α|Et−1δt−1|1. This inequality can be applied repeatedly to



14

give:

|x1(t)− x2(t)|1 ≤ Kαt
∫ 1

0

|E0δρ(0)|1dρ

Taking b(x1(0), x2(0)) = K
∫ 1

0
|E0δρ(0)|1dρ gives Definition

1.

Proof of Theorem 1. First we will show well-posedness and
monotonicity. We will then prove stability of monotone con-
tracting systems and finally just contracting systems. For
brevity of the equations, we will use a subscript t to refer to the
evaluation of a function at a specific time, so Et = E(xt, ut).

Well-posedness: Assume (14). Since E is a non-singular
M matrix, there exists a diagonal matrix D such that ED +
DE> � 0. Well posedness follows from the same argument
as [38, Theorem 5].

Monotonicity: Assume (17). Since E as an M-matrix, it is
inverse positive and E−1F ≥ 0. The differential dynamics of
the explicit system (8) can be written as δxt+1

= E−1
t+1Fδxt .

Therefore, the explicit system is monotone.
Contraction: Assume conditions (15) and (16). Condition

(15) implies that

|F (x, u)| ≤ S(x, u). (38)

Condition (16) then implies,

1>(αE(x, u)− S(x, u)) ≥ 0, (39)

=⇒ 1>(αE(x, u)− |F (x, u)|) ≥ 0, (40)

=⇒ 1>(α− |F (x, u)|E−1(x, u)) ≥ 0, (41)

=⇒ 1>(α− |F (x, u)E−1(x, u)|) ≥ 0, (42)

=⇒ (α− ||F (x, u)E−1(x, u)||1) ≥ 0, (43)

where || · ||1 is the induced matrix norm , ||M || :=
maxj

∑
iM

ij . Stability follows from the same argument as
in the proof of Theorem 1. Multiply by |Etδt|1, we get:(

α− ||F (x, u)E−1(x, u)||1)
)
|Etδt|1 ≥ 0, (44)

=⇒ α|Etδt|1 − |F (x, u)E−1
t Etδt|1) ≥ 0, (45)

=⇒ |Ftδt|1 − α|Etδt|1 ≤ 0, (46)
=⇒ |Et+1δt+1|1 − α|Etδt|1 ≤ 0. (47)

Contraction then follows from Lemma 1 with contraction
metric Vt = |E(xt, ut)δt|1. Monotonicity and Contraction
Finally, to see how contraction follows from (17) and (19),
note that they imply conditions (15) and (16).

B. Proof of Theorem 1

Proof. The first step (28) can be broken up into the following
sum:

θ(k + 1) = arg min
θ

N∑
i=1

Ĵ iee(θ
i
u) +

ρ

2
||θiu − φiu(k) + uiu(k)||2,

which is equivalent to the N optimization problems in (31).
The second step (29) can be written as

φ(k+1) = arg min
φ
IΘm`1

(φ)+

N∑
i=1

ρ

2
||θid(k + 1)−φid+uid(k)||2.

(48)

We will show that the indicator function can be written as a
sum over i = 1, ..., N indicator functions each depending on
φid. Splitting it up in terms of the individual constraints, we
get

IΘm`1
(φ) = IFx≥0(φ) + IFu≥0(φ) + IE∈M(φ)+

I1>(αE−F≥0)(φ). (49)

The first two terms can be written as element-wise SOS
constraints. The last two terms can then be written as a sum
over the columns of the matrices E and F . We can therefore
right (49) as:

IΘm`1
(φ) =

∑
i

Iφid∈Θim`1
(φid)

where,

Iφid∈Θim`1
(φid) = IαEii−∑

k∈V i
d
Fki≥0(φid)+

IEii+Eii>>ε(φ
i
d)+∑

k∈V i
d

IEki≥0(φid) +
∑
k∈V i

d

IFki≥0(φid).

C. Theorem 2

Sufficiency follows from Theorem 1.
We now prove necessity, i.e. that if a positive linear system

is Schur stable, then θ ∈ Θm`1 . Suppose a matrix A is Schur
stable. Then by [78, proposition 2], there exists some z > 0
such that z>A − z> < 0. We can always rescale z such that
z>A− z> ≤ −ε1. With this z, we choose E = diag(z) ≥ 0
and F = EA ≥ 0. Then

z>A−z> ≤ −ε1> =⇒ 1>(F−E) ≤ −ε1> =⇒ θ ∈ Θm`1
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