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Abstract. We study the construction of the Φ3
3-measure and complete the program on the

(non-)construction of the focusing Gibbs measures, initiated by Lebowitz, Rose, and Speer
(1988). This problem turns out to be critical, exhibiting the following phase transition. In
the weakly nonlinear regime, we prove normalizability of the Φ3

3-measure and show that it
is singular with respect to the massive Gaussian free field. Moreover, we show that there
exists a shifted measure with respect to which the Φ3

3-measure is absolutely continuous.
In the strongly nonlinear regime, by further developing the machinery introduced by the
authors, we establish non-normalizability of the Φ3

3-measure. Due to the singularity of the
Φ3

3-measure with respect to the massive Gaussian free field, this non-normalizability part
poses a particular challenge as compared to our previous works. In order to overcome this
issue, we first construct a σ-finite version of the Φ3

3-measure and show that this measure is
not normalizable. Furthermore, we prove that the truncated Φ3

3-measures have no weak limit
in a natural space, even up to a subsequence.

We also study the dynamical problem for the canonical stochastic quantization of the
Φ3

3-measure, namely, the three-dimensional stochastic damped nonlinear wave equation with
a quadratic nonlinearity forced by an additive space-time white noise (= the hyperbolic Φ3

3-
model). By adapting the paracontrolled approach, in particular from the works by Gubinelli,
Koch, and the first author (2018) and by the authors (2020), we prove almost sure global
well-posedness of the hyperbolic Φ3

3-model and invariance of the Gibbs measure in the weakly
nonlinear regime. In the globalization part, we introduce a new, conceptually simple and
straightforward approach, where we directly work with the (truncated) Gibbs measure, using
the Boué-Dupuis variational formula and ideas from theory of optimal transport.
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1. Introduction

1.1. Overview. In this paper, we study the Φ3
3-measure on the three-dimensional torus on

T3 = (R/2πZ)3, formally written as

dρ(u) = Z−1 exp

(
σ

3

∫
T3

u3dx

)
dµ(u), (1.1)

and its associated stochastic quantization. Here, µ is the massive Gaussian free field on T3

and the coupling constant σ ∈ R \ {0} measures the strength of the cubic interaction. The

associated energy functional for the Φ3
3-measure ρ in (1.1) is given by

E(u) =
1

2

∫
T3

|⟨∇⟩u|2dx− σ

3

∫
T3

u3dx, (1.2)

where ⟨∇⟩ =
√
1−∆. Since u3 is not sign definite, the sign of σ does not play any role and,

in particular, the problem is not defocusing even if σ < 0.

Our main goal in this paper is to study the construction of the Φ3
3-measure and its

associated dynamics, following the program on the (non-)construction of focusing1 Gibbs

measures, initiated by Lebowitz, Rose, and Speer [43]. Let us first go over the known results.

In the seminal work [43], Lebowitz, Rose, and Speer studied the one-dimensional case and

constructed the one-dimensional focusing Gibbs measures2 in the L2-(sub)critical setting

1By “focusing”, we also mean the non-defocusing (non-repulsive) case, such as the cubic interaction appearing
in (1.1), such that the interaction potential (for example, σ

3

∫
T3 u

3dx in (1.1)) is unbounded from above.
2As pointed out by Carlen, Fröhlich, and Lebowitz [16, p. 315], there is in fact an error in the Gibbs measure

construction in [43], which was amended by Bourgain [8] (for 2 < p < 6 with any K > 0 and p = 6 with
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(i.e. 2 < p ≤ 6) with an L2-cutoff:

dρ(u) = Z−11{
∫
T |u|2dx≤K} exp

(
1

p

∫
T
|u|pdx

)
dµ(u) (1.3)

or with a taming by the L2-norm:

dρ(u) = Z−1 exp

(
1

p

∫
T
|u|pdx−A

(∫
T
u2dx

)q)
dµ(u) (1.4)

for some appropriate q = q(p), where µ denotes the periodic Wiener measure on T. See

Remark 2.1 in [43]. Here, the parameter A > 0 denotes the so-called (generalized) chemical

potential and the expression (1.4) is referred to as the generalized grand-canonical Gibbs

measure. See also the work by Carlen, Fröhlich, and Lebowitz [16] for a further discussion,

where they describe the details of the construction of the generalized grand-canonical Gibbs

measure in (1.4) in the L2-subcritical setting (2 < p < 6). In [43], Lebowitz, Rose, and Speer

also proved non-normalizability of the focusing Gibbs measure ρ in (1.3):

Eµ

[
1{

∫
T |u|2dx≤K} exp

(
1

p

∫
T
|u|pdx

)]
= ∞

in (i) the L2-supercritical case (p > 6) for any K > 0 and (ii) the L2-critical case (p > 6),

provided that K > ∥Q∥2L2(R), where Q is the (unique3) optimizer for the Gagliardo-Nirenberg-

Sobolev inequality on R such that ∥Q∥6L6(R) = 3∥Q′∥2L2(R). In a recent work [61], the first and

third authors with Sosoe proved that the focusing L2-critical Gibbs measure ρ in (1.3) (with

p = 6) is indeed constructible at the optimal mass threshold K = ∥Q∥2L2(R), thus answering

an open question posed by Lebowitz, Rose, and Speer [43] and completing the program in the

one-dimensional case.

In the two-dimensional setting, Brydges and Slade [15] continued the study on the focusing

Gibbs measures and showed that with the quartic interaction (p = 4), the focusing Gibbs

measure ρ in (1.3) (even with proper renormalization on the potential energy 1
4

∫
T2 |u|4dx and

on the L2-cutoff) is not normalizable as a probability measure. See also [60] for an alternative

proof. In view of

1{| · |≤K}(x) ≤ exp
(
−A|x|γ

)
exp

(
AKγ

)
(1.5)

for any K > 0, γ > 0, and A > 0, this non-normalizability result of the focusing Gibbs measure

on T2 with the quartic interaction (p = 4) also applies to the generalized grand-canonical

Gibbs measure in (1.4). Furthermore, the same non-normalizability applies for higher order

interaction (for an integer p ≥ 5).

In [9], Bourgain reported Jaffe’s construction of a Φ3
2-measure endowed with a Wick-ordered

L2-cutoff:

dρ = Z−11{
∫
T2 :u

2: dx≤K}e
1
3

∫
T2 :u

3: dxdµ(u),

where :u2 : and :u3 : denote the Wick powers of u, and µ denotes the massive Gaussian free

field on T2. See also [60]. We point out that such a Gibbs measure with a (Wick-ordered)

L2-cutoff is not suitable for stochastic quantization in the heat and wave settings due to the

0 < K ≪ 1) and the first and third authors with Sosoe [61] (for p = 6 and K ≤ ∥Q∥2L2(R)). See [61] for a

further discussion.
3Up to the symmetries.
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lack of the L2-conservation. In [9], Bourgain instead constructed the following generalized

grand-canonical formulation of the Φ3
2-measure:

dρ(u) = Z−1e
1
3

∫
T2 :u

3: dx−A
( ∫

T2 :u
2: dx
)2
dµ(u)

for sufficiently large A > 0. See [63, 34, 52, 36] for the associated (stochastic) nonlinear wave

dynamics.

In this paper, we consider the three-dimensional case and complete the focusing Gibbs

measure construction program initiated by Lebowitz, Rose, and Speer [43]. More precisely,

we consider the following generalized grand-canonical formulation of the Φ3
3-measure (namely,

with a taming by the Wick-ordered L2-norm):

dρ(u) = Z−1 exp

(
σ

3

∫
T3

:u3 : dx−A

∣∣∣∣ ∫
T3

:u2 : dx

∣∣∣∣γ)dµ(u) (1.6)

for suitable A, γ > 0. We now state our first main result in a somewhat formal manner. See

Theorem 1.8 for the precise statement.

Theorem 1.1. The following phase transition holds for the Φ3
3-measure in (1.6).

(i) (weakly nonlinear regime). Let 0 < |σ| ≪ 1 and γ = 3. Then, by introducing a further

renormalization, the Φ3
3-measure ρ in (1.6) exists as a probability measure, provided

that A = A(σ) > 0 is sufficiently large. In this case, the resulting Φ3
3-measure ρ and

the massive Gaussian free field µ on T3 are mutually singular.

(ii) (strongly nonlinear regime). When |σ| ≫ 1, the Φ3
3-measure in (1.6) is not normalizable

for any A > 0 and γ > 0. Furthermore, the truncated Φ3
3-measures ρN (see (1.25)

below) do not have a weak limit, as measures on C− 3
4 (T3), even up to a subsequence.

Theorem 1.1 shows that the Φ3
3-model is critical in terms of the measure construction. In

the case of a higher order focusing interaction on T3 (replacing :u3 : by :up : in (1.6) for an

integer p ≥ 4 with σ > 0 when p is even), or the Φ3
4-model on the four-dimensional torus T4,

the focusing nonlinear interaction gets only worse and thus we expect that the same approach

would yield non-normalizability. Hence, in view of the previous results [43, 8, 15, 61, 60],

Theorem 1.1 completes the focusing Gibbs measure construction program, thus answering an

open question posed by Lebowitz, Rose, and Speer (see “Extension to higher dimensions” in

[43, Section 5]). See also our companion paper [53], where we completed the program on the

(non-)construction of the focusing Hartree Gibbs measures in the three-dimensional setting.

See Remark 1.3 for a further discussion.

We point out that in the weakly nonlinear regime, the Φ3
3-measure ρ is constructed only as

a weak limit of the truncated Φ3
3-measures. Moreover, we prove that there exists a shifted

measure with respect to which the Φ3
3-measure is absolutely continuous; see Appendix A.

As for the non-normalizability result in Theorem 1.1 (ii), our proof is based on a refined

version of the machinery introduced by the authors [53] and the first and third authors with

Seong [60], which was in turn inspired by the work of the third author and Weber [74] on the

non-construction of the Gibbs measure for the focusing cubic nonlinear Schrödinger equation

(NLS) on the real line, giving an alternative proof of Rider’s result [66]. We, however, point

out that there is an additional difficulty in proving Theorem 1.1 (ii) due to the singularity

of the Φ3
3-measure with respect to the base massive Gaussian free field µ. (Note that the
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focusing Gibbs measures considered in [53, 60] are equivalent to the base Gaussian measures.)

In order to overcome this difficulty, we first introduce a reference measure4 νδ and construct a

σ-finite version of the Φ3
3-measure (expressed in terms of the reference measure νδ). We then

show that this σ-finite version of the Φ3
3-measure is not normalizable. See Section 4.

Remark 1.2. (i) As the name suggests, the Φ3
3-measure is of interest from the point of view

of constructive quantum field theory. In the defocusing case (σ < 0) with a quartic interaction

(u4 in place of u3), the measure ρ in (1.1) corresponds to the well-studied Φ4
3-measure. The

construction of the Φ4
3-measure is one of the early achievements in constructive quantum field

theory. For an overview of the constructive program, see the introductions in [1, 32].

(ii) In the one- and two-dimensional cases, the non-normalizability of the focusing Gibbs

measures emerges in the L2-critical case (p = 6 when d = 1 and p = 4 when d = 2),

suggesting its close relation to the finite time blowup phenomena of the associated focusing

NLS. See [61] for a further discussion. In the three-dimensional case, it is interesting to note

that the Φ3
3-model is L2-subcritical and yet we have the non-normalizability (in the strongly

nonlinear regime). Thus, the non-normalizability of the Φ3
3-measure is not related to a blowup

phenomenon. Note that, unlike the focusing Φ6
1- and Φ4

2-models which make sense in the

complex-valued setting, the Φ3
3-model makes sense only in the real-valued setting. It seems of

interest to investigate a possible relation to the following Gagliardo-Nirenberg inequality:∫
R3

|u(x)|3dx ≲ ∥u∥
3
2

L2(R3)
∥u∥

3
2

Ḣ1(R3)
.

(iii) Consider a Φ3
3-measure with a Wick-ordered L2-cutoff:5

dρ(u) = Z−11{|
∫
T3 :u2: dx|≤K} exp

(
σ

3

∫
T3

:u3 : dx

)
dµ(u). (1.7)

Then, an analogue of Theorem 1.1 holds for the Φ3
3-measure in (1.7). In view of (1.5),

Theorem 1.1 implies normalizability of the Φ3
3-measure in (1.7) (with a further renormalization)

in the weakly nonlinear regime (0 < |σ| ≪ 1). On the other hand, in the strongly nonlinear

regime (|σ| ≫ 1), a modification of the proof of Theorem 1.12 (ii) (see also [53, 60]) yields

non-normalizability of the Φ3
3-measure in (1.7) for any K > 0.

