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The interplay between electron correlation and topology of relativistic electrons may lead to a
new stage of the research on quantum materials and emergent functions. The emergence of various
collective electronic orderings/liquids, which are tunable by external stimuli, is a remarkable feature
of correlated electron systems, but has rarely been realized in the topological semimetals with high-
mobility relativistic electrons. Here, we report that the correlated Dirac electrons with the Mott
criticality in perovskite CaIrO3 show unconventional field-induced successive metal-insulator-metal
crossovers in the quantum limit accompanying a giant magnetoresistance (MR) with MR ratio of
3,500 % (18 T and 1.4 K). The analysis shows that the insulating state originates from the collective
electronic ordering such as charge/spin density wave promoted by electron correlation, whereas it
turns into the quasi-one-dimensional metal at higher fields due to the field-induced reduction of
chemical potential, highlighting the highly field-tunable character of correlated Dirac electrons.

INTRODUCTION

The quantum phenomena of relativistic electron
(Dirac/Weyl electron) in solids have been a subject of
great interest in modern materials physics. Topologi-
cal semimetals offer a fertile field of materials to study
unique quantum transport phenomena of high-mobility
relativistic electrons, presenting the chiral anomaly or
various topological phases [1]. Most of them have been
understood in the scheme of single particle physics so
far, but there is growing interest in the strong electron
correlation as a new route to realize and control the emer-
gent collective topological phenomena [2–6]. According
to the conventional wisdom, the Landau-Fermi liquid pic-
ture tends to collapse in the quasi-two/one-dimensional
correlated electron system, resulting in or from vari-
ous charge/spin correlation. In particular, it has been
demonstrated that the electronic liquids or charge/spin
ordering are often highly sensitive to external stimuli,
resulting in the colossal magnetoresistance or pressure
induced high-Tc superconductivity [7, 8]. In this con-
text, the spatial confinement of high-mobility relativistic
electron with the strong electron correlation may be a
promising pathway to find emergent collective topologi-
cal phenomena.

In the case of bulk topological semimetals, the quasi-
one-dimensional (1D) confinement of relativistic elec-
trons is typically realized in the quantum limit (QL) un-
der a sufficiently strong magnetic field B. Electrons in
the lowest Landau level with the index n=0 are confined
in a scale of magnetic length lB =

√
~/eB within a plane

perpendicular to the magnetic field, whereas the momen-
tum along the magnetic field is preserved. Previous the-

oretical studies proposed that various nontrivial phases
such as the axion charge density wave (CDW) and exci-
tonic insulator are induced, if the QL of the Dirac/Weyl
electron can be realized in materials with the strong elec-
tron correlation [9–11]. However, the experimental real-
ization of quantum limit in the strongly correlated elec-
tron material is a challenge, and hence the emergence
of collective ordering and/or liquid of high-mobility rel-
ativistic electron has rarely been demonstrated so far.

In this context, the correlated Dirac semimetal of per-
ovskite CaIrO3 provides an ideal arena to study the col-
lective phenomena of high-mobility relativistic electrons
in the QL. In CaIrO3, due to the strong spin-orbit cou-
pling and electron correlation, the nominally half-filled
jeff= 1/2 band, which lies near the Fermi energy (EF),
constitutes the nearly compensated semimetal state with
a few electron- and hole-pockets. It has been proposed
that the electron pocket emerging around U-point in the
Brillouin zone is caused by the Dirac band dispersion
with a closed line-node protected by the nonsymmorphic
crystalline symmetry (Pbnm) as illustrated in the inset
to Fig. 1(a) [12–14]. Recently, it has been shown that the
line node is precisely tuned close to EF (∼ 10 meV be-
low EF) and yields the Dirac electrons with dilute carrier
density (less than 2× 1017 cm−3), and high mobility ex-
ceeding 60,000 cm2/Vs due to strong electron correlation
in the proximity to the Mott criticality [15–18]. Specifi-
cally, the Fermi velocity is renormalized to a moderately
small value (vF ∼ 8× 104 m/s) compared to other topo-
logical materials [19–22]. Consequently, the correlated
Dirac electrons reach the QL at a modest magnetic field
less than 10 T. However, the transport property in the QL
of this material has not been explored so far, and a possi-
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bly striking feature of collective phenomena of the Dirac
electrons remains elusive. Here, by magneto-transport
measurements and theoretical modeling, we show that
the two successive metal-insulator crossovers accompany-
ing a giant magnetoresistance are induced by moderate
magnetic field (10-30 T) in the QL region of CaIrO3. One
is a crossover from semimetallic state to the charge/spin
density wave and another is a reentrance to the quasi-1D
metallic state of correlated Dirac electrons.

