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SPECTRUM OF WEIGHTED ADJACENCY OPERATOR ON A

NON-UNIFORM ARITHMETIC QUOTIENT OF PGL3

SOONKI HONG AND SANGHOON KWON

Abstract. We investigate the automorphic spectra of the natural weighted ad-

jacency operator on the complex arising as a PGLp3,Fqrtsq quotient of rA2-type

building. We prove that the set of non-trivial approximate eigenvalues pλ`, λ´q of

the weighted adjacency operators A˘
w on the quotient induced from the colored ad-

jacency operators A˘ on the building for PGL3 contains the simultaneous spectrum

of A˘ and another hypocycloid with three cusps. As a byproduct, we re-establish

a proof of the fact that PGLp3,FqrtsqzPGLp3,Fqppt´1qqq{PGLp3,Fqrrt´1ssq is not a

Ramanujan complex, from a combinatorial aspect.
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1. Introduction

A finite k-regular graph X is called a Ramanujan graph if for every eigenvalue

λ of the adjacency matrix AX of X satisfies either λ “ ˘k or |λ| ď 2
?
k ´ 1. An

eigenvalue λ is called trivial if λ “ ˘k. Since the interval r´2
?
k ´ 1, 2

?
k ´ 1s is

equal to the spectrum S2 of the adjacency operator of k-regular tree Tk, we note that

a finite k-regular graph X is Ramanujan if and only if every non-trivial spectrum of

AX is contained in the spectrum S2 of the adjacency operator A on L2pTkq.
Such graphs can be constructed as quotients of the Bruhat-Tits tree associated

to PGLp2,Qpq by congruence subgroups of uniform lattices of PGLp2,Qpq [LPS],

using Ramanujan conjecture for classical modular forms. More examples were given

by Morgenstern [Mo1], replacing Qp by Fqppt´1qq. One significant difference between
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2 SOONKI HONG AND SANGHOON KWON

PGLp2,Qpq and PGL2pFqppt´1qqq is that PGLp2,Fqppt´1qqq has a non-uniform lattice

Γ “ PGLp2,Fqrtsq. For congruence subgroups Λ of Γ, the quotient graphs are infinite

but the edges and vertices come with suitable weights w so that the total volume

associated to the weight is finite. Under these weights on vertices and edges, the

adjacency operator A on Tq`1 induces the weighted operator AX on the quotient

X “ ΛzTq`1.

In [Mo2], the author defined Ramanujan diagrams as such weighted objects satis-

fying the similar bound for non-trivial spectrum of AX . In this case, every non-trivial

spectrum of AX on L2
wpXq is contained in the interval r´2

?
q, 2

?
qs and hence it is a

Ramanujan diagram. For example, the adjacency operator on L2
wpPGLp2,FqrtsqzTq`1q

has discrete spectrum ˘pq`1q and continuous spectrum r´2
?
q, 2

?
qs (see Figure 1).

q ` 1´q ´ 1 2
?
q´2

?
q

Figure 1. Spectrum of AX on PGLp2,FqrtsqzTq`1

For graphs or diagram coming from a quotient of G “ PGLp2,Fqppt´1qqq by an

arithmetic lattice Γ, being a Ramanujan graph or Ramanujan diagram can be un-

derstood via representation-theoretic reformulation. Namely, ΓzTq`1 is Ramanujan if

and only if all the infinite-dimensional spherical irreducible G-representations which

are weakly contained in L2pΓzGq are not from the complementary series. See [Lu] for

the detail.

The authors in [CSZ] suggested a generalization of the notion of Ramanujan graphs

to the simplicial complexes obtained as finite quotients of the Bruhat-Tits building

for PGLpd, F q for a non-Archimedean local field F . Let B be the building associated

to PGLpd, F q. The colored adjacency operator Aj : L2pBq Ñ L2pBq is defined for

f P L2pBq by

Ajfpxq “
ÿ

y„x
τpyq“τpxq`j

fpyq,

where y „ x implies that there is an edge between y and x in B and τ : B0 Ñ Z{dZ
is a color function (see Section 2 for the precise definition). Let Sd be the simulta-

neous spectrum of colored adjacency operators pA1, . . . , Ad´1q on L2pB0q, which may

be computed explicitly as a subset of Cd´1 (see Theorem 2.11 of [LSV1] and also

Proposition 4.5 of [CM] for d “ 3). In fact, Sd is equal to the set σpSq for

S “ tpz1, . . . , zdq : |z1| “ ¨ ¨ ¨ “ |zd| “ 1 and z1z2 ¨ ¨ ¨ zd “ 1u



SPECTRUM OF NON-UNIFORM WEIGHTED COMPLEX 3

and σ : S Ñ Cd´1 be the map given by pz1, . . . , zdq ÞÑ pλ1, . . . , λd´1q where

λk “ q
kpd´kq

2 σkpz1, z2, . . . , zdq.

A finite complex X arising as a quotient of BpGq is called Ramanujan if every non-

trivial automorphic spectrum pλ1, . . . , λd´1q of AX,j acting on L2pXq is contained in

the simultaneous spectrum Sd of Aj on B. In [LSV1], [LSV2], [Li] and [Sar], the au-

thors constructed higher dimensional Ramanujan complexes arising as finite quotients

of PGLpd, F q.
In [Sam], the author investigated non-uniform Ramanujan quotients of the Bruhat-

Tits building Bd of PGLpd,Fqppt´1qqq, generalizing the finite Ramanujan complexes

constructed in [LSV1], [LSV2], [Li] and [Sar]. She proved using the representation-

theoretic arugment that if d ą 2, then for G “ PGLpd,Fqppt´1qqq, Γ “ PGLpd,Fqrtsq
and Bd the Bruhat-Tits building of G, the quotient ΛzBd is not Ramanujan for any

finite index subgroup Λ of Γ. This mainly comes from the following fact: the Ramanu-

jan conjecture in positive characteristic for PGLd for d ą 2, achieved by Lafforgue,

gives bounds on the cuspidal spectrum, but the other parts of the spectrum do not

satisfy the same bounds as the cuspidal spectrum.

While there are significant differences from the point of view of representation the-

ory, the combinatorial distinction between the cuspidal spectrum and the other parts

of the spectrum was not clear, as mentioned in [Sam]. In this paper, we explore the

combinatorial characterization of the automorphic spectrum of the natural weighted

adjacency operator on the non-uniform simplicial complex PGLp3,FqrtsqzB3.

Let Γ “ PGLp3,Fqrtsq and G “ PGLp3,Fqppt´1qqq. Since Γ acts with torsion on

BpGq the degree of vertices in ΓzBpGq is not constant, the colored adjacency operators

A` “ A1 and A´ “ A2 on BpGq induces the weighted adjacency operators A`
w and

A´
w on L2

wpΓzBpGqq for a suitable weight function w.

