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ARITHMETIC OF SOME REAL TRIQUADRATIC FIELDS;
UNITS AND 2-CLASS GROUPS

MOHAMED MAHMOUD CHEMS-EDDIN

ABSTRACT. In this paper, we compute the unit groups and the 2-class numbers
of the Fréhlich’s triquadratic fields K = Q(v/2, /P> \/4), where p and ¢ are two
prime numbers such that (p = 1 (mod 8) and ¢ = 3 (mod 4)) or (p =5 or 3
(mod 8) and ¢ = 3 (mod 4)). Furthermore, we determine some families of the
fields K whose 2-class groups are trivial or cyclic non trivial, and some other
families with 2-class groups isomorphic to the Klein group.

1. Introduction

A Frohlich multiquadratic field of degree 2™ is a real multiquadratic field of
the form F, = Q(\/p1, /P2 ---» /Pn), Where the p;’s are prime numbers. These
fields are of major interest in class field theory and genus theory of quadratic
and biquadratic fields. Their study has a long history, and here we shall quote
some works which are related to the subject of this paper. In the best of our
knowledge, when n > 3, all the facts that we have about the class groups of
these fields concern the cyclicity of their 2-class groups and the parity of their
class numbers. For example, in [10], Frohlich showed that if more than four finite
primes are ramified in a finite extension K /Q, then the class number of K is even
and therefore F;,, with n > 5 has an even class number. The parity of the class
number of the quadratic field (i.e. F}) can be determined using genus theory. The
biquadratic field (i.e. F) was studied by Frohlich [10], Conner and Hurrelbrink
[9] and Kucera [13]. The parity of the class numbers of Frohlich fields of degree
8 (i.e. F3) was studied by Bulant [6] who used the method of Kuc¢era which is
based on circular units. Furthermore, the authors of [15] determined a list of the
fields F3 with p; = 3 (mod 4) whose 2-class groups are cyclic non trivial. Finally,
the parity of the class number of Fj, was investigated in [14]. We believe that
after this list of interesting works, it is time to go further and discover more and
different arithmetical properties of these fields.

In the present paper, we provide the unit groups and the 2-class numbers of the
Frohlich field Fy := K = Q(v/2, VP> 1/q), where p and ¢ are two prime numbers
such that (p = 1 (mod 8) and ¢ = 3 (mod 4)) or (p = 5 or 3 (mod 8) and
g = 3 (mod 4)). Furthermore, we shall give some families of K with 2-class
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groups of type (2,2). Note that the reason behind choosing this form comes from
our expertise and previous studies which showed the importance of these fields
in the study of many problems of class field theory and genus theory related to
biquadratic and triquadratic fields [8, 7|. Note also that the fields K represent the
first step of the cyclotomic Zs-extension of the fields Q(,/p, /q) and our results
may also be very useful for studying some problems related to Iwasawa theory on
biquadratic and triquadratic fields (see |7, Theorem 3.6] for a direct example of
such applications).

The plan of this paper is as follows; In Sec. 2, we collect some preliminary
results which we shall use later. In Sec. 3, we provide unit groups and 2-class
numbers of the Fréhlich fields K = Q(v/2, V/P>1/q)- Therein we give some families
whose 2-class groups are trivial or cyclic non trivial. In the last section, we provide
some families of Frohlich fields whose 2-class groups are of type (2,2).

NOTATIONS

Let k£ be a number field. We shall use the following notations for the rest of

this paper:

* ha(k): The 2-class number of k,

* Fj: The unit group of k,

*x q(k) = (B : [ [, Ex,) is the unit index of k, if k is multiquadratic, where k; are
the quadratic subfields of k,

x h(k): The class number of k,

* ha(d): The 2-class number of a quadratic field Q(v/d),

* £4: The fundamental unit of a real quadratic field Q(v/d),

* N(g4): The norm of €4,

* 7;: Defined in Page 3,

* k;: Defined in Page 3,

* u: Defined in Lemma 2.2.

2. Preparations

Let us start this section by recalling the method given in [16|, that describes a
fundamental system of units of a real multiquadratic field Ky. Let o; and o, be
two distinct elements of order 2 of the Galois group of Ky/Q. Let K7, K3 and K3
be the three subextensions of K| invariant by o1, 09 and o3 = 0109, respectively.
Let ¢ denote a unit of Ky. Then

€2 = ec%ee2(e71e%2) 7,
and we have, ee?' € Ey,, €72 € Eg, and €7'¢?? € Eg,. It follows that the unit
group of Kj is generated by the elements of Fk,, Fk, and Fk,, and the square
roots of elements of Ey, Ex, Fk, which are perfect squares in K.

This method is very useful for computing a fundamental system of units of a
real biquadratic number field, however, in the case of a real triquadratic number
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field the problem of the determination of the unit group becomes very difficult
and demands some specific computations and eliminations, as what we will see in
the next section. We shall consider the field K = Q(v/2, VP> +/q), where p and ¢

are two distinct prime numbers. Thus, we have the following diagram:

K= @(\/?7 \/ﬁ7 \/a)

ki =Q(2,p)  k=0QW2,7)  k=Q(W2, /p9)

Q(v2)
FIGURE 1. Intermediate fields of K/Q(+/2)

Let 71, 72 and 73 be the elements of Gal(K/Q) defined by

n(V2) = —v2, 7(yp) = /b 71(v/Q) = V4,

n(V2) =v2, 7n(/b) =—vD 7 D=V

(V2) =v2, 7w(/p)=vh wHD=—-Vi
Note that Gal(K/Q) = (7,7, 73) and the subfields ki, ko and k3 are fixed by
(13), (12) and (1o73) respectively. Therefore, a fundamental system of units of K
consists of seven units chosen from those of ki, ky and k3, and from the square
roots of the elements of Ej, Ey, F), which are squares in K. We have the following
lemmas:

Lemma 2.1 ([1], Lemma 5). Let d > 1 be a square-free integer and eq = x+yV/d,
where x, y are integers or semi-integers. If N(eq) = 1, then 2(x + 1), 2(z — 1),
2d(x + 1) and 2d(z — 1) are not squares in Q.

With the above notations, we have:

Lemma 2.2. Let p =1 (mod 8) be a prime number. Put 9, = 5 + ay/2p with
B,a € Z. If N(egp) =1, then /25, = %(al + ao/2p), for some integers oy, as
such that o = oy, It follows that:

o l4+n|l+mn|l+ns|l+ns| 147 (1)
e | D" —eg [(=D*T] (=D [ (=D

for some w in {0,1} such that (o — 2pa3) = (—1)".

Proof. The reader can check it easily. 0
Lemma 2.3 ([3|, Theorem 6). Let p =1 (mod 4) be a prime number. We have
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L. If N(egp) = —1, then {e3,6p, \/E28p82 ) is a fundamental system of units of
kl = @(\/éa \/T))

2. If N(egy) = 1, then {e2,6,,\/E2} is a fundamental system of units of ky =
Qv2,v/p)-

Lemma 2.4. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

op

1. Let x and y be two integers such that €9y = x + y/2pq. Then we have

i. (x —1) is a square in N,

i \/2€2p = Y1 + Y2/2pq and 2 = —y? + 2pqy3, for some integers y; and ys.
2. Let v and w be two integers such that €,g = v+ w,/pq. Then we have

i. (v—1) is a square in N,

. \/26pq = w1 + w2y/pq and 2 = —w? + pqw3, for some integers wy and w.

Proof. It is known that N(eg,,) = 1. Then, by the unique factorization in Z and
Lemma 2.1 there exist some integers y; and ys (y = y1y2) such that

rk 1= vE£1=py v+ 1 =2py
1) 1 2) - 1 or (3): !
(1) {x:Fl:quy%, (2) {qul:qu%, (3) IﬂFlzqy%,

% System (2) can not occur since it implies —1 = (M> = (x—jFl) = (%) =
(ﬂ) = (%) = 1, which is absurd.

p

« We similarly show that System (3) and { 5 Ccan not occur.

v—1=y}
z+1=2pqy3
item is analogous. ([l

Therefore { which gives the first item. The proof of the second

Lemma 2.5. Let ¢ =3 (mod 8) be a prime number. We have

1. Let ¢ and d be two integers such that esy = ¢ + d\/2q. Then we have

i. ¢ — 1 1is a square in N,

. /269, = di + doy/2q and 2 = —d? + 2qd3, for some integers dy and ds.
2. Let o and 8 be two integers such that ¢, = o+ 3,/q. Then we have

i. a — 1 is a square in N,

ii. \/2e, = B1 + Ba/q and 2 = =7 + qf33, for some integers 1 and Ps.