Remark 1.3. In [11], Bourgain studied the invariant Gibbs dynamics for the focusing Hartree

NLS on T3 (with σ > 0):

i∂tu+ (1−∆)u− σ(V ∗ |u|2)u = 0, (1.8)

where V = ⟨∇⟩−β is the Bessel potential of order β > 0. In [11], Bourgain first constructed

the focusing Gibbs measure with a Hartree-type interaction (for complex-valued u), endowed

with a Wick-ordered L2-cutoff:

dρ(u) = Z−11{
∫
T3 : |u|2: dx≤K} e

σ
4

∫
T3 (V ∗:|u|2:) :|u|2: dxdµ(u)

4This reference measure is introduced as a tamed version of the Φ3
3-measure and is not to be confused with

the shifted measure mentioned above. See Proposition 4.1.
5With a slight modification, one may also consider ρ in (1.7) with a slightly different cutoff 1{

∫
T3 :u2: dx≤K},

i.e. without an absolute value, and prove the same (non-)normalizability results. See Remark 5.10 in [53].
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for β > 2 and then constructed the invariant Gibbs dynamics for the associated dynamical

problem.6 In [53], we continued the study of the focusing Hartree Φ4
3-measure in the generalized

grand-canonical formulation (with σ > 0):

dρ(u) = Z−1 exp

(
σ

4

∫
T3

(V ∗ :u2 :) :u2 : dx−A

∣∣∣∣ ∫
T3

:u2 : dx

∣∣∣∣γ)dµ(u) (1.9)

and established a phase transition in two respects (i) the focusing Hartree Φ4
3-measure ρ

in (1.9) is constructible for β > 2, while it is not for β < 2 and (ii) when β = 2, the focusing

Hartree Φ4
3-measure is constructible for 0 < σ ≪ 1, while it is not for σ ≫ 1. See [53] for the

precise statements. These results in [53] in particular show the critical nature of the focusing

Hartree Φ4
3-model when β = 2. In the same work, we also constructed the invariant Gibbs

dynamics for the associated (canonical) stochastic quantization equation. See also [53, 12, 13]

for the defocusing case (σ < 0). Note that when β = 0, the defocusing Hartree Φ4
3-measure

reduces to the usual Φ4
3-measure.

In terms of scaling, the focusing Hartree Φ4
3-model with β = 2 corresponds to the Φ3

3-model

and as such, they share some common features. For example, they are both critical with

a phase transition, depending on the size of the coupling constant σ. At the same time,

however, there are some differences. While the focusing Hartree Φ4
3-measure with β = 2 is

absolutely continuous with respect to the base massive Gaussian free field µ, the Φ3
3-measure

studied in this paper is singular with respect to the base massive Gaussian free field µ. As

mentioned above, this singularity of the Φ3
3-measure causes an additional difficulty in proving

non-normalizability in the strongly nonlinear regime |σ| ≫ 1.

Next, we discuss the dynamical problem associated with the Φ3
3-measure constructed in

Theorem 1.1. In the following, we consider the canonical stochastic quantization equation

[65, 67] for the Φ3
3-measure in (1.6) (with γ = 3). More precisely, we study the following

stochastic damped nonlinear wave equation (SdNLW) with a quadratic nonlinearity, posed

on T3:

∂2t u+ ∂tu+ (1−∆)u− σu2 =
√
2ξ, (x, t) ∈ T3 × R+, (1.10)

where σ ∈ R \ {0}, u is an unknown function, and ξ denotes a (Gaussian) space-time white

noise on T3 × R+ with the space-time covariance given by

E
[
ξ(x1, t1)ξ(x2, t2)

]
= δ(x1 − x2)δ(t1 − t2).

In this introduction, we keep our discussion at a formal level and do not worry about various

renormalizations required to give a proper meaning to the equation (1.10).

With u⃗ = (u, ∂tu), define the energy E(u⃗) by

E(u⃗) = E(u) +
1

2

∫
T3

(∂tu)
2dx

=
1

2

∫
T3

|⟨∇⟩u|2dx+
1

2

∫
T3

(∂tu)
2dx− σ

3

∫
T3

u3dx,

6By combining the construction of the focusing Hartree Gibbs measure in the critical case (β = 2) with
0 < σ ≪ 1 in [53] and the well-posedness result in [21], this result on the focusing Hartree NLS (1.8) by
Bourgain [11] can be extended to the critical case β = 2 (in the weakly nonlinear regime 0 < σ ≪ 1).
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where E(u) is as in (1.2). This is precisely the energy (= Hamiltonian) of the (deterministic)

nonlinear wave equation (NLW) on T3 with a quadratic nonlinearity:

∂2t u+ (1−∆)u− σu2 = 0. (1.11)

Then, by letting v = ∂tu, we can write (1.10) as the first order system:

∂t

(
u
v

)
=

(
∂E
∂v

−∂E
∂u

)
+

(
0

−v +
√
2ξ

)
,

which shows that the SdNLW dynamics (1.10) is given as a superposition of the deterministic

NLW dynamics (1.11) and the Ornstein-Uhlenbeck dynamics for v = ∂tu:

∂tv = −v +
√
2ξ.

Now, consider the Gibbs measure ρ⃗, formally given by

dρ⃗(u⃗) = Z−1e−E(u⃗)du⃗ = dρ⊗ dµ0(u⃗)

= Z−1 exp

(
σ

3

∫
T3

u3dx

)
d(µ⊗ µ0)(u, v),

(1.12)

where ρ is the Φ3
3-measure in (1.1) and µ0 denotes the white noise measure; see (1.15). See

Remark 1.13 for the precise definition of the Gibbs measure ρ⃗. Then, the observation above

shows that ρ⃗ is expected to be invariant under the dynamics of the quadratic SdNLW (1.10).

Indeed, from the stochastic quantization point of view, the equation (1.10) is the so-called

canonical stochastic quantization equation (namely, the Hamiltonian stochastic quantization)

for the Φ3
3-measure; see [67]. For this reason, it is natural to refer to (1.10) as the hyperbolic

Φ3
3-model.

Let us now state our main dynamical result in a somewhat formal manner. See Theorem 1.15

for the precise statement.

Theorem 1.4. Let γ = 3 and 0 < |σ| ≪ 1. Suppose that A = A(σ) > 0 is sufficiently large

as in Theorem 1.1 (i). Then, the hyperbolic Φ3
3-model (1.10) on the three-dimensional torus

T3 (with a proper renormalization) is almost surely globally well-posed with respect to the

random initial data distributed by the (renormalized) Gibbs measure ρ⃗ = ρ ⊗ µ0 in (1.12).

Furthermore, the Gibbs measure ρ⃗ is invariant under the resulting dynamics.

In view of the critical nature of the Φ3
3-measure, Theorem 1.4 is sharp in the sense that

almost sure global well-posedness does not extend to SdNLW with a focusing nonlinearity of

a higher order. The construction of the Φ3
3-measure in Theorem 1.1 requires us to introduce

several renormalizations together with the taming by the Wick-ordered L2-norm. This

introduces modifications to the equation (1.10). See Subsection 1.3 and Sections 5 and 6 for

the precise formulation of the problem.

Over the last five years, stochastic nonlinear wave equations (SNLW) in the singular setting

have been studied extensively in various settings:7

∂2t u+ ∂tu+ (1−∆)u+N (u) = ξ (1.13)

for a power-type nonlinearity [34, 35, 36, 22, 23, 58, 52, 51, 72, 53, 13, 64] and for trigonometric

and exponential nonlinearities [56, 59, 57]. We also mention the works [63, 55, 54, 13]

7Some of the works mentioned below are on SNLW without damping.
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on nonlinear wave equations with rough random initial data. In [35], by combining the

paracontrolled calculus, originally introduced in the parabolic setting [33, 17, 47], with the

multilinear harmonic analytic approach, more traditional in studying dispersive equations,

Gubinelli, Koch, and the first author studied the quadratic SNLW (1.10) (without the

damping). The paracontrolled approach in the wave setting was also used in our previous

work [53] and was further developed by Bringmann [13]. In order to prove local well-posedness

of the hyperbolic Φ3
3-model (1.10), we also follow the paracontrolled approach, in particular

combining the analysis in [35, 53]. See Section 5. As for the globalization part, a naive

approach would be to apply Bourgain’s invariant measure argument [8, 10]. However, due to

the singularity of the Φ3
3-measure ρ with respect to the base massive Gaussian free field µ (and

the fact that the truncated Φ3
3-measure ρN converges to ρ only weakly), there is an additional

difficulty to overcome for the hyperbolic Φ3
3-model. Hence, Bourgain’s invariant measure

argument is not directly applicable. In the context of the defocusing Hartree cubic NLW on T3,

Bringmann [13] encountered a similar difficulty and developed a new globalization argument.

While it is possible to adapt Bringmann’s analysis to our current setting, we instead introduce

a new alternative argument, which is conceptually simple and straightforward. In particular,

we extensively use the variational approach and also use ideas from theory of optimal transport

to directly estimate a probability with respect to the limiting Gibbs measure ρ⃗ (in particular,

without going through shifted measures as in [13]). See Subsection 1.3 and Section 6 for

details.

Remark 1.5. A slight modification of our proof of Theorem 1.4 yields the corresponding

results (namely, almost sure global well-posedness and invariance of the associated Gibbs

measure) for the (deterministic) quadratic NLW (1.11) on T3 in the weakly nonlinear regime.

Remark 1.6. We point out that an analogue of Theorem 1.4 also holds for the parabolic

Φ3
3-model, namely, the stochastic nonlinear heat equation with a quadratic nonlinearity:

∂tu+ (1−∆)u− σu2 =
√
2ξ, (x, t) ∈ T3 × R+. (1.14)

Thanks to the strong smoothing of the heat propagator, the well-posedness of (1.14) follows

from elementary analysis based on the first order expansion (also known as the Da Prato-

Debussche trick [19]). See for example [24]. While there is an extra term coming from the

taming by the Wick-ordered L2-norm (see, for example, (1.33) in the hyperbolic case), this

term does not cause any issue in the parabolic setting.

Remark 1.7. In [71], the third author introduced a new approach to establish unique

ergodicity of Gibbs measures for stochastic dispersive/hyperbolic equations. This was further

developed in [73] to prove ergodicity of the hyperbolic Φ4
2-model, namely (1.13) on T2 with

N (u) = u3. See also [27] by the third author and Forlano on the asymptotic Feller property

of the invariant Gibbs dynamics for the cubic SNLW on T2 with a slightly smoothed noise.

The ergodic property of the hyperbolic Φ3
3-model is a challenging problem, in particular due

to its non-defocusing nature.

1.2. Construction of the Φ3
3-measure. In this subsection, we describe a renormalization

procedure and also a taming by the Wick-ordered L2-norm required to construct the Φ3
3-

measure in (1.6) and make a precise statement (Theorem 1.8). For this purpose, we first fix
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some notations. Given s ∈ R, let µs denote a Gaussian measure with the Cameron-Martin

space Hs(T3), formally defined by

dµs = Z−1
s e−

1
2
∥u∥2Hsdu = Z−1

s

∏
n∈Z3

e−
1
2
⟨n⟩2s|û(n)|2dû(n), (1.15)

where ⟨ · ⟩ = (1 + | · |2)
1
2 . When s = 1, the Gaussian measure µs corresponds to the massive

Gaussian free field, while it corresponds to the white noise measure µ0 when s = 0. For

simplicity, we set

µ = µ1 and µ⃗ = µ⊗ µ0. (1.16)

Define the index sets Λ and Λ0 by

Λ =
2⋃

j=0

Zj × N× {0}2−j and Λ0 = Λ ∪ {(0, 0, 0)} (1.17)

such that Z3 = Λ ∪ (−Λ) ∪ {(0, 0, 0)}. Then, let {gn}n∈Λ0 and {hn}n∈Λ0 be sequences of

mutually independent standard complex-valued8 Gaussian random variables and set g−n := gn
and h−n := hn for n ∈ Λ0. Moreover, we assume that {gn}n∈Λ0 and {hn}n∈Λ0 are independent

from the space-time white noise ξ in (1.10). We now define random distributions u = uω and

v = vω by the following Gaussian Fourier series:9

uω =
∑
n∈Z3

gn(ω)

⟨n⟩
en and vω =

∑
n∈Z3

hn(ω)en, (1.18)

where en = ein·x. Denoting by Law(X) the law of a random variable X (with respect to the

underlying probability measure P), we then have

Law(u, v) = µ⃗ = µ⊗ µ0

for (u, v) in (1.18). Note that Law(u, v) = µ⃗ is supported on

Hs(T3) := Hs(T3)×Hs−1(T3)

for s < −1
2 but not for s ≥ −1

2 (and more generally in W s,p(T3) × W s−1,p(T3) for any

1 ≤ p ≤ ∞ and s < −1
2).

