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Repetitive measurements can cause freezing of dynamics of a quantum state, which is known as
quantum Zeno effect. We consider an interacting one-dimensional fermionic system and study the
fate of the many-body quantum Zeno transition if the system is allowed to evolve repetitively under
the unitary dynamics, followed by a measurement process. Measurement induced phase transitions
can be accessed by tuning a suitably defined parameter representing measurement strength (fre-
quency). We use different diagnostics, such as long-time evolved entanglement entropy, purity and
their fluctuations in order to characterize the transition. We further perform a finite size scaling
analysis in order to detect the transition points and evaluate associated scaling exponents via an
unbiased numerical strategy of cost function minimization, which provides a platform to compare
finite-size scaling ansätze proposed previously in context of many-body Zeno transition.

I. INTRODUCTION

Quantum measurement is a crucial element of quantum
theory, and in particular in the fledgling field of quantum
technologies. It finds important roles, e.g., in resource
theory [1–4] and quantum computation [5–7], and leads
to fascinating quantum phenomena, such as the quantum
Zeno effect [8, 9]. In the quantum Zeno effect, frequent
wave function collapses, induced by repetitive measure-
ments, tend to stagnate the time evolution of a quan-
tum mechanical system. Since its initial conceptualiza-
tion [10], there has been a substantial number of studies
on the quantum Zeno phenomenon in various systems
[12–19]. In particular, quantum Zeno effects in quantum
many-body systems have drawn significant attention in
recent times [19–23].

The concept of entanglement entropy from quantum
information theory often leads towards building a natural
information-theoretic understanding of quantum many-
body phenomenology [24, 25]. Importantly, entangle-
ment entropy is now accessible in cold-atom experiments
[26, 27]. Recent works have pointed out a phase tran-
sition in the form of (sub)-volume-law to area-law (in
the quantum Zeno regime) scaling of entanglement en-
tropy in presence of quantum measurements. In general,
a weakly entangled quantum state under a entanglement-
rich driving Hamiltonian accumulates additional (quan-
tum) correlations between its sub-parts during the course
of unitary evolution. Accordingly, the bipartite entangle-
ment entropy of a long-time evolved state turns out to be
of the order of the system size. However, such growth of
the entanglement entropy is inhibited in presence of the
quantum measurements. In particular, long-time evolved
entanglement entropy becomes of the order of the bound-
ary area once the projective measurements are frequent
enough. Hence, measurement frequency acts as a control
parameter that induces volume- to area-law transition,
and consequently, leads the system in the quantum Zeno
phase.

Measurement-induced phase transitions have been re-
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FIG. 1. Phase diagram for quantum many-body Zeno tran-
sition as a function of measurement strength g and inter-
action strength V . The dashed line corresponds to gc =
2.26 exp(−0.31V 0.42), which is the best fit lines obtained the
numerical data.

ported in many-body context, such as in random circuits
[28–36], spin chains [37–40], and also very recently in
long-range model [41]. Particularly, the nature of the
transitions and their scalings hold special interest [42, 43].
A number of recent studies suggest a conformal criti-
cal point in the measurement induced transition [44–48],
which differs from the treatment via algebraic scaling
ansatz initially proposed by Li et. al. [28, 30]. The many-
body complexity, along-with the probabilistic descrip-
tion of quantum mechanics, makes it difficult to cross-
examine the quality of the proposed scaling ansätze. This
work adopts an unbiased means via so-called cost func-
tion minimization approach in order to closely inspect
the scaling associated with measurement-induced phase
transition in a one-dimensional interacting fermionic sys-
tem.

The generic feature of measurement-induced phase
transition in entanglement entropy can be identified in
the system under study, as one may expect by the virtue
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of universality. We, in particular, aim towards per-
forming an accurate finite-size scaling analysis at finite
interactions and report the phase diagram from there-
off. In order to do so, the scaling analyses are per-
formed within a general framework via several comple-
mentary measures, that includes, apart from entangle-
ment entropy, another quantity - purity of the reduced
density matrix. Purification plays important roles in
several quantum-information theoretic ideas and appli-
cations [49–53]. Particularly, there has been a steady
experimental development towards projective measure-
ment based purification schemes in context of quantum
computers [54–57]. Similar to the entanglement entropy,
there is a measurement-induced dynamical phase transi-
tion in linearized purity as well. A pure product state
under weak measurement strength is expected to gain
a considerable amount of entanglement during unitary
evolution, ensuring a close to maximally mixed reduced
density matrix. In this regime mixedness rapidly grows
with system size. Enhanced measurement strength im-
plies an enhanced purification of the reduced density ma-
trix of the system. Beyond the transition point the purity
obeys the area law in the quantum Zeno phase.