Furthermore, for any prime number p =1 (mod 4) we have:
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£ 9 €p | vVEq | \/E2q
I+71 _ 2 _
51 21 £, gq| 1
+72 —
€ €5 1] g4 | €2
et ey el | -1] -1
eltmm [ 11 -1]—¢,] 1
I+nims | _ 2 —
€ lleg | 1 €9q
eltmm g2 | 1] -1 | —1

TABLE 1. Norm maps on units

Proof. Similar to that of Lemma 2.4. O
Lemma 2.6. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

oK

1. Let x and y be two integers such that e9py = x + yv/2pq. Then
i (x—1), p(x —1) or2p(z+1) is a square in N,
ii. Furthermore, we have
a) If (x — 1), then \/2e2p, = y1 + Y2v/2pq and 2 = —y3 + 2pqy;.
b) If p(x — 1), then \/2e9,q = y1/D + Y21/2q and 2 = —pyi + 2qy3.
¢) If 2p(x + 1), then \/2e5pq = y17/2p + Y21/q and 2 = 2py; — qys.
Where y1 and yo are two integers such that y = y1ys.
2. Let v and w be two integers such that €,y = v + wy/pq. Then we have
i. (v—1), plv—1) or2p(v+1) is a square in N,
ii. Furthermore, we have
a) If (v —1), then \/2e,g = w1 + wa\/Pq and 2 = —w} + pqus.
b) If p(v — 1), then /2e,y = wi\/D + w2\/q and 2 = —pwi + qu3.
¢) If 2p(v+1), then \/Epq = wi/p + way/q and 1 = pw} — qu3.
Where wy and wy are two integers such that w = wywsy in a) and b), and
w = 2wiwsy in c).

Proof. We proceed as in the proof of 2.4. O
Now we recall the following lemmas:

Lemma 2.7 ([12]). Let K be a multiquadratic number field of degree 2", n € N,
and k; the s = 2" — 1 quadratic subfields of K. Then

1 S S
WK) = o (Ex : 11 Ey,) 1} h(ks),
with

B n(2"1 —1); if K is real,
v (n—1)(2"2—=1)+2"1 —1 if K is imaginary.
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Lemma 2.8. Let g =3 (mod 4) andp =1 (mod 4) be two distinct primes. Then

1. By [9, Corollary 18.4], we have ho(p) = ha(q) = ha(2q) = ho(2) = ho(—2) =
2. If (g) = —1, then ha(pq) = ha(2pq) = ha(—pq) = 2, else ho(pq), ha(2pq) and

ha(—pq) are divisible by 4 (cf. |9, Corollaries 19.6 and 19.7]).
3. If g =3 (mod 8), then ha(—2q) =2 (cf. |9, Corollary 19.6]).

3. Unit groups of real triquadratic number fields and their 2-class
numbers

Keep the notations in the above section. In this section we shall compute the
unit groups and the 2-class numbers of the Frohlich fields K.

3.1. The case: p=1 (mod 8), ¢ =3 (mod 4) and (I—) =—1.
q
We firstly need to state the next two lemmas that will be very useful to prove
our first main result:

Theorem 3.1. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

(g) = —1. Put K =Q(V?2,/p,/q). Then

1. If N(e9p) = —1, we have
o The unit group of K is :

Eg = (—1,e3, ¢, VEa V€295 \/Epags \/E2EpE2p; \/\/‘?q\/ 6211\/%[1\/52:17!1)

e The 2-class group of K is cyclic of order %h2(2p).
2. If N(egp) = 1, we have
o The unit group of K is :

Ex = (—1, ¢, ¢, VEa VE2 VEpgs \/5[2155\/574\/ Epav/ E2p; \/5[2155\/5211\/ E2pg/ €2))

where a € {0,1} such that a =1+ u (mod 2).
e The 2-class group of K is cyclic of order hs(2p).

Proof. We shall use the preparations exposed in Page 3. Therefore, we need the
unit groups of the intermediate fields k1, ko and ks.

1. Assume that N(eg,) = —1. By Lemma 2.3, {e9, &), \/Z28,E2,} is a fundamental
system of units of k;. One can easily deduce from Lemmas 2.5 and 2.4 that

{62, \/Eq» E2q} and {€2, \/Epg; \/E2pq} are respectively fundamental systems of
units of ky and k3. It follows that,

By, By By = (=1, €2, €py /Eq> VE205 V/Epas V/E2pas /E2EpE) -
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Let £ be an element of K which is the square root of an element of Ej, Ey, Ej,.
Therefore, we can assume that

&= 5;52\/@0\/ 52qdv Epq 52quv E2EpEap’
where a,b,c,d, e, f and g are in {0, 1}.
Remark that the question now becomes about the solvability in K of the equa-

tion: €2 — e3el | /5., [Eoq"\/Era \/Eopa’ \/E2EpE2y" = 0. Assuming that this equa-

tion has solutions in K, we shall firstly use norm maps from K to its subexten-
sions to eliminate the forms with do not occur.
w Let us start by applying the norm map Nk, = 1+ 7. Using Lemma

2.4 we get \/Eo ™ = (Z5(y1 + 12/2p0)) X 7—2(\[(y1 +12v/2p0)) = (501 +
¥2v/2pq)) X (Z5(y1 — v2v/2pq)) = 5(y7 — 2pays) = 3(=2) = —1. Slmllarly we
have ,/z,,'t™ = —1. So by Table 1, we have:

Nijr, (€%) = &3%(=1)"-ef -5, - (=1)° - (=) - (=1)%°¢3
_ 5§a505gq i (_1)b+e+f+gs€g‘

for some s € {0,1}. Thus, b+e+ f+gs =0 (mod 2). Since £, is not a square
in ks, then g = 0. Therefore b+ e+ f =0 (mod 2) and

5 = &3¢ \/52 \/510 \/52104
m Let us apply the norm NK/k5 = 1+ 77, with ks = Q(\/q,v/2p). We have
\/5pql+TIT2 =1 and /B9, T"™ = —¢&9,,. Then, by Table 1, we get:

Nigsis (€7) = (1) (1) (=1)° et - 1-1- (=1)7 -],
_ atbtct+f_c _f
= (=lymtrerfee f

Thus a+b+c+ f =0 (mod 2). By Lemmas 2.5 and 2.4, none of ¢, and ey,
is a square in k5. Then f = c¢. Thus, a = b. Therefore,

—52 \/_fv52 vV Epq v52pq’

w Let us apply the norm Nk, = 1+ 773, with ks = Q(\/p, v/2¢). We have
vV qulJmTB =1 and \/»Sgpqlﬂ”3 = —¢9,,. Then, by Table 1, we get:

NK/kﬁ( ) ( 1)a 1(_1)d€gq1(_1)f€£pq
= ¢ a( 1)a+d+fggq€£pq

Thus ¢ +d+ f = 0 (mod 2). Again by Lemmas 2.5 and 2.4, none of ey, and
€9pq 15 @ square in kg. Then d = f. Therefore a = 0 and

52 = \/?qfv@qfvgpqev@qu-
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w Let us apply the norm Nk, = 14 7273, with ks = Q(v2, /pq). Note that
Ve T =gy, and | /Eapg ™ = £9,,. Then, by Table 1, we have:

Nijis(€2) = (=1 - (=) -5, - &b

f

— € .
= Epq C2pg

By Lemma 2.4, both g,, and &9, are squares in k3. So we deduce nothing.

w Let us apply the norm Nk, = 1+ 7, with ks = Q(\/p, /7). Note that
w/é?pql”1 = —¢&pq and /e’;‘gpqlJ”1 = 1. Then, by Table 1, we have:

N (€2) = (=1 el -1-(=1)° e, -1
_ fre_f e
= (=1)/ "¢,

Thus, f = e and
& = VeI Ve Vo
Let us show that the square root of /2, /E24\/Epg\/E2pg 18 an element of K.
Note that one can easily check that the 2-class group of ks = Q(v/2p, /q) is
cyclic and by Lemmas 2.7 and 2.8, we have ho(ks) = $q(ks)ha(2p)ha(q)ha(2pq) =
2q(ks)h2(2p). Using Lemmas 2.4 and 2.5, we show that ¢(ks) = 2. Thus
ha(ks) = ha(2p). Since K/k; is an unramified quadratic extension, then

Ma(K) = 3 holks) = 3 - ha(2p). (2)

Assume by absurd that /g, /E24\/Epg\/E2pq 18 N0t a square in K. Then ¢(K) =
2°. By Lemma 2.7, we have:

hy(K) = %Q(K)hz(2)h2(P)h2(Q)h2(2p)h2(QQ)hz(pQ)h2(2p(J) (3)

1 1
= 552 11 1hy(2p) 1:2:2= 2 ha(2p).