More precisely, the weighted adjacency operators A`
w and A´

w on L2
wpΓzBpGqq is

defined for any f P L2
wpΓzBpGqq by

A˘
wfpuq :“

ÿ

pu,vqPE
τpvq“τpuq˘1

wpu, vq
wpvq fpvq.

See Section 3 for the exact calculation of w. These operators A˘
w satisfies that pA`

wq˚ “
A´

w (see [Sam], Remark 4.1). Now we state our main theorem.

Theorem 1.1. Let A`
w be weighted adjacency operator on L2

wpΓzBpGqq induced from

the colored adjacency operator A` on BpGq. The spectrum of the operator A`
w contains

Σ0 Y Σ1 Y Σ2 where

Σ0 “ tq2 ` q ` 1, pq2 ` q ` 1qe 2πi
3 , pq2 ` q ` 1qe 4πi

3 u
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is a set of three distinct points,

Σ1 “ tq 3

2 eiθ ` qe´2iθ ` q
1

2 eiθ : θ P Ru

is a hypocycloid with three cusps pq 3

2 ` q ` q
1

2 qe 2kπi
3 for k “ 0, 1, 2 and

Σ2 “ tqps1 ` s2 ` s3q P C : s1s2s3 “ 1 and |s1| “ |s2| “ |s3| “ 1u

is a hypocycloid with three cusps 3qe
2kπi
3 for k “ 0, 1, 2 and its interior (See Figure 2).

3q ?
qpq ` ?

q ` 1q

q2 ` q ` 1

Figure 2. Σ0 Y Σ1 Y Σ2 in complex plane

Since A`
w and A´

w are normal and commute with each other, if λ` is a spectrum of

A`
w , then λ´ “ λ` is also a spectrum of A´

w and vice versa. Thus, the automorphic

spectrum of A˘
w is defined as the vectors pλ`, λ´q in C2 for which there exists a

sequence of unit vectors fn P L2
wpΓzBpGqq such that

lim
nÑ8

pA˘
wfn ´ λ˘fnq “ 0.

Since S3 “ Σ2 and the points in Σ1 are also in the automorphic spectra of A˘
w , we

obtain the following corollary.

Corollary 1.2. PGLp3,FqrtsqzBpGq is not a Ramanujan complex.
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Remark 1.3. If Γ acts properly and cocompactly on an rA2 building B, then in general

by [CSZ] and [CMS] the L2-spectrum of the adjacency operator A` consists of three

points Σ0 together with a subset of the region bounded by Σ1. By definition, the

quotient complex ΓzB is Ramanujan if every non-trivial L2-spectrum is contained in

Σ2p“ S3q.

This article is organized as follows. In Section 2, we review the definition of the

Bruhat-Tits building associated to the group PGLd over a non-Archimedean local

field and compact Ramanujan complexes in their combinatorial and representation-

theoretic forms. In Section 3, we present the structure of the non-uniform quotient

PGLp3,FqrtsqzPGLp3,Fqppt´1qqq. Colored adjacency operator with weights, the nat-

ural operator on the quotient space, is discussed in Section 4. In Section 5 and 6, we

explore the simultaneous eigenfunctions and the spectrum of the weighted adjacency

operators.

2. Building and compact Ramanujan complex

Let F be a non-Archimedean local field with a discrete valuation ν and O be the

valuation ring of F . Let π be the uniformizer of O for which πO is the unique maximal

ideal of O. Let G be the projective general linear group

PGLpd, F q “ GLpd, F q{tλI : λ P F u

and let W be the image of the map from GLpd,Oq to PGLpd, F q defined by

g Ñ gtλI : λ P F u.

In this section, we review the affine building of type rAd´1, colored adjacency oper-

ators and compact Ramanujan complexes arising as a quotient of the building for

PGLpd, F q. For details, we refer to [LSV1].

The Bruhat-Tits building BpGq associated with G is the pd ´ 1q-dimensinal con-

tractible simplicial complex defined as follows. We say two O-lattices L and L1 of

rank d are in the same equivalence class if L “ sL1 for some s P Fˆ. The set BpGq0
of vertices of BpGq is the set of the equivalence classes rLs. For given k-vertices

rL1s, rL2s, ¨ ¨ ¨ , rLks, they form a k-dimensional simplex in BpGq if

(2.1) πL1
1 Ă L1

k Ă L1
k´1 Ă ¨ ¨ ¨L1

2 Ă L1
1

for some L1
i P rLis. In general, we denote by BpGqk the k-skeleton of BpGq.

Let Od be the standard O-lattice. The action of a matrix M in G on the set of

O-lattices transfers the standard one Od to the O-lattice of which basis consists of

the column vectors M and every scalar matrix λI preserves every equivalence class.

Thus, the group G acts transitively on BpGq0. Since the action of G on BpGq0 defined
by left multiplication satisfies the relation (2.1), it follows that G acts isometrically
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on the quotient space. Since the group W is the stabilizer of the vertex rOds, the
set of vertices of Bruhat-Tits building associated to G is identified with the quotient

space G{W.

The color τ : BpGq0 Ñ Z{dZ is defined by

τprLsq :“ logqrOd : πiLs,

for a sufficiently large positive integer i with πiL Ă Od. Since rπiL : πi`1Ls “ d, the

color τprLsq is independent of the choice of the lattice in rLs and hence is well-defined.

Let L2pBpGqq be the space of functions f : BpGq0 Ñ C satisfying

ÿ

xPBpGq0
|fpxq|2 ă 8.

The colored adjacency operator Ai : L2pBpGqq Ñ L2pBpGqq is defined for f P
L2pBpGqq by

(2.2) Aifpxq “
ÿ

y„x
τpyq“τpxq`i

fpyq,

where y „ x implies that there is an edge between y and x in BpGq. These opera-

tors are bounded and commutative. Moreover, since A˚
i “ Ak´i, the operators are

normal. Let Sd Ă Cd´1 be the simultaneous spectrum of pA1, A2, . . . , Ad´1q acting on

L2pBpGqq. More precisely, the spectrum Sd is the subset of d-tuples pλ1, ¨ ¨ ¨ , λd´1q
in Cd´1 such that there exists a sequence of functions fn P L2pBpGqq with }fn}2 “ 1

satisfying, for any i “ 1, . . . , d ´ 1,

lim
nÑ8

}Aifn ´ λifn}2 “ 0.