RESULTS

Magneto-transport properties in the quantum limit.

As shown in Fig. 1(a), the resistivity along the a-
axis, ρzz, shows a metallic behavior above 150 K, but a
peak is observed around 20 K; here we take the Carte-
sian coordinate with respect to the orthorhombic axes
as x ‖ b, y ‖ c, z ‖ a throughout this paper. The peak
is attributed to the competition between the reduction
of thermally excited carriers and enhancement of car-
rier mobility [15]. Figure 1(b) shows the low field re-
gion of longitudinal magnetoresistivity measured with
the electric current and magnetic field parallel to the a-
axis (B ‖ I ‖ a(z)). With increasing magnetic field, ρzz
initially increases up to 2 T, and then moderately de-
creases up to 10 T accompanying the Shubnikov-de Haas
(SdH) oscillations due to the electron pocket around the
line node [15]. The frequency of the SdH oscillations is
10.5 T [see Fig. S1 [23]], which roughly corresponds to
the carrier density of 2.0 × 1017 cm−3, given that the
Fermi surface is spherical. Due to the low carrier den-
sity, the Dirac electron reaches QL at the modest field
of BQL = 6 T, which is defined as the field of SdH os-
cillation peak due to the Landau index n=1 [see Fig. S1
[23]].

The magnetoresitivity ρzz (B ‖ I ‖ a) up to 55
T is shown in Fig. 1(c). At 1.4 K, ρzz steeply in-
creases above the threshold magnetic field (Bth) of 10
T, and is nearly saturated around 18 T with the MR-
ratio [ρzz(B) − ρzz(0)]/ρzz(0) of 35. Above 18 T, the
magnetoresistivity monotonically decreases up to 55 T.
With increasing temperature, the peak in ρzz around 18
T is gradually smeared out, while shifting toward higher
magnetic field. On the contrary, the magnetoresistivity
in transverse configuration ρxx (B ‖ a, I ‖ b) monotoni-
cally increases with a small kink at Bth [see Fig. 1(c)].

To quantify the anisotropy of transport properties in
the QL, we compare the magnetoconductivity in the lon-
gitudinal configuration (B ‖ I ‖ a, σzz) and that in trans-
verse configuration (B ‖ a, I ‖ b, σxx) in Fig. 2(a). Here,
σzz is defined as the inverse of ρzz in the longitudinal
configuration (B ‖ I ‖ a(z)) and σxx as ρxx⁄(ρxx

2+ρyx
2)

with ρxx and ρyx being the resistivity measured in trans-
verse configuration (B ⊥ I; B ‖ a(z), I ‖ b(x)) and the

Fig. 1: (a) Temperature dependence of the resistivity. The
inset is a schematic illustration of energy dispersion in ka-
kc plane near the line node (blue line) near the Fermi en-
ergy (pale green plane). (b) Shubnikov-de-Haas (SdH) os-
cillations in magnetoresistivity in the longitudinal configura-
tion (B ‖ I ‖ a(z)). BQL and Bth correspond to the mag-
netic field where quantum limit is reached and where the
MR starts to increase steeply. (c) Magnetoresistivity in the
longitudinal configuration (B ‖ I ‖ a(z)) at various tem-
peratures. Magnetoresistivity in the transverse configuration
(B ‖ a(z), I ‖ b(x)) at 1.4 K is also shown as black dotted
line.

Hall resistivity [see Fig. S3 [23]], respectively. With in-
creasing the magnetic field, σzz initially increases, steeply
drop around Bth, and shows an upturn at 18 T. Specif-
ically, σzz at 55 T is enhanced to about ten times com-
pared to that at 18 T. On the contrary, σxx monotonically
decreases with increasing magnetic field with a small drop
at Bth. Around BQL, σzz is about ten times as large as
σxx in agreement with the quasi-one-dimensional confine-
ment of electrons along B ‖ z. On the other hand, σzz
falls down to a value comparable to or even less than σxx
around 18 T, but becomes larger than σxx again in high
magnetic field above 30 T.