Which is a contradiction with (2). Therefore f =1 and /g, /E24/Epgy/E2pq 13

a square in K. Hence, we have

Eg = (—1,¢e3,¢p, Ve V24> \/Epas \/E2EpE2p; \/\/“?qv 52qvgpq\/52pq>-

. Let us now prove the second item. Assume that N(eg,) = 1. By Lemma
2.3, {€2,€p, \/E2p} is a fundamental system of units of k; and one can easily

deduce from Lemmas 2.5 and 2.4 that {e3, /g4, \/E2¢} and {€2,/Epg, /E2pq}

are respectively fundamental systems of units of ky and k3. So we have

By By By = (—1,€2,€p, \/Eq» /€205 V/Epas \/E2005 /E2p) -

Put

&= 535;\/57110\/ 62qd\/ Epg V 62:qu\/ €%’
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where a, b, c,d, e, f and g are in {0,1}. Assume that £ belongs to K. We shall
proceed as above, by using the norm maps from K to its subextensions. Note
that these norms are already computed in the proof of the first item, and we
shall use (1) for the norms of , /£5,. Let u be the integer defined in Lemma 2.2.
w Let us start by applying the norm map Ng/p, = 1+ 7. We have

Nijmo(€%) = 3" (1) g ey - (=1)° - (=) - (=1)*"

2a_c.d  (_ q1\bte+f+gu
£3"ege5, - (—1) .

Thus, b+e+ f+gu=0 (mod 2).
w Let us apply the norm map Ny, = 1+ 7172, with ks = Q(/g,/2p). We
have

Nijis (€2) = (1) (=1 (1) el 1.1+ (=1)T - ef - (—1)7 - &},

_ _1\a+tbtetftg | -c g
= (—1) €4E2pE2p-

Thus, a+b+c+ f+9g=0 (mod 2) and ¢+ f+ g =0 (mod 2). Therefore,
a = b and
52 = 5;55\/50\/ 52qd\/5pqev52qu\/52pg'
with ¢+ f 4+ ¢ =0 (mod 2).
w Let us apply the norm map Nk, = 1+ 7173, with kg = Q(\/p, v2q) . We
have

Nips (€)= (=) eyt 1- (1) 5, - 1- (=1) - g5, - (=) - (1)

p

_ 2a  (_1\at+d+ftug+g  d -f
= g, (=1) €94E2pq-

Thus, a+d+ f+ug+ g =0 (mod 2) and d = f. Therefore, a + ug + g =0
(mod 2) and

¢ = éjg“gg\/?qc\/52(1]0\/51%16\/<"521>t1f\/ Eap’-
w Let us apply the norm map Nk, = 1 + 773, with ks = Q(V2, /pq). We
have

Nijs (€)= &3 (=1)*- (=1)°- (=) - epy - ey - (1)

_ 2a_e _f a+tc+f+ug
= £5"€p,E0p,  (—1) :

Thus, a+c+ f4+ug =0 (mod 2). Therefore, from these discussions, it follows
that we have:

at+e+ f+ug=0 (mod 2) (4)
c+f+9g=0 (mod2) (5)
at+ug+g=0 (mod 2) (6)
at+c+f+ug=0 (mod 2) (7)
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From (4), (6) and (5), we deduce that e = ¢. Thus

¢ = ehepVEry Bag’ /e o '
On the other hand, as above, we show that the 2-class group of k5 is cyclic
and that we have:

oK) = 5 - hallhs) = 5+ Jalks)ha(2)ha(a)hal2p0)

4

1
.1.4.;,2(21)).1.2

(2p), (8)

and by class number formula (Lemma 2.7), we have
1
ha(K) = 550(K)ha(2)ha(p)ha(a)hz(2p)ha(24) ha(pg) ha(2pq)

(K) 11+ 1-hy(2p) 122 = - q(K) - ho(2).

SN =N =
[ V]

2
Therefore, q(K) = 2.
Assume that each solution has g = 0, then by (6) a = 0. So by (5) and (4)

f = ¢ = e. Therefore, £ = VB /E24 /g \/Fapg"- Thus, ¢(K) = 2° or 29,
Which is absurd. This implies that there must be a solution having g = 1. So

by (5), ¢ # f, and by (6) a =14 u (mod 2). Finally, we have
&% = €50 /B \/Epa \/E2p OF 6562\/6%’[«/52,,,1]0\/521,,

Since ¢(K) = 27, then both of e3¢%, /&q\/Epg\/E2p and 38, [Eoq\/Fapg\/E2p arE
squares in K, where a =1+ (mod 2) and u is defined in Lemma 2.2. Which
completes the proof.

O

3.2. The case: p=1 (mod 8), ¢ =3 (mod 8) and (]3) = 1.

q

For the sake that the reader could follow the proofs of this section, we suggest to
start by reading carefully the proof of Theorem 3.1 which is exposed some helpful
details.
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The following table summarizes very useful computations which we shall use
frequently.

€ Conditions ghtm | glinm | gldmims | Jl4mems | Jl4n

(x — 1) is a square in N —1 | —€9pg | —€2pq | E2pg 1

V&4 | p(z —1)isasquarein N | 1 €apg | —E€2pg | —€2pg | 1

2p(z+1)isasquare in N | —1 | —eopy | €2pg | —€2pq | 1
(v—1)isasquarein N | —1 1 1 €pg | —E€pg
VEra | p(v—1) is a square in N 1 -1 1 —Epg | —Epq
2p(v+1) is a square in N | —1 -1 1 —Epg | Epg

TABLE 2. Norms maps on units

Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that (B) = 1.
Then, by Lemmas 2.7 and 2.7, we have:

na(IK) = 5a(K) - ha(20) - hapa) - ha(2pa). ©

Remark 3.2. Notice that by Lemma 2.6 there are nine possibilities which will
be covered case by case by the following Theorems 3.3-3.11.

Theorem 3.3. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

<Z—)> = 1. Put K = Q(v2, VP> 1/Q). Assume furthermore that v —1 and v —1 are
q
squares in N, where x and v are defined in Lemma 2.6.

1. If N(e9p) = —1, we have
o The unit group of K is :

E]K = <_17 €2, Ep, \/57(17 v/ €2q5 vV Epgs vV €2EpEap, \/\/@a\/ 82qa\/ qua\/ <C:quH_b>
where a, b € {0,1} such that a # b and a = 1 if and only if | /€4 /Faq\/Epar/F2pa

15 a square in K.
e The 2-class number of K equals 24L,ahg(2p)h2(pq)h2(2pq).
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2. Assume that N(eqp) = 1 and define a € {0,1} to satisfy a = 1+ v (mod 2).
Then we have
o The unit group of K is :

EK:<_1’5275p’\/€7Qa \/@j @’ \/ggrlggr/\/g—qr/@r/\/@l-i—s” ggrggr@r\/%l-ks@r)
where r,1r';s, ' € {0,1} such that r # s (resp. v # §') and r = 1 (resp.

r' = 1) if and only if €57, /Fag\/Eopgr/Fop (T€SD. €55 /Eq\/Epa\/E2p) 15 @

square 1n K.
o The 2-class number of K equals == ha(2p)ha(pq)ha(2pq).

2477‘7'r/

Proof. 1. Assume that N(ey,) = —1. By Lemma 2.3, {e3, ¢, \/E26,E2,} 1s a fun-
damental system of units of k;. One can easily deduce from Lemmas 2.5 and

2.4 that {e9, \/q, \/E2¢} and {2, \/Epq, \/E2pq} are respectively fundamental sys-
tems of units of ky and k5. It follows that,

By By By = (—1, €2, €ps \/Eq> VE205 V/Epas V/E2pas /E2EpE2) -

Let £ be an element of K which is the square root of an element of Ej, Ey, Ek,.
Therefore, we can assume that

&= 5;5;\/@0\/ 52qdv Epq V/ 52quv E2EpEap’

where a,b,c,d, e, f and g are in {0,1}. As z — 1 and v — 1 are squares in N,
then clearly with the same computations as in the proof of Theorem 3.1, we
get :

&= \/?qf\/@qfv qufv 52qu-
So the first item.
2. The same computations in the second part of the proof of Theorem 3.1 give

the second item.
The part concerning the 2-class number follows from the above discussions and

(9). O
Theorem 3.4. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

<]—9) =1. Put K = Q(V2, /P, /7). Assume furthermore that z — 1 and p(v — 1)
q
are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(eqy) = —1. We have
o The unit group of K is :

EK = <_1> €2, 5p> \/5_q> vV <C:2q> V 8pq> vV 821!an vV 825105210>-

e The 2-class number of K equals %hg(Qp)hQ(pq)hQ(qu).
2. Assume that N(e9p) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
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o The unit group of K is :

Ex = <_17 €2, Ep, \/57117 vV E€2¢5 VEpgr \/E2pq> \/5(21(15;&\/ 52qa\/ 52pqa\/ 52p1+ﬂy>

where o, v € {0, 1} such that o # v and o = 1 if and only if €56 /F2q\/E2pa/E2p
1$ a square in K.
e The 2-class number of K equals 52— h2(2p)ha(pq)ha(2pq).