We now consider the Φ3
3-measure formally given by (1.1). Since u in the support of the

massive Gaussian free field µ is merely a distribution, the cubic potential energy in (1.1) is not

well defined and thus a proper renormalization is required to give a meaning to the potential

energy. In order to explain the renormalization process, we first study the regularized model.

GivenN ∈ N, we denote by πN = πcubeN the frequency projector onto the (spatial) frequencies

{n = (n1, n2, n3) ∈ Z3 : maxj=1,2,3 |nj | ≤ N}, defined by

πNf = πcubeN f =
∑
n∈Z3

χN (n)f̂(n)en, (1.19)

associated with a Fourier multiplier χN = χcube
N :

χN (n) = χcube
N (n) = 1Q

(
N−1n

)
, (1.20)

8This means that g0, h0 ∼ NR(0, 1) and Re gn, Im gn,Rehn, Imhn ∼ NR(0,
1
2
) for n ̸= 0.

9By convention, we endow T3 with the normalized Lebesgue measure dxT3 = (2π)−3dx.
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where Q denotes the cube of side length 2 in R3 centered at the origin:

Q =
{
ξ = (ξ1, ξ2, ξ3) ∈ R3 : max

j=1,2,3
|ξj | ≤ 1

}
. (1.21)

It turns out that, due to the critical nature of the Φ3
3-measure, a choice of frequency projectors

makes a difference. See Remark 1.9 and Subsection 1.4 below for discussions on different

frequency projectors. In comparing different frequency projectors, we refer to πN = πcubeN

in (1.19) as the cube frequency projector in the following.

Let u be as in (1.18) and set uN = πNu. For each fixed x ∈ T3, uN (x) is a mean-zero

real-valued Gaussian random variable with variance

σN = E
[
u2N (x)

]
=
∑
n∈Z3

χ2
N (n)

⟨n⟩2
∼ N −→ ∞, (1.22)

as N → ∞. Note that σN is independent of x ∈ T3 due to the stationarity of µ. We define

the Wick powers :u2N : and :u3N : by setting

:u2N : = H2(uN ;σN ) = u2N − σN and :u3N : = H3(uN ;σN ) = u3N − 3σNuN ,

where Hk(x, σ) denotes the Hermite polynomial of degree k with variance parameter σ defined

by the generating function:

etx−
1
2
σt2 =

∞∑
k=0

tk

k!
Hk(x;σ).

This suggests us to consider the following renormalized potential energy:

RN (u) = −σ
3

∫
T3

:u3N : dx+A

∣∣∣∣ ∫
T3

:u2N : dx

∣∣∣∣γ . (1.23)

As in the case of the Φ4
3-measure in [3], the renormalized potential energy RN (u) in (1.23) is

divergent (as N → ∞) and thus we need to introduce a further renormalization. This leads

to the following renormalized potential energy:

R⋄
N (u) = RN (u) + αN , (1.24)

where αN is a diverging constant (as N → ∞) defined in (3.14) below. Finally, we define the

truncated (renormalized) Φ3
3-measure ρN by

dρN (u) = Z−1
N e−R⋄

N (u)dµ(u), (1.25)

where the partition function ZN is given by

ZN =

∫
e−R⋄

N (u)dµ(u). (1.26)

Then, we have the following construction and non-normalizability of the Φ3
3-measure. Due to

the singularity of the Φ3
3-measure with respect to the base Gaussian measure µ⃗, we need to

state our non-normalizability result in a careful manner. Compare this with [53, Theorem 1.15]

and [60, Theorem 1.3]. See the beginning of Section 4 for a further discussion.

Theorem 1.8. There exist σ1 ≥ σ0 > 0 such that the following statements hold.
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(i) (weakly nonlinear regime). Let 0 < |σ| < σ0. Then, by choosing γ = 3 and A =

A(σ) > 0 sufficiently large, we have the uniform exponential integrability of the density :

sup
N∈N

ZN = sup
N∈N

∥∥∥e−R⋄
N (u)

∥∥∥
L1(µ)

<∞ (1.27)

and the truncated Φ3
3-measure ρN in (1.25) converges weakly to a unique limit ρ,

formally given by10

dρ(u) = Z−1 exp

(
σ

3

∫
T3

:u3 : dx−A

∣∣∣∣ ∫
T3

:u2 : dx

∣∣∣∣3 −∞
)
dµ(u). (1.28)

In this case, the resulting Φ3
3-measure ρ and the base massive Gaussian free field µ are

mutually singular.

(ii) (strongly nonlinear regime). Let |σ| > σ1 and γ ≥ 3. Then, the Φ3
3-measure is not

normalizable in the following sense.

Fix δ > 0. Given N ∈ N, let νN,δ be the following tamed version of the truncated

Φ3
3-measure:

dνN,δ(u) = Z−1
N,δ exp

(
− δ∥πNu∥20

B
− 3

4
3,∞

−R⋄
N (u)

)
dµ(u). (1.29)

Then, {νN,δ}N∈N converges weakly to some limiting probability measure νδ and the

following σ-finite version of the Φ3
3-measure:

dρδ = exp
(
δ∥u∥20

B
− 3

4
3,∞

)
dνδ

= lim
N→∞

Z−1
N,δ exp

(
δ∥u∥20

B
− 3

4
3,∞

)
exp

(
− δ∥πNu∥20

B
− 3

4
3,∞

−R⋄
N (u)

)
dµ(u)

is a well defined measure on C−100(T3). Furthermore, this σ-finite version ρδ of the

Φ3
3-measure is not normalizable:∫

1 dρδ = ∞.

Under the same assumption, the sequence {ρN}N∈N of the truncated Φ3
3-measures

in (1.25) does not converge to any weak limit, even up to a subsequence, as measures

on the Besov space B
− 3

4
3,∞(T3) ⊃ C− 3

4 (T3).

In the weakly nonlinear regime, we also prove that the Φ3
3-measure ρ is absolutely continuous

with respect to the shifted measure Law(Y (1)+σZ(1)+W(1)), where Law(Y (1)) = µ, Z = Z(Y )

is the limit of the quadratic process ZN defined in (3.11), and the auxiliary quintic process

W = W(Y ) is defined in (A.1). While we do not use this property in this paper, we present

the proof in Appendix A for completeness.

As in case of the Φ4
3-measure in [3], we can prove uniform exponential integrability of

the truncated density e−R⋄
N (u) in Lp(µ) only for p = 1 due to the second renormalization

introduced in (1.24). See also [53, 12] for a similar phenomenon in the case of the defocusing

Hartree Φ4
3-measure. We point out that the renormalized potential energy R⋄

N (u) in (1.24)

10By hiding αN in (1.25) into the partition function ZN , we could also say that the limiting Φ3
3-measure ρ

is formally given by (1.6) (with γ = 3).
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does not converge to any limit and neither does the density e−R⋄
N (u), which is essentially the

source of the singularity of the Φ3
3-measure with respect to the massive Gaussian free field µ.

As in [53], following the variational approach introduced by Barashkov and Gubinelli [3], we

use the Boué-Dupuis variational formula (Lemma 3.1) to prove Theorem 1.8. In fact, we make

use of the Boué-Dupuis variational formula in almost every single step of the proof. In proving

Theorem 1.8 (i), we first use the variational formula to establish the uniform exponential

integrability (1.27) of the truncated density e−R⋄
N (u), from which tightness of the truncated

Φ3
3-measure ρN in (1.25) follows. See Subsection 3.2. Due to the singularity of the Φ3

3-measure,

we need to apply a change of variables (see (3.12)) in the variational formulation and thus we

need to treat the taming part more carefully than that for the focusing Hartree Φ4
3-measure

studied in [53]. See Lemma 3.6 below. This lemma also reflects the critical nature of the

Φ3
3-measure.

In Subsection 3.3, we prove uniqueness of the limiting Φ3
3-measure. Our main strategy

is to follow the approach introduced in our previous work [53] and compare two (arbitrary)

subsequences ρNk1
and ρNk2

, using the variational formula. We point out, however, that, due

to the critical nature of the Φ3
3-measure, our uniqueness argument becomes more involved than

that in [53, Subsection 6.3] for the subcritical defocusing Hartree Φ4
3-measure. In particular,

we need to make use of a certain orthogonality property to eliminate a problematic term. See

Remark 3.9. See also Subsection 1.4.

In proving the singularity of the Φ3
3-measure, we once again follow the direct approach

introduced in [53], making use of the variational formula. We point out that the proof of

the singularity of the Φ4
3-measure by Barashkov and Gubinelli [4] goes through the shifted

measure. On the other hand, as in [53], our proof is based on a direct argument without

referring to shifted measures. See Subsection 3.4.

Let us now turn to the strongly nonlinear regime considered in Theorem 1.8 (ii). As

mentioned above, due to the singularity of the Φ3
3-measure, our formulation of the non-

normalizability result in Theorem 1.8 (ii) is rather subtle. In the situation where the truncated

density e−R⋄
N (u) converges to the limiting density (as in [53, 60]), it would suffice to prove

sup
N∈N

Eµ

[
e−R⋄

N (u)
]
= ∞, (1.30)

since (1.30) would imply that there is no normalization constant which would make the limit

of the measure e−R⋄
N (u)dµ(u) into a probability measure. In the current problem, however, the

potential energy R⋄
N (u) in (1.24) (and the corresponding density e−R⋄

N (u)) does not converge

to any limit. Thus, even if we prove a statement of the form (1.30), we may still choose

a sequence of constants ẐN such that the measures Ẑ−1
N e−R⋄

N (u)dµ have a weak limit. A

similar phenomenon happens for the Φ4
3-measure, where one needs to introduce the second

order renormalization; see [3]. The non-convergence of the truncated Φ3
3-measures claimed in

Theorem 1.8 (ii) tells us that this can not happen for the Φ3
3-measure. See also Remark 1.10

below.

Our strategy is to first construct a σ-finite version of the Φ3
3-measure and then prove its

non-normalizability. As stated in Theorem 1.8 (ii), we first introduce a tamed version νN,δ of

the truncated Φ3
3-measure, by introducing an appropriate taming function F ; see (4.6) below.

The first step is to show that this tamed truncated Φ3
3-measure νN,δ converges weakly to some
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limit νδ (Proposition 4.1). We then define a σ-finite version ρδ of the Φ3
3-measure by setting

dρδ = eδF (u)dνδ

and prove that ρδ is not normalizable (Proposition 4.2). Here, the σ-finite version ρδ of the

Φ3
3-measure clearly depends on the choice of a taming function F . Our choice is quite natural

since the σ-finite version ρδ of the Φ3
3-measure is absolutely continuous with respect to the

shifted measure Law(Y (1) + σZ(1) +W(1)), just like the (normalizable) Φ3
3-measure in the

weakly nonlinear regime discussed above. See Remark A.3.

Once we construct the σ-finite version ρδ of the Φ3
3-measure, our argument follows closely

the strategy introduced in [53, 60] for establishing non-normalizability, using the Boué-Dupuis

variational formula. For this approach, we need to construct a drift achieving the desired

divergence, where (the antiderivative of) the drift is designed to look like “−Y (1) + a

perturbation”, where Law(Y (1)) = µ; see (4.41) below. Here, the perturbation term is

bounded in L2(T3) but has a large L3-norm, thus having a highly concentrated profile, such as

a soliton or a finite time blowup profile. As compared to our previous works [53, 60], there is

an additional difficulty in proving the non-normalizability claim in Theorem 1.8 (ii) due to the

singularity of the Φ3
3-measure, which forces us to use a change of variables (see (3.12)) in the

variational formulation. See Remark 4.7. The non-convergence of the truncated Φ3
3-measures

ρN stated in Theorem 1.8 (ii) follows as a corollary to the non-normalizability of the σ-finite

version ρδ of the Φ
3
3-measure; see Proposition 4.4 and Subsection 4.4. If the Φ3

3-measure existed

as a probability measure in the strongly nonlinear regime, then we would expect its support

to be contained in C− 1
2
−ε(T3) for any ε > 0, just as in the weakly nonlinear regime (and the

Φ4
3-measure). For this reason, the Besov space B

− 3
4

3,∞(T3) ⊃ C− 3
4 (T3) is a quite natural space to

consider. The restriction γ ≥ 3 in Theorem 1.8 (ii) comes from the construction of the tamed

version νδ of the Φ3
3-measure; see (4.13) below. For γ < 3, the taming by the Wick-ordered

L2-norm in (1.6) becomes weaker and thus we expect an analogous non-normalizability result

to hold.

