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Path integrals constitute powerful represen-
tations for both quantum and stochastic dy-
namics. Yet despite many decades of inten-
sive studies, there is no consensus on how to
formulate them for dynamics in curved space,
or how to make them covariant with respect
to nonlinear transform of variables (NTV). In
this work, we construct a rigorous and covari-
ant formulation of time-slicing path integrals
for dynamics in curved space. We first es-
tablish a rigorous criterion for equivalence of
time-slice Green’s function (TSGF) in the con-
tinuum limit (Lemma 1). This implies the ex-
istence of infinitely many equivalent represen-
tations for time-slicing path integral. We then
show that, for any dynamics with second order
generator, all time-slice actions are equivalent
to a Gaussian (Lemma 2). We further con-
struct a continuous family of equivalent path-
integral actions parameterized by an interpo-
lation parameter α ∈ [0, 1] (Lemma 3). We
then use these lemmas to develop time-slicing
path integral representations both for quan-
tum mechanics and for classical Markov pro-
cesses in curved space. The action generically
contains a term linear in ∆x, whose concrete
form depends on α. Finally we also establish
the covariance of our path-integral formalism,
by demonstrating how the action transforms
under NTV. The α = 0 representation of time-
slice action is particularly convenient because
it is Gaussian and transforms as a scalar, as
long as ∆x transforms according to Ito’s for-
mula.

1 Introduction
Path integral as a representation of quantum mechan-
ics was first envisaged by Dirac in his renowned text-
book on quantum mechanics [1], and was developed
systematically by Feynman in 1948 [2, 3]. Since then,
through the hands of many outstanding physicists and
mathematicians, it has been transformed into the ar-
guably most powerful tool for theoretical physics [4].
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The applications of path integral methods range from
quantum mechanics [5] to quantum field theory [6],
quantum open systems [7, 8], and quantum gravity [9],
from Brownian motion to general classical stochastic
processes [10, 11], as well as polymer physics [12], and
even financial study [14, 13]. The formalism of path
integral not only help shaping our intuition about
quantum and classical fluctuations, but also played
a key role in the synthesis of quantum field theory
with statistical field theory in the last century.

Consider a one dimensional quantum Hamiltonian
Ĥ = p̂2/2m + V (x̂). The Green’s function is defined
by

i~
∂

∂t
G(x, t|x0, 0) = ĤG(x, t|x0, 0), (1)

G(x, 0|x0, 0) = δ(x− x0).
The path-integral representation ofG(x, t|x0, 0) is

G(x, t|x0, 0) =
∫ (x,t)

(x0,0)
Dx(t′) e i~Scl[x(t′)], (2)

where the integral means, roughly speaking, summa-
tion over all paths with initial condition x(0) = x0 and
final condition x(t) = x, and Scl[x(t′)] is the classical
action:

Scl[x(t′)] =
∫ t

0
dt′ L(x, ẋ) =

∫ t

0
dt′
[m

2 ẋ
2 − V (x)

]
.

(3)
To assign a precise meaning to Eq. (2), one must

specify how to sum over paths. As illustrated in
Fig. 1, Feynman approximated a path x(t) by a se-
quence of straight-line segments that pass through
{xk = x(tk), k = 0, 1, · · · , N}, with tk = k∆t,∆t =
t/N, xN = x, and further approximated the action
Eq. (3) as a discrete sum:

Scl[x(t′)] ≈
∑
k

∆t
[
m

2

(
xk+1 − xk

∆t

)2
− V (x̄k)

]
,

(4)
where x̄k is a point between xk and xk+1 to be spec-
ified. It will be shown momentarily that in this case
the choice of x̄k makes no difference in the continuum
limit. The path-integral (2) is then transformed into
integration overN−1 coordinates {x1, x2, · · · , xN−1}:

G(x, t|x0, 0) = (5)

C

∫ ∏N−1
k=1 dxk e

i∆t
~

∑
k

[
m
2

( xk+1−xk
∆t

)2
−V (x̄k)

]
,
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Figure 1: Time-slicing: approximation of a continuous
path x(t) by a piecewise linear path. Within each inter-
val [xk,xk+1], an intermediate point x̄k needs to be chosen
where the potential V (x) is evaluated, see Eq. (4). The
choice of x̄k is unimportant in flat spaces but important in
curved spaces.

where the normalization constant C can be fixed by a
reference problem, e.g. that of a free particle. Feyn-
man carried out explicit calculations of Eq. (5) for free
particle and harmonic oscillator, and obtained results
consistent with direct solutions to Schrödinger equa-
tions [3].

The prescription for calculation of path integral us-
ing Eqs. (4) and (5) is usually called time-slicing, and
is one of many possible regularization schemes which
make the path integral Eq. (2) finite and calculable.
In field theories, other regularization schemes such as
momentum cut-off and dimensional regularization are
needed. We shall not discuss them in this work.

Because of the imaginary nature of the exponent
in Eq. (5), the integral is not convergent in the
usual sense. To cure this problem, it is convenient
to analytically continuate t into the imaginary axis,
t → −it, and transform Eqs. (1) into the imaginary
time Schrodinger equation:

−~ ∂
∂t
G(x, t|x0, 0) = ĤG(x, t|x0, 0), (6a)

G(x, 0|x0, 0) = δ(x− x0). (6b)

Equation (5) then becomes

G(x, t|x0, 0) = C

∫ ∏N−1
k=1 dxk e

−
∑

k
A(xk+1,xk;∆t),

(7a)

where A(xk+1, xk; ∆t), which shall be called the time-
slice action, is positive and given by

A(xk+1, xk; ∆t) = ∆t
~

[
m

2

(
xk+1 − xk

∆t

)2
+ V (x̄k)

]
,

(7b)
with ∆t = t/N . For V (x) = 0, Eqs. (6) reduce
to the classical diffusion equation, and Eqs. (7) de-
fine the celebrated Wiener measure [15] in the path
space of classical Brownian motion. A mathemati-
cally rigorous theory of path integral Eqs. (7) as a

representation of Eqs. (6) was established by Kac [16].
Time-slicing path integral formulation of classical
Langevin dynamics was developed by Onsager and
Machlup [17, 18].

Let us see why the choice of x̄k in Eqs. (4) and (7b)
does not matter. It is known that for typical paths
of classical Brownian motion, ∆x ∼ ∆t1/2, and hence
typical paths are continuous but non-differentiable ev-
erywhere [19]. It is then evident that the kinetic part
and potential part of the total action scale respec-
tively as ∆t−1 and ∆t0. By contrast, the choice of x̄k
in Eqs. (4) and (7b) influences the total action, which
is the sum of all time-slice actions, by an amount scal-
ing as

∑
∆t∆x ∼ ∆t1/2, which can be ignored in the

continuum limit.
There are however many dynamic processes, either

quantum or classical, happening in curved spaces.
There are also processes happening in Euclidean space
but with curved boundary, and hence are better for-
mulated using curvilinear coordinates. There are also
stochastic processes with multiplicative noises, which
resemble very much dynamics in curved spaces. For
these processes, it has been known for long time that
the above time-slicing prescription of path integral
breaks down. Consider for example a quantum par-
ticle moving in a curved manifold with metric tensor
gij(x). The covariant classical action and covariant
quantum Hamiltonian are respectively

Scl[x(t)] =
∫
dt
[m

2 gij ẋ
iẋj − V (x)

]
, (8)

Ĥ(x) = − ~2

2m√g ∂i
√
ggij∂j + V (x), (9)

where repeated indices are summed over, gij is the
inverse matrix of gij , and g = (det gij) = (det gij)−1,
all functions of x. Note that ∂i = ∂/∂xi act on ev-
erything to the right. It is known that both the clas-
sical action and the quantum Hamiltonian transform
as scalars under nonlinear transform of variables. The
Green’s function (in imaginary time) then is defined
by:

−~ ∂
∂t
G(x, t|x0, 0) = Ĥ(x)G(x, t|x0, 0), (10a)

G(x, 0|x0, 0) = δ(x,x0), (10b)

where δ(x,x0) is a covariant Dirac delta function, to
be defined below in Eq. (17).

Following DeWitt’s original idea [20], many
works [21, 23, 22, 24, 25, 26] tried to establish the
following path integral representation for Eq. (10) :

G(x, t|x0, 0) ∼ C
∫ ∏N−1

k=1

√
g(x̄k)ddxk (11)

exp
{
−∆t

~
∑
k

[
m

2 gij(x̄k)
∆xik∆xjk

∆t2 −V (x̄k)−δV (x̄k)
]}
,

where ∆xk ≡ xk+1−xk, and δV (x̄k) is usually called
the extra term. Note, however, unlike the case of Eu-
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clidean space, in Eq. (11) x̄k appear both in the ki-
netic energy and in the integration measure. Typical
variation of x̄k scales as ∆x ∼ ∆t1/2, and leads to
change of kinetic energy term scaling as:

∆t
∑
k

∆x3

∆t2 ∼
∑
k

√
∆t ∼ ∆t−1/2, (12)

which makes a divergent contribution to the action in
the continuum limit! Note that change of x̄k in the
integration measure

√
g(x̄k)ddxk leads to the same

effect. Such a correction cannot be compensated by
the extra term

∑
k δV (x̄k)∆t, which scales as O(1).

Common choices for x̄k are x̄k = (1−α)xk +αxk+1,
where α ∈ [0, 1] shall be called the interpolation pa-
rameter in this work. Many theories with α = 0 (pre-
point), α = 1/2 (mid-point), and α = 1 (post-point)
have been formulated, yet the results often do not
agree with each other. The in-equivalence between
different discretization schemes was pointed out by
Langouche et. al. in [27].