Proof. We shall make use of (1) and Tables 1 and 2.
1. Assume that N(eg,) = —1. Note that {e2,e,, \/E2E,E2,}, is a fundamental
system of units of ;. Using Lemma 2.6, we show that {ey, /g, /Z2,} and

{€2, €pq» \/F2pq} are respectively fundamental systems of units of ko and k3. So
we have:

Ey, By, By, = (—1, €2, €p, €pg> \/Eq> \/E24> /E2pg5 \/E2EpE2p) -

Let £ be an element of K which is the square root of an element of Ej, Ey, Ey.,.
Therefore, we can assume that

& = e36,6, \/_ VE20 Vg EaEpE
where a,b,c,d, e, f and g are in {0, 1}.
s Let us start by applying the norm map Nk /i, = 1+72. We have [Ea€pEay T =
(—1)%eq, for some v € {0,1}. Then, by Tables 1 and 2, we get:
Nijiy (€2) = 3%+ (=1)" 15, - (1) - (-1)7¢3
5ga505§lq . (_1)b+f+gv€£2]'

Thus, b+ f 4+ gv =0 (mod 2) and g = 0. Therefore, b = f and
5 = €3¢ 1{ zczq\/_ VE2q \/52pq

w Let us apply the norm Nk, = 1+ 77, with ks = Q(1/q, v/2p).Then, by
Tables 1 and 2, we get:

Neps (€2) = (=) (=1 -1 (=) -ed -1 (=1)) - &,

Thus a =d = f and

€ = elelerv/Ed Ve Ve
w Let us apply the norm Ng/x, = 1+ 7173, with ks = Q(\/p, v/2¢q). By Tables
1 and 2, we get:

Nipo(€) = (=17 el 11 (=1)° -5, (~1) e,

_ 22 f
= &, (—1)%5, 9,

Thus e = f = 0. Hence

2 _ ¢
§ =cp
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By Lemma 2.6 ¢,, is a square in K, therefore

EK = <_1> €2, Ep; \/5_q> vV €2¢5 vV Epg> vV €2pq> vV 825105210>-

. Assume that N(eq,) = 1. Note that {eq,¢,, /Z2,}, is a fundamental system of

units of ;. Using Lemma 2.6, we show that {es, \ /24, /€24 } and {2, €pg, \/E2pq}
are respectively fundamental systems of units of ky and k3. It follows that,

Ey Eyy By = (—1,€2,€p, €pgy /€05 \/E20> \/E2pa> \/E20) -

Let £ be an element of K which is the square root of an element of Ej, Ey, Ej,.
Therefore, we can assume that

& = ehereny/E VeV Ve,
where a,b,c,d, e, f and g are in {0, 1}.
m Let us start by applying the norm map Nk, = 1 + 7. By Tables 1 and 2,
we have

Nigio(§2) = &3 (1) 1-eg-e5,- (=) - (=1)"

Egagcegq . (_1)b+f+gu‘

Thus, b+ f 4+ gu =0 (mod 2).
w Let us apply the norm map Ng/p, = 1+ 77, with ks = Q(\/q,v2p). B
Tables 1 and 2, we have

Nepol€) = (1) (=001 (<) e 1 (1) el (<17,

_1\a+tb+d+f+g_d _f
- ( 1) €2q62pq62p‘

Thus, a+b+d+ f+¢g=0 (mod 2) and d+ f + g = 0 (mod 2). Therefore

a=0band

5 _55316711\/_ V€2 \/52qu
m Let us apply the norm Ny, = 1 + 7473, with k:6 (\/_ v2q). By Tables
1 and 2, we have

Nigs () = (F1)"-ep-1-1- (=) -5, - (1) -], - (=1)70

2a( _1\ate+f+gtug_e _f
g, (—1) €94E2pq-

Thus, a +e+ f+ g+ ug =0 (mod 2) and e = f. Therefore, a + g+ ug =0
(mod 2) and

é— _ ga agc \/— /_52 /—52pq /—
w Let us apply the norm map Nk, = 1 + 773, Wlth ks = Q(v2,/pq). B
Tables 1 and 2, we get:

Nijia(§7) = &3 (1) - gpq - (1) (=1)° - €5y - (1)

_ 2a e at+d+e+gu
— 82 €2pq ' (_1) .

Thus, a +d+e+ gu=0 (mod 2).
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w Let us apply the norm Nk, = 14 7, with ky = Q(/p, \/q). So, by Tables
1 and 2, we get:

Nijia(§7) = (=1)" )t epq - (=1)7-eg-1-1- (=1)7*0

20 2a  (_ 1)\atd+g+tgu_d
£3"€py * (—1) Eq-

Thus d =0 and so a + e+ gu =0 (mod 2). Since a4+ g+ ug =0 (mod 2), we
have e = g. Since ¢, is a square in K, we can disregard it in the form of £2.
Therefore,

& = e5ep/E20"\/Eomg VER'
with a + e+ eu =0 (mod 2). So the result (cf. (9)).
U

Theorem 3.5. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

<]—9) =1. Put K = Q(v2,/p, /7). Assume furthermore that v —1 and 2p(v+1)
q
are squares in N, where x and v are defined in Lemma 2.6.

1. Assume that N(eqy) = —1. We have
o The unit group of K is :

EK = <_1> €2, 5p> \/5_q> vV <C:2q> vV 8pq> vV 821!an vV 825105210>-

e The 2-class number of K equals 5:ha(2p)ha(pq)ha(2pq).

2. Assume that N(e9p) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
e The unit group of K is :

Ex = <_17 €2, Ep, \/57117 vV €2¢5 VEpqgr \/E2pq> \/«":‘%aﬁgav 52qa\/ 52pqa\/ 62p1+7>
where o, v € {0, 1} such that o # v and o = 1 if and only if €565 /F2q\/E2pa/E2p

1 a square in K.
e The 2-class number of K equals 57— ha(2p)ha(pg)ha(2pq).

Proof. 1. Assume that N(eq,) = —1. Note that {2, €,, \/E2€,E2,}, is a fundamen-
tal system of units of k;. Using Lemma 2.6, we show that {2, \/g;, \/Z2¢} and
{€2, €pqs \/E2pq} are respectively fundamental systems of units of ky and k3. So
we have:

EklEkgEk;; - <_1a €2,Ep; Epgy \/5_(17 \V €2¢q AV E2pq; vV 825105210>-

Let £ be an element of K which is the square root of an element of Ej, Ey, Ej.,.
Therefore, we can assume that

& = egebel, RN N o N )
where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 7. We have
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\/mlm = (—1)"ey, for some v’ € {0,1}. Then, by Tables 1 and 2, we
get:
N (83) = e (1) -1-el-e5, - (—1) - (=1)7e]
exteceq, - (—1)HHeved

Thus, b+ f 4+ gv' =0 (mod 2) and g = 0. Then b = f and

5 = €3¢ 1{ zczq\/_ VE2q v52pq
w Let us apply the norm Nk /x, = 14 7172, with ks = Q(,/g,+/2p). By Tables
1 and 2, we have:

Nipa(€?) = (=D (=1 -1 (=" ef- 1 (=1) - e,

Thus a =d = f and

£ =efe i: qufv€2 N
w Let us apply the norm Nk /g, = 14 773, with k¢ = Q(,/p,v/2¢q). Then, by
Tables 1 and 2, we get:
Newal€) = (1) -2 11 (1) &5, (<)) e,

_ 2 f
= &, (—1)e5,Ep,

Thus e = f = 0. Hence
¢ = €pg
By Lemma 2.6 ¢,, is a square in K, therefore
Eg = <_17 €2;Eps \/av V' E€2q5 \/Epgr VE2pqsr \/ 525p52p>-

The rest of the first item is direct from Lemma 2.7.