Remark 1.9. We prove Theorem 1.8 for the cube frequency projector πN = πcubeN defined

in (1.19). If we instead consider the ball frequency projector πballN defined in (1.41) below, then

our argument for the non-convergence claim in the strongly nonlinear regime (Proposition 4.4)

breaks down, while the other claims in Theorem 1.8 remain true for the ball frequency projector

πballN . If we consider the smooth frequency projector πsmooth
N defined in (1.42) below, then

our argument for the uniqueness of the limiting Φ3
3-measure in the weakly nonlinear regime

(Proposition 3.8) breaks down. In particular, the latter issue is closely related to the critical

nature of the Φ3
3-model and, while we believe that uniqueness of the limiting Φ3

3-measure

holds even in the case of the smooth frequency projector πsmooth
N , it seems non-trivial to

prove this claim by a modification of our argument. We point out that the same issue also

appears in showing uniqueness of the limit νδ of the tamed version νN,δ of the truncated

Φ3
3-measure in (1.29) in the strongly nonlinear regime (Proposition 4.1) and in the dynamical

part (Proposition 6.10). See Subsection 1.4 for a further discussion. See also Remarks 3.9

and 4.12.

Remark 1.10. In the strongly nonlinear regime, Theorem 1.8 (ii) tells us that the truncated

Φ3
3-measures ρN do not converge weakly to any limit as measures on B

− 3
4

3,∞(T3) ⊃ C− 3
4 (T3). It
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is, however, possible that the truncated Φ3
3-measures converges weakly to some limit (say, the

Dirac delta measure δ0 on the trivial function) as measures on some space with a very weak

topology, say C−100(T3). Theorem 1.8 (ii) shows that if such weak convergence takes place, it

must do so in a very pathological manner.

Remark 1.11. The second renormalization in (1.24) (i.e. the cancellation of the diverging

constant αN ) appears only at the level of the measure. The associated equation (see (1.38)

below) does not see this additional renormalization.

Remark 1.12. It is of interest to investigate a threshold value σ∗ > 0 such that the

construction of the Φ3
3-measure (Theorem 1.8 (i)) holds for 0 < |σ| < σ∗, while the non-

normalizability of the Φ3
3-measure (Theorem 1.8 (ii)) holds for |σ| > σ∗. If such a threshold

value σ∗ could be determined, it would also be of interest to determine whether the Φ3
3-measure

is normalizable at the threshold |σ| = σ∗. Such a problem, however, requires optimizing all the

estimates in the proof of Theorem 1.8 and is out of reach at this point. See a recent work [61]

by Sosoe and the first and third authors for such analysis in the one-dimensional case.

Remark 1.13. Consider the truncated Gibbs measure ρ⃗N = ρN ⊗ µ0 for the hyperbolic

Φ3
3-model (1.10) with the density:

dρ⃗N (u, v) = Z−1
N e−R⋄

N (u)dµ⃗(u, v), (1.31)

where R⋄
N (u) and µ⃗ are as in (1.24) and (1.16), respectively. Since the potential energy R⋄

N (u)

is independent of the second component v, Theorem 1.8 directly applies to the truncated

Gibbs measure ρ⃗N . In particular, in the weakly nonlinear regime (0 < |σ| < σ0), the truncated

Gibbs measure ρ⃗N converges weakly to the limiting Gibbs measure

ρ⃗ = ρ⊗ µ0, (1.32)

where ρ is the limiting Φ3
3-measure constructed in Theorem 1.8 (i). Moreover, the limiting

Gibbs measure ρ⃗ and the base Gaussian measure µ⃗ = µ⊗ µ0 are mutually singular.

1.3. Hyperbolic Φ3
3-model. In this subsection, we provide a precise meaning to the hy-

perbolic Φ3
3-model (1.10) and make Theorem 1.4 more precise. By considering the Langevin

equation for the Gibbs measure ρ⃗ = ρ⊗ µ0 constructed in Remark 1.13, we formally obtain

the following quadratic SdNLW (= the hyperbolic Φ3
3-model):

∂2t u+ ∂tu+ (1−∆)u− σ :u2 : +M( :u2 : )u =
√
2ξ, (1.33)

where M is defined by

M(w) = 6A

∣∣∣∣ ∫
T3

wdx

∣∣∣∣ ∫
T3

wdx. (1.34)

Here, the term M( :u2 : )u in (1.33) comes from the taming by the Wick-ordered L2-norm

appearing in (1.28). The term :u2 : denotes the Wick renormalization11 of u2, formally given

by :u2 : = u2 −∞. Namely, the equation (1.33) is just a formal expression at this point. In

the following, we provide the meaning of the process u in (1.33) by a limiting procedure. In

Section 5, we use the paracontrolled calculus to give a more precise meaning to (1.33) by

rewriting it into a system for three unknowns. See (5.28) below.

11In order to give a proper meaning to : u2 :, we need to assume a structure on u. We postpone this
discussion to Section 5.
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Given N ∈ N, we consider the following quadratic SdNLW with a truncated noise:

∂2t uN + ∂tuN + (1−∆)uN − σ :u2N : +M( :u2N : )uN =
√
2πNξ, (1.35)

where πN is as in (1.19) and the renormalized nonlinearity is defined by

:u2N : = u2N − σN (1.36)

with σN as in (1.22). See also (5.10). In Section 5, we study SdNLW (1.35) with the truncated

noise and prove the following local well-posedness statement for the hyperbolic Φ3
3-model.

Theorem 1.14. Given s > 1
2 , let (u0, u1) ∈ Hs(T3). Let (ϕω0 , ϕ

ω
1 ) be a pair of the Gaussian

random distributions with Law(ϕω0 , ϕ
ω
1 ) = µ⃗ = µ⊗ µ0. Then, the solution (uN , ∂tuN ) to the

quadratic SdNLW (1.35) with the truncated noise and the initial data

(uN , ∂tuN )|t=0 = (u0, u1) + πN (ϕω0 , ϕ
ω
1 ) (1.37)

converges to a stochastic process (u, ∂tu) ∈ C([0, T ];H− 1
2
−ε(T3)) almost surely, where T = T (ω)

is an almost surely positive stopping time.

The limit (u, ∂tu) formally satisfies the equation (1.33). Here, we took the initial data of

the form (1.37) for simplicity of the presentation. A slight modification of the proof yields an

analogue of Theorem 1.14 with deterministic initial data (uN , ∂tuN )|t=0 = (u0, u1). In this

case, we need to choose a diverging constant σN , depending on t. See [34, 35] for such an

argument.

We follow the paracontrolled approach in [35], where the quadratic SNLW on T3 was

studied. However, the additional term M in (1.33) and (1.35) contains an ill-defined product

:u2 : (or :u2N : in the limiting sense). In order to treat this term, the analysis in [35] is not

sufficient and thus we also need to adapt the paracontrolled analysis in our previous work [53]

and rewrite the equation into a system for three unknowns. (Note that in [35], the resulting

system was for two unknowns.) We also point out that, unlike [35] (see also [47] in the context

of the parabolic Φ4
3-model), the equation for a less regular, paracontrolled component in our

system (see (5.28) below) is nonlinear in the unknowns. We then construct a continuous map

from the space of enhanced data sets to solutions. While the proof of Theorem 1.14 follows

from a slight modification of the arguments in [35, 53], we present details in Section 5 for

readers’ convenience.

In order to establish our main goal in the dynamical part of the program (Theorem 1.4),

we need to study the hyperbolic Φ3
3-model with the Gibbs measure initial data. Since the

Gibbs measure ρ⃗ = ρ⊗ µ0 in (1.32) and the Gaussian field µ⃗ = µ⊗ µ0 are mutually singular

as shown in Theorem 1.8, it may seem that the local well-posedness in Theorem 1.14 with

the Gaussian initial data (plus smoother deterministic initial data) is irrelevant. However, as

we see in Section 6, the analysis for proving Theorem 1.14 provides us with a good intuition

of the well-posedness problem for the hyperbolic Φ3
3-model with the Gibbs measure initial

data. Furthermore, one of advantages of considering the Gaussian initial data (as in (1.37))

is that it provides a clear reason why σN appears in the renormalization in (1.36), since σN
is nothing but the variance of the first order approximation (= the stochastic convolution

defined in (5.4)) to the solution to (1.35); see (5.10). This is the main reason for considering

the local-in-time problem with the Gaussian initial data.
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Next, we turn our attention to the globalization problem. For this purpose, we need

to consider a different approximating equation. Given N ∈ N, we consider the truncated

hyperbolic Φ3
3-model:

∂2t uN + ∂tuN + (1−∆)uN

− σπN
(
: (πNuN )2 :

)
+M( : (πNuN )2 : )πNuN =

√
2ξ,

(1.38)

where : (πNuN )2 : = (πNuN )2 − σN . A slight modification of the proof of Theorem 1.14

yields uniform (in N) local well-posedness of the truncated equation (1.38) (with the same

limiting process (u, ∂tu) as in Theorem 1.14) for the initial data of the form (1.37). By

exploiting (formal) invariance of the truncated Gibbs measure ρ⃗N in (1.31),12 we see that the

truncated hyperbolic Φ3
3-model (1.38) is almost surely globally well-posed with respect to the

truncated Gibbs measure ρ⃗N and, moreover, ρ⃗N is invariant under the resulting dynamics;

see Lemma 6.4.

We now state almost sure global well-posedness of the hyperbolic Φ3
3-model.

Theorem 1.15. Let 0 < |σ| < σ0 and A = A(σ) > 0 is sufficiently large as in Theorem 1.8 (i).

Then, there exists a non-trivial stochastic process (u, ∂tu) ∈ C(R+;H− 1
2
−ε(T3)) for any ε > 0

such that, given any T > 0, the solution (uN , ∂tuN ) to the truncated hyperbolic Φ3
3-model (1.38)

with the random initial data distributed by the truncated Gibbs measure ρ⃗N = ρN ⊗µ0 in (1.31)

converges to (u, ∂tu) in C([0, T ];H− 1
2
−ε(T3)). Furthermore, we have Law

(
(u(t), ∂tu(t))

)
= ρ⃗

for any t ∈ R+.

The main difficulty in proving Theorem 1.15 comes from the mutual singularity of the Gibbs

measure ρ⃗ and the base Gaussian measure µ⃗ (and the fact that the truncated Gibbs measure

ρ⃗N converges to ρ⃗ only weakly) such that Bourgain’s invariant measure argument [8, 10] is

not directly applicable. In the context of the defocusing Hartree NLW on T3, Bringmann [13]

encountered the same issue, and introduced a new globalization argument, where a large

time stability theory (in the paracontrolled setting) plays a crucial role. Bourgain’s invariant

measure argument is often described (see [13]) as “the probabilistic version of a deterministic

global theory using a (sub-critical) conservation law”. In [13], Bringmann considers the

quantity ρ⃗M ((uN , ∂tuN )(t) ∈ A), where (uN , ∂tuN ) is the solution to the truncated equation

with a cutoff parameter N . While such an expression is not conserved for M ̸= N , it should

be close to being constant in time when M,N ≫ 1. For this reason, he describes his new

globalization argument as “the probabilistic version of a deterministic global theory using

almost conservation laws”. We also point out that Bringmann’s analysis relies on the fact

that the (truncated) Gibbs measure is absolutely continuous with respect to a shifted measure

[53, 12] (as in Appendix A below).

While it is possible to follow Bringmann’s approach, we instead introduce a new simple

alternative argument to prove almost sure global well-posedness. Our approach consists of

the following four steps:

1. We first establish a uniform (in N) exponential integrability of the truncated enhanced

data set (see (6.10) below) with respect to the truncated measure (Proposition 6.5). We

directly achieve this by combining the variational approach with space-time estimates

12This is essentially Bourgain’s invariant measure argument [8] applied to the truncated hyperbolic Φ3
3-

model (1.38), whose nonlinear part is finite dimensional.
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without any reference to (the truncated version of) the shifted measure constructed in

Appendix A.

2. Next, by a slight modification of the local well-posedness argument, we prove a stability

result (Proposition 6.8). This is done by a simple contraction argument, with an

exponentially decaying weight in time.

3. Then, using the invariance of the truncated Gibbs measure, we establish a uniform

(in N) control on the solution to the truncated system (see (6.58) below) with a

large probability. The argument relies on a discrete Gronwall argument but is very

straightforward.

4. In the last step, we study the convergence property of the distributions of the truncated

enhanced data sets, emanating from the truncated Gibbs measures. In particular,

we study the Wasserstein-1 distance of such a distribution with the limiting distri-

bution, using ideas from theory of optimal transport (the Kantorovich duality). See

Proposition 6.10 below.

Once we establish these four steps, Theorem 1.15 follows in a straightforward manner. We

believe that our new globalization argument is very simple, at least at a conceptual level, and

is easy to implement. See Section 6 for further details.