Although the non-uniform lattice PGLp3,Fqrtsq of PGLp3,Fqppt´1qqq is the main

topic of this paper, in order to motivate the reader, we review the definition of compact

Ramanujan complexes arising as a quotient of PGLpd, F q. Let Γ be a torsion-free

cocompact discrete subgroup of G. Then Γ acts on BpGq0 “ G{W by left translation,

and ΓzBpGq is a finite complex. The color function defined on BpGq0 may not be

preserved by Γ. However, the colors defined on the set BpGq1 of edges by

τpx, yq “ τpxq ´ τpyq pmod dq

are preserved by Γ.

Let L2pΓzBpGqq be the space of functions f on ΓzBpGq0 with }f}2 ă `8. Here,

}f}2 “ ř
xPΓzBpGq0 |fpxq|2. Using the equation (2.2), it follows that operators Ai induce

colored adjacency operators

AX,i : L
2pΓzBpGqq Ñ L2pΓzBpGqq
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on ΓzBpGq. The eigenfunction f of AX,i on L2pΓzBpGqq is called trivial if the function

f is of the form

fprLsq “ ξτprLsq,

for some d-th root ξ of unity, i.e., ξd “ 1.

Definition 2.1. The quotient complex ΓzBpGq is called Ramanujan if for every non-

trivial simultaneous eigenfunction f of the colored adjacency operators AX,i acting

on L2pΓzBpGqq, the simultaneous eigenvalue pλ1, . . . , λd´1q for f is contained in Sd.

We remark that the authors in [LSV1] proved that if d is a prime and Γ is an

arithmetic uniform lattice of inner type, then ΓzBpGq is Ramanujan.

3. Non-uniform arithmetic quotient PGLp3,FqrtsqzPGLp3,Fqppt´1qqq

Let Fq be the finite field of order q and let Fqptq be the field of rational functions

over Fq. The absolute value } ¨ } of Fqptq is defined for any f P Fqptq, by

}f} :“ qdegpgq´degphq,

where g, h are polynomial over Fq satisfying f “ g

h
. The completion of Fqptq with

respect to } ¨ }, the field of formal Laurent series in t´1, is denoted by Fqppt´1qq, i.e.,

Fqppt´1qq :“
#

8ÿ

n“´N

ant
´n : N P Z, an P Fq

+
.

The valuation ring O is the subring of power series

Fqrrt´1ss :“
#

8ÿ

n“0

ant
´n : an P Fq

+
.

Let G be the group PGLp3,Fqppt´1qqq, Γ be its non-uniform lattice PGLp3,Fqrtsq
and W “ PGLp3,Oq. In this section and throughout, we focus on the building BpGq
for G and the quotient ΓzBpGq for Γ “ PGLp3,Fqrtsq. In general, given a simple and

simply-connected Chevalley group scheme H defined over Z, the action of HpFqrtsq
on BpHq is described in [So].

We recall that the set of vertices BpGq0 is identified with the coset space G{W .

Since the right multiplication by a matrix in W is considered as the elementary

column O-operation, we may find a representative rAs “ AW of vertex in BpGq with
the following conditions:

‚ The matrix A is upper diagonal.

‚ The diagonal entries of A are of the form tn where n P Z.

‚ The pi, jq-entry aij of A is contained in tn`1Fqrts whenever aii “ tn.

‚ If aii “ ajj, then aij “ aji “ 0.
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Similarly, the left action of Γ is considered as the elementary row operation. The

following lemmata describe the fundamental domain for Γ-action on BpGq0. These
actually follow from the general theorem in [So], but to be self-contained we give the

elementary proof of the statements.

Lemma 3.1. Given every g P PGLp2,Fqppt´1qqq, there exists a unique non-negative

integer n such that

g “ γ

˜
tn 0

0 1

¸
w

for some γ P PGLp2,Fqrtsq and w P PGLp2,Oq.

Proof. Let Γ2 “ PGLp2,Fqrtsq, W2 “ PGLp2,Oq and rαs be the polynomial part

of α. Let T : Fqppt´1qq Ñ Fqppt´1qq be the mapping given by T pαq “ 1
α´rαs . From the

above observation, every g P G has a representative

˜
tm α

0 1

¸

for m P Z and α P tm`1Fqrts. If m ě 0, then α P Fqrts and hence

Γ2

˜
tm α

0 1

¸
W2 “ Γ2

˜
tm 0

0 1

¸
W2

since ˜
tm α

0 1

¸
“

˜
1 α

0 1

¸ ˜
tm 0

0 1

¸
.

If m ă 0, then we may assume that α “ a´m`1t
´m`1 ` ¨ ¨ ¨ ` a´1t

´1 and we have

Γ2

˜
tm α

0 1

¸
W2 “ Γ2

˜
tm α ´ rαs
0 1

¸
W2 “ Γ2

˜
0 α ´ rαs

´ tm

α´rαs 1

¸
W2

“Γ2

˜
´tmT pαq 1

0 α ´ rαs

¸
W2 “ Γ2

˜
´tmT pαq2 T pαq

0 1

¸
W2.

Since α is rational, we have T kpαq “ 0 for large enough k which implies that the

above reduction eventually stops. After exchanging row and column if necessary, we

get

Γ

˜
tm α

0 1

¸
W “ Γ

˜
tn 0

0 1

¸
W

for some n ě 0. �
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Lemma 3.2. Given every g P G, there exists a unique pair of non-negative integers

pm,nq with 0 ď n ď m such that

g P Γ

¨
˚̋
tm 0 0

0 tn 0

0 0 1

˛
‹‚W.

Proof. From the above observation, every g P G may be written by

¨
˚̋
tm0 a12 a13

0 tn0 a23

0 0 tℓ0

˛
‹‚w

for some aij P Fqppt´1qq, matrix w P W and non-negative integers m0, n0 and ℓ0. If

m0 ă n0, then multiplying suitable γ on the left and w on the right so that we may

assume a12 is zero. Similary, if n0 ă ℓ0, then we may assume a23 is zero. If either a12

or a23 is zero, then it reduces to the case where it is not so it suffices to consider the

case m0 ě n0 ě ℓ0. In this case, applying the Lemma 3.1 to the upper-left 2ˆ2 block

of the matrix, we may find γ1 P Γ such that

¨
˚̋
tm0 a12 a13

0 tn0 a23

0 0 tℓ0

˛
‹‚“ γ1

¨
˚̋
tm1 0 ‹
0 tk1 ‹
0 0 tℓ0

˛
‹‚w1

with m0 ě m1 ě k1 ě n0. Now, applying the Lemma 3.1 (and the proof) to the

lower-right 2 ˆ 2 block, we may find γ1
1 P Γ and w1

1 P W such that

¨
˚̋
tm1 0 ‹
0 tk1 ‹
0 0 tℓ0

˛
‹‚“ γ1

1

¨
˚̋
tm1 ‹ ‹
0 tn1 0

0 0 tℓ1

˛
‹‚w1

1

with k1 ě n1 ě ℓ1 ě ℓ0. While the reducing process

pmi, ni, ℓiq Ñ pmi`1, ni`1, ℓi`1q

goes on, both p1, 2q-entry and p2, 3q-entry become eventually zero since mi ą mi`1 ě
ℓi`1 ą ℓi unless both entries are zero. Continuing this process until it eventually

