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Abstract

Self-organisation into spatially modulated structures has different nature from phase

transition into uniform states. Skyrmions and half-skyrmions (merons) are represen-

tatives of such structures and are utilised in designing magnetoelectric, optical, and

mechanoresponsive materials by controlling topological phases. However, skyrmions

and half-skyrmions in molecular solids are rarely studied, though there is a universality

in theoretical descriptions between magnetic and molecular systems with chiral inter-

actions. Here we develop a simple physical system for controlling topological phases

in a solid with chirality. We reveal that emergence of elastic fields from anisotropic

steric interactions and intermolecular twisting is a key to control helical and half-

skyrmion structures. Utilising the coupling between the emergent elastic fields and

molecular orientations, we successfully control topological phases by temperature, ex-

ternal electromagnetic fields, and anisotropic stresses. The concept of the emergent

elasticity provides a control system for designing molecular and macromolecular solids

with tunable electro- and magneto-mechanical properties.
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Understanding and controlling phase transitions into spatially modulated structures such

as helices are of importance both in fundamental physics and technological applications. It

is because they exhibit different nature from that of phase transitions into uniform states

which has been established [1], and materials properties can be controlled mesoscopically by

utilising non-uniform microphases [2]. Skyrmions and half-skyrmions (merons) are represen-

tative objects of such structures and are of interest in magnetic systems [3, 4], Bose-Einstein

condensates [5], quantum Hall systems [6], dielectrics [7, 8], liquid crystals [9, 10], and active

matter [11, 12]. These objects are manipulated in designing magnetoelectric, optical, and

mechanoresponsive materials [13–15]. In liquid crystals, in particular, molecular chirality

plays an important role on the formation of helical and half-skyrmion phases [14, 16–18]. In

theoretical description of chiral liquid crystals, a spontaneous twisting term reflecting chiral-

ity is incorporated to examine formation of mesoscale cooperative structures [9, 16, 17, 19].

This term resembles Dzyaloshinskii-Moriya interaction in chiral magnets [3, 20], incorporat-

ing liquid crystalline symmetry of the order parameter. Thus the formation of helical and

half-skyrmion phases in cholesteric liquid crystals is explained [9]. Recently, furthermore,

half-skyrmion phases in metal-organic frameworks (MOFs) were theoretically proposed us-

ing a similar model [21]. Therefore, it is reasonable to expect the existence of similar phase

transitions in other chiral molecular systems such as organic crystals [22, 23], colloidal crys-

tals [24, 25], and biological systems [26] by utilising the same theoretical framework, though

the existence of half-skyrmion structures in these substances has not yet been investigated.

However, there is a crucial difference between liquid crystals and crystals. In molecular

crystals and in MOFs, change of molecular configurations associated with phase transitions

induces lattice distortion, resulting in the emergence of elastic field, though the role of the

elastic field remains elusive. We call this elastic field an emergent elastic field, which is absent

in cholesteric liquid crystals due to its liquid nature in molecular translation. This is an

analogue of the emergent electromagnetic field in condensed matter, which is known to play

an essential role on manipulating skyrmions [27, 28]. Therefore, it is of crucial importance

to understand how the emergent elastic field is linked to topological phase transitions in

molecular crystals.

Here, we reveal an essential role of the emergent elastic field associated with topological

phase transitions into helical and half-skyrmion phases in a solid. To simplify the prob-

lem, we develop a molecular dynamics model incorporating the coupling between molecular
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orientation and crystal elasticity by assuming that molecules have spheroidal shape with

chirality. The spheroidal molecule has anisotropic steric interaction, hence molecular rota-

tion induces lattice distortion. By controlling the steric anisotropy and twisting interaction

between adjacent molecules, phase transitions into helical and half-skyrmion phases in a

solid are realised. Long-range nature of elastic correlation is important to control phase

behaviour and domain formations. As a consequence of this elastic coupling, these phases

can be switched by varying temperature and by applying external electromagnetic fields and

anisotropic stresses. Our work reveals a link between topological phase transitions and the

elastic fields, which provides a control system for designing molecular and macromolecular

solids with tunable electro- and magneto-mechanical properties.