Remark 1.16. (i) In this paper, we treated the hyperbolic Φ3
3-model. In the three-dimensional

case, it is possible to consider the defocusing quartic interaction potential, namely the Φ4
3-

measure. This leads to the following hyperbolic Φ4
3-model on T3:

∂2t u+ ∂tu+ (1−∆)u+ u3 =
√
2ξ. (1.39)

Over the last ten years, the parabolic Φ4
3-model:

∂tu+ (1−∆)u+ u3 =
√
2ξ, (1.40)

has been studied extensively by many authors. See [38, 33, 17, 42, 47, 48, 1, 31] and references

therein. Up to date, the well-posedness issue of the hyperbolic Φ4
3-model (1.39) remains as an

important open problem.13 In [64], using Bringmann’s analysis [13], Y. Wang, Zine, and the

first author recently proved local well-posedness of the cubic stochastic NLW14 on T3 with an

almost space-time white noise forcing (i.e. replacing ξ by ⟨∇⟩−αξ for any α > 0 in (1.39)).

(ii) In the parabolic setting (1.14), there is no issue is applying Bourgain’s invariant measure

argument in the usual manner since it is possible to prove local well-posedness with deter-

ministic initial data at the regularity of the Φ3
3-measure. See [39] in the case of the parabolic

Φ4
3-model (1.40).

1.4. On frequency projectors. We conclude this introduction by discussing different

frequency projectors. Given N ∈ N, define the ball frequency projector πballN onto the

frequencies {n ∈ Z3 : |n| ≤ N} by setting

πballN f =
∑
n∈Z3

χball
N (n)f̂(n)en, (1.41)

13In a recent preprint [14], Bringmann, Deng, Nahmod, and Yue resolved this open problem in the case of
the Gibbsian initial data with no stochastic forcing.

14In [64], the authors considered the undamped SNLW but the same analysis applies to the damped SNLW.
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associated with a Fourier multiplier

χball
N (n) = 1B

(
N−1n

)
,

where B denotes the unit ball in R3 centered at the origin:

B =
{
ξ = (ξ1, ξ2, ξ3) ∈ R3 : |ξ| ≤ 1

}
.

We also define the smooth frequency projector πsmooth
N onto the frequencies {n ∈ Z3 : |n| ≤ N}

by setting

πsmooth
N f =

∑
n∈Z3

χsmooth
N (n)f̂(n)en, (1.42)

associated with a Fourier multiplier

χsmooth
N (n) = χ

(
N−1n

)
for some fixed even function χ ∈ C∞

c (R3; [0, 1]) with suppχ ⊂ {ξ ∈ R3 : |ξ| ≤ 1} and χ ≡ 1

on {ξ ∈ R3 : |ξ| ≤ 1
2}.

In Subsections 1.2 and 1.3, we stated the (non-)construction of the Φ3
3-measure (Theorem 1.8)

and the dynamical results for the hyperbolic Φ3
3-model (Theorems 1.14 and 1.15), using the

cube frequency projector πN = πcubeN defined in (1.19). In comparison with the ball frequency

projector πballN and the smooth frequency projector πsmooth
N , there are two important properties

that the cube frequency projector πcubeN possesses simultaneously.

(i) As a composition of (modulated) Hilbert transforms in different coordinate directions,

the cube frequency projector πcubeN is uniformly (in N) bounded in Lp(T3) for any

1 < p <∞.

(ii) The cube frequency projector is indeed a projection, in particular satisfying

(Id−πcubeN )πcubeN = 0.

We make use of both of these properties in a crucial manner. Note that while the ball

frequency projector πballN satisfies the property (ii), it is bounded in Lp(T3) only for p = 2 [26]

and thus the property (i) is not satisfied. On the other hand, by Young’s inequality, the

smooth frequency projector πsmooth
N is bounded on Lp(T3) for any 1 ≤ p ≤ ∞ but it does not

satisfy the property (ii).

Roughly speaking, Theorem 1.8 on the (non-)construction of the Φ3
3-measure consists of

the following five results:

(1) the uniform exponential integrability (1.27) and tightness of the truncated Φ3
3-measures

ρN in the weakly nonlinear regime,

(2) uniqueness of the limiting Φ3
3-measure in the weakly nonlinear regime,

(3) mutual singularity of the Φ3
3-measure and the base Gaussian free field in the weakly

nonlinear regime,

(4) non-normalizability of the Φ3
3-measure in the strongly nonlinear regime,

(5) non-convergence of the truncated Φ3
3-measures ρN in the strongly nonlinear regime.

Starting with the truncated Φ3
3-measures ρN in (1.25) defined in terms of the cube frequency

projector πcubeN in (1.19), we establish (1) - (5) in Sections 3 and 4. In proving (5), the

property (i) above plays an important role and thus our argument does not apply to the ball

frequency projector πballN . See Remark 4.12.



STOCHASTIC QUANTIZATION OF Φ3
3 19

In establishing (2), uniqueness of the limiting Φ3
3-measure (Proposition 3.8), we crucially

make use of the property (ii) to show that a certain problematic term vanishes; see I2 in (3.72).

It turns out that this problematic term reflects the critical nature of the problem, where there

is no room to spare, not even logarithmically. In the case of the cube frequency projector

πcubeN , the property (ii) allows us to conclude that this term in fact vanishes. In the case of the

smooth projector πsmooth
N , the property (ii) does not hold and thus we need to show by hand

that this problematic term tends to 0. As mentioned above, however, there is no room to spare

and it seems rather non-trivial to prove such a convergence result by a modification of our

argument. See Remark 3.9. In establishing (4) and (5), we first construct a reference measure

νδ as a limit of the tamed version νN,δ of the truncated Φ3
3-measure in (1.29) (Proposition 4.1).

With the smooth projector πsmooth
N , the same issue also appears in showing uniqueness of the

limit νδ.

While we believe that Theorem 1.8 holds for both the ball frequency projector πballN (in

particular (5) above) and the smooth frequency projector πsmooth
N (in particular (2) above),

we do not pursue these issues further in this paper in order to keep the paper length under

control.

Let us now turn to the dynamical part. As for the smooth frequency projector πsmooth
N ,

there is no modification needed for the local well-posedness part. However, as mentioned

above, there is no uniqueness of the limiting Φ3
3-measure in this case. Furthermore, we point

out that the proof of Proposition 6.10 also breaks down for the smooth frequency projector

πsmooth
N since part of the argument relies on the proof of Proposition 3.8; see (6.120). On the

other hand, as for the ball frequency projector πballN , both Theorems 1.14 and 1.15 hold as

they are stated. However, the proof of the local well-posedness part needs to be modified

in view of the unboundedness of the ball frequency projector πballN in the Strichartz spaces

(see (5.47)). Note that this issue can be easily remedied by using the Fourier restriction norm

method via the (L2-based) Xs,b-spaces as in [63, 13, 64].

2. Notations and basic lemmas

In describing regularities of functions and distributions, we use ε > 0 to denote a small

constant. We usually suppress the dependence on such ε > 0 in an estimate. For a, b > 0, we

use a ≲ b to mean that there exists C > 0 such that a ≤ Cb. By a ∼ b, we mean that a ≲ b

and b ≲ a.

In dealing with space-time functions, we use the following short-hand notation Lq
TL

r
x =

Lq([0, T ];Lr(T3)), etc.

2.1. Sobolev and Besov spaces. Let s ∈ R and 1 ≤ p ≤ ∞. We define the L2-based

Sobolev space Hs(Td) by the norm:

∥f∥Hs = ∥⟨n⟩sf̂(n)∥ℓ2n .

We also define the Lp-based Sobolev space W s,p(Td) by the norm:

∥f∥W s,p =
∥∥F−1[⟨n⟩sf̂(n)]

∥∥
Lp .

When p = 2, we have Hs(Td) =W s,2(Td).
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Let ϕ : R → [0, 1] be a smooth bump function supported on [−8
5 ,

8
5 ] and ϕ ≡ 1 on

[
− 5

4 ,
5
4

]
.

For ξ ∈ Rd, we set φ0(ξ) = ϕ(|ξ|) and

φj(ξ) = ϕ
( |ξ|
2j

)
− ϕ

( |ξ|
2j−1

)
(2.1)

for j ∈ N. Then, for j ∈ Z≥0 := N ∪ {0}, we define the Littlewood-Paley projector Pj as the

Fourier multiplier operator with a symbol φj . Note that we have

∞∑
j=0

φj(ξ) = 1

for each ξ ∈ Rd. Thus, we have

f =
∞∑
j=0

Pjf.

Let us now recall the definition and basic properties of paraproducts introduced by Bony [6].

See [2, 33] for further details. Given two functions f and g on T3 of regularities s1 and s2, we

write the product fg as

fg = f < g + f = g + f > g

:=
∑

j<k−2

Pjf Pkg +
∑

|j−k|≤2

Pjf Pkg +
∑

k<j−2

Pjf Pkg. (2.2)

The first term f < g (and the third term f > g) is called the paraproduct of g by f (the

paraproduct of f by g, respectively) and it is always well defined as a distribution of regularity

min(s2, s1 + s2). On the other hand, the resonant product f = g is well defined in general

only if s1 + s2 > 0. See Lemma 2.2 below. In the following, we also use the notation

f ⩾ g := f > g+f = g. In studying a nonlinear problem, main difficulty usually arises in making

sense of a product. Since paraproducts are always well defined, such a problem comes from a

resonant product. In particular, when the sum of regularities is negative, we need to impose

an extra structure to make sense of a (seemingly) ill-defined resonant product. See Section 5

for a further discussion on the paracontrolled approach in this direction.

Next, we recall the basic properties of the Besov spaces Bs
p,q(Td) defined by the norm:

∥u∥Bs
p,q

=
∥∥∥2sj∥Pju∥Lp

x

∥∥∥
ℓqj (Z≥0)

.

We denote the Hölder-Besov space by Cs(Td) = Bs
∞,∞(Td). Note that (i) the parameter s

measures differentiability and p measures integrability, (ii) Hs(Td) = Bs
2,2(Td), and (iii) for

s > 0 and not an integer, Cs(Td) coincides with the classical Hölder spaces Cs(Td); see [30].

We recall the basic estimates in Besov spaces. See [2, 37] for example.

Lemma 2.1. The following estimates hold.

(i) (interpolation) Let s, s1, s2 ∈ R and p, p1, p2 ∈ (1,∞) such that s = θs1 + (1 − θ)s2 and
1
p = θ

p1
+ 1−θ

p2
for some 0 < θ < 1. Then, we have

∥u∥W s,p ≲ ∥u∥θW s1,p1∥u∥1−θ
W s2,p2 . (2.3)
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(ii) (immediate embeddings) Let s1, s2 ∈ R and p1, p2, q1, q2 ∈ [1,∞]. Then, we have

∥u∥Bs1
p1,q1

≲ ∥u∥Bs2
p2,q2

for s1 ≤ s2, p1 ≤ p2, and q1 ≥ q2,

∥u∥Bs1
p1,q1

≲ ∥u∥Bs2
p1,∞

for s1 < s2,

∥u∥B0
p1,∞

≲ ∥u∥Lp1 ≲ ∥u∥B0
p1,1

.

(2.4)

(iii) (Besov embedding) Let 1 ≤ p2 ≤ p1 ≤ ∞, q ∈ [1,∞], and s2 ≥ s1 + d
(

1
p2

− 1
p1

)
. Then,

we have

∥u∥Bs1
p1,q

≲ ∥u∥Bs2
p2,q

.

(iv) (duality) Let s ∈ R and p, p′, q, q′ ∈ [1,∞] such that 1
p + 1

p′ =
1
q +

1
q′ = 1. Then, we have∣∣∣∣ ∫

Td

uv dx

∣∣∣∣ ≤ ∥u∥Bs
p,q
∥v∥B−s

p′,q′
, (2.5)

where
∫
Td uv dx denotes the duality pairing between Bs

p,q(Td) and B−s
p′,q′(T

d).

(v) (fractional Leibniz rule) Let p, p1, p2, p3, p4 ∈ [1,∞] such that 1
p1

+ 1
p2

= 1
p3

+ 1
p4

= 1
p . Then,

for every s > 0, we have

∥uv∥Bs
p,q

≲ ∥u∥Bs
p1,q

∥v∥Lp2 + ∥u∥Lp3∥v∥Bs
p4,q

. (2.6)

The interpolation (2.3) follows from the Littlewood-Paley characterization of Sobolev norms

via the square function and Hölder’s inequality.