The above scaling argument already indicates that
the action in Eq. (11) misses a part linear in ∆xk,
summation of which also scales as ∆t−1/2. This term
leads to non-vanishing average of ∆xk, and shall be
called quantum spurious drift, for reasons that will
become clear below. We will also see that, while the
precise form of quantum spurious drift depends on the
particular choice of α, for a generic multi-dimensional
model, it can not be cancelled by tuning of α, or by
a judicial choice of coordinate systems.

Similar difficulties also arise in path integral rep-
resentation of classical Markov dynamics in curved
spaces, or with multiplicative noises. Such a dynamics
can be described either by the covariant Ito-Langevin
equation [28, 29]:

dxi +
(
Lij∂jU −

1
√
g
∂i
√
gLij

)
dt = biµdWµ(t),

(13)

with the product in RHS understood in Ito’s sense, or
by the covariant Fokker-Planck equation [28, 29]:

∂t p = L̂FPp = 1
√
g
∂i
√
gLij(∂j + (∂jU))p, (14)

where p(x, t)
√
g(x)ddx is the invariant differential

probability of slow variables, and LFP is the invari-
ant Fokker-Planck operator [29]:

L̂FP = 1
√
g
∂i
√
gLij(∂j + (∂jU)), (15)

whereas
∑
µ b

iµbjµ = Lij + Lji. The term
− 1√

g∂i
√
gLij in the LHS of Eq. (13) is called the

spurious drift, and has been the target of study for
long time [28, 33, 30, 32, 31]. If the space is curved
or the coordinates are curvilinear (both imply that
gij depends on x), or if the noise-amplitudes biµ are

state-dependent (multiplicative noises), then the same
difficulty discussed above also show up, and the corre-
sponding path integral representation becomes much
more difficult.

Earlier studies of path integral in curved space
and in curvilinear coordinates were pursued by De-
Witt [20] and by Edwards and Gulyaev [34]. DeWitt
found that the classical action did not lead to correct
path integral and tried to introduce an extra term to
fix this problem. Edwards and Gulyaev argued that
the action of path integral is not invariant under usual
rules of calculus when making nonlinear transform of
variables (NTV), yet did not supply sufficient details.
Since then, many authors tried to construct path in-
tegral representations for quantum and/or classical
dynamics in curved space [21, 23, 22, 24, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 27],
or to study Langevin dynamics with multiplicative
noises [54, 50, 51, 52, 27, 31, 49, 53], or to un-
derstand how path integral should transform under
NTV [55, 56, 57]. In spite of the large number of pa-
pers published on the subjects, there is still no sign of
convergence on opinions. One school of researchers
followed DeWitt’s approach and tried to solve the
problems by introducing an extra term, as shown in
Eq. (11) [21, 23, 22, 24]. Many authors still hold the
opinion that actions of path integrals are invariant,
or at least can be made invariant via possible revision
of time-slicing scheme, under NTV. See, for example,
Refs. [55, 56, 57] for the most recent effort on one
dimensional case. Comparison of previous works are
difficult because of diversity of methods and conven-
tions used, and also because of lack of mathematical
details.

In this work, we shall develop a detailed and sys-
tematic construction of time-slicing path integral in
curved space, and resolve all the above-mentioned
confusing issues. Using asymptotic analysis, we shall
first establish three lemmas with reasonable degree
of mathematical rigor. These lemmas constitute the
foundations of all later results. With Lemma 1, we ex-
plains why there are so many seemingly different but
equivalent representations of time-slicing path inte-
grals, and establish the criterion of equivalence. With
Lemma 2, we prove there is a Gaussian representa-
tion of time-slicing path integrals. With Lemma 3, we
explicitly construct a one-parameter family of equiva-
lent representations for the time-slice Green’s function
(TSGF), parameterized by α ∈ [0, 1]. The time-slicing
path integral, whether it is for the quantum or for the
classical stochastic process, can then be obtained by
straightforward application of these three lemmas.

For classical Markov processes, we shall further
study the connection between time-slicing path inte-
gral representation and Langevin dynamics represen-
tation. As is well-known, there are infinite number
of equivalent representations for a given Langevin dy-
namics, each parameterized by a continuous parame-
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ter ᾱ, which specifies where the noise amplitudes are
evaluated. The case of Ito representation (ᾱ = 0) is
particularly simple, because it implies a linear rela-
tion between rate of slow variables and noises, con-
ditioned on the slow variables at earlier time. Ex-
ploiting the equivalence between different represen-
tations of Langevin dynamics, we shall derive an-
other two-parameter family of equivalent representa-
tions for time-slicing path integral of classical Markov
processes.

The last major issue we shall address is the covari-
ance property. We first clarify how to construct the
new time-slice action when a nonlinear transformation
of variable is carried out. We further show that our
time-slice action does not transform as a scalar under
usual transformation rules of tensor algebra, mainly
due to the non-differentiable nature of typical paths
that dominate path integrals. Finally, we explicitly
show that the α = 0 time-slice action can be made
invariant if we demand that ∆x transform according
to Ito’s formula.

The remaining of this work is organized as follows.
In Section II, we establish three lemmas, which con-
stitute the base of all later results. In Section III, we
apply these lemmas to obtain a continuous family of
equivalent representations for time-slicing path inte-
gral. We also revisit the problem of Edwards and
Gulyaev and discuss the geometric origin of spuri-
ous drift. In Section IV, we study the connection
between classical nonlinear Langevin dynamics and
time-slicing path integral, and obtain a more general
family of equivalent path integral representations for
classical Markov processes. In Section V, we discuss
the covariance property of time-slicing path integral.
Finally, in Section VI, we draw the concluding remark
and outline future research directions. In Appendix
A, we supply a detailed proof of Lemma 3.

2 Three Lemmas about TSGF
Consider a Riemannian manifold with coordinate sys-
tem x = {x1, x2, · · · , xd} and metric tensor gij(x),
and g(x) = det(gij(x)). We define the volume mea-
sure dµ(x) and the invariant volume measure dv(x)
as

dµ(x) ≡ dx1dx2 · · · dxd, (16a)
dv(x) ≡

√
g(x) dµ(x). (16b)

We also define the covariant Dirac delta function as

δ(x,x0) ≡ 1√
g(x0)

d∏
i=1

δ(xi − xi0) = δ(x0,x),(17)

where δ(xi− xi0) is the usual 1d Dirac delta function.
For an arbitrary function f(x) on the manifold, we
have ∫

f(x)δ(x,x0)dv(x) = f(x0). (18)

We consider a dynamics generated by a second or-
der partial differential operator:

L̂(x) ≡ 1√
g(x)

∂i∂j
√
g(x)Dij(x)

− 1√
g(x)

∂i
√
g(x)F i(x)− Φ(x), (19)

where Dij(x) = Dji(x) is symmetric. For now
we assume that Dij(x) is non-singular, and that
Dij(x), F i(x),Φ(x) do not depend on time. Gener-
alization to the case where these functions are time-
dependent is straightforward. The case of singular
Dij(x) is more complicated, and shall not be dis-
cussed in this work. It is clear that L̂(x) as defined in
Eq. (19) contains as special cases both the quantum
Hamiltonian Eq. (9) and the classical Fokker-Planck
operator Eq. (14).

The Green’s function for Eq. (19) is then defined as

G(x, t|x0, 0) = eL̂(x)tδ(x,x0), (20)

which also contains the Green’s function defined in
Eqs. (6) and (10) as special cases. G(x, t|x0, 0) is
also known as propagator, transition amplitude (quan-
tum mechanics), or transition probability (classical
stochastic processes) etc. We shall first develop a path
integral representation of Eq. (20), and then apply it
to the specific cases of quantum mechanics and clas-
sical stochastic dynamics.

As illustrated in Fig. 1, we cut the time interval [0, t]
into N slices with duration ∆t = t/N , and introduce
TSGF:

G(x|x0; ∆t) = eL̂(x)∆tδ(x,x0), (21)

with ∆t = t/N . Equation (20) can be rewritten into
a product of N − 1 consecutive TSFGs:

G(x, t|x0, 0) =
∫
dvN−1 · · · dv1G(xN |xN−1; ∆t)

· · ·G(x2|x1; ∆t)G(x1|x0; ∆t), (22)

where xN = x, and dvk = dv(xk). The dis-
cretized path (xN ,xN−1, . . . ,x1,x0) forms the cylin-
der set [19], which can be used to construct rigorously
the sigma algebra of the path space.

To construct path integral representation of Green’s
function, we approximate each TSGF in the RHS
of Eq. (22) by an exponential form. The approxi-
mation should be such that in the continuum limit
∆t→ 0, the exact Green’s function is recovered. More
concretely, all moments of the approximated Green’s
function, i.e., the averages of powers of ∆x = x− x0
calculated using the approximated version of RHS of
Eq. (22), must give the exact answers in the limit
∆t → 0. Any such approximation of TSGF shall be
called a representation. Now recall that the number
N of steps is related to the duration ∆t of each step
via ∆t = t/N . If the error in each step is much smaller
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than ∆t, then the total error in the entire interval is
much smaller than N × ∆t = t, and hence becomes
negligible in the continuum limit. Likewise, if two ap-
proximations of G(xk+1|xk; ∆t) yield the same mo-
ments up to order of ∆t, they become indistinguish-
able in continuum limit, and we shall call these two
approximations equivalent. It then follows that all
representations of TSGF are equivalent to each other.
Hence we obtain the first lemma:

Lemma 1 An approximation of TSGF is a represen-
tation if and only if it yields correct moments up to
∆t. Two approximations of TSGF are equivalent if
they yield the same moments up to ∆t.