Phase diagram with respect to twist parameters

We construct a molecular dynamics model by incorporating twisting interactions between

adjacent molecules, which is schematically described in Fig.1a. The alignment of neighbour-

ing molecules is stable when they exhibit a certain twist angle determined by q0, and the

rigidity of this twist is given by K2 (see Methods for this definitions of these parameters).

These molecules are confined to realise a monolayer geometry, as shown in Fig.1b, forming

two-dimensional crystals (see Extended Data Figure 1 for larger thickness geometries). Us-

ing this model system, we demonstrate phase controllability via the manipulation of q0 and

K2 at low temperatures, as displayed in Fig.1c. For small K2 and q0 values, almost all the

molecules are oriented normal to the layer to form a uniform phase, as displayed in Fig.1e.

In this state, the structure factor (see Methods for this definition) exhibits only the Bragg

peaks representing the nearest neighbour particles, and no mesoscopic structure forms. As

the twist rigidity K2 is increased, the number of molecules that orient tangential to the mono-

layer increases. For large q0 values, long-range orders of helical and half-skyrmion states are

formed, as displayed in Fig.1f and g, respectively. Conversely, for small q0 values (∼ 0.1),

particle orientation does not vary continuously in space and orientational defects are dis-

persed heterogeneously, exhibiting a halo structure at low wavenumbers, as shown in Fig.1h.

As K2 is increased, the number of defects increases, and eventually results in the division

of ordered particles into compartments (Fig.1i). The transitions between these structures

are gradual except for the sharp transition between the helical and the half-skyrmion phase

(see Extended Data Figure 2). Therefore, we successfully control the topological structure
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of this system by controlling the twisting interactions.

Emergence of elastic fields in topological phases

The characteristic feature of our system is the emergence of strain and stress fields. In this

study, a two-dimensional solid state is realised at a high temperature because the average

density of this system is large, and orientational phase ordering proceeds without particle

migration. Because each molecule exhibits steric anisotropy, the tangential orientation of

a molecule generates strain and stress around the molecule, which is similar to the gen-

eration of an elastic field with a long-range spatial correlation around an inclusion and a

defect [29, 30]. As referred in the introduction, we call this elastic field an emergent elastic

field. The concept of the emergent elastic field can explain the domain formation shown in

Fig.1f, wherein the helical state is divided into domains with different wave vectors, whose

angles are approximately ±30◦. In Fig.2, we present the emergent strain and stress fields (see

Methods for this definition). As shown in Fig.2c and d, a large anisotropic strain is induced

inhomogeneously because molecular orientations in different helical domains produce differ-

ent strain components. If a uniform helical structure is formed, it produces large uniform

strain which generate large anisotropic pressure, thus becomes mechanically unstable. By

forming domain structures, the anisotropic stress is macroscopically reduced and localised

as shown in Fig.2f and g. Such domain formation does not occur for the half-skyrmion

state shown in Fig.1g because half-skyrmions form an isotropic hexagonal solid at low tem-

peratures (see Extended Data Figure 3 and 4 for the uniform and half-skyrmion phases,

respectively). The emergent elastic field is not relevant in cholesteric liquid crystals due to

its liquid nature in molecular translation, but it can be important in chiral smectics [16] and

elastomers [31] because molecular rotations induce layer compression and network deforma-

tion, respectively. The investigation of (half-)skyrmion structures in these substances and

in molecular solids should be conducted to reveal the impact of the emergent elastic fields.

Thermal phase transitions of the helical and the half-skyrmion phases

The phase diagram shown in Fig.1 indicates the stable structure at a low temperature. In

previous studies, the phase transitions between topological phases were often examined by

varying the temperature and external perturbations such as the magnetic field. In this

section, we investigate the thermal stability of the helical and half-skyrmion phases. For
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FIG. 1. Phase behaviour in a monolayer geometry. a. Molecular twisting in our model.

The favoured twist angle is given by q0, and the rigidity of the twist is determined by K2 (see

Methods for this definition). b. Monolayer geometry of this study (see Methods for detail). c.