Lemma 2.2 (paraproduct and resonant product estimates). Let s1, s2 ∈ R and 1 ≤
p, p1, p2, q ≤ ∞ such that 1

p = 1
p1

+ 1
p2
. Then, we have

∥f < g∥Bs2
p,q

≲ ∥f∥Lp1∥g∥Bs2
p2,q

. (2.7)

When s1 < 0, we have

∥f < g∥
B

s1+s2
p,q

≲ ∥f∥Bs1
p1,q

∥g∥Bs2
p2,q

. (2.8)

When s1 + s2 > 0, we have

∥f = g∥
B

s1+s2
p,q

≲ ∥f∥Bs1
p1,q

∥g∥Bs2
p2,q

. (2.9)

The product estimates (2.7), (2.8), and (2.9) follow easily from the definition (2.2) of the

paraproduct and the resonant product. See [2, 46] for details of the proofs in the non-periodic

case (which can be easily extended to the current periodic setting).

We also recall the following product estimate from [34].

Lemma 2.3. Let 0 ≤ s ≤ 1.

(i) Let 1 < pj , qj , r <∞, j = 1, 2 such that 1
r = 1

pj
+ 1

qj
. Then, we have

∥⟨∇⟩s(fg)∥Lr(T3) ≲ ∥⟨∇⟩sf∥Lp1 (T3)∥g∥Lq1 (T3) + ∥f∥Lp2 (T3)∥⟨∇⟩sg∥Lq2 (T3).

(ii) Let 1 < p, q, r <∞ such that s ≥ 3
(
1
p + 1

q −
1
r

)
. Then, we have

∥⟨∇⟩−s(fg)∥Lr(T3) ≲ ∥⟨∇⟩−sf∥Lp(T3)∥⟨∇⟩sg∥Lq(T3).

Note that while Lemma 2.3 (ii) was shown only for s = 3
(
1
p +

1
q −

1
r

)
in [34], the general

case s ≥ 3
(
1
p + 1

q −
1
r

)
follows the embedding Lp1(T3) ⊂ Lp2(T3), p1 ≥ p2.
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2.2. On discrete convolutions. Next, we recall the following basic lemma on a discrete

convolution.

Lemma 2.4. Let d ≥ 1 and α, β ∈ R satisfy

α+ β > d and α < d.

Then, we have ∑
n=n1+n2

1

⟨n1⟩α⟨n2⟩β
≲ ⟨n⟩−α+λ

for any n ∈ Zd, where λ = max(d− β, 0) when β ̸= d and λ = ε when β = d for any ε > 0.

Lemma 2.4 follows from elementary computations. See, for example, [29, Lemma 4.2] and

[48, Lemma 4.1].

2.3. Tools from stochastic analysis. We conclude this section by recalling useful lemmas

from stochastic analysis. See [68, 50] for basic definitions. Let (H,B, µ) be an abstract Wiener

space. Namely, µ is a Gaussian measure on a separable Banach space B with H ⊂ B as its

Cameron-Martin space. Given a complete orthonormal system {ej}j∈N ⊂ B∗ of H∗ = H,

we define a polynomial chaos of order k to be an element of the form
∏∞

j=1Hkj (⟨x, ej⟩),
where x ∈ B, kj ≠ 0 for only finitely many j’s, k =

∑∞
j=1 kj , Hkj is the Hermite polynomial

of degree kj , and ⟨·, ·⟩ = B⟨·, ·⟩B∗ denotes the B-B∗ duality pairing. We then denote the

closure of polynomial chaoses of order k under L2(B,µ) by Hk. The elements in Hk are called

homogeneous Wiener chaoses of order k. We also set

H≤k =

k⊕
j=0

Hj

for k ∈ N.
As a consequence of the hypercontractivity of the Ornstein-Uhlenbeck semigroup due to

Nelson [49], we have the following Wiener chaos estimate [69, Theorem I.22]. See also [70,

Proposition 2.4].

Lemma 2.5. Let k ∈ N. Then, we have

∥X∥Lp(Ω) ≤ (p− 1)
k
2 ∥X∥L2(Ω)

for any finite p ≥ 2 and any X ∈ H≤k.

Lastly, we recall the following orthogonality relation for the Hermite polynomials. See [50,

Lemma 1.1.1].

Lemma 2.6. Let f and g be jointly Gaussian random variables with mean zero and variances

σf and σg. Then, we have

E
[
Hk(f ;σf )Hℓ(g;σg)

]
= δkℓk!

{
E[fg]

}k
,

where Hk(x, σ) denotes the Hermite polynomial of degree k with variance parameter σ.
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3. Construction of the Φ3
3-measure in the weakly nonlinear regime

In this section, we present the construction of the Φ3
3-measure in the weakly nonlinear

regime (Theorem 1.8 (i)). Our proof is based on the variational approach introduced by

Barashkov and Gubinelli [3]. See the Boué-Dupuis variational formula (Lemma 3.1) below.

In Subsection 3.1, we briefly go over the setup of the variational formulation for a partition

function. In Subsection 3.2, we first establish the uniform exponential integrability (1.27)

and then prove tightness of the truncated Φ3
3-measures ρN in (1.25), which implies weak

convergence of a subsequence. In Subsection 3.3, we follow the approach introduced in our

previous work [53] and prove uniqueness of the limiting Φ3
3-measure, thus establishing weak

convergence of the entire sequence {ρN}N∈N. Finally, in Subsection 3.4, we show that the

Φ3
3-measure and the base Gaussian free field µ in (1.16) are mutually singular. While our

proof of singularity of the Φ3
3-measure is inspired by the discussion in Section 4 of [4], we

directly prove singularity without referring to a shifted measure. In Appendix A, we show

that the Φ3
3-measure is indeed absolutely continuous with respect to the shifted measure

Law(Y (1) + σZ(1) +W(1)), where Law(Y (1)) = µ, Z = Z(Y ) is the limit of the quadratic

process ZN defined in (3.11), and the auxiliary quintic process W = W(Y ) is defined in (A.1).

3.1. Boué-Dupuis variational formula. Let W (t) be the cylindrical Wiener process on

L2(T3) (with respect to the underlying probability measure P):

W (t) =
∑
n∈Z3

Bn(t)en, (3.1)

where {Bn}n∈Z3 is defined by Bn(t) = ⟨ξ,1[0,t] ·en⟩x,t. Here, ⟨·, ·⟩x,t denotes the duality pairing

on T3 × R. Note that we have, for any n ∈ Z3,

Var(Bn(t)) = E
[
⟨ξ,1[0,t] · en⟩x,t⟨ξ,1[0,t] · en⟩x,t

]
= ∥1[0,t] · en∥2L2

x,t
= t.

As a result, we see that {Bn}n∈Λ0 is a family of mutually independent complex-valued

Brownian motions conditioned so that B−n = Bn, n ∈ Z3.15 We then define a centered

Gaussian process Y (t) by

Y (t) = ⟨∇⟩−1W (t). (3.2)

Then, we have Law(Y (1)) = µ. By setting YN = πNY , we have Law(YN (1)) = (πN )#µ. In

particular, we have E[YN (1)2] = σN , where σN is as in (1.22).

Next, let Ha denote the space of drifts, which are the progressively measurable processes

belonging to L2([0, 1];L2(T3)), P-almost surely. For later use, we also define H1
a to be the space

of drifts, which are the progressively measurable processes belonging to L2([0, 1];H1(T3)),

P-almost surely. Namely, we have

H1
a = ⟨∇⟩−1Ha. (3.3)

We now state the Boué-Dupuis variational formula [7, 76]; in particular, see Theorem 7 in [76].

See also Theorem 2 in [3].

15In particular, B0 is a standard real-valued Brownian motion.



24 T. OH, M. OKAMOTO, AND L. TOLOMEO

Lemma 3.1. Let Y (t) = ⟨∇⟩−1W (t) be as in (3.2). Fix N ∈ N. Suppose that F : C∞(T3) →
R is measurable such that E

[
|F (YN (1))|p

]
<∞ and E

[
|e−F (YN (1))|q

]
<∞ for some 1 < p, q <

∞ with 1
p + 1

q = 1. Then, we have

− logE
[
e−F (YN (1))

]
= inf

θ∈Ha

E
[
F (YN (1) + πNI(θ)(1)) +

1

2

∫ 1

0
∥θ(t)∥2L2

x
dt

]
, (3.4)

where I(θ) is defined by

I(θ)(t) =

∫ t

0
⟨∇⟩−1θ(t′)dt′. (3.5)

Lemma 3.1 plays a fundamental role in almost every step of the argument presented in this

section and Section 4.

We state a useful lemma on the pathwise regularity estimates of :Y k(t) : and I(θ)(1).

Lemma 3.2. (i) For k = 1, 2, any finite p ≥ 2, and ε > 0, :Y k
N (t) : converges to :Y k(t) : in

Lp(Ω; C− k
2
−ε(T3)) and also almost surely in C− k

2
−ε(T3). Moreover, we have

E
[
∥ :Y k

N (t) : ∥p
C− k

2−ε

]
≲ p

k
2 <∞, (3.6)

uniformly in N ∈ N and t ∈ [0, 1]. We also have

E
[
∥ :Y 2

N (t) : ∥2H−1

]
∼ t2 logN (3.7)

for any t ∈ [0, 1].

(ii) For any N ∈ N, we have

E
[ ∫

T3

:Y 3
N (1) : dx

]
= 0.

(iii) For any θ ∈ Ha, we have

∥I(θ)(1)∥2H1 ≤
∫ 1

0
∥θ(t)∥2L2dt.

Proof. The bound (3.6) for ε > 0 follows from the Wiener chaos estimate (Lemma 2.5),

Lemma 2.6, and then carrying out summations, using Lemma 2.4. See, for example, [34, 35].

As for (3.7), proceeding as in the proof of Lemma 2.5 in [62] with Lemma 2.6, we have

E
[
∥ :Y 2

N (t) : ∥2H−1

]
=
∑
n∈Z3

1

⟨n⟩2

∫
T3
x×T3

y

E
[
H2(YN (x, t); tσN )H2(YN (y, t); tσN )

]
en(y − x)dxdy

=
∑
n∈Z3

t2

⟨n⟩2
∑

n1,n2∈Z3

χ2
N (n1)χ

2
N (n2)

⟨n1⟩2⟨n2⟩2

∫
T3
x×T3

y

en1+n2−n(x− y)dxdy

=
∑
n∈Z3

t2

⟨n⟩2
∑

n=n1+n2

χ2
N (n1)χ

2
N (n2)

⟨n1⟩2⟨n2⟩2
,

(3.8)



STOCHASTIC QUANTIZATION OF Φ3
3 25

where χN (nj) is as in (1.20). The upper bound in (3.7) follows from applying Lemma 2.4

to (3.8). As for the lower bound, we consider the contribution from |n| ≤ 2
3N and 1

4 |n| ≤
|n1| ≤ 1

2 |n| (which implies |n2| ∼ |n| and |nj | ≤ N , j = 1, 2). Then, from (3.8), we obtain

E
[
∥ :Y 2

N (t) : ∥2H−1

]
≳

∑
n∈Z3

|n|≤ 2
3
N

t2

⟨n⟩3
∼ t2 logN,

which proves the lower bound in (3.7). As for (ii), it follows from recalling the definition

:Y 3
N (1) : = H3(YN (1);σN ) (with σN as in (1.22)) and the orthogonality relation of the Hermite

polynomials (Lemma 2.6 with k = 3 and ℓ = 0). Lastly, the claim in (iii) follows from

Minkowski’s integral inequality and Cauchy-Schwarz inequality; see Lemma 4.7 in [37]. □

Remark 3.3. In [37, 57], a slightly different (and weaker) variational formula was used. See

also Lemma 1 in [3]. Given a drift θ ∈ Ha, we define the measure Qθ whose Radon-Nikodym

derivative with respect to P is given by the following stochastic exponential:

dQθ

dP
= e

∫ 1
0 ⟨θ(t),dW (t)⟩− 1

2

∫ 1
0 ∥θ(t)∥2

L2
x
dt
,

where ⟨·, ·⟩ stands for the usual inner product on L2(T3). Let Hc denote the subspace of Ha

consisting of drifts such that Qθ(Ω) = 1. Then, the (weaker) variational formula used in

[37, 57] is given by (3.4), where the infimum is taken over Hc ⊂ Ha and we replace Y and

E = EP by Yθ = Y − I(θ) and EQθ
. Here, E = EP and EQθ

denote expectations with respect to

the underlying probability measure P and the measure Qθ, respectively. In such a formulation,

Yθ and the measure Qθ depend on a drift θ. This, however, is not suitable for our purpose,

since we construct a drift θ in (3.4) depending on Y .

3.2. Uniform exponential integrability and tightness. In this subsection, we first

prove the uniform exponential integrability (1.27) via the Boué-Dupuis variational formula

(Lemma 3.1). Then, we establish tightness of the truncated Φ3
3-measures {ρN}N∈N.