The results are bench-marked following two key steps.
First, the critical points are first coarse-grained from the
extremums of the entanglement fluctuations. We then re-
sort to a newly introduced unbiased numerical recipe for
extracting the fine-grained transition points [58]. This is
done via cost function approach in order to estimate the
quality of the finite-size collapse of the data correspond-
ing to the transition indicators under study, i.e. entan-
glement entropy and purity. It is worth mentioning that
all the indicators offer a consistent picture over the ex-
tracted information regarding the transition points and
the scaling exponents over a wide range of interactions
under consideration. Higher quality in the data collapse
confirmed by the cost function minimization approach
clearly asserts the conformal nature of the critical point.
Moreover, we investigate the robustness of our scaling
analysis by considering different initial states.

The rest of the paper is arranged as follows. Sec. II in-
troduces the model and measurement protocols are pre-
sented. Section II also presents the phase-diagram show-
ing the measurement-induced Zeno transition line and
the details of involved methodologies are provided in the
following sections. The entanglement dynamics and re-
lated scaling analysis are described in Sec. III. Section
IV put forward the analysis related to purity. The con-
clusions are drawn in Sec. V. In Sec. VII, Appendix I
contains a short discussion over the choice of initial state.

II. MODEL AND PROTOCOLS

We consider a one-dimensional fermionic lattice of
length L described by following Hamiltonian:

Ĥ = −
∑
j

(ĉ†j ĉj+1 + H.c.) + V
∑
j

n̂j n̂j+1,

where ĉ†j ( ĉj) is the fermionic creation (annihilation) op-

erator at site i, n̂j = ĉ†j ĉj is the number operator, and
V is the interaction strength. We use periodic boundary
condition to reduce the finite-size effects. We consider fol-
lowing stochastic protocol: A many-body quantum state
evolves under the driving Hamiltonian Ĥ for a time in-
terval ∆t, and it is then followed by measurement carried
out simultaneously on each L lattice sites. For a given
choice of an initial state, a long-time evolved steady state
is achieved by repeating the protocol for several times.
Let, ψ(t) is the evolved state at the time t. The evolved
state at time t+∆t under one-time action can be written
as |ψ(t+∆t)〉 = M̂Û |ψ(t), where Û = e−iĤ∆t and hence-

forth, t will be in units of ~. The operator M̂ associated
with projective measurements is given by M̂ = ⊗Lj=1M̂

r
j

with r = 0,1, where

M̂0
j = n̂j +

√
1− η(1− n̂j),

M̂1
j =
√
η(1− n̂j).

The local probabilities of two possible readouts are given
by p1

j = η〈ψ(t)|(1 − n̂j)|ψ(t)〉, and p0
j = 1 − p1

j . With-
out loss of generality, we choose the initial state as Neel

state i.e. |ψ(t = 0)〉 = Π
L/2
j=1ĉ

†
2j−1|0〉. However, we have

checked the robustness of our results by investigating
different initial states (see Appendix VII). We choose
∆t = 10−2. We define a parameter g = η/∆t, In the

limit g << 1 (i.e. η << ∆t), the occurrence of M̂1
j

takes place with extremely low possibility and also, M̂0
j

is close to an identity operator. That implies that in
this limit the dynamics is close to unitary with extremely
rare measurements. On the other hand, for g >> 1, the
measurements occur very frequently. In this regime, one
may expect quantum Zeno effect, for which the final state
should be close to the initial state. The question we wish
to address here is that if there is a critical value of mea-
surement strength gc above which the many-body quan-
tum Zeno transition occurs? And if so, then what is the
nature of this transition? Our main results are reported
in Fig. 1, where we have identified the phase diagram of
many-body quantum Zeno transition as a function of in-
teraction strength V and measurement strength g. We
use entanglement entropy and purity as two diagnostics
for characterizing such transition. In the subsequent sec-
tions we use discuss the details.