As we will demonstrate, there are infinitely many
seemingly different but equivalent representations of
TSGF, each of them can be used to construct the
time-slicing path integral representation of Green’s
function. Lemma 1 gives a concrete criterion for test-
ing of the correctness of various approximations, and
of the equivalence between different representations
of TSGF. Whilst the content of Lemma 1 was recog-
nized or used implicitly by many authors previously,
it is important to make it explicit, as it will play an
essential role in the analyses below.

Let ∆x = x − x0, and ∆xi the i-th component of
∆x. A M -th moment of TSGF, Eq. (21), is defined
as

〈∆xi1 · · ·∆xiM 〉

=
∫
dv(x)∆xi1 · · ·∆xiMG(x|x0; ∆t), (23a)

The operator eL̂(x)∆t in Eq. (21) may be expanded in
terms of ∆t. According to Lemma 1, the expansion
can be truncated at the first order:

〈∆xi1 · · ·∆xiM 〉 (23b)

=
∫
dv(x)∆xi1 · · ·∆xiM

[
1 + ∆t L̂(x) + · · ·

]
δ(x,x0).

Using Eqs. (19), (16), and (17), and integrating by
parts, we see that the lowest three moments are re-

spectively:

〈1〉 = 1− Φ(x0)∆t+O(∆t2),
〈∆xi〉 = F i(x0)∆t+O(∆t2), (23c)

〈∆xi∆xj〉 = 2Dij(x0)∆t+O(∆t2).

For allM ≥ 3, the integral in Eq. (23b) vanishes iden-
tically (up to ∆t) because of the Dirac delta function.
Hence we arrive at the second lemma:

Lemma 2 For all M ≥ 3, M -th order moments of
TSGF Eq. (20) are at least of order ∆t2, and hence
makes no contribution in the continuum limit.

Now consider the following Gaussian distribution:

dµ(x) e−(∆xi−F i(x0)∆t)
D
−1
ij

(x0)

4∆t (∆xi−F i(x0)∆t)−Φ(x0)∆t√
(4π∆t)d detDij(x0)

,

(24)
where D−1

ij is the inverse matrix of Dij , and detDij

is the determinant of the matrix Dij . Note that all
functions are evaluated at x0, and we are attaching
the volume element in Eq. (24). It is clear that the
three lowest order moments of Eq. (24) are those given
in Eq. (23c), and all higher order moments are at least
of order ∆t2. Then according to Lemma 1, Eq. (24)
is a representation of TSGF, and hence can be used
to construct the time-slicing path integral. We shall
call Eq. (24) the Gaussian representation of TSGF.

Whilst lemmas 1 and 2 are easy to establish, their
importance can hardly be overrated. They consti-
tute a starting point for a systematic construction of
equivalent representations of time-slicing path inte-
grals. In particular, to verify that certain approxi-
mation of TSGF is a representation, i.e., it can be
used to construct time-slicing path integral, we only
need to show that (i) its lowest three moments are the
same as those of Eq. (24), and (ii) all higher moments
are smaller than ∆t. For a discussion of Gaussian
representation of TSGF from the viewpoint of renor-
malization group, see Ref. [61].

Using these results, we can construct a contin-
uous family of equivalent representations of TSGF
that is parameterized by an interpolation parameter
α ∈ [0, 1]. This is the content of Lemma 3:

Lemma 3 Let Dij(x) = Dji(x) be symmetric and positive, F i(x) a vector, and Φ(x) a scalar, all functions of
x. Let ∆x = x− x0, and xα = x0 + α∆x with α ∈ [0, 1]. The following one-parameter family of distributions
are equivalent to each other, in the sense that their moments are all equal up to order ∆t:

dµ(x)√
(4π∆t)d detDij(xα)

exp
{
−
(

∆xi − F i(xα)∆t+ 2α∂kDik(xα)∆t
)D−1

ij (xα)
4∆t

(
∆xj − F j(xα)∆t+ 2α∂lDjl(xα)∆t

)
−α∂iF i(xα)∆t+ α2∂i∂jD

ij(xα)∆t− Φ(xα) ∆t
}
. (25)

Note that all functions are evaluated at xα.
There is an extension of Lemma 3, which provides more flexibility in implementation of time-slicing. Using

similar methods, it can be proved that the following two-parameter family of equivalent representations, where
Dij is evaluated at xα1 = x+α1∆x, and whereas F i is evaluated at xα2 = x+α2∆x, whilst Φ can be evaluated
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at arbitrary place:

dµ(x)√
(4π∆t)d detDij(xα1)

exp
{

−
(

∆xi − F i(xα2)∆t+ 2α1∂kD
ik(xα1)∆t

)
D−1
ij (xα1)
4∆t

(
∆xj − F j(xα2)∆t+ 2α1∂lD

jl(xα1)∆t
)

− α2∂iF
i(xα2)∆t+ α2

1∂i∂jD
ij(xα1)∆t− Φ∆t

}
. (26)

The proof of Lemma 3 is technically very complicated, and is presented in Appendix A. Historically, this
equivalent class was obtained by Wissel in 1979 [59]. Wissel’s work however has not received much attention,
most likely due to its lack of mathematical rigor. Our proof of Eq. (25) is systematic and rigorous. For 1d case,
Eq. (25) reduces to the result of Haken [58].

Several important comments are in order. Firstly note that the α = 0 version of Eq. (25) is precisely the
Gaussian representation Eq. (24). Secondly for α 6= 0, Eq. (25) is not Gaussian in ∆x, due to the hidden
dependence of various functions on ∆x. Thirdly, there are (infinitely many) other representations of TSGF
that do not assume the form of Eq. (25). For example, the factor detDij in front of the exponential may be
evaluated at a point different from xα. This leads to further revision of the time-slice action. We shall not
explore this issue further.

3 The α-Representation
We will now study time-slicing path integral representation in curved space, first for quantum mechanics, and
then for classical Markov processes. We shall follow the procedure outlined in the preceding section, first derive
a Gaussian representation, then construct arbitrary α-representation with α ∈ [0, 1]. These representations are
equivalent to each other, as guaranteed by Lemma 3.

3.1 Quantum mechanics in curved space
The imaginary time Green’s function is already defined in Eqs. (10). The TSGF can be written as

G(x|x0; ∆t) = e−∆tĤ(x)/~δ(x,x0), (27)

where Ĥ is given in Eq. (9). The moments of G(x|x0; ∆t) are calculated up to the order of ∆t, by expanding
the exponential and using integration by parts:

〈1〉 =
∫
dµ(x)

√
g(x) e−∆tĤ(x)/~δ(x,x0) = 1− ∆t

~
V (x0) +O(∆t2), (28a)

〈∆xk〉 =
∫
dµ(x)

√
g(x)∆xke−∆tĤ(x)/~δ(x,x0) = ~∆t

2m

(
1
√
g
∂j
(√
ggjk

))
0

+O(∆t2), (28b)

〈∆xk∆xl〉 =
∫
dµ(x)

√
g(x)∆xk∆xle−∆tĤ(x)/~δ(x,x0) = ~∆t

m
gij(x0) +O(∆t2), (28c)

where (· · · )0 means that all functions inside the bracket are evaluated at x0.
Using these moments, we can construct a Gaussian expression for the TSGF:

dv(x)G(x|x0; ∆t) =
√
g(x0) dµ(x)

(2π~∆t/m)d/2
e−A

0(x,x0;∆t), (29a)

where the time-slice action A0(x,x0; ∆t) is given by

A0(x,x0; ∆t) =
[
∆xi − ~∆t

2m

(
1
√
g
∂k
√
ggki

)
0

]
gij(x0)
2~∆t/m

[
∆xj − ~∆t

2m

(
1
√
g
∂l
√
g gjl

)
0

]
+ ∆t

~
V (x0),(29b)

=
[
∆xi + ~∆t

2m gkl(x0)Γikl(x0)
]
gij(x0)
2~∆t/m

[
∆xj + ~∆t

2m gmn(x0)Γjmn(x0)
]

+ ∆t
~
V (x0), (29c)

where all functions are evaluated at x0, and Γjmn is the Christoffel symbol, constructed from the metric tensor:

Γkij ≡
1
2 g

kl(∂igjl + ∂jgil − ∂lgij), (30a)
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and we have used the contracting relations:

gklΓikl = − 1
√
g
∂k(√ggik). (30b)

The distribution Eq. (29a) is Gaussian, because the action A0(x,x0; ∆t) is quadratic in x, and the prefactor√
g(x0) dµ(x) is independent of x. One interesting feature about Eq. (29b) is that the average of ∆x is non-

vanishing if the metric tensor is not constant. This is what we call the quantum spurious drift, which has been
missed by many previous studies on path integral representation of quantum mechanics in curved space.