stops, we may obtain γ, γ1 P Γ and w,w1 P W for which

¨
˚̋
tm0 0 ‹
0 tn0 ‹
0 0 tℓ0

˛
‹‚“ γ1

¨
˚̋
tmt 0 ‹
0 tnt 0

0 0 tℓt

˛
‹‚w1 “ γ

¨
˚̋
tm 0 0

0 tn 0

0 0 1

˛
‹‚w

with m ě n ě 0. �
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For m,n with m ě n ě 0, let vm,n be the vertex of the quotient complex ΓzBpGq
corresponds to

Γ

¨
˚̋
tm 0 0

0 tn 0

0 0 1

˛
‹‚W.

The definition of the building BpGq implies that there is an edge between two vertices

vm,n and vm1,n1 if and only if the following hold:
$
’’’’’&
’’’’’%

pm1, n1q P tpm ˘ 1, nq, pm,n ˘ 1q, pm ˘ 1, n ˘ 1qu if m ą n ą 0

pm1, n1q P tpm ˘ 1, nq, pm,n ` 1q, pm ` 1, n ` 1qu if m ą n “ 0

pm1, n1q P tpm ` 1, nq, pm,n ´ 1q, pm ˘ 1, n ˘ 1qu if m “ n ą 0

pm1, n1q P tp1, 0q, p1, 1qu if m “ n “ 0.

Combining above facts, the quotient complex ΓzBpGq is described as Figure 3.

v0,0 v1,0 v2,0 v3,0 v4,0 v5,0

¨ ¨ ¨
v1,1 v2,1 v3,1 v4,1 v5,1

v2,2 v3,2 v4,2 v5,2 v6,2

v3,3 v4,3 v5,3 v6,3

v4,4 v5,4 v6,4 v7,4

Figure 3. The fundamental domain for ΓzBpGq

4. Colored adjacency operator with weights

Generalizing the idea of [Mo2], the colored adjacency operators with weights are in-

troduced in [Sam]. In this section, we study the combinatorics of the natural weighted

adjacency operators A`
w and A´

w . Since Γ acts on BpGq with torsions, the induced op-

erators on the quotient from the colored adjacency operators on L2pBpGqq come with

weights envolving the cardinality of the stabilizer of the vertices and edges.

Given a simplicial complex X , let V “ V pXq and E “ EpXq be the set of vertices
and edges of X , respectively. We denote by pu, vq the edge with vertices u and v.

Definition 4.1. The weight function w : V Y E Ñ p0, 1s is a function such that

wpxq ď wpeq holds for every v P V and e P E with v P e. The function θpu, vq “ wpeq
wpuq
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is called the entering degree of e to u, where e “ pu, vq. The in-degree of a vertex

u is in-degreepuq :“ ř
pu,vqPE

θpu, vq. A simplicial complex X with weight function w is

k-regular if in-degreepuq “ k for any u P V .

The weight function w allows to define a measure µ on V , for any S Ă V , by

µpSq “ ř
vPS

wpvq. Using the measure µ, we define the L2-norm of a function f by

}f}2 :“
ˆÿ

uPV
|fpuq|2wpuq

˙1{2

and let L2
wpXq be the space of functions f : V pXq Ñ C with }f}2 ă 8.

The weighted adjacency operators A`
w and A´

w on L2
wpΓzBpGqq is defined for any

f P L2
wpΓzBpGqq by

A˘
wfpuq :“

ÿ

pu,vqPE
τpvq“τpuq˘1

wpu, vq
wpvq fpvq.

The operators A˘
w satisfies that pA`

wq˚ “ A´
w (see [Sam], Remark 4.1).

Let Γm,n be the stabilizer of the vertex

xm,nW “

¨
˚̋
tm 0 0

0 tn 0

0 0 1

˛
‹‚W

in BpGq. Let w be the weight function defined by

wpvm,nq :“ q3pq ` 1qpq ´ 1q2
|Γm,n| and wpeq :“ q3pq ` 1qpq ´ 1q2

|Γvm,n
X Γvm1,n1 |

,

where e “ pvm,n, vm1,n1q and |S| denotes the cardinality of the set S. With respect

to these weights w, the colored adjacency operators on BpGq induce the weighted

adjacency operators A`
w and A´

w on the quotient L2
wpΓzBpGqq. The rest part of this

section is devoted to compute the values of the weight function w.

Proposition 4.2. Let Nm,n “ |Γm,n|. We have

(4.1) Nm,n “

$
’’’’’&
’’’’’%

q3pq ` 1qpq2 ` q ` 1qpq ´ 1q2 if m “ n “ 0

q2m`3pq ` 1qpq ´ 1q2 if m ą n “ 0

q2m`3pq ´ 1q2 if m ą n ą 0

q2m`3pq ` 1qpq ´ 1q2 if m “ n ą 0.

Proof. Since γxm,nW “ xm,nW if and only if γ P Γm,n, we have

Γm,n “ tγ P Γ : x´1
m,nγxm,n P W u.



12 SOONKI HONG AND SANGHOON KWON

Thus, Γ0,0 “ Γ X PGLp3,Oq “ PGLp3,Fqq and

Γm,0 “
"

¨
˚̋
a11 a12 a13

0 a22 a23

0 a32 a33

˛
‹‚P GLp3,Fqppt´1qqq : a11,a22,a23,a32,a33PFq,

a12,a13PPmptq

*
{tλI : λ P Fˆ

q u

Γm,n “
"

¨
˚̋
a11 a12 a13

0 a22 a23

0 0 a33

˛
‹‚P GLp3,Fqppt´1qqq : a11,a22,a33PFq,a12PPm´nptq,

a13PPmptq,a23PPnptq

*
{tλI : λ P Fˆ

q u

Γm,m “
"

¨
˚̋
a11 a12 a13

a21 a22 a23

0 0 a33

˛
‹‚P GLp3,Fqppt´1qqq : a11,a21,a22,a23,a33PFq,

a13,a23PPmptq

*
{tλI : λ P Fˆ

q u,

(4.2)

for m ą n ą 0, where P nptq is the space of polynomials of degree less than or equal

to n. Since

|GLp3,Fqq| “ pq3 ´ 1qpq3 ´ qqpq3 ´ q2q,

it follows that N0,0 “ |PGLp3,Fqq| “ q3pq ` 1qpq2 ` q ` 1qpq ´ 1q2.
For any γ P Γm,0, a11 ‰ 0, two vectors pa22, a32q and pa32, a33q are linearly indepen-

dent. This shows that

Nm,0 “ pq ´ 1qpq2 ´ 1qpq2 ´ qqq2m`2

q ´ 1
“ q2m`3pq ` 1qpq ´ 1q2.