III. ENTANGLEMENT DYNAMICS

We study the entanglement dynamics for our proto-
cols. In the limit g = 0, the dynamic is purely unitary.
However, for g > 0 given that in each small time in-
tervals ∆t, unitary evolution is followed by a measure-
ment i.e. |ψ(t + ∆t)〉 = M̂Û |ψ(t)〉, the dynamics does
not remain unitary. Hence, the state is required to be
normalized in each step. The reduced density matrix
ρA of a finite subsystem A of length L/2 is defined as
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FIG. 2. Variation of S(t) with t for different values of g for
L = 8 and V = 1. Vertical dashed lines represent the time
window with T1 = 10 and T2 = 20, which we have chosen to
calculate the long time average of S(t).
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FIG. 3. Variation of the fluctuation of the long time average
of S(t) with g for different values of L for V = 1. Inset shows
the variation of gc with 1/L. Here gc is identified as the value
of g, for which δS is maximum. Dashed lines corresponds to
the best fit, i.e. gc(L) = 1.62 + 0.54/L.

ρA = TrB |ψ(t)〉〈ψ(t)|, where the trace is over the de-
grees of freedom of the complement B of A. Here we
only restrict ourselves to one of the most useful entan-
glement measures, the von Neumann (entanglement) en-
tropy S = −Tr [ρA ln ρA]. It is well known that in the
limit g = 0, when the initial Neel state is evolved under
the unitary evolution governed by the Hamiltonian Ĥ,
S(t) grows linearly with time t for short time, while in
the long time limit it saturates to the thermodynamic en-
tropy densities of the generalized Gibbs ensemble (GGE),
which is extensive in subsystem size [59, 60].

Figure. 2 shows the variation of S(t) with t for dif-
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FIG. 4. Variation of the long time average of S(t) with g for
different values of L for V = 1. Inset shows the variation of
S(t) obtained at gc with L. Dashed line and dashed-dot line
correspond to S(gc) ≈ 0.445 lnL + 0.417 and S(gc) ≈ L0.326,
respectively.
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FIG. 5. Finite-size entanglement scaling and data collapse.
Left panel gc = 1.63, and ν = 1.05. and for right panel
gc = 1.65, γ1 = 0.3, and ν = 1.84. Inset of right panel figures
shows the variation of ∆C with V .

ferent values of g for a fixed L = 8. We repeat our
stochastic measurement protocols for N = 1000 times
and the data presented in Fig. 2 is averaged over differ-
ent realizations. We find that given that the initial state
is a zero entangled product state, S(t) grows for a short
time, and then it saturates. The long time saturation
value of S(t) decreases as we increase g. This result can
be anticipated as one may expect many-body quantum
Zeno effect in the limit g >> 1. In this limit the final
state should be close to the initial Neel state, which is a
product state. We evaluate the long time average value

of S(t) i.e. S(t) = 1
T2−T1

∫ T2

T1
S(t). We choose T2 = 20,

and T1 = 10.
Then we investigate the fluctuation of S(t). Given
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that we have repeated our protocols N = 1000 times,
we calculate the standard deviation of S(t) i.e. δS =√
〈S2〉 − (〈S〉)2, where 〈〉 stands for averaging over N

times [62]. The standard deviation of the entanglement
entropy displays a maximum at the many-body localiza-
tion phase transition. We find analogous features even
for many-body Zeno transition in Fig. 3, and we identify
the value of g for which δS is maximum as a transition
point for a given system size. In the inset of Fig. 3, we
plot the critical value of g, i.e. gc as a function of 1/L,
and the extrapolated data gives a rough estimation of gc
in the thermodynamics limit, which we have found to be
1.62.

Next, in Fig. 4, we plot the variation of S(t) with g
for different values of L. Remarkably, we find that above
some value of g, S(t) obeys area law i.e. remains indepen-

dent of L, while for small values of g, S(t) increases with
the system size. This results indicates a clear signature
of many-body Zeno transition beyond a critical measure-
ment strength gc. However, in order to understand a
phase-transition from a finite size results, one needs to
perform finite size scaling analysis. On the other hand
in order to determine the correct scaling functional form,
it is important to know, how S scales with L at gc. In
the inset of Fig. 4, we plot S(gc) with L, where gc is
identified as before i.e. the value g for which δS is max-
imum for a given L. The data suggests that S(gc) can
be fitted reasonably well using both lnL and L0.32. Due
to the system size limitations, it is almost impossible to
conclude definitely that whether S(gc) scales as lnL or
L0.32.