Phase diagram with respect to q0 and K2 at low temperatures. The phase boundaries are shown

for reference. The star symbol denotes the phase point examined in Fig.3. d. Colour notation for

the snapshots in e-i and the following figures. e-i. Diagonal view of the real spatial structure and

corresponding structure factor (see Methods for this definition) at each phase. The temperature

T = 0.05 in this figure.
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FIG. 2. Emergent elastic field of a helical state. a. Particle configuration corresponding to

Fig.1f, wherein the system is divided into two major domains with different particle orientations

(indicated in blue and green in this figure). b-d. Strain field of this configuration (see Methods

for this definition). The volumetric strain represents the volume dilation and compression and

is small. The emergence of a large macroscopic uniaxial strain in c and a large shear strain

in d result from the formation of a helical state, wherein tangentially aligned particles produce

large strains along their orientations. e-g. Stress field of this configuration (see Methods for

this definition). (e) Isotropic stress corresponding to the volumetric strain via the bulk modulus

(volume compressibility). (f) Uniaxial stress and (g) shear stress, which exhibit the same spatial

pattern as the particle configuration, unlike the strain correspondence.

the former phase, we demonstrate the thermal hysteresis of the helical phase in Extended

Data Figure 5. As the temperature is increased, the helical state transforms into a half-

skyrmion state, which is indicated by the abrupt change in the potential energy of the

system. This phase transition is reversible and exhibits a hysteresis loop, implying its first-

order nature. For the latter phase, the vortex structure in half-skyrmion phase is stable over

wide temperature range. However, another phase transition with respect to the long-range

ordering of half-skyrmions emerges, where the transitions between the liquid, hexatic, and

crystalline half-skyrmions occur as shown in Fig.3. The positional and bond-orientational

ordering of the half-skyrmions exhibits a characteristic two-dimensional melting behaviour

based on Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario [32–37]. This is

confirmed by the correlation functions of the half-skyrmions, as displayed in Fig.3a and b.
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FIG. 3. Thermal stability of the half-skyrmion phase. a. Hexatic correlation function

divided by the radial distribution function (see Methods for this definition) of the vortices. The

hexatic correlation increases as the temperature decreases via the characteristic power-law decay.

b. Spatial correlation function of the half-skyrmion cores. It exhibits a power-law decay in the solid

phase, whereas it decays exponentially in the hexatic and liquid phases. c-e. Real spatial structures

at T = 0.42 (c: half-skyrmion crystal), T = 0.44 (d: half-skyrmion hexatic), and T = 0.46 (e:

half-skyrmion liquid). We only display particles with nz < 1/
√

2. f-h. Corresponding Delaunay

triangulation. The red (yellow) circles denote 7(8)-member coordinated vortices, whereas the blue

(green) crosses denote 5(4)-member coordinated vortices. K2 = 50 and q0 = 0.3 in this figure,

which are indicated by the star symbol in Fig.1c.
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The hexatic correlation function shown in Fig.3a (see Methods for this definition) decays

exponentially for T ≥ 0.46 (characteristic of the liquid phase), algebraically for T ' 0.45

with an exponent close to −1/4 (characteristic of the hexatic phase), and approaches a

constant value for T ≤ 0.42 (characteristic of the solid phase). The hexatic and solid phases

is distinguished by the decay of the pair correlation function along with the direction of

the bond orientation angle (see Methods for further details), which is displayed in Fig.3b.

The pair correlation function decays exponentially for T = 0.44 (hexatic phase), whereas it

exhibits a power-law decay at T = 0.42 with an exponent near −1/3, which is characteristic

of the stability limit of a solid phase in the two-dimensional melting theory. The real-space

topological structures are presented in Fig.3c-h, wherein the filtered particle configurations

and corresponding Delaunay triangulation results are displayed in upper (c-e) and lower

(f-h) rows, respectively. In the two-dimensional melting theory [32–34], only dislocation

pairs with a zero Burgers vector are excited in the solid phase. They separate into single

dislocations (disclination pairs) in the hexatic phase, and the liquid phase is characterised by

the disclination-unbound phase in which isolated point defects disperse. This characteristic

feature is captured in the Delaunay triangulation. Our results based on KTHNY scenario

are consistent with those found recently in magnetic skyrmion systems [36, 37].