Simliarly, we also have Nm,m “ q2m`3pq ` 1qpq ´ 1q2.
Since aii ‰ 0 for any γ P Γm,n with m ą n ą 0, it follows that

Nm,n “ pq ´ 1q3qm´n`1qm`1qn`1

q ´ 1
“ q2m`3pq ´ 1q2

which completes the proof of the proposition. �

Proposition 4.2 implies that

(4.3) wpvm,nq “

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

1

q2 ` q ` 1
if m “ n “ 0

1

q2m
if m ą n “ 0

q ` 1

q2m
if m ą n ą 0

1

q2m
if m “ n ą 0.
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It follows from (4.2) that for any m,n with m ą n ą 0,

Γm,0 X Γm`1,0 “ Γm,0

Γm,m X Γm`1,m`1 “ Γm,m and

Γm,n X Γm`1,n “ Γm,n

Γm,n X Γm`1,n`1 “ Γm,n.

(4.4)

The last equation of (4.4) holds when n “ 0. The following proposition gives the

value of the weight function w on edges.

Proposition 4.3. Under the above notation, we have

|Γ0,0 X Γ1,0| “ q3pq ` 1qpq ´ 1q2

|Γ0,0 X Γ1,1| “ q3pq ` 1qpq ´ 1q2

|Γ1,0 X Γ1,1| “ q4pq ´ 1q2

|Γm,n´1 X Γm,n| “ pq ´ 1q2q2m`3.

(4.5)

Proof. Applying (4.2),

Γ0,0 X Γ1,0 “
"

¨
˚̋
a11 a12 a13

0 a22 a23

0 a32 a33

˛
‹‚: a11, a12, a13, a22, a23, a32a33 P Fq

*
{tλI : λ P Fˆ

q u

Γ0,0 X Γ1,0 “
"

¨
˚̋
a11 a12 a13

a21 a22 a23

0 0 a33

˛
‹‚: a11, a12, a13, a21a22, a23, a33 P Fq

*
{tλI : λ P Fˆ

q u

Γ1,0 X Γ1,1 “
"

¨
˚̋
a11 a12 a13

0 a22 a23

0 0 a33

˛
‹‚:

a11,a12,a22,a23,a33PFq

a13PP 1ptq

*
{tλI : λ P Fˆ

q u

and

Γm,n´1 X Γm,n “
"

¨
˚̋
a11 a12 a13

0 a22 a23

0 0 a33

˛
‹‚: a11,a22,a33PFq,a12PPm´nptq

a13PPmptq,a23PPn´1ptq

*
{tλI : λ P Fˆ

q u

Simliar to the proof of Proposition 4.2, we get (4.5). �

5. Eigenfunctions of the weighted adjacency operators

Let S “ tps1, s2, s3q P C3 : s1s2s3 “ 1 and s1 ` s2 ` s3 “ s´1
1 ` s´1

2 ` s´1
3 u. Since

pA`
wq˚ “ A´

w , a pair pλ`, λ´q P C2 ´ tp0, 0qu of simultaneous eigenvalues of A`
w and

A´
w satisfies λ` “ λ´. We note that every pλ`, λ´q can be described by

(5.1) λ` :“ qps1 ` s2 ` s3q and λ´ :“ q

ˆ
1

s1
` 1

s2
` 1

s3

˙
.
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for some point ps1, s2, s3q in S. In this section, we investigate all eigenfunctions of A˘
w

in CpΓzBpGqq, using the parametrization (5.1) and a family of recursive relations of

A˘
w . Although not every eigenfunction involves automorphic spectrum, this enables

us in Section 6 to find approximate eigenvalues of A˘
w on L2

wpΓzBpGqq.

Lemma 5.1. For any ps1, s2, s3q P Sztps1, s2, s3q P S : |s1| “ |s2| “ |s3| “ 1u, there
exists a permutation σ on t1, 2, 3u such that

(5.2) sσp1q “ s´1
σp3q and |sσp2q| “ 1.

Proof. Without loss of generality, we may assume that |s1| ą 1 and |s2| ă 1. Put

s1 “ aeiθ1 , s2 “ beiθ2 and s3 “ 1

ab
e´ipθ1`θ2q,

where a, b ą 0. Since |s1 ´ s´1
1 ` s2 ´ s´1

2 |2 “ |s´1
3 ´ s3|2, we have

b2pa2 ´ 1q2 ` 2abpa2 ´ 1qpb2 ´ 1q cospθ1 ´ θ2q ` a2pb2 ´ 1q2 “ pa2b2 ´ 1q2.

Using the above equation, we have 2 cospθ1 ´ θ2q “ ab ` 1
ab
. This holds only if ab “ 1

and θ1 “ θ2. Thus it is possible to choose σ satisfying (5.2). �

Now we will solve the equations for eigenfunctions of A`
w and A´

w . In Chapter 3 of

[CM] where the authors investigate the spherical functions on BpGq, similar recurrence

formulas appear with different coefficients.

Proposition 5.2. Let f be an eigenfunction of A`
w and A´

w with eigenvalues λ` and

λ´. Suppose that si ‰ sj for any i ‰ j. Then, f is given by

fpvm,nq “
ÿ

pi,jqPt1,2,3u2
i‰j

Bi,jq
msmi s

n
j

where

Bi,j “ psi ´ qsjqpsi ´ qskqpsj ´ qskq
psi ´ sjqpsi ´ skqpsj ´ skqpq ` 1qpq2 ` q ` 1q .