. Assume that N(eq,) = 1. Note that {eq,¢,, /Z2,}, is a fundamental system of

units of k1. Using Lemma 2.6, we show that {es, \ /24, /€24 } and {€2, €pg, \/E2pq}
are respectively fundamental systems of units of ky and k3. It follows that,
Ey Eyy By = (—1,€2,€p, €pgy v/Ea> \/E20> \/E2pa> \/E20) -

Let £ be an element of K which is the square root of an element of Ej, Ey, Ej,.
Therefore, we can assume that

5 _Eab C\/7\/52 \/52pq \/€2p7
where a, b, c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1+ 1. We have
Nigjio (€2) = €5+ (=1)" L-eg-e5, - (=1)7 - (1)
e5'etey, - (—1)H/ T,

Thus, b+ f 4+ gu =0 (mod 2).
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w Let us apply the norm map Nk, = 1+ 7172, with ks = Q(\/q,/2p). We
have

Nigis (€)= (1) (-1 1+ (~1) e, - 1= (1) el - (—1)7 -3,

_ (_1)a+b+d+f+g€gq€f

g
2pg©2p-

Thus, a+b+d+ f+ g =0 (mod 2) and d+ f + g = 0 (mod 2). Therefore
a=0band

a_a_c d e
£ = e3etel /8 \/E2q NN
w Let us apply the norm Ng /i, = 1+ 7173, with kg = Q(/p, v/2q). We have

Nigo (€)= (F1)*-ept-1- 1 (=1) -5, - (1)) -], - (=1)70

2a( _q1\ate+f+gtug_e _f
£, (—1) €542

Thus, a + e+ f+ g+ ug =0 (mod 2) and e = f. Therefore, a + g+ ug =0
(mod 2) and

£ = efelel, NN Nl
m Let us apply the norm map Nk, = 1+ 7o73, with k3 = Q(V2, VPq)- So,
by Tables 1 and 2, we get:

Nigjiy (€7) = 3%+ (1) ep- (=1)7 - (=1)° - g5, - (1)
5§a5§pq . (_1)a+d+e+gu.
Thus, a +d+e+ gu =0 (mod 2).
w Let us apply the norm Nk, = 14 7, with ks = Q(/p, \/q). So, by Tables
1 and 2, we get:
N, (€2) = (=1 eyt ene - (=1)T-ef- 1.1 (=1)
2a _2a  (_ 1)\atd+g+tgu_d
(1) e

€5 €

Thus d =0 and so a+ e+ gu =0 (mod 2). As a+ g+ ug =0 (mod 2), we
have e = ¢. Since ¢, is a square in K (Lemma 2.6), we can disregard it in the
form of £2. Therefore,

& = e5ep/E20"\/Eomg VER'

with a + e+ eu =0 (mod 2). So the result (cf. (9)).

O
Theorem 3.6. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

<Z—9) =1. Put K = Q(v/2, /D, /q). Assume furthermore that p(x—1) and (v—1)
q
are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(egy) = —1. We have
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o The unit group of K is :

Ex = <_17 €2, &p, \/av vV E€2¢y VEpg> \/E2pgr V/ 525p52p>-

e The 2-class number of K equals 5:ha(2p)ha(pq)ha(2pq).

2. Assume that N(e9p) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
o The unit group of K is :

Ex = (—1,22,€p, /4 v/E20> V/Epas V/E2a> \/Eg%gaﬁavgpqav 52p1+7>
where o, v € {0, 1} such that o # v and o = 1 if and only if €3¢ /E4\/Epgr/E2p

1$ a square in K.
e The 2-class number of K equals 24L,ahg(2p)h2(pq)h2(2pq).

Proof. 1. Assume that N(eg,) = —1. Note that {3, &, \ /26,2, }, is a fundamen-
tal system of units of ;. Using Lemma 2.6, we show that {3, /g, \/Z24} and
{€2, €2pq; \/@} are respectively fundamental systems of units of ks and k3. It
follows that,

By By By = (—1, €2, €p,y €2pg5 /Eq» V/E205 V/Epas \/E2EpE2p) -

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
Therefore, we can assume that

&= 5352551111\/5746[\/ £2' v quf\/ E2EpEny’,

where a,b,c,d, e, f and g are in {0, 1}.
m Let us start by applying the norm map Nk, = 1 + 7. By Tables 1 and 2,
we have:

Nicjio(€2) = 3"+ (=1)" - 1-eg -5, - (1) - (—1)7"
= 53“6253[1 - (—1)PH rougg,
Thus, b+ f 4+ gu=0 (mod 2) and g = 0. Then b = f and
€2 = agagagpq\/?q% /E2a°\/Erd” -

w Let us apply the norm Ngj,, = 1+ 77, with k5 = Q(\/q, v/2p). Then, by
Tables 1 and 2, we have:

Niiy(€3) = (=1 (1) e - (-1 el 11
— 2c (_1)a+d€d

Thus ¢ = d =0 and
52 — 5£5§pqw/52qe\/6qu.
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w Let us apply the norm Ng /i, = 1+ 773, with kg = Q(,/p, v/2¢). By Tables
1 and 2, we have:
NK/kG(gz) = €2f €2pq (_1)6 'qu' 1

s2as§;q( 1)%e5,

Therefore e = 0 and
g = 8 2pq V 617
m Let us apply the norm map Nk, = 1 + 773, with k3 = Q(V2,/pq). B
Tables 1 and 2, we get:
NK/k3(§2) = (_1)f ’ E%;q ’ 612)5 €2pq€12)£( 1)f

Thus, f =0 and

62 = 8gpq'
Since €9, is a square in K, then we have the first item.
. Assume that N(eg,) = 1. In this case we have: {€2,¢,, /E2}, is a fundamental
system of units of ;. Using Lemma 2.6, we show that {ey, /g, /Z2,} and

{€2, €2pgs \/Epq} are respectively fundamental systems of units of ko and ks.
Thus,

Ek:lEk‘zEk‘g = <_1> €9, Epa 8210q> \/@7 V 52q> V qu> vV 52p>-

Let £ be an element of K which is the square root of an element of Ej, Ey, E,.
Therefore, we can assume that

a b_c d e
& = 56,50v/2 V2 Vgqu\/52pgv
where a, b, c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1+ 7. We have

N, (€2) = & (=1)"-1-eg-e5,- (=) - (=1)
e3tetey, - (—1)0H/ e,
Thus, b+ f 4+ gu =0 (mod 2).
w Let us apply the norm Nk, = 1+ 7172, with ks = Q(/q, v/2p). We have
N (82) = (=1 (=1)" -5, - (=1)T-ef - 1-1-(=1)7 - &5,

2 a+b+d+g_d_g
- €2pq(_1) € 8210

Thus, a +b+d+ g =0 (mod 2) and d = g. So a = b. Therefore,
&= = €56, 0qV/Ed VE2A v quf\/ €2
w Let us apply the norm Nk, = 14 773, with kg = Q(,/p, v/2¢q). We have

Nig/ig (€7) = (=1)" 5" ey 1+ (=1)° g5, - 1+ (=1)7

2a_2c (__1\ate+gtug_e
5 €2pq( 1) 62q
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Thus, a+e+g+ug =0 (mod 2) and e = 0. Therefore, a+g+ug =0 (mod 2).
Since a + f + gu = 0 (mod 2), we have f = ¢g. As €9, is a square in K then

we may put:
£ = efen Vo'
where a + g +ug =0 (mod 2). Which gives the result (cf. (9)).
O

Theorem 3.7. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

(g) = 1. PutK = Q(v/2, VP> \/Q). Assume furthermore that p(x—1) and p(v—1)

are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(eqy) = —1. We have
o The unit group of K is :

by = <_17 €2, Ep, \/‘57 vV E2¢y \/Epgs \/E2pq> \/5251)521))-
e The 2-class number of K equals %hg(Qp)hQ(pq)hQ(qu).
2. Assume that N(e9p) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
e The unit group of K is :

Ex = (—1,e2, 8, VEar VE€2¢5 \/Epas v/ E2gs \/5‘5“520‘\/50‘\/ E2(1(1\/ quav 52pqa\/ 52p1+ﬁ/>
where a, v € {0, 1} such that o # v and o = 1 if and only if €3¢\ /Eq\/E2q\/Epar/E2par/E2p

1 a square in K.
e The 2-class number of K equals 57— ha(2p)ha(pg)ha(2pq).

Proof. 1. Assume that N(eg,) = —1. Note that {3, &, \ /26,2, }, is a fundamen-
tal system of units of k;. Using Lemma 2.6, we show that {2, \/g;, \/Z2¢} and
{€2,€pq \/EpeEapq) are respectively fundamental systems of units of Ay and kj.
It follows that,

By By By = (—1,€2,€p, € v/Eq5 V20> v/ EpaCapgs \/E25pE2p)-
Let £ be an element of K which is the square root of an element of Ej, Ey, E, .
Therefore, we can assume that

&= €%€Z€§q\/@dv 52q6\/5pq52qu\/525p52pga
where a, b, c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 7. We have Then, by
Tables 1 and 2, we get:

Nk, (€2) = 3%+ (=1)"-1-ef -5, - 1 (=1)"e}

_ 2a _cd b+gu g
= &y'egey, - (—1)"T"es.