Phase switching and re-entrant phase transition by an external field

Another method for controlling topological structures is to apply an external magnetic/electric

field to substances, as is often examined in magnetic skyrmion systems [3] and liquid crys-

tals [16]. In this paper we examine magnetic field effects for our convenience, but the same

conclusion holds for electric field effects, because static field effects without impurities are

considered. In rod-like uniaxial molecular systems, the magnetic susceptibility χ↔ exhibits

both χ‖ > χ⊥ (positive anisotropy) and χ‖ < χ⊥ (negative anisotropy), where χ‖ (χ⊥)

is the susceptibility of a molecule parallel (perpendicular) to the molecular long axis, re-

spectively [16]. For positive (negative) anisotropy, the orientation of molecular long axis

becomes parallel (perpendicular) to the external field. This feature is reminiscent of the

perpendicular magnetic anisotropy systems in transition-metal oxides [38], in which the

magnetic easy axis is tangential to the thin films. In this study, we neglect the dipole-

dipole interaction between the molecules. Then the molecular response to the external field

becomes second-order, which is often assumed in liquid crystals (see Methods for further

8



a

d

H=2 H=10H=5

H=0

H=0

a=-1c

H=2 H=6H=4

b

c

a=1c

a=-1, H=4c

half-skyrmion

helical uniform

zigzaghalf-skyrmionstripe

s2p /s2p /

intermediate

FIG. 4. Response to external fields under the field-cooling condition. a-c. The external

field effects on the half-skyrmion phase (a) with positive (b) and negative (c) magnetic anisotropy

are shown, where the magnetic anisotropy is defined by χa = χ‖−χ⊥, and H denotes the magnitude

of the external magnetic field applied normal to the monolayer. d. The structure factors obtained

at H = 0 and H = 4 with negative anisotropy implies that the topology of these structures is the

same. The red circles and blue hexagons represent the Bragg spots corresponding to the nearest

molecules and half-skyrmions, respectively, indicating that the distance between the half-skyrmion

cores becomes smaller. K2 = 50, q0 = 0.3, and T = 0.05 in this figure.

detail) [16]. We present the field response of a half-skyrmion phase in Fig.4, where H

denotes the magnitude of the field applied normal to the monolayer (see Extended Data

Figure 6 and 7 for other phases). Starting from the half-skyrmion state shown in Fig.4a,

molecules with positive (negative) anisotropy begin to align parallel (perpendicular) to the
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external field. For the positive anisotropy case shown in Fig.4b, molecules at the edges of

the half-skyrmions change their orientation to align parallel to the external field, result-

ing in the coalescence of half-skyrmions to form helical structures (H = 2). By further

increasing this field, an increasing amount of particles align parallel to the external field,

and uniformly aligned state is eventually realised at H = 10. The transition from the

helical state to the uniform state is similar to the field responses of cholesteric liquid crys-

tals, wherein uniformly aligned domains are separated by sharply twisting walls during the

intermediate stage [16] (see Fig.6.13 in their book). Therefore, the transition pathway for

positive anisotropy demonstrated by our system is reasonable, while it sharply contrasts

with magnetic skyrmion systems in which the helical state transforms into the skyrmion

state under the application of an external magnetic field.

For negative anisotropy systems, conversely, a curious phase transformation emerges, as

displayed in Fig.4c. The initial half-skyrmion state transforms into a helical-like striped

structure with a small pitch under a weak external field (H = 2). Subsequently, another

half-skyrmion state appears at H = 4, which finally transforms into a two-dimensional zig-

zag structure at H = 6 (the morphology of the two-dimensional structure depends on the

twist rigidity K2, as shown in Extended Data Figures 6, 7, and 8). Although the real space

structures of the half-skyrmion states in Fig.4a and c look quite different, their topological

structures exhibit similar symmetries. This is confirmed by the structure factor displayed in

Fig.4d. Both states have six-fold symmetrical peaks, as highlighted by the blue hexagons,

which represent the spatial correlation of the vortices. The difference between these peaks

is represented by the size of the hexagons, shown that the vortex size is reduced under the

external field. This re-entrant phase transition is a unique feature of negative anisotropy sys-

tems, which implies that interactions between the steric and magnetic/dielectric anisotropy

results in rich phase behaviour in molecular solids. As described in Fig.2, an elastic field

emerges via phase transformations, which implies that our system exhibits electro- and

magneto-striction as a cross-coupling effect, which demonstrates the great potential of this

system for the design of functional materials.