Proof. Let f be an eigenfunction of A`
w and A´

w with eigenvalues λ` and λ´. For con-

venience, suppose that fpv0,0q “ 1. The definition of A˘
w together with the equations

(4.1), (4.4) and (4.5) show that the function f satisfies

A`
wfpv0,0q “ pq2 ` q ` 1qfpv1,0q “ λ`(5.3)

A´
wfpv0,0q “ pq2 ` q ` 1qfpv1,1q “ λ´(5.4)

A`
wfpv1,0q “ fpv2,0q ` pq2 ` qqfpv1,1q “ λ`fpv1,0q “ pλ`q2(5.5)

A´
wfpv1,0q “ q2fpv0,0q ` pq ` 1qfpv2,1q “ λ´fpv1,0q “ λ`λ´(5.6)

A`
wfpv1,1q “ q2fpv0,0q ` pq ` 1qfpv2,1q “ λ`fpv1,1q “ λ`λ´(5.7)

A´
wfpv1,1q “ pq2 ` qqfpv1,0q ` fpv2,2q “ λ´fpv1,1q “ pλ´q2.(5.8)
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For m ě 1, the function f have the following properties:

A`
wfpvm,0q “ fpvm`1,0q ` pq2 ` qqfpvm,1q “ λ`fpvm,0q(5.9)

A´
wfpvm,0q “ q2fpvm´1,0q ` pq ` 1qfpvm`1,1q “ λ´fpvm,0q(5.10)

A`
wfpvm,mq “ q2fpvm´1,m´1q ` pq ` 1qfpvm`1,mq “ λ`fpvm,mq(5.11)

A´
wfpvm,mq “ pq2 ` qqfpvm,m´1q ` fpvm`1,m`1q “ λ´fpvm,mq.(5.12)

Let us denote α “ λ`

q
, β “ λ´

q
and am,n “ fpvm,nq

qm`n . Using (5.9) and (5.10), for any

m ě 2, we have

am`1,0 ` qpq ` 1qam,1 “ αam,0(5.13)

am´2,0 ` qpq ` 1qam,1 “ βam´1,0(5.14)

It follows from (5.13) and (5.14) that for any m ě 2,

(5.15) am`1,0 ´ αam,0 ` βam´1,0 ` am´2,0 “ 0.

Since the point ps1, s2, s3q is the solution of the equation X3 ´ αX2 ` βX ´ 1, am,0

is of the form

am,0 “ A1,0s
m
1 ` A2,0s

m
2 ` A3,0s

m
3 .

The numbers A1,0, A2,0 and A3,0 are the solution of the following system of equations

a0,0 “ A1,0 ` A2,0 ` A3,0 “ 1

a1,0 “ A1,0s1 ` A2,0s2 ` A2,0s3 “ s1 ` s2 ` s3

q2 ` q ` 1

a2,0 “ A1,0s
2
1 ` A2,0s

2
2 ` A3,0s

2
3 “ ps1 ` s2 ` s3q2 ´ pq ` 1qps1s2 ` s2s3 ` s3s1q

q2 ` q ` 1
.

Thus for any i P t1, 2, 3u, we have

Ai,0 “ psi ´ qsjqpsi ´ qskq
psi ´ sjqpsi ´ skqpq2 ` q ` 1q ,

where j ‰ k P t1, 2, 3uztiu. The equation (5.14) shows that for any m ě 1,

am,1 “ A1,1s
m
0 ` A2,1s

m
1 ` A3,1s

m
2 ,

where

Ai,1 :“
1

q2 ` q

1

si
pβ ´ 1

si
qAi,0 “ sj ` sk

q2 ` q
Ai,0.

For m ą n ě 1, we have

A`
wfpvm,nq “ q2fpvm´1,n´1q ` qfpvm,n`1q ` fpvm`1,nq “ λ`fpvm,nq(5.16)

A´
wfpvm,nq “ q2fpvm´1,nq ` qfpvm,n´1q ` fpvm`1,n`1q “ λ´fpvm,nq.(5.17)



16 SOONKI HONG AND SANGHOON KWON

This implies that for any m ą n ě 1,

αam,n “ 1

q
am´1,n´1 ` qam,n`1 ` am`1,n(5.18)

βam,n “ am´1,n ` 1

q
am,n´1 ` qam`1,n`1.(5.19)

Denote am,n “ An,1s
m
1 ` An,2s

m
2 ` An,3s

m
3 .

It follows from (5.18) that for any n P N, i P t1, 2, 3u and distinct j, k P t1, 2, 3uztiu,

q2An`1,i ´ qpsj ` skqAn,i ` sjskAn´1,i “ 0.

Since
sj
q
and sk

q
are the solution of the equation of q2X2 ´ qpsj `skqX `sjsk, we have

Ai,n “ Bi,j

snj

qn
` Bi,k

snk
qn

.

Since we know Ai,0 and Ai,1, for any distinct j, k P t1, 2, 3uztiu,

Bi,j “ psi ´ qsjqpsi ´ qskqpsj ´ qskq
psi ´ sjqpsi ´ skqpsj ´ skqpq ` 1qpq2 ` q ` 1q .

Thus the eigenfunction f is defined by

fpvm,nq “ qm`nam,n “
ÿ

pi,jqPt1,2,3u2
i‰j

Bi,jq
msmi s

n
j .

This completes the proof. �

The following proposition gives the formula of simultaneous eigenfunctions in the

singular cases, that is, when the numbers sj are not distinct. It is possible to solve

the recurrence relations by appropriate modifications of the above methods. Rather

than this, we obtain the desired formula by taking limits of the nonsingular case.

Proposition 5.3. Let f be an eigenfunction of A`
w and A´

w with eigenvalues λ` and

λ´. If s1 ‰ s2 “ s3, then

fpvm,nq “ qm

ps1 ´ s2q2pq ` 1qpq2 ` q ` 1q

„
tps1 ´ qs2q2tp1 ´ qqn ` pq ` 1qusm1 sn2

`tps2 ´ qs1q2tp1 ´ qqpm ` nq ` pq ` 1qusm`n
2

`mpq ´ 1qps1 ´ qs2qps2 ´ qs1qsn1sm2

`pq ` 1qtqps21 ` s22q ´ 2pq2 ` q ` 1qs1s2usn1sm2

.

If s1 “ s2 “ s3, then

fpvm,nq “ sm`n
1 qm

2pq2 ` q ` 1q

"
2pq ` 1qpq2 ` q ` 1q ` 6mp1 ´ q2q

` p1 ´ qq2pq ` 1qpm2 ´ p2n ´ 3qm ´ 2n2q ` p1 ´ qq3pm2n ´ mn2q
*
.
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Proof. Assume first that s1 ‰ s2 “ s3. Let us consider the following three limits:

lim
s3Ñs2

B1,2s
n
2 ` B1,3s

n
3 “ ps1 ´ qs2q2tp1 ´ qqn ` pq ` 1qu

ps1 ´ s2q2pq ` 1qpq2 ` q ` 1q sn2 ,

lim
s3Ñs2

B2,3s
m
2 s

n
3 ` B3,2s

n
2s

m
3 “ ps2 ´ qs1q2tp1 ´ qqpm ` nq ` pq ` 1qu

ps1 ´ s2q2pq ` 1qpq2 ` q ` 1q sm`n
2 ,

and

lim
s3Ñs2

B2,1s
m
2 ` B3,1s

m
3 “m

pq ´ 1qps1 ´ qs2qps2 ´ qs1q
ps1 ´ s2q2pq ` 1qpq2 ` q ` 1qs

m
2 ,

` pq ` 1qtqps21 ` s22q ´ 2pq2 ` q ` 1qs1s2u
ps1 ´ s2q2pq ` 1qpq2 ` q ` 1q sm2 .