Thus, b+ gu =0 (mod 2) and g = 0. Therefore, b = 0 and
52 = 535;q\/574d\/ 62116\/ 5pq€2qu-
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w Let us apply the norm Ng /i, = 1+ 77y, with ks = Q(,/q,v/2p). By Tables
1 and 2, we get:

Nijis(€3) = (=1)"-1-(=1)"-eq-1- (1)) - &b,

= &l (—1) el

Thus, a + d+ f =0 (mod 2) and d = 0. Therefore, a = f and

§2 = 535;[1\/ 52qev5pq52pqa-
w Let us apply the norm Ngj,, = 1+ 773, with k¢ = Q(\/P, v2¢). Then, by
Tables 1 and 2, we get:
N (€7) = (=1)"-1-(=1)% €5, - (=1)" - €5,
= (—=1)%€5,E%,-
Thus e = a = 0. Therefore e = 0 and
= €pg-

Since by the above Lemma ¢, is a square in K so we have the first item.
. Assume that N(eg,) = 1. We have {e9,¢,, /2,}, is a fundamental system of

units of ki, and {ea, \/Zy, /E2¢} and {2, €py, \/Epgf2pq} are respectively funda-
mental systems of units of £y and k3. So we have

Ey, By, By, = (—1, €2, €p, €, VEa V€24, \/Epa€apg; \/52p>-

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
Therefore, we can assume that

§2 = 5(21525;q\/574d\/52qev5pq52qu\/52pgv
where a,b,c,d, e, f and g are in {0, 1}.
m Let us start by applying the norm map Nk, = 1 + 7. We have:
N, (€%) = 3%+ (=1)"-1-ef -5, - 1- (=1)*
e3teces, - (—1)"om.
Thus, b+ gu =0 (mod 2).
w Let us apply the norm Nk, = 1+ 772, with ks = Q(1/q, v/2p). We have

Npo(€) = (1) (1)1 (1) o1 (<1 ey (1),

_ . f (_1)a+b+d+f+g€d
q

g
€2pq 6210‘

Thus, a+b+d+ f+g =0 (mod 2) and d = g. Therefore, a +b+ f =0
(mod 2) and

2 = 55525;(]\/576[, /€24°/EraCona’ \/E2p"-
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w Let us apply the norm Ng i, = 1+ 7173, with k¢ = Q(/p, v/2q). We have

Nipg(€%) = (=1 11 (1) -5, - (1)) - e, - (= 1)

_ 1\a+tet+ftugt+g e _f
( 1) 62q‘€2pq'

Thus, a+e+ f+ud+d =0 (mod 2) and e = f. Then, a+ud+d =0 (mod 2).
Since b+ du =0 (mod 2) and a+b+ f =0 (mod 2), we have f = d and

5 = £9¢ Zd ;q\/7 V€2 VquE?pq Ve

Since by the above Lemma ¢, is a square in K. then we can put

& = 55y Ve VEr Ve Vo

where a +ud 4+ d =0 (mod 2). Which completes the proof.
UJ

Theorem 3.8. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

<§) = 1. Put K = Q(v2, VP, \/Q). Assume furthermore that p(x — 1) and

2p(v + 1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(eqy) = —1. We have
o The unit group of K is :

Ex = (=1,¢2,€p, /€4, \/Epa> \/E2pq> \/E2EpE 2p; \/5g,/62q1+“’,/6pq52pq°‘>.
where a, v € {0,1} such that o # v and o = 1 if and only if €\ /EF2g\/EpaE2pa

1 a square in K
e The 2-class number of K equals 5:ha(2p)ha(pq)ha(2pq).
2. Assume that N(gqp) = 1 and let a 6 {0,1} such that a =1+ u (mod 2). We
have
o The unit group of K is :

Ex = (—1,2,€p, \/Eq: V€20, V/Epa: v/E2p0: \/55“52“\/50‘\/ €20 V/Epd VEa V E21!21%/)
where o, v € {0, 1} such that o # v and o = 1 if and only if €3¢\ /E4\/E2q\/Epar/E2pa\/E2p

15 a square in K.
e The 2-class number of K equals 57— ha(2p)ha(pq)ha(2pq).

Proof. 1. Assume that N(eq,) = —1. Note that {2, €,, \/E2€,E2,}, is a fundamen-
tal system of units of ;. Using Lemma 2.6, we show that {3, /g, \/Z24} and

{€2, €pgs \/EpgE2pq} are respectively fundamental systems of units of ke and k.
It follows that,

By By By = (—1,€2,6p, €pg; V€qs V€245 \/EpaEapq> \/€2EpE2p) -
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Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
Therefore, we can assume that

'S = €5¢ 2 €paV/Eq \/5211 \/quf2pq VE2EpEap’,

where a, b, c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 7. By Tables 1 and 2
we have

Nijr, (€%) = &3%- (=1)"-1-ef -5, (1) - (=1)7"¢]
5ga505§lq . (_1)b+f+gu€52].

Thus, b+ f 4+ gu =0 (mod 2) and g = 0. Therefore, b = f and

5 = €5¢ b £p \/52 \/5;0452:0!1
m Let us apply the norm NK/k5 = 1+ 77, with k5 = Q(,/q, v/2p). Tables 1
and 2 give:
Nejrs (€7) = (=1 (=1)" -1+ (=1)T-ef - 1 (=1)"- €5
= &) (—1) Tl

q
Thus, a = d = 0. Therefore,
2 b_c e b
& = €p€paV/E2q \/Epaapq -

w Let us apply the norm Ngji, = 1+ 773, with k¢ = Q(y/p,v/2¢). So by
Tables 1 and 2 we have
NK/k6(£2> = 532 -1 (_1)6 ' {:‘Sq ’ (_1)b ’ 6gpq
532(—1)e+b5§q52pq

Thus b = e. Therefore
52 = 5p pq\/ €2q \/ 61%1521011

By applying the other norms we deduce nothing new. Since by the above

Lemma ¢, is a square in K, we have the first item.
. Assume that N(eq,) = 1. We have {eq,¢,, /22,} is a fundamental system of

units of ki, and {ea, \/Zy, /E2¢} and {2, €py, \/Epgf2pq} are respectively funda-
mental systems of units of k5 and k3. So we have

By, By, By, = (—1, €2, €p, €, VEa V€24, \/Epa€apgs \/52p>-

Let £ be an element of K which is the square root of an element of Ey, Ey, Ej, .
Therefore, we can assume that

£ =ege b £p \/52 \/5pq52pq N
where a,b,c,d, e, f and g are in {O, 1}.
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w Let us start by applying the norm map Nk, = 1 + 7. We have:

Niji,(§7) = e+ (-1)"-1-e?- &5

e3'eiey, - (—1)7Toe

L1 ()

Thus, b+ gu =0 (mod 2).
w Let us apply the norm Ngji, = 1+ 7172, with ks = Q(/q, v/2p). We have

Nigio(€) = (-1 (<11 (<) e 1 (<1)f e (-1 -,

_ f a+b+d+f+g.d_g
= &y,,(—1) EqEDp-

Thus, a+b+d+ f+ g =0 (mod 2) and d = g. Therefore, a + b+ f = 0
(mod 2) and

& =eje f, ;fu;\/i VE2q vgpqg?pq Ve
m Let us apply the norm N, = 1+ 7173, with kg = (\/ﬁ, V2q). We have

Nipo(€%) = (=10 11 (1) -5, - (1)) - e, - (= 1)
£

2b ate+ftud+d_e _f
P (_1) 62(1521011

Thus, a+e+ f+ud+d =0 (mod 2) and e = f. Then, a+ud+d =0 (mod 2).
Since b+ du =0 (mod 2) and a+ b+ f =0 (mod 2), we have f = d and

& = e5ey enon/E Ve EoBand

Since by the above Lemma ¢, is a square in K. then we can put

&= = €5¢ Ud\/7 \/5 VvV €pa€2pq \/_

where a +ud 4+ d =0 (mod 2). Which completes the proof.
UJ

Theorem 3.9. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

(g) = 1. Put K = Q(V2,/p,/q). Assume furthermore that 2p(z + 1) and

(v —1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(eqy) = —1. We have
o The unit group of K is :

EK = <_1> €2, 5p> \/5_q> vV <C:2q> vV 8pq> vV 821!an vV 825105210>-

e The 2-class number of K equals %hg(Qp)hQ(pq)hQ(qu).
2. Assume that N(e9p) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
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o The unit group of K is :

Eyx = (—1, 2, ¢, VEa VE245 \/Epas V/E2pas \/5[21045;&\/57110‘\/51)110‘\/521)1%/)

where a, v € {0, 1} such that o # v and o = 1 if and only if €3¢ /E4\/Epgr/E2p
1 a square in K.
e The 2-class number of K equals 57— hs(2p)ha(pg)ha(2pq).