Phase switching by local anisotropic stress

Finally, we present a crucial role of the emergent elastic fields on phase controllability. As

revealed in Fig.2, the helical domain and the emergent strain field exhibit the same spatial
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FIG. 5. Response to local anisotropic stress. a. The helical state for initial unstressed

condition. The circle at the centre and the arrows represent the area and the orientation of

applied anisotropic stress in (b). b. Molecular configuration under the stress, where the molecular

configuration is perturbed globally. c. The molecular configuration after stress removal. Half-

skyrmion structure is maintained at the central area after the stress is relaxed. d-f. Uniaxial

component of the emergent strain field for (d) initial state, (e) stressed state, and (f) relaxed state.

g-i. Uniaxial component of the emergent stress field for (g) initial state, (h) stressed state, and

(i) relaxed state. K2 = 40, q0 = 0.3, and T = 0.2 in this figure.

patterns. This suggests that domain orientation can be controlled by external anisotropic

strain and stress. To see this, we display mechanical response of a helical state in Fig.5.
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When an external mechanical stress is applied locally (circled region in Fig.5a), both the

helical pattern inside and outside the stressed region transform considerably, as displayed

in Fig.5b (the white broken circle denotes the stressed region). For the former, the helical

pitch becomes parallel to the compression direction, which indicates that molecules inside

the stressed region orient to the elongation direction, reducing the uniaxial stress inside the

circular region. For the latter, helices change their pitch direction parallel to dipole field.

This is because both the strain and the stress field are induced outside the stressed region due

to the long-range quadrupolar nature of elastic correlation, as displayed in Fig.5e and h. Both

the strain field and the stress field exhibit angle dependent long-range correlation under the

external stress, where they become positive along 0◦ and 90◦, and negative along ±45◦. After

the external stress is removed, the helical state inside the circular region transforms into half-

skyrmion structure whereas the helical domains outside the stressed region remain almost

unchanged, as displayed in Fig.5c. The remnant strain in relaxed states also exhibits the

same spatial heterogeneity as molecular orientation (Fig.5f), whereas the stress is localised

(Fig.5i). Thus, we successfully control topological phases by applying mechanical stress.

Discussion and summary

In this study, we succeeded to control the topological phase transition between the helical

and the half-skyrmion phases. This transition is reversible without plastic deformation.

This reversibility is attributed to the fact that the effective aspect ratio of our molecule is

close to unity: lattice distortion induced by molecular rotation is not large so that crystal

defects do not form. When the particles with large aspect ratio such as fd-viruses [39]

and cellulose nanocrystals [40] are utilised in a solid phase, particle rotation induces plastic

deformation which results in irreversible phase transformation. Therefore, a particle should

have a shape deformed from isotropic shape only slightly, and indeed it can be synthesised

experimentally [41–45]. A densely packed solid thin-film of these particles will be candidates

to exhibit phase transition between the helical and the half-skyrmion phase. Furthermore,

it is possible to measure elastic heterogeneity by atomic force microscope for molecular and

nanoparticle crystals [46], and by confocal microscope for crystals composed of micrometre-

scale colloidal particles [47]. These measurements can examine the relationship between the

formation of topological phases and the emergent elastic field.

In summary, we presented a physical principle for topological phase control using mate-
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rial parameters and external electromagnetic fields in a model molecular solid. The most

important aspect of our model is the emergent elastic field that is produced by the interac-

tions between the molecular steric anisotropy and twisting interactions. We also presented

a method for controlling the phases of this system using external fields, which is achieved

due to the competition between the emergent elastic field and the paramagnetic/paraelectric

response. For the first time, we identified a topologically re-entrant phase transition that is

induced by an external field in negative anisotropy systems. In this paper, we considered the

electromagnetic effects in a simple manner by neglecting the electromagnetic interactions

between the induced dipoles. The inclusion of dipole-dipole interaction results in control-

lable polar orders with large mechanical responses [48]. This cross-coupling may also be a

key to control emergent elastic fields associated with topological phase transitions induced

by anisotropic mechanical stresses [49, 50].
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Methods