Now let us compare Eqs. (29b) with (24), and make the identification F i = (~/(2m√g))∂k(√ggki), Dij =
~ gij/(2m), and Φ = V/~. Applying Lemma 3, we find the following one-parameter family of representations
for TSGF, all of which equivalent to Eqs. (29):

dv(x)G(x|x0; ∆t) =
√
g(xα) dµ(x)

(2π~∆t/m)d/2
e−A

α(x,x0;∆t), (31a)

Aα(x,x0; ∆t) =
[
∆xi − ~∆t

m

(
1

2√g ∂k
√
ggik − α∂kgik

)
α

]
gij(xα)
2~∆t/m

[
∆xj − ~∆t

m

(
1

2√g ∂l
√
ggjl − α∂lgil

)
α

]
+ ~α

2m∆t
(
∂i
√

1/g ∂k
√
ggki

)
α

− ~α2

2m ∆t(∂i∂jgij)α + ∆t
~
V (xα). (31b)

where (· · · )α means that all functions are evaluated at xα. It is seen from Eq. (31b) that whilst the detailed form
of quantum spurious drift depends on the choice of α, it is always non-vanishing for a generic multi-dimensional
model. The lesson we learn here is that a typical quantum trajectory in curved space or in curvilinear coordinates
behaves as a biased random walk. For the special case α = 1/2, the quantum spurious drift reduces to

~
m

(
1

2√g ∂k
√
ggik − α∂kgik

)
→ ~

2mgik∂k log√g = ~
2mgikΓjkj . (32)

3.2 Classical Markov processes
Let us now apply the same procedure to the classical case, whose TSGF is

G(x|x0; ∆t) = e−∆tL̂FP(x)δ(x,x0), (33)

where the Fokker-Planck operator L̂FP(x) is given in Eq. (15). The first three moments can be calculated
straightforwardly. Ignoring higher order terms, we have

〈1〉= 1 +O(∆t2), (34a)

〈∆xk〉 = ∆t
(

1
√
g
∂j
(√
gLkj

)
− Lkj∂jU

)
0

+O(∆t2), (34b)

〈∆xk∆xl〉 = 2∆tBkl(x0) +O(∆t2), (34c)

where (· · · )0 means that all functions inside the bracket are evaluated at x0. The matrix B is the symmetric
part of L, i.e., 2Bij = Lij + Lji. For classical Markov processes, G(x|x0; ∆t) is interpreted as the transition
probability. Hence Eq. (34a) can be understood as normalization of total probability.

Using these moments, we obtain a Gaussian representation for TSGF:

dv(x)G(x|x0; ∆t) = dµ(x) e−A0(x,x0;∆t)√
(4π∆t)d detBij(x0)

, (35)

where the time-slice action A0(x,x0; ∆t) is:

A0(x,x0; ∆t) =
[
∆xi −∆t

(
1
√
g
∂k
(√
gLik

)
− Lik∂kU

)
0

]
B−1
ij (x0)
4∆t

[
∆xj −∆t

(
1
√
g
∂l
(√
gLjl

)
− Ljl∂lU

)
0

]
, (36)

where (B−1)ij is the inverse matrix of Bij , and all functions are evaluated at the initial point x0.
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Invoking Lemma 3, we obtain a one-parameter family of equivalent representations:

dv(x)G(x|x0; ∆t) = dµ(x) e−Aα(x,x0;∆t)√
(4π∆t)d detBij(xα)

, (37a)

Aα(x,x0; ∆t) =
[
∆xi −∆t

(
F i − 2α∂kBik

)
α

]
B−1
ij (xα)
4∆t

[
∆xj −∆t

(
F j − 2α∂lBjl

)
α

]
+ α (∂iF i)α∆t− α2(∂i∂jBij)α∆t, (37b)

where all functions are evaluated at xα = x+ α∆x, and F i is

F i = ∆t
√

1/g
(
∂k
√
gLik

)
−∆t Lik∂kU. (38)

More generally, we can apply the extension of Lemma 3, and obtain a two-parameter family of equivalent
representations of TSGF:

dv(x)G(x|x0; ∆t) = dµ(x) e−Aα1,α2 (x,x0;∆t)√
(4π∆t)d detBij(xα1)

,

Aα1,α2(x,x0; ∆t) = α2∂iF
i(xα2)∆t− α2

1∂i∂jB
ij(xα1)∆t (39)

+
(

∆xi − F i(xα2)∆t+ 2α1∂lB
il(xα1)∆t

)
B−1
ij (xα1)
4∆t

(
∆xj − F j(xα2)∆t+ 2α1∂mB

jm(xα1)∆t
)
,

where Bij is evaluated at xα1 = x+ α1∆x, and F i at xα2 = x+ α2∆x.

3.3 Two Examples
3.3.1 The problem of Edwards-Gulyaev

We consider the problem studied by Edwards and
Gulyaev [34]: a free particle moves in a flat plane
using polar coordinates. The quantum Hamiltonian
is

Ĥ = −1
2(∂2

x + ∂2
y)

= −1
2

(
1
r
∂rr∂r + 1

r2 ∂
2
φ

)
, (40)

where we have set ~ = m = 1. The classical action is

Scl = 1
2

∫
dt(ẋ2 + ẏ2) (41a)

= 1
2

∫
dt(ṙ2 + r2φ̇2), (41b)

which transforms as a scalar under NTV. In Cartesian
coordinates, the parameter α is irrelevant. The TSGF
is

dxdy G(x, y|x0, y0; ∆t) = dxdy e−(∆x2+∆y2)/(2∆t)

2π∆t ,

(42)

where ∆x = x−x0,∆y = y−y0. The time-slice action
then reads

A(∆x,∆y; ∆t) = ∆x2 + ∆y2

2∆t . (43)

Using polar coordinates:

r =
√
x2 + y2,φ = arctan(y/x), (44)

r0 =
√
x2

0 + y2
0 ,φ0 = arctan(y0/x0), (45)

Edwards and Gulyaev transform Eq. (42) into

dv(r, φ)G(r, φ|r0, φ0; ∆t)

= dv(r, φ) e−[r2+r2
0−2rr0 cos(φ−φ0)]/(2∆t)

2π∆t , (46)

where dv(r, φ) = rdrdφ = dxdy. Defining ∆r = r −
r0,∆φ = φ − φ0, and realizing that ∆r,∆φ ∼

√
∆t,

the negative exponent of Eq. (46) can be expanded
up to order of ∆t:

r2 + r2
0 − 2rr0 cos(φ− φ0)

2∆t = (47)

1
2∆t

[
∆r2 + r2

0∆φ2 + r0∆r∆φ2 − r2
0∆φ4

12

]
+O(∆t 3

2 ).

If we only keep the first two terms in the square
bracket in RHS of Eq. (47), we would obtain(
∆r2 + r2

0∆φ2) /2∆t, which is the counterpart of the
classical action (41b) of a small step ∆t. However,
because ∆r,∆φ ∼

√
∆t, the third and forth terms

in the square bracket scale respectively as ∆t1/2 and
∆t (taking into account the factor 1/∆t outside the
bracket), and hence can not be ignored according to
Lemma 1. Edwards and Gulyaev noticed [34] the
importance of the fourth term, but missed the third
term.

This problem can be easily solved using our
method. We can treat it as either a quantum case
or a classical case. As a quantum case, we note that
the polar coordinate version of Eq. (40) can be written
as Eq. (9) with ~ = m = 1 and V = 0, and

gij =
(

1 0
0 r2

)
, gij =

(
1 0
0 r−2

)
, g(r) = r2.

(48)
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Figure 2: Diffusion in plane with polar coordinates: Because
of the curved nature of the coordinate lines, there is more
space with larger radius than with smaller radius. Hence the
probability of dr > 0 is larger than that of dr < 0.

Substituting these back into Eqs. (29a) and (29b), we
find the TSGF:

dv(r, φ)G(r, φ|r0, φ0; ∆t) = r0 drdφ

2π∆t e
−A0(∆r,∆φ,r0,φ0;∆t),

(49)

where the time-slice action A0(∆r,∆φ, r0, φ0; ∆t) is

A0(∆r,∆φ, r0, φ0; ∆t) =

(
∆r − ∆t

2r0

)2
+ r2

0∆φ2

2∆t .

(50)
Note that Eq. (49) looks very different from

Eq. (46). Eq. (49) is Gaussian in ∆r and ∆φ, whereas
by contrast, Eq. (46) is clearly not Gaussian. How-
ever Lemmas 1 and 2 guarantee that these two dis-
tributions are equivalent in the sense that they share
the same moments up to order ∆t, which are given by

〈1〉 = 1,

〈∆r〉 = ∆t
2r0

, 〈∆φ〉 = 0, (51)

σ2
∆r = ∆t, σ2

∆φ = ∆t
r2
0
.

The most salient feature of Eqs. (51) is that the aver-
age of ∆r is non-vanishing, and inversely proportional
to r0 and hence diminishes with increasing r0. A non-
vanishing average of ∆r is an inevitable consequence
of the curvilinear nature of the polar coordinates. To
see this, consider a particle starting from (r0, φ0), and
diffuse isotropically. As illustrated in Fig. 2, the prob-
ability of r increasing is larger that of r decreasing,
simply because there are more space with larger ra-
dius.

The Hamiltonian Eq. (40) can also be understood
as negative of Fokker-Planck operator Eq. (15) with
U = 0 and Lij = Bij = 1

2g
ij . We can then calculate

TSGF using Eqs. (36), and obtain the same result
Eq. (49).

Finally, using Lemma 3 we also have the α-

representation of TSGF:

dv(r, φ)G(r, φ|r0, φ0; ∆) (52)

= rαdrdφ

2π∆t exp
[
−

(∆r − ∆t
2rα )2 + r2

α∆φ2

2∆t + α∆t
2r2
α

]
.

where rα = αr+(1−α)r0. Compared to Eq. (49), the
action in Eq. (52) has an additional term proportional
to ∆t which is needed to ensure normalization. The
spurious drift is independent of α since ∂igij = 0 in
this case.