Figure 2(b) shows the temperature dependence of σzz
below 15 K. With decreasing temperatures, σzz mono-
tonically increases at 0 T, but monotonically decreases
at 18 T, implying that the ground state changes from a
metal to an insulator or a charge-gapped state. On the
other hand, the metallic behavior is recovered at 55 T,
while σzz shows a modest temperature dependence. To
quantify the insulating behavior at 18 T, we fitted σzz by
the Arrhenius model σzz = σ0 + σ1 exp(−∆exp/(2kBT ))
and derived the activation energy ∆exp with σ0 and
σ1 being the temperature independent parameters; here
σ0(= 0.17σ1) represents the small residual conductivity
likely coming from another hole pocket [Supplementary
Note 2[23]]. The temperature dependence of σzz below
6 K is well described by the Arrhenius model [see Fig.
2(c)] and ∆exp is deduced to be 1.2 meV at 18 T. We
conducted the similar analyses at various magnetic fields
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Fig. 2: (a) Comparison of the magnetoconductivity in the
longitudinal configuration (B ‖ I ‖ a(z)) and that in the
transverse configuration (B ‖ a(z), I ‖ b(x)). (b) Tempera-
ture dependence of conductivity at 0, 18, and 55 T. (c) Tem-
perature dependence of conductivity plotted as a function of
1/T at 14.5, 17, and 22 T for the Arrhenius model. (d) Mag-
netic field dependence of activation energy extracted by Ar-
rhenius model (∆exp) and the gap size of CDW calculated by
Fukuyama’s model (∆cal).

and plotted ∆exp as a function of magnetic field in Fig.
2(d). The result shows a peak around 18 T in agreement
with the behavior of MR at 1.4 K [see Fig. 1(c)]. This
suggests that the large peak structure in MR (dip struc-
ture of σzz) originates from the field variation of ∆exp.

Numerical Calculation of Landau levels.

To get insights into the electronic states under the
magnetic field, we numerically calculate the field depen-
dence of the Landau levels (LLs). We construct a tight
binding model for the electronic structure around the line
node, which takes into account the Zeeman term (g-factor
of 2) [24]. Figure 3(a) shows the energy dispersion of
band structure around the U-point at 0 T along the kz-
direction. The Fermi energy is set to be 5.0 meV above
the band crossing point, i.e., the line node [15]. Under the
magnetic field, the energy band splits into the LLs, and
in the QL (B >BQL = 6 T), only the n=0 LL crosses the
Fermi energy [see Figs. 3(b)-(d)]. In the QL, the n=0
LL is composed of nearly-degenerate four Weyl bands;
they are degenerate at kz=0 and split into two doubly
degenerate ones at kz 6= 0 mainly due to the Zeeman
term. Figure 3(e) displays the density of states (DOS)
at various magnetic fields. At a small magnetic field (0.1
T), the DOS around EF is small as is expected from the
small size of the line node [15]. At 10 T, the DOS in the
low energy region (-6 meV ≤ E ≤ 6 meV), which is gov-
erned by the n=0 LL, is flat and several peaks due to the
n 6=0 LLs are discernible above 6 meV as well as below
-6 meV [see Fig. 3(b)]. At 50 T, the DOS in the region
-10 meV ≤ E ≤ 10 meV is governed by n=0 LL and

Fig. 3: (a) Calculated energy dispersion near the line node.
The band crossing due to the line node is denoted by blue
circles. Here the origin is U-point in the momentum space
[See Fig. S9 [23]]. (b), (c), and (d) Landau levels around
the U-point under the magnetic field of 10, 20, and 50 T,
respectively. The magnetic field is applied along a-axis of the
crystal (B ‖ a(z)). (e) Density of states at B = 0.1, 10, 20,
and 50 T. (f) The density of states at 0 eV as a function of the
magnetic field. (g) The magnetic field dependence of ∆EF.
The definition of ∆EF is shown in (b), (c), and (d).

becomes fairly large due to the increased LL degeneracy.
As shown in Fig. 3(f), the DOS at EF linearly increases
as a function of magnetic field. We note that the charge
transfer between these LLs and hole pockets nearby the
Γ-point is negligible and hence the carrier density in the
LLs is likely conserved at least below 55 T [Supplemen-
tary Note 2 [23]]. This suggests that the energy difference
(∆EF) between the Fermi energy and the band crossing
point, as well as the Fermi wave number kF, decreases as
a function of magnetic field [see Fig. 3(g)].