Molecular dynamics model We construct a simple molecular model exhibiting phase

transitions into helical and half-skyrmion phases, by applying conventional knowledge in

liquid crystals [16]. The potential energy of our system is given by

U =
∑
i<j

4ε(1 + Aij +Bij)

(
σ

rij

)12

+ Uex + Uwall, (1)

Aij =η[(ni · r̂ij)2 + (nj · r̂ij)2], (2)

Bij =
K2

2
[(ni · nj)(ni × nj) · r̂ij − q0]2, (3)

where ε and σ denote the characteristic energy and length in our model, rij = |rij| and

r̂ij = rij/rij are the absolute value and unit vector of the intermolecular displacement,

respectively, and ni denotes the molecular orientation of the uniaxial molecules. Aij rep-

resents the symmetric steric repulsion used to mimic spheroidal molecules in a condensed

phase [51, 52] in which the aspect ratio is p = (1 + 2η)1/6 for small η values. Bij represents

twisting interactions arising from molecular chirality that adjacent molecules favour to align

with a twist, where the favoured twist angle and twist rigidity are given by q0 and K2, respec-

tively [53, 54]. This is the discretised form of the twist Frank energy (K2/2)(n · curln+ q0)
2

in liquid crystal theory [16], wherein the bilinear term is the same as the Dzyaloshinskii-

Moriya interaction in magnetic systems (Dn · curln with D = K2q0) [3]. In this paper, we

assume that the intermolecular interaction has only the short-range repulsive steric term in

order to examine the role of the twist interaction and the steric anisotropy in the simplest

manner. We note that inclusion of van der Waals attractive interaction does not change the

qualitative features of the formation of the half-skyrmion and helical phases.

Uex represents the external field effects of the molecular orientation, which is defined as

Uex = −
∑
i

χa

2
(ni ·H)2, (4)

where H is the external field and χa = χ‖−χ⊥ denotes the anisotropic susceptibility. Here,

χ‖ (χ⊥) is the susceptibility of a molecule that is parallel (perpendicular) to the molecular

long axis. A molecule is oriented parallel (perpendicular) to the external field for positive

(negative) χa values. This form is often adopted for liquid crystals [16]. A small number

of molecules are known to exhibit negative magnetic anisotropy [55], whereas various liquid

crystalline molecules that exhibit negative dielectric anisotropy are found [16]. In numerical

simulations, we normalise χa = ±1 by redefining H as
√
|χa|H .
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Uwall arises from the confinement due to the walls of the system. In this study, we assume

a monolayer of spheroid-like molecules without surface anchoring to examine the impact of

molecular twisting on the molecular configuration of the system in a simple manner. We

therefore assume

Uwall =
∑
i

ε[(σ/zi)
12 + (σ/(Lz − zi))12], (5)

where zi is the z-coordinate of i-th molecule and Lz is the distance between the two walls.

By utilising Lz = 2σ, it can be easily confirmed that the molecules form a monolayer without

undulation along the z-axis (see Extended data figure 1 for larger Lz values). r̂ij ⊥ z in this

monolayer geometry, and hence Aij = 0 when two adjacent molecules align perpendicular

to the intermolecular displacement n ⊥ r̂ij, while Bij = 0 when two molecules exhibit the

twisting angle θ = (1/2) sin−1 2q0.

The equations of motion with respect to the molecular position and orientation are given

by

mr̈i =− ∂U

∂ri
, (6)

I(1
↔
− nini) · n̈i =− (1

↔
− nini) ·

∂U

∂ni

, (7)

where m is the molecular mass, I is the moment of inertia with respect to the molecular

long axis, and 1
↔

is the unit tensor. By using (1/2)d2|ni|2/dt2 = |ṅi|2 + ni · n̈i = 0, Eq.(7)

may be rewritten as

In̈i = −Ini|ṅi|2 − (1
↔
− nini) ·

∂U

∂ni

. (8)

Eq.(6) and (8) are integrated during the time evolution under the NVT-ensemble using

Nosé-Hoover thermostat [56].