As in the case of the Φ4
3-measure studied in [3] (see also Section 6 in [53]), we need to

introduce a further renormalization than the standard Wick renormalization (see (1.24)). As

a result, the resulting Φ3
3-measure is singular with respect to the base Gaussian free field µ;

see Subsection 3.4. We point out that this extra renormalization appears only at the level of

the measure and thus does not affect the dynamical problem, at least locally in time.16 In the

following, we use the following short-hand notations: YN (t) = πNY (t), Θ(t) = I(θ)(t), and

ΘN (t) = πNΘ(t) with YN = YN (1) and ΘN = ΘN (1). We also use Y = Y (1) and Θ = Θ(1).

Let us first explain the second renormalization introduced in (1.24). Let RN be as in (1.23)

and set

Z̃N =

∫
e−RN (u)dµ(u).

By Lemma 3.1, we can express the partition function Z̃N as

− log Z̃N = inf
θ∈Ha

E
[
RN (Y +Θ) +

1

2

∫ 1

0
∥θ(t)∥2L2

x
dt

]
.

16As mentioned in Section 1, this singularity of the Φ3
3-measure causes an additional difficulty for the

globalization problem.
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By expanding the cubic Wick power, we have

−σ
3

∫
T3

: (YN +ΘN )3 : dx = −σ
3

∫
T3

:Y 3
N : dx− σ

∫
T3

:Y 2
N : ΘNdx

− σ

∫
T3

YNΘ2
Ndx− σ

3

∫
T3

Θ3
Ndx.

(3.9)

In view of Lemma 3.2, the first term on the right-hand side vanishes under an expectation, while

we can estimate the third and fourth terms on the right-hand side of (3.9) (see Lemma 3.5).

As we see below, the second term turns out to be divergent (and does not vanish under an

expectation). From the Ito product formula, we have

E
[ ∫

T3

:Y 2
N : ΘNdx

]
= E

[ ∫ 1

0

∫
T3

:Y 2
N (t) : Θ̇N (t)dxdt

]
, (3.10)

where we have Θ̇N (t) = ⟨∇⟩−1πNθ(t) in view of (3.5). Define ZN with ZN (0) = 0 by its time

derivative:

ŻN (t) = (1−∆)−1 :Y 2
N (t) : (3.11)

and set ZN = πNZN . Then, we perform a change of variables:

Υ̇N (t) = Θ̇(t)− σŻN (t) (3.12)

and set ΥN = πNΥN . From (3.10), (3.11), and (3.12), we have

E
[
− σ

∫
T3

:Y 2
N : ΘNdx+

1

2

∫ 1

0
∥θ(t)∥2L2

x
dt

]
=

1

2
E
[ ∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
− αN , (3.13)

where the divergent constant αN is given by

αN =
σ2

2
E
[ ∫ 1

0
∥ŻN (t)∥2H1

x
dt

]
−→ ∞, (3.14)

as N → ∞. The divergence in (3.14) can be easily seen from the spatial regularity 1− ε of

ŻN (t) = (1−∆)−1 :Y 2
N (t) : (with a uniform bound in N ∈ N). See Lemma 3.2.

In view of the discussion above, we define R⋄
N as in (1.24), which removes the divergent con-

stant αN in (3.13). Then, from (1.26) and the Boué-Dupuis variational formula (Lemma 3.1),

we have

− logZN = inf
θ∈Ha

E
[
R⋄

N (Y +Θ) +
1

2

∫ 1

0
∥θ(t)∥2L2

x
dt

]
(3.15)

for any N ∈ N. By setting

WN (θ) = E
[
R⋄

N (Y +Θ) +
1

2

∫ 1

0
∥θ(t)∥2L2

x
dt

]
, (3.16)

it follows from (1.23) with γ = 3, (1.24), (3.9), (3.13), and Lemma 3.2 (ii) that

WN (θ) = E
[
− σ

∫
T3

YNΘ2
Ndx− σ

3

∫
T3

Θ3
Ndx

+A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣3 + 1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
.

(3.17)

We also set

ΥN = ΥN (1) = πNΥN (1) and ZN = ZN (1) = πNZN (1). (3.18)
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In view of the change of variables (3.12), we have

ΘN = ΥN + σπNZN =: ΥN + σZ̃N , i.e. Z̃N := πNZN . (3.19)

Namely, the original drift θ in (3.15) depends on Y . By the definition (3.11) and (3.18), ZN is

determined by YN . Hence, in the following, we view Υ̇N as a drift and study the minimization

problem (3.15) by first studying each term in (3.17) (where we now view WN as a function of

Υ̇N ) and then taking an infimum in Υ̇N ∈ H1
a, where H1

a is as in (3.3). Our main goal is to

show that WN (Υ̇N ) in (3.17) is bounded away from −∞, uniformly in N ∈ N and Υ̇N ∈ H1
a.

Remark 3.4. In this paper, we work with the cube frequency projector πN = πcubeN defined

in (1.19), satisfying π2N = πN . In view of (3.18) and (3.19), we have Z̃N = ZN . Nonetheless,

we introduce the notation Z̃N in (3.19) to indicate the modifications necessary to consider

the case of the smooth frequency projector πsmooth
N defined in (1.42), which does not satisfy

(πsmooth
N )2 = πsmooth

N . This comment applies to the remaining part of the paper.

We first state two lemmas whose proofs are presented at the end of this subsection. While

the first lemma is elementary, the second lemma (Lemma 3.6) requires much more careful

analysis, reflecting the critical nature of the Φ3
3-measure.

Lemma 3.5. Let A > 0 and 0 < |σ| < 1. Then, there exist small ε > 0 and a constant c > 0

such that, for any δ > 0, there exists Cδ > 0 such that∣∣∣∣ ∫
T3

YNΘ2
Ndx

∣∣∣∣ ≲ 1 + Cδ∥YN∥c
C− 1

2−ε
+ δ∥ΥN∥6L2 + δ∥ΥN∥2H1 + ∥ZN∥cC1−ε , (3.20)∣∣∣∣ ∫

T3

Θ3
Ndx

∣∣∣∣ ≲ 1 + ∥ΥN∥6L2 + ∥ΥN∥2H1 + ∥ZN∥3C1−ε , (3.21)

and

A

∣∣∣∣ ∫
T3

(
:Y 2

N : + 2YNΘN +Θ2
N

)
dx

∣∣∣∣3 ≥ A

2

∣∣∣∣ ∫
T3

(
2YNΥN +Υ2

N

)
dx

∣∣∣∣3 − δ∥ΥN∥6L2

− Cδ,σ

{∣∣∣∣ ∫
T3

:Y 2
N : dx

∣∣∣∣3 + ∥YN∥6
C− 1

2−ε
+ ∥ZN∥6C1−ε

}
,

(3.22)

uniformly in N ∈ N, where ΘN = ΥN + σZ̃N as in (3.19).

The next lemma allows us to control the term ∥ΥN∥6L2 appearing in Lemma 3.5.

Lemma 3.6. There exists a non-negative random variable B(ω) with E[Bp] ≤ Cp <∞ for

any finite p ≥ 1 such that

∥ΥN∥6L2 ≲

∣∣∣∣ ∫
T3

(
2YNΥN +Υ2

N

)
dx

∣∣∣∣3 + ∥ΥN∥2H1 +B(ω), (3.23)

uniformly in N ∈ N.

By assuming Lemmas 3.5 and 3.6, we now prove the uniform exponential integrability (1.27)

and tightness of the truncated Φ3
3-measures ρN .
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• Uniform exponential integrability: In view of (3.17) and Lemma 3.6, define the positive

part UN of WN by

UN (Υ̇N ) = E
[
A

2

∣∣∣∣ ∫
T3

(
2YNΥN +Υ2

N

)
dx

∣∣∣∣3 + 1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
. (3.24)

As a corollary to Lemma 3.2 (i) with (3.11), we have, for any finite p ≥ 1,

E
[
∥ZN∥pC1−ε

]
≤
∫ 1

0
E
[
∥ :Y 2

N (t) : ∥pC−1−ε

]
dt ≲ p <∞, (3.25)

uniformly in N ∈ N. Then, by applying Lemmas 3.5 and 3.6 to (3.17) together with Lemma 3.2

and (3.25), we obtain

WN (Υ̇N ) ≥ −C0 + E
[(A

2
− c|σ|

)∣∣∣∣ ∫
T3

(
2YNΥN +Υ2

N

)
dx

∣∣∣∣3
+
(1
2
− c|σ|

)∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
≥ −C ′

0 +
1

10
UN (Υ̇N ),

(3.26)

for any 0 < |σ| < σ0, provided A = A(σ0) > 0 is sufficiently large. Noting that the

estimate (3.26) is uniform in N ∈ N and Υ̇N ∈ H1
a, we conclude that

inf
N∈N

inf
Υ̇N∈H1

a

WN (Υ̇N ) ≥ inf
N∈N

inf
Υ̇N∈H1

a

{
− C ′

0 +
1

10
UN (Υ̇N )

}
≥ −C ′

0 > −∞. (3.27)

Therefore, the uniform exponential integrability (1.27) follows from (3.15), (3.16), and (3.27).

• Tightness: Next, we prove tightness of the truncated Φ3
3-measures {ρN}N∈N. Although it

follows from a slight modification of the argument in our previous work [53, Subsection 6.2],

we present a proof here for readers’ convenience.

As a preliminary step, we first prove that ZN in (1.26) is uniformly bounded away from 0:

inf
N∈N

ZN > 0. (3.28)

In view of (3.15) and (3.16), it suffices to establish an upper bound on WN in (3.17). By

Lemma 2.1 and (3.19), we have∣∣∣∣ ∫
T3

2YNΘNdx

∣∣∣∣3 ≲ ∥YN∥3
C− 1

2−ε
∥ΘN∥3

H
1
2+2ε

≲ 1 + ∥YN∥c
C− 1

2−ε
+ ∥ZN∥cC1−ε + ∥ΥN∥cH1 .

Thus, we have

A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣3
≲ 1 + ∥ :Y 2

N : ∥3C−1−ε + ∥YN∥c
C− 1

2−ε
+ ∥ZN∥cC1−ε + ∥ΥN∥cH1 .

(3.29)

Then, from (3.17), Lemma 3.5, and (3.29) with Lemma 3.2 and (3.25), we obtain

inf
Υ̇N∈H1

a

WN ≲ 1 + inf
Υ̇N∈H1

a

E

[(∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

)c
]
≲ 1

by taking Υ̇N ≡ 0, for example. This proves (3.28).
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We now prove tightness of the truncated Φ3
3-measures. Fix small ε > 0 and let BR ⊂

H− 1
2
−ε(T3) be the closed ball of radius R > 0 centered at the origin. Then, by Rellich’s

compactness lemma, we see that BR is compact in H− 1
2
−2ε(T3). In the following, we show

that given any small δ > 0, there exists R = R(δ) ≫ 1 such that

sup
N∈N

ρN (Bc
R) < δ. (3.30)

Given M ≫ 1, let F be a bounded smooth non-negative function such that

F (u) =

{
M, if ∥u∥

H− 1
2−ε ≤ R

2 ,

0, if ∥u∥
H− 1

2−ε > R.
(3.31)

Then, from (3.28), we have

ρN (Bc
R) ≤ Z−1

N

∫
e−F (u)−R⋄

N (u)dµ ≲
∫
e−F (u)−R⋄

N (u)dµ =: ẐN , (3.32)

uniformly in N ≫ 1. Under the change of variables (3.12) (see also (3.13)), define R̂⋄
N (Y +

ΥN + σZN ) by

R̂⋄
N (Y +ΥN + σZN ) = −σ

3

∫
T3

:Y 3
N : dx− σ

∫
T3

YNΘ2
Ndx− σ

3

∫
T3

Θ3
Ndx

+A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣3, (3.33)

where ΘN = ΥN + σZ̃N with Z̃N = πNZN as in (3.19). Then, by (3.32) and the Boué-Dupuis

variational formula (Lemma 3.1), we have

− log ẐN = inf
Υ̇N∈H1

a

E
[
F (Y +ΥN + σZN )

+ R̂⋄
N (Y +ΥN + σZN ) +

1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
.