Origin of the non-monotonic field dependence of
magnetoresistivity.

The calculated results suggest that the electronic state
of n=0 LL is described by the four Weyl bands, which
subsist even at sufficiently high magnetic field. This is
consistent with the experimental result that the resis-
tivity deep in the QL region at 55 T shows a metal-
lic behavior. In more detail, the conductivity at 55
T shows the power-law type temperature dependence
(σzz∝ Tα, α ∼ 0.24) in accord with the picture of the
Tomonaga-Luttinger liquid [see Fig. S6 [23], [25]]. On
the contrary, the insulating behavior with the finite gap
around 18 T is far from clear in terms of the numerical
calculation. One possible scenario is the magnetic freeze-
out, i.e., electron localization by disorders promoted by
the quasi-1D confinement. Indeed, the magnetic freeze-
out often occurs in the QL of semiconductors such as
Hg1−xCdxTe and InSb [26, 27], which manifests itself as
the non-saturating positive MR. However, this is not the
case for the present system wherein the MR shows a peak
around 18 T.

A more plausible scenario would be the field-induced
collective electronic ordering promoted by the quasi-one-
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dimensional confinement. It is known that the Fermi
surface of quasi-1D metal is unstable towards a charge-
gapped state such as the charge density wave (CDW),
spin density wave (SDW) or excitonic insulator [28–34].
Although there are several possible candidates of elec-
tronic orderings for the quasi-1D state composed of the
n=0 LL, we focus here on the field induced CDW. By
taking into account the long-range Coulomb interaction
within the Hartree-Fock approximation, Fukuyama [28]
showed theoretically that the electron gas in the QL turns
into the charge density wave at low temperatures, as later
experimentally observed for graphite [29–32]. We cal-
culated the magnetic field dependence of Tc following
Fukuyama’s theory [28] and estimated the charge gap
∆cal (=3.5 kBTc) [Supplementary Note 6 [23]]. In Fig.
2(d), we show the field dependence of ∆cal [see also Fig.
S10 [23]]. ∆cal shows a peak around 18 T which is con-
sistent with the experimental results within the differ-
ence of factor of 3. In more detail, the non-monotonic
field dependence of ∆cal can be understood from the bal-
ance between the field variation of the LL degeneracy
and EF; the transition temperature, or equivalently the
order parameter, initially increases due to the enhance-
ment of the LL degeneracy, but is counterbalanced by
the decrease of EF at the higher magnetic field. In this
context, the non-monotonic field dependence of magne-
toresistivity and ∆exp can be explained by the field in-
duced CDW formation and its subsequent suppression by
higher magnetic fields. We note that the theory consider-
ing electron-phonon interaction also gives a qualitatively
similar result [Supplementary Note 6 [23], [33]].

Nonlinear transport measurements.

It is instructive to compare these results with the case
of graphite [29, 30], which is a canonical system showing
the field induced insulating state in the QL. In graphite,
the insulating state due to 2kF instability is observed as
a phase transition accompanying a clear jump of mag-
netoresistivity at a certain threshold field, which is en-
hanced at higher temperatures. Moreover, the insulating
state returns into a metallic state in the higher mag-
netic field [32]. There is a similarity between the both
cases, graphite and CaIrO3, in terms of overall behav-
ior of meatal-insulator-metal transition (crossover), but
the sharpness of the transition is obviously different. To
characterize the possible CDW state in CaIrO3, we in-
vestigated the current-voltage (I-V ) characteristics in the
QL. It has been known that the long-range ordered CDW
slides over the underlying lattice with a current excita-
tion larger than a certain threshold value, which mani-
fests itself as the non-Ohmic I-V characteristics [35]. On
the contrary, the disordered or short-range ordered CDW
does not show a clear onset of sliding motion. As shown
in the inset to Fig. 4(a), even at the sufficiently large