In this study, we assume densely packed systems. The volume fraction ρ = πNpσ3/6V is

set to 0.3, where N is the number of the particles and V is the system volume. Temperature

T is noted in the unit of ε/kB where kB is the Boltzmann constant. The stress tensor in

Fig.3 and 5 is noted in the unit of ε/σ3. We adopt a periodic boundary condition in the

x and y directions. For most numerical simulations, we choose N = 4000, except for Fig.3

(N = 64000 to examine long-range correlations), Extended Data Figure 1 (N = 16000), and

5 (N = 64000).

Structure factor As displayed in the figures in the main text, the topology of a structure

is characterised using the arrangement of the molecules that are aligned perpendicular to
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the z-axis. Therefore, we define a filtered density distribution ρ<(r) =
∑

i θ(nzi)δ(r − ri)

and calculate the structure factor using ρ<(r) to determine the topological structure, where

θ(x) = 1 for x < 1/
√

2 and θ(x) = 0 otherwise.

Emergent elastic fields In Fig.2, Extended Data Figure 3, and 4, we present local strain

and stress fields. The strain tensor for each particle is defined by

ε↔i =
2

r2MNbi

∑
j

rijrij, (9)

where Nbi is the coordination number of i-th particle in which the cutoff length is the first

minimum of the radial distribution function. This sum is obtained over the coordinated par-

ticles, and rM is the first maximum of the radial distribution function required to normalise

the strain tensor such that ε↔ = 1
↔

at the ground state. The volumetric, uniaxial, and shear

strains are defined as det[ε↔]− 1, εxx − εyy, and εxy, respectively. The strain field displayed

in the figures is obtained by coarse-graining the strain tensor as

ε↔(r) =

∫
dr′w(r − r′)

∑
i

ε↔iδ(r
′ − ri), (10)

where w(r) = (1/2πσ2)e−r
2/2σ2

is the weight function.

The local stress field is calculated using the Irving-Kirkwood formula as [57]

σ↔(r) = −
∑
i

miviviδ(r − ri)−
∑
i<j

f ijrij

∫ 1

0

ds δ(sri + (1− s)rj − r), (11)

where the first and second terms denote the kinetic and interaction (configuration) terms,

respectively. f ij represents interparticle forces arising from the pair interaction term (the

first term in Eq.(1)). In the figures, we also apply coarse-graining to the stress field using

the weight function w(r).

Identification of half-skyrmions and the bond orientational order parameter The

Delaunay triangulation shown in Fig.3 was constructed as follows. First, we must identify

the centres of the half-skyrmions. We consider a molecule as a member of a half-skyrmion

when nz > 0.91. Among such molecules, the nearest neighbour particles (determined by

the first peak of the radial distribution function) are defined to be clustered. We define

the centre of a mass of clustered molecules as the centre of a half-skyrmion rv. The radial

distribution function Gv(r) and the hexatic correlation function Gv6(r) (the angular average

is used in this study) are calculated from rv, the latter of which is defined as

Gv6(r) = 〈ψ(0)ψ∗(r)〉, (12)
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where the bracket denotes the angular, space, and sample averaging processes, and ψ(r) =∑
j δ(r − rj)

∑
k∈bond exp[6iθjk] with θjk is the bond orientational angle between the dis-

placement vector rvk − rvj and x-axis. Gv6(r)/Gv(r) is displayed in Fig.3a. In Fig.3b, we

display the spatial correlation function along with the direction of the bond orientational

angle. We then perform Delaunay triangulation to obtain Fig.3f-h.

Data availability Data that support the figures within this paper and the other findings

of this study are available from the corresponding authors upon reasonable request.

Code availability The computer codes used in this paper are available from the corre-

sponding authors upon reasonable request.
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[9] Fukuda, J.-i. & Žumer, S. Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid

crystal. Nature Commun. 2, 246 (2011).
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Extended Data Fig. 1. Quasi-two-dimensional simulations with controllable layer

thicknesses for K2 = 50 and q0 = 0.3. a-c. Top view of the particle configuration for (a)