3.3.2 Free particle on a unit sphere
Consider a quantum particle moving on a 2-sphere
with unit radius. The Hamiltonian is

Ĥ = − 1
2 sin θ∂θ sin θ∂θ −

1
2 sin2 θ

∂2
φ, (53)

which is in the form of Eq. (9) with x = (θ, φ), g(x) =
sin2 θ, and

gij =
(

1 0
0 sin2 θ

)
, gij =

(
1 0
0 sin−2 θ

)
. (54)

The TSGF can then be obtained using Eqs. (29):

G(θ, φ|θ0, φ0; ∆t)dv(θ, φ) (55)

= sin θ0dθdφ

2π∆t e−[(∆θ−cot(θ0)∆t/2)2+sin2 θ0 ∆φ2]/2∆t,

where dv(θ, φ) = sin θdθdφ. For small θ, these results
reduce to Eq. (49) with θ → r, as it should be.

4 Path-integral from Langevin equa-
tion
It is well known that classical Markov processes can be
represented by either a Fokker-Planck equation, or a
Langevin equation, or a path-integral representation.
It is also known that in the presence of multiplica-
tive noises, there are infinite versions of equivalent
Langevin equations, each corresponding to a partic-
ular scheme of stochastic integration. The transfor-
mations between different versions of Langevin theo-
ries, as well as between Langevin theory and Fokker-
Planck theories are discussed in textbooks, see for ex-
ample Refs. [62, 33]. In the preceding section, we have
established the correspondence between the Fokker-
Planck theory and the α-representation of time-slicing
path integral, i.e., Eq. (36). In this section, we will
show that these representations can be obtained from
the Ito-Langevin dynamics in a remarkably simple
way. This simplicity is a direct consequence of the
linear relation between dx and Wiener noises dWµ,
which is not shared by the Stratonovich-Langevin the-
ory, or other types of Langevin theory where the rela-
tion between dx and noises is nonlinear. Nonetheless,
we will also establish the connection between time-
slicing path integral and ᾱ-Langevin dynamics (for
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definition see Eq. (65a)), and find an equivalent fam-
ily of path integral actions parameterized by two pa-
rameters α, ᾱ. As we will see, the resulting action is
much more complicated.

4.1 Path-integral from Ito-Langevin equation
We start with the Ito-Langevin equation

dxi = F i(x, t)dt+ biµ(x)dWµ(t) (56)

where dx ≡ x(t + dt) − x(t) is the infinitesimal evo-
lution of x during time step dt, and dWµ(t), µ =
1, 2, 3 . . .m are m-dimensional Wiener noises, which
are Gaussian and white, acting on x during the time
interval (t, t+ dt):

〈dWµ(t)dWν(t)〉 = δµνdt. (57)

The product biµ(x)dWµ(t) in Eq. (56) is defined in
Ito’s sense [62], which means that F i(x, t) and biµ(x)
in Eq. (56) are evaluated at x(t). Hence Eq. (56) de-
fines a linear relation between dx(t) and dWµ(t), and
dx(t) is also Gaussian, whose average and variance
can be directly obtained from Eq. (56):

〈dxi〉 = F i(x, t)dt, (58a)〈(
dxi − F idt

)(
dxj − F idt

)〉
= 2Bij(x)dt.(58b)

The symmetric matrix Bij(x), assumed non-singular,
is related to the noise amplitudes biµ in Eq. (56) via

Bij(x) ≡ 1
2
∑
µ

biµ(x)bju(x) = Bji(x). (59)

The Ito-Langevin equation (56) is mathematically
equivalent to the Fokker-Planck equation:

∂tp = − 1
√
g
∂i
(
F i
√
g p
)

+ 1
√
g
∂i∂j

(
Bij
√
g p
)
, (60)

where p(x, t)
√
g(x)ddx is the differential probability.

In two preceding publications [28, 29], we and col-
laborator formulated a covariant Ito-Langevin theory,
where F i in Ito-Langevin equation (56) is parameter-
ized as

F i = 1
√
g

(
∂j
√
gLij

)
− Lij∂jU, (61)

where U is related to the steady state probability den-
sity function (pdf) via U(x) = − log pSS(x), and Lij
can be decomposed a symmetric part Bij and an an-
tisymmetric part Qij , the latter being related to the
steady state current via: J iSS = ∂j

(
Qije−U

)
. The Ito-

Langevin equation (56) and Fokker-Planck equation
(60) then can be rewritten into the covariant forms,
Eqs. (13) and (14). The precise meaning of covariance
is discussed in Refs. [28, 29], and will be discussed in
more detailed in Sec. 5.

Since dx as determined from Ito-Langevin dynam-
ics is Gaussian, we can directly write down its prob-
ability distribution using its first and second order

moments, given in Eqs. (58). Let x1 ≡ x + dx, and
dµ(x1) = ddx1 the infinitesimal volume element at x1
and dv(x1) =

√
g(x1)dµ(x1), we have

dv(x1)G(x1|x; dt) = (62)

dµ(x1) e−(dxi−F i(x,t) dt)
B
−1
ij

(x)

4dt (dxj−F j(x,t) dt)√
(4π)d detBij(x)dt

.

Note that Eq. (62) refers to transition from x to
x1 = x + dx during the time interval dt, whereas
in Eq. (36), the transition is from x0 to x0 + ∆x = x
during the time interval ∆t. With the correspon-
dence of notations (dt, dx,x,x1) ↔ (∆t,∆x,x0,x),
and F i given by Eqs. (61) and (62) indeed reduces to
Eqs. (35) and (36).

4.2 Path-integral for Stratonovich-Langevin
and ᾱ-Langevin
Many physicists prefer Stratonovich version of
Langevin equation:

dxi = F iS(x, t)dt+ biµ(x, t) ◦ dWµ(t), (63a)

where the product biµ(x, t) ◦ dWµ(t) is defined in
Stratonovich’s sense:

biµ(x, t) ◦ dWµ(t) ≡ biµ(x+ dx/2, t) dWµ(t), (63b)

which means that the noise amplitudes are evaluated
as the midpoint x+ dx/2. Because of the hidden de-
pendence of Eq. (63b) on dx, the relation between dx
and the Wiener noises dWµ(t), as defined by Eq. (63a)
is more complicated. This leads to substantial com-
plexity in the calculation of pdf for dx. However,
using Ito’s formula, one can easily prove [62] that the
Stratonovich-Langevin equation (63a) is equivalent to
the Ito-Langevin equation (56) with the following cor-
respondence:

F i(x, t) = F iS(x, t) + 1
2 b

jµ(x, t)∂jbiµ(x, t). (64)

More generally there is a continuous family of rep-
resentations which is parameterized by ᾱ ∈ [0, 1]:

dxi = F iᾱ(x, t)dt+ biµ(x, t)⊗ᾱ dWµ(t), (65a)

where the product biµ(x, t)⊗ᾱ dWµ(t) is defined as

biµ(x, t)⊗ᾱ dWµ(t) ≡ biµ(x+ ᾱ dx, t) dWµ(t), (65b)

which means that the noise amplitudes biµ are evalu-
ated at an intermediate point xᾱ ≡ x+ᾱ dx. We shall
call Eq. (65a) an ᾱ-Langevin equation. Using Ito’s for-
mula, one can easily prove that the ᾱ-Langevin equa-
tion (65a) is equivalent to Ito-Langevin equation (56)
with the following correspondence:

F i(x, t) = F iᾱ(x, t) + ᾱ bjµ(x, t)∂jbiµ(x, t). (65c)

It is important to note that the parameter ᾱ intro-
duced in Langevin equation (65b) is independent of
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the parameter α we introduce earlier in path integral
action in Sec. 3. Whilst in some previous works peo-
ple often identified these two parameters, they is a

priori no reason for them to be the same.
We can use Eq. (64) to replace F i(x, t) in Eq. (62)

in terms of F iS(x, t), and obtain an equivalent expres-
sion for the TSGF:

dv(x1)G(x1|x; dt) =
dµ(x1) exp

{
−
(
dxi − F iSdt− 1

2b
kµ∂kb

iµdt
) B−1

ij

4dt

(
dxj − F jSdt−

1
2b
lν∂lb

jνdt
)}

√
(4π)d detBij

, (66)

where the functions FS , B,B−1 and b are evaluated at x. Further applying Lemma 3, we obtain an equivalent
representation for G(x1|x; dt) where all functions are evaluated at the Stratonovich point x1/2 = x+ dx/2:

dv(x1)G(x1|x; dt) = dµ(x1)√
(4π)d detBij(x1/2)

exp
{

−
(
dxi − F iS(x1/2)dt+ 1

2b
iµ(x1/2)∂kbkµ(x1/2)dt

)B−1
ij (x1/2)

4dt

(
dxj − F jS(x1/2)dt+ 1

2b
iµ(x1/2)∂kbkµ(x1/2)dt

)
− dt

2 ∂iF
i
S + dt

8
(
(∂ibiµ)(∂jbjµ)− (∂ibjµ)(∂jbiµ)

)}
. (67)

Recall that it does not matter whether we evaluate the last two terms in Eq. (67) (both linear in dt) at x or at
x1/2.

More generally, we may use the ᾱ-Langevin equation (65) and evaluate all functions at xα = x+ αdx. The
resulting TSGF is even more complicated:

dv(x1)G(x1|x; dt) = dµ(x1)
(4π)d/2

√
detBij(xα)

exp
{

−
(
dxi − F iᾱdt − ᾱ bkµ∂kbiµdt+ 2α∂kBikdt

)
α

B−1
ij (xα)
4 dt

(
dxj − F jᾱdt− ᾱ blν∂lbjνdt+ 2α∂lBjldt

)
α

−α∂iF iᾱ dt − αᾱ ∂i(bkµ∂kbiµ) dt+ α2∂i∂jB
ij dt

}
. (68)

The spurious drift is now given by (ᾱ bkµ∂kbiµ −
2α∂kBik)dt, which depends both on α and on ᾱ.
It can be seen that for a general multi-dimensional
model, there is no way to cancel the spurious drift by
tuning of parameters α, ᾱ. For α = ᾱ = 1/2, Eq. (68)
reduces to Eq. (67). For α = ᾱ = 0, Eq. (68) reduces
to Eq. (62), which is the simplest of all representa-
tions. The case α = ᾱ is in accordance with the result
given by Langouche et. al. [27, 53]. For 1d case and
α = ᾱ, our result further reduces to that of Lau and
Lubensky [32].