The above equations and L’Hôpital’s law show that

fpvm,nq “ qm

ps1 ´ s2q2pq ` 1qpq2 ` q ` 1q

„
tps1 ´ qs2q2tp1 ´ qqn ` pq ` 1qusm1 sn2

`tps2 ´ qs1q2tp1 ´ qqpm ` nq ` pq ` 1qusm`n
2

`mpq ´ 1qps1 ´ qs2qps2 ´ qs1qsn1sm2

`pq ` 1qtqps21 ` s22q ´ 2pq2 ` q ` 1qs1s2usn1sm2

.

(5.20)

Now assume that s1 “ s2 “ s3. The right hand side of (5.20) and its first derivative

are zero when s1 “ s2. Using L’Hôpital’s law twice, we have

fpvm,nq “ sm`n
1 qm

2pq2 ` q ` 1q

"
2pq ` 1qpq2 ` q ` 1q ` 6mp1 ´ q2q

` p1 ´ qq2pq ` 1qpm2 ´ p2n ´ 3qm ´ 2n2q ` p1 ´ qq3pm2n ´ mn2q
*
.

(5.21)

which completes the proof of the proposition. �

6. Automorphic spectra of the weighted adjacency operators

In this section, we investigate the automorphic spectra of the weighted adjacency

operators A˘
w on L2

wpΓzBpGqq. We will prove that there are no discrete spectrum ex-

cept trivial eigenvalues. Furthermore, we will verify that there are continuous spectra

of A˘
w which are outside of the spectrum of A˘ on L2pBpGqq.

Fix s “ ps1, s2, s3q P S. Let us denote by fs the simultaneous eigenfunction of A˘
w

with eigenvalues defined in (5.1).

Proposition 6.1. The trivial eigenfunctions are the only eigenfunctions fs of A˘
w

which belongs to L2
wpΓzBpGqq.
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Proof. By definition, we have

}fs}22 “
8ÿ

m“0

mÿ

n“0

|fpvm,nq|2wpvm,nq.(6.1)

Suppose that s1 “ s2 “ s3. By assumption, we must have |s1| “ 1. Since the sequence

|fspvm,0q|2wpvm,0q is a polynomial in m by (5.21) and (4.3), it follows that }fs}22 “ 8.

Let us consider the case when s1 ‰ s2 “ s3. By Lemma 5.1, |s1| “ |s2| “ 1. Since

fpvm,nq “ Asm1 ` pB ` Cmqsm2
for some nonzero constants A,B and C, |fspvm,0q|2wpvm,0q diverges and }fs}22 “ 8.

In the case s1 ‰ s2 ‰ s3 and |s1| “ |s2| “ |s3| “ 1,

|fspvm,0q|2wpvm,0q “ |pA1,0s
m
1 ` A2,0s

m
2 ` A3,0s

m
3 q|2.

Since every Ai,0 is nonzero, |fspvm,0q|2wpvm,0q does not converge to zero as m goes to

infinity and }fs} “ 8. Suppose that |s1| ą |s2| ą |s3|. Since |s1| ą 1, |s2| “ 1 and

|s3| “ |s1|´1 by Lemma 5.1, if B1,2 or B2,1 is nonzero, |fspvm,mq|2wpvm,mq diverges

as m goes to infinity and }fs}2 “ 8. The 3-tuple ps1, s2, s3q satisfies s1 “ qs2 and

s2 “ qs3 when B1,2 “ B2,1 “ 0. The 3-tuple ps1, s2, s3q is of the form e
2kπi
3 pq, 1, 1{qq

for any k P Z. Hence the eigenfunctions are described by

fspvm,nq “ ωm`n pω “ e
2kπi
3 q.

The remaining part is to show that the above function is L2. In fact,

}fs}22 “
8ÿ

m“0

mÿ

n“0

|fspvm,nq|2wpvm,nq

“
B2

3,2

q2 ` q ` 1
`

ÿ

m“1

|fspvm,0q|2wpvm,0q `
8ÿ

m“1

m´1ÿ

n“1

|fspvm,nq|2wpvm,nq

`
ÿ

m“1

|fspvm,mq|2wpvm,mq

“ 1

q2 ` q ` 1
` 2

ÿ

m“1

q´2m `
8ÿ

m“1

m´1ÿ

n“1

pq ` 1qq´2m

“ 1

q2 ` q ` 1
` 2

ÿ

m“1

q´2m `
8ÿ

m“1

pm ´ 1qpq ` 1qq´2m ă 8.

(6.2)

This yields the proof of the proposition. �

From the proof of the above statement, we obtain the following two corollaries.

Corollary 6.2. Every nontrivial eigenfunction fs of A˘
w indexed by s P S is not in

L2pΓzBpGqq.

Corollary 6.3. The operators A˘
w are bounded operator on L2

wpΓzBpGqq with operator

norm q2 ` q ` 1.
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Proof. If s “ pq, 1, 1
q
q, the eigenfunction fs ” 1 is positive and A˘

wfs “ pq2 ` q ` 1qfs.
By Schur’s test (see [Pe], page 102), the operator norm is q2 ` q ` 1. �

Given ps1, s2, s3q P S and ǫ ą 0, let us define the function f ǫ
s
by

f ǫ
s
pvm,nq “ p1 ´ ǫqmfspvm,nq.

Lemma 6.4. Let s be a point in S such that s1, s2 and s3 are distinct and |si| “ 1

for any i P t1, 2, 3u. For any ǫ P p0, 1{2q, f ǫ
s
is L2-function and

(6.3) lim
ǫÑ0

}A˘
wf

ǫ
s

´ λ˘f ǫ
s
}2

}f ǫ
s
}2

“ 0,

where λ˘ “ qps˘1
1 ` s˘1

2 ` s˘1
3 q. The norm }f ǫ

s
}2 goes infinity as ǫ goes to zero.

Proof. Since

(6.4) |fspvm,nq| ď qm
ÿ

i,j
i‰j

|Bi,j|

hold for any m ě n ě 0, it follows that f ǫ
s
is in L2

wpΓzBpGqq. By Proposition 6.1,

}f ǫ
s
}2 goes to infinity as ǫ goes to zero.