In order to obtain data collapse, we use the following
scaling ansätze: 1) S = Lγ1f [(g − gc)L1/ν ] [46], and 2)
S − S(gc) = f [(g − gc)L1/ν ] [44, 62], where f [] can be
some arbitrary function. In the Fig. 5 we show the data
collapse using both the ansätze i.e. in the right panel we
re-scaled S by S/Lγ1 and g by (g−gc)L1/ν and in the left
panel we plot S − S(gc) in the y axes and re-scaled in x
axes g by (g−gc)L1/ν . In order to find the best fit values
of the scaling exponents and gc from the data collapse,
we use the cost function approach which was introduced
in Ref [58] recently. The cost function is defined for a
quantity X that consists of Np values at different g and
L as,

CX =

∑Np−1
j=1 |Xj+1 −Xj |

max(Xj)−min(Xj)
− 1.

Then we sort all Np values of Xj according to non-
decreasing values of L sgn[g − gc]|g − gc|ν . In the case

of ideal data collapse
∑Np−1
j=1 |Xj+1 −Xj | = max(Xj)−

min(Xj), hence CX = 0. However, otherwise CX > 0.
One is reminded here of the concept of visibility in inter-
ference phenomena [61]. For the 1st ansatz, we choose
X = S/Lγ1 , and find the values of γ1, ν and gc, for which
the cost function gets minimized. The best data collapse
is obtained for γ1 = 0.3, the scaling exponent ν = 1.84,
and critical measurement strength gc = 1.65. Since the
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FIG. 6. Variation of the mixedness 1−P (t) with t for different
values of g for L = 8 and V = 1. Vertical dashed lines
represent the time window with T1 = 10 and T2 = 20, which
we have chosen to calculate the time average of 1 − P (t).

best fit value obtained for γ1 is < 1, that makes quan-
tum Zeno transition different compared to many-body
localization (MBL) transition. While in the MBL tran-
sition near the critical point, the entanglement entropy
shows volume law scaling i.e. γ = 1 [58, 62], here in
the quantum Zeno transition the entanglement entropy
scaling obeys sub-volume law. We do similar exercises
for 2nd ansatz as well, but in two steps. In the first step
the coarse-grained value of gc, obtained from logarith-
mic extrapolation, as discussed in the inset of Fig. 4, is
used in S(gc). The fine grained value of the critical point
and other scaling exponents are extracted via cost fun-
tion minimization in the final step. The obtained values
are gc = 1.63 and ν = 1.05.

However, the question which is still remain unanswered
is that which of these two ansatzs gives better data col-
lapse. For that we plot the difference between cost func-
tion values obtained after carried out minimization pro-
cess using both the ansats. In the inset of Fig. 5 (right
panel), we show the variation of ∆C = C1 − C2 with
the interaction strength V (where C1 (C2) is the value
of cost function obtained for 1st (2nd) ansatz). We find
that ∆C > 0 and that indicates that 2nd ansatz is much
better suited for our data.

IV. PURITY

Next, we use the purity of the reduced density matrix
ρA as another diagnostic to characterize the Zeno transi-
tion. The purity P is defined as P = Tr ρ2

A. Given that
our initial Neel state remains pure even after bi-partition,
one expects that for g >> 1 (deep into many-body Zeno
phase) P ' 1. However, in the limit g << 1, one expects
the time evolved state after bi-partition will be mixed,
and hence Tr ρ2

A << 1.



5

0.1 1 10
g

0.1

1

1-P

L=6
L=8
L=10
L=12

FIG. 7. Varation of the long time average of 1 − P (t) with g
for different values of L for V = 1.
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FIG. 8. Left panel shows the data collapse using 1st ansatz
where gc = 1.62, γ2 = 0.68, and ν = 1.89. Right panel shows
the data collapse using 2nd ansatz where gc = 1.62, c1 = 0.92,
and ν = 1.87.

Figure. 6 shows the variation the mixedness which is
defined as 1−P of the reduced density matrix as a func-
tion of time for different values of measurement strength
g. As expected, with the increase of g, the long-time
values of 1 − P decreases. In the same spirit of the en-
tanglement dynamics analysis, we again evaluate long
time average of mixedness of a time evolved state i.e.