4.3 Edwards-Gulyaev revisited
Let us revisit the problem of Edwards and Gulyaev
using Langevin theory. The Langevin equations of a
free particle in Cartesian coordinates are

dx = dW1(t); dy = dW2(t). (69)

The transition probability is just

dxdy G(x1, y1|x, y; dt) = dxdy

2π exp−dx
2 + dy2

2dt ,

(70)

where dx = x1 − x, dy = y1 − y. Now transforming
to polar coordinate using Eq. (44) and invoking the
property of the Winer process dW1(t)2 = dW2(t)2 =
dt, dW1(t)dW2(t) = 0, we obtain

dr = cosφdx+ sinφdy + 1
2
∂2r

∂x2 dx
2 + 1

2
∂2r

∂y2 dy
2

= cosφdx+ sinφdy + dt

2r ; (71a)

dφ = − sinφ
r

dx+ cosφ
r

dy + ∂2φ

∂x2 dx
2 + ∂2φ

∂y2 dy
2

= − sinφ
r

dx+ cosφ
r

dy. (71b)

Using these to express dx, dy in terms of dr, dφ in
Eqs. (69), we obtain the Ito-Langevin equations in
polar coordinates:

dr = 1
2r dt+ b1mdWm; (72a)

dφ = b2mdWm. (72b)

where the matrix bim is given by(
bim
)

=
(

cosφ sinφ
− sinφ/r cosφ/r

)
, (73)
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from which we can construct Bij using Eq. (59).
So we can write the transition probability as

dv(r1, φ1)G(r1, φ1|r, φ, dt) (74)

= rdµ(r1, φ1)
2πdt exp−

(
(dr − dt/(2r))2

2dt + r2dφ2

2dt

)
,

where dv(r1, φ1) = r1dr1dφ1 and dµ = dr1dφ1.
This result is identical to Eqs. (49), under the
correspondence of notations: (dr1, dφ1, dt, r, φ) ↔
(∆r,∆φ,∆t, r0, φ0).

The Ito-Langevin equations (72) can also be trans-
formed into Stratonovich-Langevin form:

dr = 1
2r dt+ b1m ◦ dWm; (75a)

dφ = b2m ◦ dWm. (75b)

which is formally identical to the Ito form (72), except
that the Ito products are replaced by the Stratonovich
products. The path-integral representation with α =
1/2 can be obtained using Eq. (67):

dv(r1, φ1)G(r1, φ1|r, φ; dt) (76)

=
r1/2dµ(r1, φ1)

2πdt exp
[
−

(dr − dt
2r1/2

)2 + r2
1/2dφ

2

2dt + dt

4r2
1/2

]
,

which coincides with Eq. (52) under the correspon-
dence: (dr1, dφ1, dt, r, φ) ↔ (∆r,∆φ,∆t, r0, φ0), and
α→ 1/2.

5 Covariance
The principle of covariance dictates that all basic
equations of a physics theory must be represented
in tensor forms, which transform according to tensor
algebra under nonlinear transformation of variables
(NTV). As such, these equations have the same forms
in different coordinate systems, and their validity is
independent of choice of coordinate systems. The
principle of covariance has served as a cornerstone for
the major parts of modern theoretical physics, includ-
ing general relativity and gauge theories of elementary
interactions. The fundamental assumption underly-
ing this principle is that laws of physics are objective,
whereas choices of coordinate system are subjective.
Change of coordinate system does not change physi-
cal laws, but only leads to equivalent representations
of the same laws.

In the setting of time-slicing path integral, the is-
sue of covariance turns out to be more subtle than
that in general relativity. This is because the objects
∆x, which appears ubiquitously in TSGF, are not
infinitesimal vectors in conventional sense. It is im-
portant to note that even though a large number of
works [65, 66, 57, 64, 67, 68, 35, 27, 52, 40] were pub-
lished on the topic of path integral in curved space,
most of these works do not address explicitly how
action transform under general NTV. Edwards and
Gulyaev [34] argued that the usual chain rule of cal-
culus is not applicable in coordinate transformation
of path integral, but did not supply detail. Dein-
inghaus and Graham [60] developed path integral in
curved space using normal coordinate systems, which
was also discussed and developed by Langouche et.
al. [27]. More recently, Cugliandolo et. al. [55, 56, 57]
made one dimensional path integral covariant under
usual calculus rules by adjusting the interpolation pa-
rameter α. It remains to be shown whether this ap-
proach works for higher dimensions.

We first note that we have formulated both the
quantum Hamiltonian Eq. (9) and the classical
Fokker-Planck operator Eq. (15) in terms of tensors
and transform as scalars under NTV. For the quan-
tum case, the tensor objects are covariant metric ten-
sor gij and scalar potential V . For the classical case,
the tensor objects are the contra-variant tensor Lij ,
the covariant metric tensor gij , and the scalar U(x).
Our path integral representations for TSGT, Eqs. (29)
for the quantum case and Eqs. (39) for the classical
case, are also formulated in terms of these tensor ob-
jects. When one makes a NTV, these tensor objects
transform in the following way:

p(x)→ p′(x′) = p(x), (77a)
V (x)→ V ′(x′) = V (x), (77b)
U(x)→ U ′(x′) = U(x), (77c)

gij(x)→ g′ab(x′) = ∂xi

∂x′a
gij(x) ∂x

j

∂x′b
, (77d)

biµ(x)→ b′aµ(x′) = ∂x′a

∂xi
biµ(x), (77e)

Lij(x)→ L′ab(x′) = ∂x′a

∂xi
Lij(x)∂x

′b

∂xj
. (77f)

We can now use the transformed tensors listed in
Eqs. (77) to construct α-representation of TSGF in
new coordinate systems. For example, the α = 0 rep-
resentation of quantum TSGF in the new coordinate
system is given by

dv(x′)G′(x′|x′0; ∆t) =
√
g′(x′0) dµ(x′)
(2π~∆t)d/2

e−A
′0(x′,x′0;∆t), (78a)

A′0(x′,x′0; ∆t) =
[
∆x′a − ~∆t

2

(
1√
g′
∂′c
√
g′g′ca

)
0

]
g′ab(x′0)
2~∆t

[
∆x′b − ~∆t

2

(
1√
g′
∂′d
√
g′ g′db

)
0

]
+ ∆t

~
V ′(x′0),

=
[
∆x′a + ~∆t

2 g′cd(x′0)Γ′acd(x′0)
]
g′ab(x′0)
2~∆t

[
∆x′b + ~∆t

2 g′ef (x′0)Γ′jef (x′0)
]

+ ∆t
~
V ′(x′0), (78b)
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where ∆x′a = x′a − x′a0 . Obviously Eqs. (78) have the same forms as Eqs. (29), but with all tensors and
coordinates replaced by the transformed versions. Similar constructions can be made for α 6= 0 representations
of quantum TSGF, and also for the classical TSGF.

But one may also attempt to apply NTV directly
to the action Aα(x,x0; ∆t) in Eq. (31b), and hope
to get the action A′α(x′,x′0; ∆t). This expectation
seems rather natural, since it is known that the clas-
sical action (8) transform as a scalar. Careful analy-
sis however indicates that the action for time-slicing
path integral is not a scalar in usual sense. In usual
calculus, ∆x behaves as a covariant infinitesimal vec-
tor: ∆x′a =

(
∂x′a/∂xi

)
∆xi. But this transforma-

tion law can not hold in the presence case, because
we know that quadratic terms ∆x∆x are of order
∆T and hence important. On the other hand, if we
treat ∆x,∆x′ as finite quantities, then ∆x should be
treated as a fully nonlinear function of ∆x′. Substi-
tuting this function into Eq. (31b) we would obtain
a representation of TSGF that is generically outside
the domain of α-representation.

The example of Edwards-Gulyaev serves to illus-
trate these results. The action in Cartesian coordi-
nates is given by Eq. (43). If ∆x,∆y transform as
usual vectors, we would obtain (∆r2 + r2

0∆φ2)/2∆t
as the transformed action, which, comparing with the
correct result Eq. (50), misses the spurious drift. On
the other hand, if we treat ∆x,∆y as finite quantities,
we would obtain the TSGF as given by Eq. (46), which
is of course correct. However the resulting action does
not have the form of α-representation of TSGF.

These results may appear very surprising, because
in the definition of Green’s function, Eq. (20), both
the operator L̂ and the Dirac delta function δ(x,x0)
are scalars. Hence the Green’s function and the TSGF
must also be scalars. But then how do we understand
the transformation rules of time-slice action?

Recall that the α-representations of TSGF are con-
structed to reproduce all moments of TSGF up to the
order of ∆t. There are infinitely many other repre-
sentations of TSGF which do not assume the form of
Eqs. (31) and (39) but yet they are equivalent in the
sense of Lemma 1. To understand the covariance of
our α-representations, we must confine ourself within
the domain of these representations. Below we will
show that for α = 0, the time-slicing action trans-
forms as a scalar, if ∆x transform according to Ito’s
formula.