Fig. 4: (a) The magnetic field dependence of the third-
harmonic resistance R3ω

zz . The third-harmonic resistance nor-
malized by linear resistance R3ω

zz /R
1ω
zz is also plotted. Here,

R1ω
zz = V 1ω

zz /I and R3ω
zz = −V 3ω

zz /I. The measurements were
done under the condition of I = 75 uA and f = 2317 Hz to
avoid the heating effects. The inset shows the current de-
pendence of linear and third-harmonic voltage at a frequency
of 2317 Hz at 2 K and 14 T. (b) The contour plot of resis-
tivity as a function of temperature and magnetic field in the
longitudinal configuration (B ‖ I ‖ a(z)). The inset shows
schematic illustrations of the disordered density wave phase
and quasi-1D metal phase.

current of 100 µA, which corresponds to the electric field
about 45 mV/cm, the I-V property measured at 2 K and
14 T does not show any clear threshold or jump charac-
teristic of the sliding motion of long-range ordered CDW
[36, 37]. Alternatively, we found that the I-V property
already includes the non-Ohmic component even in the
weak current region by measurements of third-harmonic
voltage response V 3ω

zz [see the inset to Fig. 4(a), Supple-
mentary Note 5 [23]]. In Fig. 4(a), we show the third-
harmonic resistivity R3ω

zz , which is defined as −V 3ω
zz /I, as

well as that normalized by the linear component of re-
sistivity (R3ω

zz /R
1ω
zz ). Both R3ω

zz and R3ω
zz /R

1ω
zz steeply in-

creases above Bth, suggesting that the non-Ohmic behav-
ior is inherent to the QL state. Specifically, the R3ω

zz /R
1ω
zz

reaches 6× 10−4 at 14 T. Such higher harmonic of resis-
tance is often observed in disordered metal or correlated
electron systems and typically originates from the spa-
tially inhomogeneous electronic state [38–40]. In this con-
text, the non-Ohmic I-V property without clear thresh-
old field suggests that the CDW state in the present sys-
tem is not spatially homogeneous, or equivalently, is not
of long-range nature. From the value of 2kF, the period
of the CDW is estimated to be about 50 nm at 18 T, and
hence the long-ranged CDW formation would require the
extremely clean sample, which may not be obtained in
the present study.
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Material Bth (T) BQL (T) Type of order

CaIrO3 10 6 Disordered density wave

Graphite 25 7 density wave

TaAs 80 8 Wigner crystallization

ZrTe5 2 1.3 3D quantum Hall state

Table 1: The threshold magnetic field (Bth) necessary to real-
ize the correlated ordered state in quantum limit is compared
among the various materials including graphite [29–31], TaAs
[42], and ZrTe5 [41]. CaIrO3 enters the correlated ordered
state in QL at the remarkably small magnetic field among
the reported materials, BQL of which are on the same order
of the magnitude main text for more details]. ZrTe5 shows
a remarkably small Bth, but it would possibly be due to the
small BQL of the material.

DISCUSSION

On the basis of these results, we constructed the elec-
tronic phase diagram as shown in Fig. 4(b). In the
low-field regime below Bth, the metallic state extends
over a wide temperature range. In the intermediate field
regime above Bth, the insulating state as characterized
by the disordered CDW emerges at low temperatures,
but gradually turns into the quasi-1D metallic state per-
haps with the nature of Tomonaga-Luttinger liquid in
a higher field regime. Although we focus on the CDW
model here, the possibility of other electronic orderings,
such as SDW or excitonic insulator cannot be excluded
due to the multi-band structure of n=0 LLs and the
strong electron correlation. However, we anticipate that
the CDW picture gives a good starting point to capture
the field induced insulating state in the present system.
Moreover, we note here that the threshold magnetic field
of the insulating state (Bth) is as small as 10 T. Ex-
cept the case of ZrTe5 with exceptionally small BQL (∼2
T) [41], this value is much smaller than the value of
other semimetals, such as graphite [29–32] (Bth=25T)
and TaAs (Bth=80T) [42], regardless of similar value of
the BQL [see Table 1]. The theoretical model of CDW
as presented above also demonstrates that Bth decreases
as vF decreases through the enhancement of density of
state, when vF is in the range of 104-106 m/s [see Fig.
S11 and Supplementary Note 6 [23]]. In this context, the
moderate renormalization of vF due to the strong elec-
tron correlation [15] may be one of the key ingredients
for the small value of Bth in CaIrO3.