It remains to show that (6.3). Since λ`f ǫ
s
pvm,nq “ p1 ´ ǫqmA`

wfspvm,nq, we have

A`
wf

ǫ
s
pv0,0q ´ λ`f ǫ

s
pv0,0q “A`

wf
ǫ
s
pv0,0q ´ A`

wfspv0,0q
“pq2 ` q ` 1qtp1 ´ ǫqfpv1,0q ´ fpv1,0qu
“ ´ ǫpq2 ` q ` 1qfpv1,0q

A`
wf

ǫ
s
pvm,0q ´ λ`f ǫ

s
pvm,0q “A`

wf
ǫ
s
pvm,0q ´ p1 ´ ǫqmA`

wfspvm,0q
“p1 ´ ǫqmpq2 ` qqfpvm,1q ` p1 ´ ǫqm`1fpvm`1,0q

´ p1 ´ ǫqmpq2 ` qqfpvm,1q ´ p1 ´ ǫqmfpvm`1,0q
“ ´ ǫp1 ´ ǫqmfpvm`1,0q

A`
wf

ǫ
s
pvm,mq ´ λ`f ǫ

s
pvm,mq “A`

wf
ǫ
s
pvm,mq ´ p1 ´ ǫqmA`

wfspvm,mq
“p1 ´ ǫqm´1q2pvm´1,m´1q ` p1 ´ ǫqm`1pq ` 1qfpvm`1,mq

´ p1 ´ ǫqmq2fpvm´1,m´1q ´ p1 ´ ǫqmpq ` 1qfpvm`1,mq
“ǫp1 ´ ǫqm´1q2fpvm´1,m´1q ´ ǫp1 ´ ǫqmpq ` 1qfpvm`1,mq

A`
wf

ǫ
s
pvm,nq ´ λ`f ǫ

s
pvm,nq “A`

wf
ǫ
s
pvm,nq ´ p1 ´ ǫqmA`

wfspvm,nq
“p1 ´ ǫqm´1q2fpvm´1,nq ` p1 ´ ǫqmqfpvm,n´1q

` p1 ´ ǫqm`1fpvm`1,n`1q ´ p1 ´ ǫqmq2fpvm´1,nq
´ p1 ´ ǫqmqfpvm,n´1q ´ p1 ´ ǫqmfpvm`1,n`1q

“ǫp1 ´ ǫqm´1q2fpvm´1,nq ´ ǫp1 ´ ǫqmfpvm`1,n`1q.
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Denote B :“ ř
i,j
i‰j

|Bi,j |. By (6.4) and the above formulas together with the triangle

inequality, we have

|A`
wf

ǫ
s
pv0,0q ´ λ`f ǫ

s
pv0,0q| ď ǫqpq2 ` q ` 1qB

|A`
wf

ǫ
s
pvm,0q ´ λ`f ǫ

s
pvm,0q| ď ǫp1 ´ ǫqmqm`1B

|A`
wf

ǫ
s
pvm,mq ´ λ`f ǫ

s
pvm,mq| ď 2ǫp1 ´ ǫqm´1pq2 ` q ` 1qqm`1B

|A`
wf

ǫ
s
pvm,nq ´ λ`f ǫ

s
pvm,nq| ď 2ǫp1 ´ ǫqm´1pq2 ` 1qqm`1B.

(6.5)

Using (6.5), we have

}A˘
wf

ǫ
s

´ λ˘f ǫ
s
}22 “

8ÿ

m“0

mÿ

n“0

|A`
wf

ǫ
s
pvm,nq ´ λ`f ǫ

s
pvm,nq|2wpvm,nq

“ |A`
wf

ǫ
s
pv0,0q ´ λ`f ǫ

s
pv0,0q|2wpv0,0q `

8ÿ

m“1

|A`
wf

ǫ
s
pvm,0q ´ λ`f ǫ

s
pvm,0q|2wpvm,0q

`
8ÿ

m“1

|A`
wf

ǫ
s
pvm,mq ´ λ`f ǫ

s
pvm,mq|2wpvm,mq

`
8ÿ

m“1

m´1ÿ

n“1

|A`
wf

ǫ
s
pvm,nq ´ λ`f ǫ

s
pvm,nq|2wpvm,nq

ď ǫ2pq2 ` q ` 1qq2B2 ` ǫ2q2B2

8ÿ

m“1

p1 ´ ǫq2m ` 4ǫ2q2pq2 ` q ` 1q2B2

8ÿ

m“1

p1 ´ ǫq2m´2

` 4ǫ2q2pq ` 1qpq2 ` 1q2B2

8ÿ

m“1

pm ´ 1qp1 ´ ǫq2m´2

“ ǫ2q2pq2 ` q ` 1qB2 ` ǫ2qp1 ´ ǫq2B2

2ǫ ´ ǫ2
` 4ǫ2q2pq2 ` q ` 1q2B2

2ǫ ´ ǫ2

` 4ǫ2q2pq ` 1qpq2 ` 1q2B2p1 ´ ǫq2
p2ǫ ´ ǫ2q2

ď ǫ2qpq2 ` q ` 1qB2 ` ǫqB2 ` 4ǫqpq2 ` q ` 1q2B2 ` 4qpq ` 1qpq2 ` 1q2B2.

Since }f ǫ
s
}2 goes to infinity as ǫ goes to zero, from the above inequality we have

(6.4). �

Corollary 6.5. Let s be a point in S such that s1 ą s2 ą s3. For any ǫ P p0, 1{2q,
f ǫ
s
is L2-function and satisfies (6.3) only if s “ p?

qeiθ, e´2iθ, eiθ?
q
q for any θ P R or

e
2πk
3

ipq, 1, 1{qq.

Proof. As in the proof of Proposition 6.1, for any s P S with |s1| ą |s2| ą |s3|, the
function f ǫ

s
is not in L2

wpΓzBpGqq for some ǫ P p0, 1{2q unless B1,2 “ B1,3 “ B2,1 “ 0.

This holds when s1 “ qs2 and s2 “ qs3, or s1 “ qs3. By Lemma 5.1, s “ pqω, ω, ω
q

q
for ω3 “ 1 or s “ p?

qeiθ, e´2iθ, eiθ?
q
q for θ P R. Since Proposition 6.1 deals with the
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first case, it is enough to consider the second case. In this case, we also have (6.4).

Following the proof of Lemma 6.4, we obtain Corollary 6.5. �

This gives the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 6.1, the discrete spectrum of A`
w on L2

wpΓzBpGqq
is Σ0. Lemma 6.4 implies that Σ2 is in the automorphic spectra of A`

w . Corollary 6.5

shows that Σ1 is also contained in the automorphic spectra of A`
w on L2

wpΓzBpGqq. �
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