5.1 α = 0 Representation of Classical Path
Integral
Let us first discuss the case of classical stochastic
processes. In two previous works [28, 29], we and
collaborator have established the covariance of both
Ito-Langevin theory and Fokker-Planck theory. More
specifically, we have shown that under the transfor-
mation rules Eqs. (77), the Fokker-Planck equation

(14), which we rewrite below:

∂t p = 1
√
g
∂i
√
gLij(∂j + (∂jU))p = L̂FPp, (14)

is transformed into:

∂tp
′ = 1√

g′
∂′a
√
g′L′ab

(
(∂′bU ′) + ∂′b

)
p′ = L̂′FPp

′, (79)

which has the same form as Eq. (14). The Fokker-
Planck operator transforms also as a scalar:

L̂′FP(x′) = L̂FP(x). (80)

Furthermore, under the transformation rules
Eqs. (77) together with Ito’s formula [62]:

dx′a = ∂x′a

∂xi
dxj +Bij

∂2x′a

∂xi∂xj
dt, (81)

the Ito-Langevin equation (13), which we rewrite be-
low

dxi +
(
Lij∂jU −

1
√
g
∂i
√
gLij

)
dt = biµdWµ(t),

(13)

is transformed into:

dx′a +
(
L′ab∂′bU

′ − 1√
g′
∂′b
√
g′L′ab

)
dt = b′aαdWα,

(82)

which again has the same form as Eq. (13). Ito’s
formula (81) was derived by using Eq. (13) and the
property of Wiener noises (57), and keeping terms up
to O(dt) [62, 33, 63].

Equation (81) can be understood as a linear inho-
mogeneous relation between two stochastic variables
dx, dx′. Taking the average, we find

〈dx′a〉 = ∂x′a

∂xi
〈
dxi
〉

+ ∂2x′a

∂xi∂xj
Bijdt, (83)

But according to the Langevin equations, the averages
of dxi and dx′a are respectively:

〈dxi〉 = −Lij∂jUdt+ 1
√
g
∂j
√
gLijdt, (84a)

〈dx′a〉 = −L′ab∂′bU ′dt + 1√
g′
∂′b
√
g′L′abdt.(84b)

Substituting these back into Eq. (83), we obtain:

−L′ab∂′bU ′ +
1√
g′
∂′b
√
g′L′abdt (85)

=∂x
′a

∂xi

(
−Lij∂jU + 1

√
g
∂j
√
gLij

)
+ ∂2x′a

∂xi∂xj
Bij .
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According to Eqs. (77), Lij∂jU transforms as a vector,
hence we further obtain:

1√
g′
∂′b
√
g′L′ab =∂x

′a

∂xi

(
1
√
g
∂j
√
gLij

)
+ ∂2x′a

∂xi∂xj
Bij .

(86)

This relation actually can be directly obtained by us-
ing Eqs. (77), together with the identity (proved in
the appendix of Ref. [28]):

∂

∂x′a

(
∂x′a

∂xi
J

)
= 0, (87)

where J = det
(
∂x′a

∂xi

)
is the Jacobian,

Combining Eqs. (81) with (85), we see that even
though neither dxi nor

(
Lij∂jU − 1√

g∂i
√
gLij

)
dt

transforms as a vector, the linear combination
dxi +

(
Lij∂jU − 1√

g∂i
√
gLij

)
dt, which constitutes

the LHS of Eq. (13), does transform as a contra-
variant vector. But the same combination also ap-
pear in the action given in Eq. (36) (here we identify
∆x with dx, and ∆t with dt). We hence conclude
that the time-slice action A0(x,x0,∆t) for classical
Markov process transforms as a scalar under NTV, if
∆x transform according to Ito’s formula (81):

∆x′a = ∂x′a

∂xi
∆xj +Bij

∂2x′a

∂xi∂xj
∆t. (88)

Ito-Langevin equation are mostly frequently written
in an alternative form of Eq. (56), where the system-
atic force appear in RHS. From the perspective of
covariance, however, the form Eq. (56) is less conve-
nient, because neither side of it transforms as a vector.

We have not found any simple transformation
rule for ∆x which makes the time-slice action
Aα(x,x0,∆t) with α 6= 0 invariant. It hence appears
that the α = 0 representation of time-slicing path in-
tegral is special.

5.2 α = 0 Representation of Quantum Path
Integral
We can discuss the covariance of quantum time-slicing
path integral by making analogy with the classical
case. Firstly, we can read off the first moments of
∆x′a and ∆xi from Eqs. (78) and (29):

〈∆x′a〉 = ~∆t
2m
√
g′
∂′b
√
g′ g′ab, (89a)

〈
∆xi

〉
= ~∆t

2m√g ∂k
√
ggik. (89b)

Alternatively, we can also treat ∆x′a as a function of
∆x and x0, expand it in terms of ∆x up to the second
order:

∆x′a = ∂x′a

∂xi
∆xi + 1

2
∂2x′a

∂xi∂xj
∆xi∆xj + · · · . (90)

Taking average of this, and using Eqs. (28) we find

〈∆x′a〉= ∂x′a

∂xi
〈
∆xi

〉
+ ~∆t

2m
∂2x′a

∂xi∂xj
gij . (91)

This relation indicates that the average of ∆x trans-
forms inhomogeneously under NTV.

Combining Eqs. (89) and (91) we obtain:

1√
g′
∂′b
√
g′ g′ab = ∂x′a

∂xi
1
√
g
∂k
√
ggik + ∂2x′a

∂xi∂xj
gij ,

(92)
which can actually be proved independently, just like
Eq. (86).

Now comes the most interesting observation. If we
impose the following transformation law on ∆x:

∆x′a = ∂x′a

∂xi
∆xi + ~

2m gij
∂2x′a

∂xi∂xj
∆t, (93)

the linear combination

∆xi − ~∆t
2m√g ∂k

√
ggki

transforms as a contra-variant vector, and conse-
quently the α = 0 time-slice action Eq. (29b) trans-
forms as a scalar, i.e., it remains invariant under NTV.
We call Eq. (93) the quantum Ito’s formula because it
involves the Planck constant ~, and is closely related
to Ito’s formula (88) in the classical case.

6 Conclusion and Outlook
Let us summarize the main results we have achieved
in this work: (1) With Lemma 1 we have established
a rigorous criterion for equivalence between differ-
ent representations of time-slicing path integrals. (2)
With Lemma 2 we have demonstrated the existence
of a Gaussian representation for the time-slice Green’s
function. (3) With Lemma 3 we constructed a con-
tinuous family of equivalent time-slicing path-integral
actions, parameterized by an interpolation parameter
α ∈ [0, 1]. (4) We have established the connection be-
tween Langevin dynamics and time-slicing path inte-
gral, and have clarified the origin and transformation
rules of spurious drift. (5) We have explained why
in general path integral actions do not transform as
scalars under usual rules of tensor calculus. We have
also explicitly demonstrated that the α = 0 represen-
tation of path integral action transforms as a scalar if
∆x transform according to Ito’s formula, while all
other ingredients transform according to the usual
rules of tensor calculus. Our results resolve several
major confusions regarding time-slicing path integral
in curved space, and provide a rigorous, practical, and
manifestly covariant calculation scheme.

In the future, we shall apply the path-integral
method developed here to study concrete quantum
and classical stochastic dynamics in curved space. We
shall also try to develop a similar method for field the-
ory in curved space, as well as for non-abelian gauge
theory and nonlinear sigma field theory.
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A Proof of Lemma 3
We want to prove that the following family of time-slice Green’s function (TSGF) is equivalent to each other
for all α ∈ [0, 1], in the sense of Lemma 1:

Gα(x|x0; ∆t)dµ(x) = dµ(x)√
(4π∆t)dD(xα)

exp
{

−
(

∆xi − F i(xα)∆t+ 2α∂lDil(xα)∆t
)D−1

ij (xα)
4∆t

(
∆xj − F j(xα)∆t+ 2α∂kDjk(xα)∆t

)
− α∂iF i(xα)∆t+ α2∂i∂jD

ij(xα)∆t− Φ(xα)∆t
}
, (94)

with dµ(x) = ddx and xα = x+α∆x0. Here and below we use D(x) to denote the determinant of the symmetric
matrix Dij(x). We only need to prove that Eq. (94) is equivalent to the α = 0 version:

G0(x|x0; ∆t)dµ(x) = dµ(x)√
(4π∆t)dD(x0)

exp
{
−
(

∆xi − F i(x0, t)∆t
)D−1

ij (x0)
4∆t

(
∆xj − F j(x0, t)∆t

)
− Φ(x0)∆t

}
,

(95)

which was already shown in Eq. (24). These TSGFs are understood as functions of x with x0,∆t serving as
parameters.

According to Lemma 1, we only need to show that Eqs. (95) and (94) have equal moments up to the order
∆t. Since ∆x ∼

√
∆t, we see that the difference between Φ(x0)∆t and Φ(xα)∆t is of order ∆t3/2 and hence

makes no contribution. It then follows that we only need to prove the equivalence for the case Φ = 0. Below
we will set Φ = 0. Consequently the zeroth order moments of Gα(x|x0; ∆t)dµ(x) equals unity, and the TSGFs
can be understood as a classical probability distributions up to the order ∆t.