CONCLUSION

In this study, we have investigated the quantum limit
(QL) transport of correlated Dirac electrons in the per-
ovskite CaIrO3 by means of magneto-transport measure-
ments and theoretical calculations. In the QL, the mag-
netoresistivity steeply increases around 10 T (= Bth)

and the insulating state with a finite energy gap emerges
around 18 T, resulting in the giant magnetoresistance ra-
tio of 3,500 %. By further increasing the magnetic field,
both the gap and resistivity dramatically decrease, result-
ing in the quasi-1D metallic state in the deep QL regime.
The non-monotonic field dependence of the gap as well as
the non-Ohmic current-voltage characteristics suggests
that the field-induced insulating state originates from
the collective electronic ordering, likely the charge den-
sity wave, spin density wave or excitonic insulator driven
by the Fermi surface instability inherent to the quasi-
one-dimensional n=0 Landau levels. The field-induced
crossover between the metallic state and the gapped
state occurs in the fairly low magnetic field regime (10-
30 T) among the conventional semimetals, highlighting
the highly field-sensitive character of strongly correlated
Dirac electrons relevant to the Mott criticality.

METHODS

Single crystalline sample of perovskite CaIrO3 were
synthesized under high pressures using the cubic-anvil
type facility. The samples were treated at pressure of 1
GPa and temperature of 1200 ◦C. The materials were
kept under this condition for 10 min and then quenched
to room temperature. The typical size of the sample
is about 0.5×0.3×0.3 mm3. We have determined the
crystal orientation by an in-house X-ray diffractometer.
The crystal structure is identified as the orthorhombic
(GdFeO3-type) perovskite with the space group of Pbnm.

The resistivity (ρzz) in longitudinal configuration and
the resistivity (ρxx) and Hall resistivity (ρyx) in trans-
verse configuration were measured by a four- or five-
probe method with indium electrode. Epo-tek H20S sil-
ver epoxy and 50-µm-diameter gold wires were used to
form electrical contacts. The magnetic field was applied
along the a-axis and the current was applied along the a-
axis and b-axis of the crystal for a longitudinal and trans-
verse configuration, respectively. The magnetotransport
measurements up to 55 T in a temperature range from 1.4
to 40 K were done under pulsed high magnetic fields us-
ing nondestructive magnets installed at The Institute for
Solid State Physics, The University of Tokyo. The mag-
netic fields up to 55 T (pulse durations of 36 ms) were
generated using bipolar pulse magnets, which can gener-
ate both positive and negative fields. We used numerical
lock-in technique at a frequency of 100 kHz. ρzz and ρxx
are symmetrized and ρyx is antisymmetrized with respect
to the magnetic field.

Measurements of the third-harmonic voltage response
have been performed by standard four-terminal geome-
try in the longitudinal configuration (B ‖ I ‖ a(z)). An
ac current I = I0 sinωt is applied to the sample and the
linear (V 1ω) and nonlinear response (V 3ω) in the total
voltage signal V = V 1ω sinωt+ V 3ω sin 3ωt+ · · · are de-
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tected simultaneously by two digital lock-in amplifiers.
The magnetic fields up to 14 T is applied and the sample
was cooled down to the temperature of 2 K using the
Physical Property Measurement System (Quantum De-
sign). The measurements were done in a frequency range
from 3 to 4,000 kHz.

To calculate the Landau levels (LLs) of line node, we
constructed a low-energy effective model of the band
structure around the U point, where the line node re-
sides, based on the previous works [13, 24] on SrIrO3,
which has the same crystal symmetry as the perovskite
CaIrO3 [Supplementary Note 7 [23]]. Using the Landau
quantization for B ‖ a, we derived coupled secular equa-
tions similar to those derived in Ref. [24] for B ‖ c. We
then numerically solved these equations, to obtain the
LLs. The DOS is calculated by integrating the weight
(∝ B) of the LLs over −0.48/a < kz < 0.48/a around
the U point.
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