Proof. 1. Assume that N(eg,) = —1. Note that {3, &, \ /€262, }, is a fundamen-
tal system of units of ;. Using Lemma 2.6, we show that {2, \/g;, \/Z2¢} and
{2, €2pg; \/%} are respectively fundamental systems of units of ko and k3. It
follows that,

Ek‘lEk:zEk:3 - <_1a €2,Ep, E2pq» \/?qa AV E2g5 vV Epqs AV 825105':217)-

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
So, we can assume that

£ =¢ 6ba§pq\/7w/52 VEpq w/e’:‘gétpea‘gp,

where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 7. By Tables 1 and 2
we have

N, (62) = &3 (=1)"-1-eg- g5, - (=1)7 - (=1)7e3
_ 5ga565§lq . (_1)b+f+gu€g.

Thus, b+ f 4+ gu =0 (mod 2) and g = 0. Therefore, b = f and
&= 55525§pq\/§dvg2qe\/5mb-

w Let us apply the norm Ng/p, = 1+ 77y, with ks = Q(y/q, v2p). Tables 1
and 2 give:

Neio(€) = (-1l (<1 e 101
62b€§;q(_1)a+d€2l.
Thus, a = d = 0. Therefore,

E=c 52pq,/52 “/Era -

w Let us apply the norm Ngjp, = 1+ 773, with k¢ = Q(y/p,+v/2q). So by
Tables 1 and 2 we have

Nijrs(€%) = &3 - ehpy - (=1)° -5, -1
52b5§;q( 1)%e5,
So e = 0 and therefore,

2 b b
g = 6pggpq\/ €pq :
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w Let us apply the norm map N/, = 1 4 773, with k3 = Q(v2,/pq). So,
by Tables 1 and 2, we get:
NK/k3(£2> = (_1>b ' ggzc)q ’ g;f)q
- 53&; ' (_1>b€gq'

Thus, b = 0 and so £2 = E5pq- Since by Lemma 2.6, €9y, is a square in K, then
we have the result.

. Assume that N(eg,) = 1. In this case we have

Ek:lEk‘zEk‘g = <_1> €2, Epa 8210q> \/@7 vV 52q> vV qu> vV 52p>-

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
So, we can assume that

a b_c d e
&= €2EpE2pqV/Ea V2 \/quf\/52pg>
where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Ng/r, = 1+ 7. We have:

Nigji(€2) = €5+ (=1)" L-eg-e5, - (=1)7 - (1)
= exteley, - (1)t
So we have b+ f + gu =0 (mod 2).
w Let us apply the norm Nk, = 14 77, with ks = Q(,/q, v/2p). We have

Nigjis(82) = (=1)* - (—=1)" - egpq - (=1)* €l - 1-1-(=1)7 - €5,

_ - f a+b+d+g_d_g
= &p,(—1) EqE%p-

Thus, a +b+d+ g =0 (mod 2) and d = g. Therefore, a = b and
¢ = 555§5§pq@dv 52qev5quv52pda
w Let us apply the norm Ng i, = 1+ 7173, with ks = Q(/p, v/2q). We have
Nigjig(§7) = (=1) 5" - ehpy - 1+ (=1)° - &5, - (=1)"*
€§a€§;q(—1)a+e+Ud+d€§q.

Thus, a+e+ud+d =0 (mod 2) and e = 0. Then, a+ud+d =0 (mod 2). As
the above discussions imply a + f + du =0 (mod 2), then f = d. Therefore;

& = e8eeh0v/Ea Vo VR

Since by Lemma 2.6, €9, is a square in K, then we can put

&= 555;\/5[1\/ qud\/ 52pdv

where a +ud 4+ d =0 (mod 2). Which completes the proof.
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Theorem 3.10. Let p =1 (mod 8) and ¢ = 3 (mod 8) be two primes such that

<]—9) = 1. Put K = Q(V2,/p,\/q). Assume furthermore that 2p(z + 1) and
q
p(v — 1) are squares in N, where  and v are defined in Lemma 2.6. Then

1. Assume that N(eqy) = —1. We have
o The unit group of K is :

Ex = (—1,€2,€p, /29, v/Epa> v/E2pq> /E2EpE2p, \/ NN CTa

where o, v € {0, 1} such that o # v and o = 1 if and only if Ep\/Eq\/EpaEapq
15 a square in K
e The 2-class number of K equals 24L,ahg(2p)h2(pq)h2(2pq).
2. Assume that N(egp) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
o The unit group of K is :

Ex = (—1,€2,€p, v/E20, V/Epa> V/E200> v/E2p» \/526\/57ql+ﬁ/v5pq52pqa>

where o, v € {0,1} such that o # v and a = 1 if and only if €,\/E¢\/EpeEapq

1 a square in K.
e The 2-class number of K equals 57— ha(2p)ha(pg)ha(2pq).

Proof. 1. Assume that N(ey,) = —1. Note that {e;, ), /528,82, }, is a fundamen-
tal system of units of ;. Using Lemma 2.6, we show that {3, /g, \/Z24} and
{€2, €pg> /EpqBapq ) are respectively fundamental systems of units of ky and k3.
It follows that,

By By By = (=1, 2, €, €pg, /Ear /€205 V/EpaCapgs \/E2EpEp) -

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
Therefore, we can assume that

d
52 = 53525;1\/ €q v52qe\/5pq52qu\/525p52pga

where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 7. By Tables 1 and 2
we have

Nijr, (€%) = 3% (=1)"-1-ef -5, - (1) - (=1)7"¢]
ggaggggq . (_1)b+f+gu€52].

Thus, b+ f 4+ gu =0 (mod 2) and g = 0. Therefore, b = f and

2 b d b
= 5g<€p5;q\/5q V€24 V/EpeE2pg 5
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w Let us apply the norm Ny, = 1+ 7172, with ks = Q(\/q,v2p). Tables 1
and 2 give:

Nijis (€)= (1) (1) 1+ (=1)" -] 1 &3,
— (_1>a+b+d€g€gm'

Thus, a +b+d =10 (mod 8) et d = b. Therefore, a = 0 and
&= 525;?[1\/51)\/ E2¢° 5pq52qu-

w Let us apply the norm Ngju, = 1+ 773, with k¢ = Q(y/p,+v/2q). So by
Tables 1 and 2 we have

NK/k6(§2) = 51231) -1-1- (_1)6 ' qu ’ Egpq
= 5§bsgpq(—1)55§q.
So e = 0 and therefore,

2 b b b
&= &?pc":‘;q\/&q VEpiEapq -

As g, is a square in K, then we can put £? = 82\/571’, /ZpaEama - By applying
1+ 773, 1+ 73 and 1 + 7y, we deduce thing new. So the first item.

. In this case we have:

Ek1Ek2Ek3 = <_1> €2, Ep;s Epgy \/?qa VE2q) \/Epg€2pqs v/ 8210)-

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
Therefore, we can assume that

£ = 5%525;q\/57qdv €20 v/ Epqg?quv €2’
where a,b,c,d, e, f and g are in {0, 1}.
m Let us start by applying the norm map Nk, = 1 + 7. We have:

Nigjio(§7) = &3 (=1)" 1eg-e5, - (1) - (=1)™

2a _c.d  (_ 1\b+f+gu
£3"ege5, - (—1) :

Thus, b+ f 4+ gu =0 (mod 2).
w Let us apply the norm Nk, = 14 77, with ks = Q(,/q, v/2p). We have

Nigsis (€3) = (1) (=1)" -1+ (1) e - 1- &by - (1) - €4,

_ (_1)a+b+d+g€2l€£pq€gp.

Thus, a +b+d+g=0 (mod 2) and d+ f + g =0 (mod 2).

w Let us apply the norm Nk, = 14 773, with kg = Q(,/p, v/2¢). We have
Nigjro(€7) = (=1 e’ 1-1- (1) -5, - b, - (—1)"+

2 f atetug+g_e
= €, E9p,(—1) E9q°

Thus, a + e+ ug+¢g =0 (mod 2) and e = 0. Then, a + ug+ g =0 (mod 2).
Since b+ f+gu=0 (mod 2) and a+b+d+g=b+d+ug =0 (mod 2), this
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implies that f = d. The equality d + f + g = 0 (mod 2) gives ¢ = 0. Thus,
a =0 and b = f. Therefore,

= &) £p0V/Ed Ve -
As g, is a square in K, then we can put &2 = égﬁf, /EraCord’ -
O
Theorem 3.11. Let p =1 (mod 8) and g = 3 (mod 8) be two primes such that

(g) = 1. Put K = Q(V2,/p,/q). Assume furthermore that 2p(z + 1) and

2p(v + 1) are squares in N, where x and v are defined in Lemma 2.6. Then

1. Assume that N(eqy) = —1. We have
o The unit group of K is :

Ex = <_17 €2;Eps \/‘57 V' €2q5 \/€pgr \/€2pq; \/5251)521))-
e The 2-class number of K equals 2i4hg(2p)h2(pq)h2(2pq).
2. Assume that N(egy) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
o The unit group of K is :

a ~uQ 187 1
Eg = (—1,e3,¢p, VEar V€295 V/Epas /E2pg; \/52 €p VEpe€2pq /E2p JW)
where o, v € {0, 1} such that o # v and o = 1 if and only if €5e.) | /EpgEapqr/E2p

15 a square in K.
e The 2-class number of K equals 52— h2(2p)ha(pq)ha(2pq).