Lz = 4σ, (b) Lz = 6σ, and (c) Lz = 8σ. A uniform half-skyrmion structure along z-direction

emerges in (a) and (b). In (c), many half-skyrmion structures do not penetrate into the system

and in-plane zig-zag structures develop. d-f. Density profiles showing that (d) three distinct layers

are formed for Lz = 4σ, whereas (e) four- and five-layer regions are heterogeneously distributed

for Lz = 6σ. Particles align parallel (perpendicular) to the z-direction for the former (latter)

profiles and produce large steric repulsions along the particle orientation. Therefore, the skyrmion

cores have a smaller number of layers. (f) Lz = 8σ; here, most of the inner particles are aligned

perpendicularly and the density profile again exhibits perfect layering.
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a

K2=12 K2=16K2=14K2=13

K2=46K2=44K2=40K2=36

b

Extended Data Fig. 2. Low-temperature phase behaviour at q0 = 0.3. a. As the

twist rigidity K2 increases, short chains that are perpendicularly aligned grow (K2 = 12). At

K2 = 13, these chains exhibit positional ordering. They are connected to form a lamellar structure

at larger rigidities (K2 = 14 and 16) to realise a helical phase. b. For the twist rigidity close to the

phase boundary between the helical and half-skyrmion phases, the lamellar structures undulate

as K2 increases. This undulation eventually leads to the formation of skyrmions, while skyrmions

nucleate at the domain interface.
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Extended Data Fig. 3. Emergent elastic field of a uniform state. a. Particle configuration

of the uniform state corresponding to Fig.1e, where K2 = 30 and q0 = 0.15. Because there is a

small but finite twist interaction, orientational defects develop. Two long orientational defects are

indicated by the open red ellipses. b-d. Strain field of this configuration, in which a large strain

arises around the long defects for all components. e-g. Stress field of this configuration, showing

a similar spatial pattern to the corresponding strain field. Both the strain and stress fields exhibit

a long-range spatial correlation inside of the two long defects.
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Extended Data Fig. 4. Emergent elastic field of a half-skyrmion state. a. Particle

configuration of the half-skyrmion state corresponding to Fig.1g where K2 = 60 and q0 = 0.25.

b-d. Strain field of this configuration. A large spontaneous strain is induced by the formation of

the half-skyrmion phase and is distributed heterogeneously. e-g. Stress field of this configuration,

showing a characteristic hexagonal pattern due to the formation of half-skyrmions.
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Extended Data Fig. 5. Thermal phase transition between the helical and half-

skyrmion phases. The temperature dependence of the potential energy is displayed, wherein

a thermal hysteresis is observed as the temperature is slowly varied via dT/dt = 10−6. The

inset shows the real spatial structures at each phase. It is confirmed that both the helical and

half-skyrmion states are stable over the entire computational duration when the temperature is

fixed 0.525 ≤ T ≤ 0.540. At T = 0.52 and 0.545, the metastable half-skyrmion and helical

states gradually transform with a characteristic relaxation time of ∼ 104. We confirm that the

half-skyrmion phase is a half-skyrmion liquid state without a long-range translational and hexatic

order in the position of the half-skyrmions. K2 = 40 and q0 = 0.3 in this figure.
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Extended Data Fig. 6. Magnetic field effects for a uniform state (K2 = 10) with

negative magnetic anisotropy under the field-cooling condition. The particle alignment

becomes perpendicular for larger fields such that a helical state is formed in the upper row. Until

H = 2, the phase behaviour resembles that achieved by increasing K2 in Extended Data Figure 2.

For larger fields, however, the helical pattern transforms into a striped pattern, and zig-zag and

uniform two-dimensional structures are eventually formed for H = 4 and H = 10, respectively.
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Extended Data Fig. 7. Magnetic field effects for a helical state (K2 = 20) with negative

magnetic anisotropy under the field-cooling condition. The helical state transforms into

a striped state, as in the previous case. A half-skyrmion phase emerges under strong fields. This

tendency resembles magnetic skyrmion systems, although the sign of the magnetic anisotropy

differs. The half-skyrmion states eventually transform into zig-zag and uniform two-dimensional

structures.
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Extended Data Fig. 8. Details of the magnetic field effects for a half-skyrmion state

(K2 = 50) with a negative magnetic anisotropy corresponding to Fig.4. Once the striped

state has been realised (H = 2), almost the same phase behaviour appears as in the helical case

(Extended Data Figure 7).
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