1− P (t) = 1
T2−T1

∫ T2

T1
(1− P (t)). We choose T2 = 20,

and T1 = 10 which is denoted with the vertical dashed
line in Fig. 6. Next, we focus on the variation of 1−P (t)
with g for different values of L as shown in Fig. 7. While
we find that for large enough value of g, the mixed-
ness does not change with L, but for small values of g
it increases with increasing L. Since the 1− P (t) is al-
ways bounded between 0 and 1, we assume that near
the transition point 1− P (t) can be described by ei-

Method Ansatz gc ν γ1 γ2 CX

S 1st 1.65 1.84 0.30 - 2.156

S 2nd 1.63 1.05 - - 1.266

δS 1.62 - - -

P 1st 1.62 1.89 - 0.68 2.345

P 2nd 1.62 1.87 - - 1.55

TABLE I. Comparison of the values of different scaling expo-
nents and critical measurement strength obtained from differ-
ent methods.

ther 1− P (t) = (1 − L−γ2)h[(g − gc)L
1/ν ] (ansatz 1)

or 1− P (t) = (1 − (c1 lnL)−1)h[(g − gc)L
1/ν ] (ansatz

2), where h[] can be some arbitrary function such that

1− P (t) remains [0, 1]. In the Fig. 8 we show the data
collapse by re-scaling 1 − P by (1 − P )/(1 − L−γ2) and
g by (g − gc)L

1/ν (in the left panel) and by re-scaling
1−P by (1−P )/(1− (c1 lnL)−1) and g by (g− gc)L1/ν

(in the right panel). The best fit values of different scal-
ing exponents and gc for the data collapse are obtained
once again minimizing the cost function, and γ2 = 0.68,
ν = 1.89 (1.87), and the critical measurement strength
gc = 1.62 (1.62) are obtained as the best fit values using
1st (2nd) ansatz .

V. CONCLUSIONS

In this paper, we explored many-body quantum Zeno
effect in an one-dimensional interacting fermionic sys-
tem subjected to repeated projective measurements.
By tuning the measurement strength, we demonstrated
measurement-induced dynamical phase transition due to
the competition between unitary time evolution and pro-
jective measurements. The transition occurs between two
distinct phases - (sub)-volume-law obeying entanglement
entropy in the long-time evolved steady states in the lim-
its of weak interactions and area-law obeying long-time
evolved steady states in the limits of strong interactions
(quantum Zeno phase). We gain further insights by in-
vestigating the fluctuations of entanglement entropy. Fol-
lowing the analysis on entanglement entropy, we turned
our focus to the purity of the reduced density matrices.
While, in the Zeno phase the purity remain independent
of the system size, the purity grows with system size be-
yond the transition point.

Next we performed careful scaling analyses for systems
with finite interactions. The scaling analysis is carried
out by employing the measures under study, i.e. en-
tanglement entropy, purity and their fluctuations. Infor-
mation regarding the transition points and scaling expo-
nents are extracted via an unbiased numerical strategy
of cost function minimization that ensures the quality
of finite-size data collapse. We discuss finite-size scal-
ing ansätze proposed previously context of many-body
Zeno transition. Cost function minimization approach



6

provides a powerful means for examining their quality.
Finally, we provide the phase diagram involving quan-
tum Zeno transition for the interacting system.

In future it will be interesting devise a concrete for-
malism for an effective description via a non-Hermitian
Hamiltonian, which has only been non-rigorously sug-
gested in context of other systems [63–65]. Another gen-
eral interest is to build a quasi-particle description for
the dynamics of entanglement entropy [66] for systems
under repetitive projective measurements.
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VII. APPENDIX I

In this appendix we study the many-body Zeno tran-

sition for the initial state |ψ(t = 0)〉 = Π
L/2
i=1 ĉ

†
i |0〉. As

mentioned in the main text (where we have chosen the
Neel state as an initial state), we first calculate the en-
tanglement dynamics for different values of measurement
strength g. Then we evaluate the long-time average S(t).

Next, we investigate S(t) with g for different system sizes.
Figure. 9 shows the variation of S with g for L = 6, 8,
10, 12. Inset of Fig. 9 once again shows the data collapse
using ansatz 2, surprisingly gc, and ν obtained from the
best fit is very close to the one reported in the main text
for the Neel state. It proves the robustness of our finding.
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