It is convenient to introduce a set of scaled variables ξi via

∆xi = ξi
√

∆t+ F i(x0)∆t. (96)

Equation (95) can then be rewritten as (recall we have set Φ = 0)

p0(ξ;x0)ddξ = ddξ√
(4π)dD(x0)

e−ξ
iD−1

ij
(x0)ξj/4, (97)

with shows that ξ have vanishing averages and variances 2Dij(x). We can similarly rewrite Eq. (94) in terms
of ξ,x0 and ∆t in the following form:

pα(ξ; ∆t,x0)ddξ = ddξ√
(4π)d detDij(x0)

e−ξ
iD−1

ij
(x0)ξj/4−δAα(ξ;∆t,x0), (98)

where δAα(ξ; ∆t,x0) can be expanded in terms of ∆t, up the first order. Higher order terms do not contribute
to the continuum limit according to Lemma 1. The result is

δAα = A1/2
√

∆t+A1∆t+ · · · , (99a)

A1/2 = −α4
(
D−1 (∂kD)D−1)

ij
ξiξjξk + α

2Tr
(
D−1∂iD

)
ξi + αD−1

ij (∂lDjl)ξi, (99b)

A1 = A1,1 +A1,2 +A1,3 +A1,4 + α∂iF
i − α2∂i∂jD

ij , (99c)

A1,1 = −α4
(
D−1(∂kD)D−1)

ij
F kξiξj + α

2Tr
(
D−1(∂iD)

)
F i, (99d)

A1,2 = −α2 (∂kF i)D−1
ij ξ

kξj , (99e)

A1,3 = −α
2

8
(
D−1(∂i∂jD)D−1)

lm
ξiξjξlξm + α2D−1

ij (∂k∂lDik)ξjξl + α2

4 Tr
(
D−1∂i∂jD

)
ξiξj , (99f)

A1,4 = α2

4 (D−1(∂iD)D−1(∂jD)D−1)mnξiξjξmξn −
α2

4 Tr
(
D−1(∂iD)D−1(∂jD)

)
ξiξj

− α2(∂lDil)
(
D−1(∂kD)D−1)

ij
ξkξj + α2(∂lDil)D−1

ij (∂mDjm), (99g)

where it is understood that all functions in Eqs. (99) are evaluated at x0. Note that δAα vanishes as either α
or ∆t goes to zero.
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Expanding Eq. (98) in terms of ∆t, we find

pα = p0

(
1−A1/2

√
∆t+

[
1
2

(
A1/2

)2
−A1

]
∆t+O(∆t3/2)

)
. (100)

Using this and Eq. (97), we can expand the moments of pα in terms of ∆:∫
pαd

dξ = 1 +
〈

1
2

(
A1/2

)2
−A1

〉
0

∆t+ o(∆t), (101a)∫
pαξ

iddξ = −
〈
A1/2ξi

〉
0

∆t1/2 +O(∆t), (101b)∫
pαξ

iξjddξ = 2Dij +
〈
A1/2ξiξj

〉
0

∆t1/2 +O(∆t), (101c)

where 〈 · 〉 means average over p0(ξ;x0) as defined in Eq. (97):

〈f(ξ)〉0 ≡
∫
p0(ξ;x)f(ξ)ddξ. (102)

It is evident that all moments of pα can be expanded in terms of ∆t.
On the other hand, using Eq. (96), we can relate the moments of Gα to those of pα. Combining with Eqs. (101)

we can expand the moments of Eq. (94) as∫
Gαdµ(x) = 1 +

〈
1
2

(
A1/2

)2
−A1

〉
0

∆t+ o(∆t), (103a)∫
Gα∆xidµ(x) = F i(x0)∆t−

〈
A1/2ξi

〉
0

∆t+ o(∆t), (103b)∫
Gα∆xi∆xjdµ(x) = 2Dij(x0)∆t+ o(∆t), (103c)∫

Gα∆xi∆xj∆xk · · · dµ(x) = o(∆t). (103d)

Recall that we need to prove that, up to ∆t, these moments equal to those of G0(x|x0; ∆t)dµ(x), which are
already shown in Eqs. (23c) (with Φ set to zero, again). By inspection, we see that equality of zero-th and first
order moments are guaranteed as long as we can prove the following identities:

〈
A1〉

0 −
1
2

〈(
A1/2

)2
〉

0
= 0, (104)〈

A1/2ξi
〉

0
= 0. (105)

Equality of second moments and higher moments are automatically guaranteed.
Proof of Eq. (104) is very complicated, and is presented in Sec. A.1. Here let us prove Eq. (105). Since p0

is Gaussian in ξ, the LHS of Eq. (105) can be calculated using Wick’s theorem. Substituting Eq. (99b) into
Eq. (105) and using Wick’s theorem, we find〈
A1/2ξi

〉
0

= −α4
(
D−1(∂kD)D−1)

lj
〈ξiξjξkξl〉+ α

2Tr
(
D−1∂lD

)
〈ξiξl〉+ αD−1

kj (∂lDjl)〈ξiξk〉

= −α
(
D−1(∂kD)D−1)

lj
(DijDkl +DikDjl +DilDjk) + αDilD−1

jk ∂lD
jk + 2αD−1

kj (∂lDjl)Dik

= −α(∂kDki +DikD−1
lm∂kD

ml + ∂kD
ik) + αDilD−1

jk ∂lD
jk + 2α∂lDil = 0, (106)

which establishes the validity of Eq. (105).

A.1 Proof of Eq. (104)
Using Eq. (99c) we may rewrite the LHS of Eq. (104) as

〈
A1〉

0 −
1
2

〈(
A1/2

)2
〉

0
=
〈
A1,1〉

0 +
〈
A1,2〉

0 +
〈
A1,3〉

0 + α∂iF
i − α2∂i∂jD

ij +
〈
A1,4〉

0 −
1
2

〈(
A1/2

)2
〉

0
,(107)
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Let us calculate these averages using Eqs. (99) and Wick’s theorem:

〈A1,1〉0 = −1
4
(
αD−1(∂kD)D−1)

ij
F k1 〈ξiξj〉0 + 1

2Tr
(
αD−1(∂iD)

)
F i

= −α2D
ijD−1

im(∂kDml)D−1
lj F

k + α

2D
−1
jk (∂iDjk)F i = 0, (108)〈

A1,2〉
0 = −α2 (∂kF i)D−1

ij 〈ξ
kξj〉0 = −α2 2DkjD−1

ij ∂kF
i = −α∂iF i, (109)〈

A1,3〉
0 = −α

2

8 D−1
lm (∂i∂jDmn)〈ξiξjξlξn〉0 + α2D−1

ij (∂k∂lDik)〈ξjξl〉0 + α2

4 Tr
(
D−1(∂i∂jD)D−1)〈ξiξj〉0

= −α
2

2 D−1
lm (∂i∂jDmn)

(
DijDln +DilDjn +DinDjl

)
+ 2α2D−1

ij (∂k∂lDik)Djl + α2

2 DijD−1
kl ∂i∂jD

lk

= α2∂i∂jD
ij , (110)

Summing up these three equations, we find that the sum of the first five terms in Eq. (107) vanishes identically:〈
A1,1〉

0 +
〈
A1,2〉

0 +
〈
A1,3〉

0 + α∂iF
i − α2∂i∂jD

ij = 0. (111)

Additionally we have

〈A1,4〉0 = α2

4 (D−1(∂iD)D−1(∂jD)D−1)mn〈ξiξjξmξn〉0 −
α2

4 Tr
(
D−1(∂iD)D−1(∂jD)

)
〈ξiξj〉0

−α2(∂lDil)
(
D−1(∂kD)D−1)

ij
〈ξkξj〉0 + α2(∂lDil)D−1

ij (∂mDjm)

= α2
[
(∂mDjk)D−1

kl (∂nDlr)D−1
rj D

mn + (∂mDmk)D−1
kl (∂nDln) + (∂mDsk)D−1

kl (∂sDlm)

−1
2D
−1
ik (∂sDkl)D−1

lm (∂tDmi)Dst − 2(∂sDst)D−1
tj (∂lDjl) + (∂lDil)D−1

ij (∂kDjk)
]

= α2
[

1
2(∂mDjk)D−1

kl (∂nDlr)D−1
rj D

mn + (∂mDsk)D−1
kl (∂sDlm)

]
. (112)

Similarly using Eq. (99g) and Wick’s theorem, we can calculate the last term in Eq. (107):

1
2

〈(
A1/2

)2
〉

0
= α2 [〈A2,1〉0 + 〈A2,2〉0 + 〈A2,3〉0 + 〈A2,4〉0

]
, (113)

〈A2,1〉0 ≡
1
4D

ijD−1
mn(∂iDmn)D−1

st (∂jDst) + (∂lDjl)D−1
jm(∂nDmn) +D−1

kl (∂mDkl)(∂nDmn),

〈A2,2〉0 ≡
1
4D
−1
il (∂kDlm)D−1

mjD
−1
sp (∂rDpq)D−1

qt (DijDkrDst + other 14 pairing terms),

〈A2,3〉 ≡ −1
2D
−1
lj (∂iDjl)D−1

pm(∂kDnm)D−1
nq (DikDpq +DipDkq +DiqDpk),

〈A2,4〉0 ≡ −D−1
ij (∂lDlj)D−1

pm(∂kDnm)D−1
nq (DikDpq +DipDkq +DiqDpk). (114)

Adding up all these four terms (which demands great patience), we find

1
2

〈(
A1/2

)2
〉

0
= α2

[
1
2(∂mDjk)D−1

kl (∂nDlr)D−1
rj D

mn + (∂mDsk)D−1
kl (∂sDlm)

]
=
〈
A1,4〉

0 , (115)

where in the last step we have used Eq. (112). Finally combining Eq. (115) with Eq. (111), we find that Eq. (107)
vanishes identically. This establishes the validity of Eq. (104).

This completes our proof of equivalence between Eqs. (94) and (95).
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