Proof. 1. Assume that N(eq,) = —1. Note that {2, €,, /628,82, }, is a fundamen-
tal system of units of ;. Using Lemma 2.6, we show that {2, \/g;, \/Z2¢} and

{€2, €pgs \/EpgE2pq s are respectively fundamental systems of units of ks and k.
It follows that,

By By By = (=1, €2, €, €pg, /Ear /€205 V/EpaCpas \/E2EpEp) -

Let £ be an element of K which is the square root of an element of Ey, Ey, Ey, .
Therefore, we can assume that

2 a b ¢
&7 =68, pq\/_ VE2q \/qu52pq NG
where a,b,c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1+ 7. By Tables 1 and 2
we have

N (6%) = &3 (=1)"-1-ef g5, - 1- (—1)7<}
e3teteg, - (—1)0H/Toued.

Thus, b+ gu =0 (mod 2) and g = 0. Therefore, b = 0 and
52 = 535;q\/574d\/ 62116\/ 5pq€2qu7
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w Let us apply the norm Ny, = 1+ 7172, with ks = Q(\/q,v2p). Tables 1
and 2 give:
Ny (€3) = (1) 1-(=1)"-ef-1-¢h,

_ +d_d_f
= ¢, (=1)"eren,,

Thus, a = d = f. Therefore,

& = 55516711\/5&\/ €29 \/EpaCapq -

w Let us apply the norm Ny, = 1+ 773, with k¢ = Q(y/p,+/2q). So by
Tables 1 and 2 we have

Nigis (€2) = (=1)"-e)’ - 1-1-(=1)° &5, - €5,

5§bsgpq(—1)e+b5§q.

So a =e =0. Thus,
2 c
&= Epg-
So the first item.

. In this case we have:

Ek1Ek2Ek3 = <_1> €2, €ps Epgr V€@ VE29) V/EPg€2pqr V/ 8210)-
Let £ be an element of K which is the square root of an element of Ej, Ey, Ej, .
Thus, we can assume that

52 = 5%525;q\/57qdv52q6\/5pq52qu\/52pg’
where a, b, c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Nk, = 1 + 7. We have:
Nijio (€%) = 3"+ (=1)" - 1-eg-e5, - 1+ (=1)
extetes, - (1)
Thus, b+ gu =0 (mod 2).
w Let us apply the norm Nk, = 1+ 772, with ks = Q(/q, v/2p). We have

Nepo(€) = (<1 (D01 (<17l 1y (<17,

a+b+d+g_d_f _g
= (-1 €4E2paE2p-

Thus, a +b+d+¢g=0 (mod 2) and d+ f 4+ ¢g =0 (mod 2).
w Let us apply the norm Nk, = 14 773, with kg = Q(,/p, v/2¢q). We have

Nijo(€) = (=) el 11+ (=1) &5, - h, - (1)

2b _f a+tetug+g e
€5 €9pg(—1) E94°

Thus, a + e+ ug+¢g =0 (mod 2) and e = 0. Then, a + ug+ g =0 (mod 2).
Since b+ gu = 0 (mod 2) and a + ug + g = 0 (mod 2), this implies that
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a+b+g=0 (mod2). Asa+b+d+¢g=0 (mod2) (resp. d+ f+g=0
(mod 2)), then d = 0 (resp. f = g). Therefore,

¢ = eneder \/Eraapd’ /'
with a +ug+ g =0 (mod 2). By applying the other norms we deduce nothing

new. So we have the second item.
O

3.3. The cases: p=5 or 3 (mod 8) and ¢ =3 (mod 4).
The following theorem provide some families with odd class number and explicit
unit groups.

Theorem 3.12. Let p and q be two primes. Put K = Q(v/2, VP:+/Q)- Then

1. If p=3 (mod 8), ¢ =7 (mod 8) and (g) =1,

By = (—1, e, VEar VE2q: VEps V/E2pqs /€24 paE 2y \4/ 5%%5245195217 )-

2. Ifp=3 (mod 8), ¢ =7 (mod 8) and (g) =—1,

Ex = (—1, &9, VEa> V/E2ps \/Epas V/E2pa> /EqEpE2pEpaE2pa> \4/ 5%52q5pq52pq ).

3. Ifp=5 (mod 8), =7 (mod 8) and (3) —1,

q
Ex = (—1,€2,€p, \/Eq /E29> V/Epas \/E2EpE2ps /E24EpaE2pa) -
4. If p=5 (mod 8), ¢ =7 (mod 8) and <]_9> =—1,
q

Eg = (—1,¢e3,¢p, VEaq V€29 \/Epgs \/E2EpE2p; \4/ 5%5q5pq52pq>-

5. If p=5 (mod 8), ¢ =3 (mod 8) and (E) =1, then

q

Ex = (—1,€2,2p, \/Zq: /E2¢: \/Epgs \/E2EpE2p; \4/ €2€24EpaC2pq) -

6. Ifp=>5 (mod 8), ¢ =3 (mod 8) and (g) — 1,

Ex = (—1,22,€p, \/Zq, /E24> V/Epas \/E2EpE2ps A E3E2E4EpEapq) -
7. If p=q =3 (mod 8), then
Eg = (=1, &, VEps \/E2ps \/€4> \/Epas V/EPEGE2pqs \/E2pE2qE2pq) -

Furthermore, in all the above cases the class number of K is odd.
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Proof. The points 4, 5 and 6 are proved in [§] and [7]| respectively. The proof of
the rest demands very long computations as above, however we suggest to the
reader proceed as in the proof of Theorem 3.1 or |7, Theorem 2.5] to construct a
detailed prove. O

4. Some families of Frohlich triquadratic fields whose 2-class groups
are of type (2,2)

Now we can give some families of real triquadratic number fields whose 2-class
groups are of type (2,2).

Theorem 4.1. Let p = 1 (mod 8) and ¢ = 3 (mod 8) be two primes such that
PY 1. Puk = Q(V2, VP>1/Q). Then the 2-class group of K is of type (2,2)

in the following cases:

1. ha(pq) = ha(2pq) = 2 - ha(2p) = 4 and (x — 1) or (v — 1) is not square in N.

2. N(egp) = —1, ha(pq) = ha(2pq) = h2(2p) = 4 and one of the following condi-
tions is satisfied:

(x — 1) and 2p(v + 1) are squares in N.

(x — 1) and p(v — 1) are squares in N.

p(z — 1) and (v —1) are squares in N.

p(x — 1) and p(v — 1) are squares in N.

. 2p(z+1) and (v — 1) are squares in N.

f. 2p(x 4+ 1) and 2p(v + 1) are squares in N.

oo T

where x and v are defined in Lemma 2.6.

Proof. We shall prove the first item and the reader can similarly prove the second
one. So assume that we are in conditions of the first item. Note that by [13,
Theorem 2|, we have N(eg,) = 1. Using Lemmas 2.7 and 2.6, we get ha(k3) =
Lq(ks) -4 -4 = 8, where k3 = Q(v/2,/pq).Therefore, as by [2] the 2-rank of
the class group of k3 equals 2, the 2-class group of ks is of type (2,4). By the
second items of Theorems 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11, we have
ho(K) = 52=hs(2p)ha(pg)ha(2pg), for some a € {0,1}. If we assume that o = 0,
then hy(K) = 2%1 +2-4-4 = 2. This implies that the 2-class group of K is cyclic,
but this is impossible by class field theory and the fact that K/ks5 is an unramified
quadratic extension. Therefore, ho(K) = 4. Now, let us show that the 2-class
group of K is not cyclic. By [4, Theorem 4.1, (iii)|, k3 admits three quadratic
extensions K; = K and the conjugate extensions K, := k3(y/a]) and Kg, all
contained in Q(v/'2, \/p, /g, /&) which is an unramified extension of k3 of degree
4, where the af is (the element attached to p) defined in [4, Theorem 4.1, (iii)].
So by the group theoretic properties given in [5, p. 110] the 2-class group of K is
not cyclic. Hence the 2-class group of K is of type (2,2). O
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