(3.34)

Since Y + σZN ∈ H≤2, it follows from Lemma 3.2, (3.25), Chebyshev’s inequality, and

choosing R≫ 1 that

P
(
∥Y +ΥN + σZN∥

H− 1
2−ε >

R
2

)
≤ P

(
∥Y + σZN∥

H− 1
2−ε >

R
4

)
+ P

(
∥ΥN∥H1 > R

4

)
≤ 1

2
+

16

R2
E
[
∥ΥN∥2H1

x

]
,

(3.35)

uniformly in N ∈ N and R≫ 1. Then, from (3.31), (3.35), and Lemma 3.2, we obtain

E
[
F (Y +ΥN + σZN )

]
≥ME

[
1{

∥Y+ΥN+σZN∥
H

− 1
2−ε

≤R
2

}]
≥ M

2
− 16M

R2
E
[
∥ΥN∥2H1

x

]
≥ M

2
− 1

4
E
[ ∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
,

(3.36)
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where we set M = 1
64R

2 in the last step. Hence, from (3.34), (3.36), and repeating the

computation leading to (3.27) (by possibly making σ0 smaller), we obtain

− log ẐN ≥ M

2
+ inf

Υ̇N∈H1
a

E
[
R̂⋄

N (Y +ΥN + σZN ) +
1

4

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
≥ M

4
,

(3.37)

uniformly N ∈ N and M = 1
64R

2 ≫ 1. Therefore, given any small δ > 0, by choosing

R = R(δ) ≫ 1 and setting M = 1
64R

2 ≫ 1, the desired bound (3.30) follows from (3.32)

and (3.37). This proves tightness of the truncated Φ3
3-measures {ρN}N∈N.

We conclude this subsection by presenting the proofs of Lemmas 3.5 and 3.6.

Proof of Lemma 3.5. From (2.5), (2.6), (2.4), and (2.3) in Lemma 2.1 followed by Young’s

inequality, we have

∣∣∣∣ ∫
T3

YNΘ2
Ndx

∣∣∣∣ ≲ ∥YN∥
C− 1

2−ε∥ΘN∥
H

1
2+2ε∥ΘN∥L2

≲ ∥YN∥
C− 1

2−ε

(
∥ΥN∥

H
1
2+2ε

(
∥ΥN∥L2 + ∥ZN∥C1−ε

)
+ ∥ZN∥2C1−ε

)
≲ ∥YN∥

C− 1
2−ε

(
∥ΥN∥

1
2
−2ε

L2 ∥ΥN∥
1
2
+2ε

H1

(
∥ΥN∥L2 + ∥ZN∥C1−ε

)
+ ∥ZN∥2C1−ε

)
≲ 1 + Cδ∥YN∥c

C− 1
2−ε

+ δ∥ΥN∥6L2 + δ∥ΥN∥2H1 + ∥ZN∥cC1−ε ,

(3.38)

which yields (3.20). As for the second estimate (3.21), it follows from Sobolev’s inequality,

the interpolation (2.3), and Young’s inequality that

∣∣∣∣ ∫
T3

Υ3
Ndx

∣∣∣∣ ≲ ∥ΥN∥3
H

1
2
≲ ∥ΥN∥

3
2

L2∥ΥN∥
3
2

H1 ≲ ∥ΥN∥6L2 + ∥ΥN∥2H1 , (3.39)

while Hölder’s inequality with (2.4) shows

∣∣∣∣ ∫
T3

Υ2
N Z̃Ndx

∣∣∣∣+ ∣∣∣∣ ∫
T3

ΥN Z̃2
Ndx

∣∣∣∣+ ∣∣∣∣ ∫
T3

Z̃3
Ndx

∣∣∣∣ ≲ 1 + ∥ΥN∥6L2 + ∥ZN∥3C1−ε .

Note that, given any γ > 0, there exists a constant C = C(J) > 0 such that

∣∣∣∣ J∑
j=1

aj

∣∣∣∣γ ≥ 1

2
|a1|γ − C

( J∑
j=2

|aj |γ
)

(3.40)
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for any aj ∈ R. See Section 5 in [53]. Then, from (3.40) and Cauchy’s inequality, we have

A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣3
≥ A

2

∣∣∣∣ ∫
T3

(
2YNΥN +Υ2

N

)
dx

∣∣∣∣3 − CA

{∣∣∣∣ ∫
T3

:Y 2
N : dx

∣∣∣∣3 + |σ|3
∣∣∣∣ ∫

T3

YN Z̃Ndx

∣∣∣∣3
+ |σ|3

∣∣∣∣ ∫
T3

ΥN Z̃Ndx

∣∣∣∣3 + σ6
∣∣∣∣ ∫

T3

Z̃2
Ndx

∣∣∣∣3
}

≥ A

2

∣∣∣∣ ∫
T3

(
2YNΥN +Υ2

N

)
dx

∣∣∣∣3 − δ∥ΥN∥6L2

− Cδ,σ

{∣∣∣∣ ∫
T3

:Y 2
N : dx

∣∣∣∣3 + ∥YN∥6
C− 1

2−ε
+ ∥ZN∥6C1−ε

}
.

This proves (3.22). This completes the proof of Lemma 3.5. □

Next, we present the proof of Lemma 3.6.

Proof of Lemma 3.6. If we have

∥ΥN∥2L2 ≫
∣∣∣∣ ∫

T3

YNΥNdx

∣∣∣∣, (3.41)

then, we have

∥ΥN∥6L2 =

(∫
T3

Υ2
Ndx

)3

∼
∣∣∣∣ ∫

T3

(
2YNΥN +Υ2

N

)
dx

∣∣∣∣3, (3.42)

which shows (3.23). Hence, we assume that

∥ΥN∥2L2 ≲

∣∣∣∣ ∫
T3

YNΥNdx

∣∣∣∣ (3.43)

in the following.

Given j ∈ N, define the sharp frequency projections Πj with a Fourier multiplier 1{|n|≤2}
when j = 1 and 1{2j−1<|n|≤2j} when j ≥ 2. We also set Π≤j =

∑j
k=1Πk and Π>j = Id−Π≤j .

Then, write ΥN as

ΥN =

∞∑
j=1

ΠjΥN =

∞∑
j=1

(λjΠjYN + wj), (3.44)

where λj and wj are given by

λj :=

{ ⟨ΥN ,ΠjYN ⟩
∥ΠjYN∥2

L2
, if ∥ΠjYN∥L2 ̸= 0,

0, otherwise,
and wj := ΠjΥN − λjΠjYN . (3.45)
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By definition, wj = Πjwj is orthogonal to ΠjYN (and also to YN ) in L2(T3). Thus, we have

∥ΥN∥2L2 =

∞∑
j=1

(
λ2j∥ΠjYN∥2L2 + ∥wj∥2L2

)
, (3.46)

∫
T3

YNΥNdx =

∞∑
j=1

λj∥ΠjYN∥2L2 . (3.47)

Hence, from (3.43), (3.46), and (3.47), we have

∞∑
j=1

λ2j∥ΠjYN∥2L2 ≲

∣∣∣∣ ∞∑
j=1

λj∥ΠjYN∥2L2

∣∣∣∣. (3.48)

Fix j0 = j0(ω) ∈ N (to be chosen later). By Cauchy-Schwarz’s inequality and (3.45), we

have ∣∣∣∣ ∞∑
j=j0+1

λj∥ΠjYN∥2L2

∣∣∣∣ ≤ ( ∞∑
j=1

λ2j2
2j∥ΠjYN∥2L2

) 1
2
( ∞∑

j=j0+1

2−2j∥ΠjYN∥2L2

) 1
2

≤
( ∞∑

j=1

22j∥ΠjΥN∥2L2

) 1
2
( ∞∑

j=j0+1

2−2j∥ΠjYN∥2L2

) 1
2

∼ ∥ΥN∥H1∥Π>j0YN∥H−1 .

(3.49)

On the other hand, it follows from Cauchy-Schwarz’s inequality, (3.48), and Cauchy’s inequality

that ∣∣∣∣ j0∑
j=1

λj∥ΠjYN∥2L2

∣∣∣∣ ≤ ( ∞∑
j=1

λ2j∥ΠjYN∥2L2

) 1
2
( j0∑

j=1

∥ΠjYN∥2L2

) 1
2

≤ C

∣∣∣∣ ∞∑
j=1

λj∥ΠjYN∥2L2

∣∣∣∣ 12( j0∑
j=1

∥ΠjYN∥2L2

) 1
2

≤ 1

2

∣∣∣∣ ∞∑
j=1

λj∥ΠjYN∥2L2

∣∣∣∣+ C ′∥Π≤j0YN∥2L2 .

(3.50)

Hence, from (3.49) and (3.50), we obtain∣∣∣∣ ∞∑
j=1

λj∥ΠjYN∥2L2

∣∣∣∣ ≲ ∥ΥN∥H1∥Π>j0YN∥H−1 + ∥Π≤j0YN∥2L2 . (3.51)

Since YN is spatially homogeneous, we have

∥Π>j0YN∥2H−1 =

∫
T3

: (⟨∇⟩−1Π>j0YN )2 : dx+ E
[
(⟨∇⟩−1Π>j0YN )2

]
. (3.52)

Recalling (3.2), we can bound the second term by

σ̃j0 := E
[
(⟨∇⟩−1Π>j0YN )2

]
=

∑
n∈Z3

|n|>2j0

χ2
N (n)

⟨n⟩4
≲ 2−j0 . (3.53)
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Let ZN,j0 = ⟨∇⟩−1Π>j0YN . Proceeding as in the proof of Lemma 2.5 in [62] with Lemma 2.6,

we have

E

[(∫
T3

:Z2
N,j0 : dx

)2
]
=

∫
T3
x×T3

y

E
[
H2(ZN,j0(x); σ̃j0)H2(ZN,j0(y); σ̃j0)

]
dxdy

= 2
∑

n1,n2∈Z3

|nj |>2j0

χ2
N (n1)χ

2
N (n2)

⟨n1⟩4⟨n2⟩4

∫
T3
x×T3

y

en1+n2(x− y)dxdy

= 2
∑
n∈Z3

|n|>2j0

χ4
N (n)

⟨n⟩8
∼ 2−5j0 .

(3.54)

Now, define a non-negative random variable B1(ω) by

B1(ω) =

( ∞∑
j=1

24j
(∫

T3

:Z2
N,j : dx

)2) 1
2

. (3.55)

By Minkowski’s integral inequality, the Wiener chaos estimate (Lemma 2.5), and (3.54), we

have

E
[
Bp

1

]
≤ pp

( ∞∑
j=1

24j
∥∥∥∥∫

T3

:Z2
N,j : dx

∥∥∥∥2
L2(Ω)

) p
2

≲ pp <∞ (3.56)

for any finite p ≥ 2 (and hence for any finite p ≥ 1). Hence, from (3.52), (3.53), and (3.55),

we obtain

∥Π>j0YN∥2H−1 ≲ 2−2j0B1(ω) + 2−j0 . (3.57)

Next, define a non-negative random variable B2(ω) by

B2(ω) =
∞∑
j=1

∣∣∣∣ ∫
T3

: (ΠjYN )2 : dx

∣∣∣∣.
Then, a similar computation shows

∥Π≤j0YN∥2L2 =

∫
T3

: (Π≤j0YN )2 : dx+ E
[
(Π≤j0YN )2

]
≲ B2(ω) + 2j0

(3.58)

and E
[
Bp

2

]
≤ Cp <∞ for any finite p ≥ 1.

Therefore, putting (3.43), (3.47) (3.51), (3.57), and (3.58) together, choosing 2j0 ∼ 1 +

∥ΥN∥
2
3

H1 , and applying Cauchy’s inequality, we obtain

∥ΥN∥6L2 ≲

∣∣∣∣ ∫
T3

YNΥNdx

∣∣∣∣3 = ∣∣∣∣ ∞∑
j=0

λj∥ΠjYN∥2L2

∣∣∣∣3
≲
(
2−3j0B1(ω)

3
2 + 2−

3
2
j0
)
∥ΥN∥3H1 +B3

2(ω) + 23j0

≲ ∥ΥN∥2H1 +B3
1(ω) +B3

2(ω) + 1.

(3.59)

This proves (3.23) in the case (3.43) holds. This concludes the proof of Lemma 3.6. □
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Remark 3.7. From the proof of Lemma 3.6 (see (3.41) and (3.59)) with Lemma 3.6, we also

have

E

[∣∣∣∣ ∫
T3

YNΥNdx

∣∣∣∣3
]
≲ E

[
∥ΥN∥6L2 + ∥ΥN∥2H1

]
+ 1

≲ UN + 1,

(3.60)

where UN is as in (3.24).

3.3. Uniqueness of the limiting Φ3
3-measure. The tightness of the truncated Gibbs

measures {ρN}N∈N, proven in the previous subsection, together with Prokhorov’s theorem

implies existence of a weakly convergent subsequence. In this subsection, we prove uniqueness

of the limiting Φ3
3-measure, which allows us to conclude the weak convergence of the entire

sequence {ρN}N∈N. While we follow the uniqueness argument in our previous work [53,

Subsection 6.3], there are extra terms to control due to the focusing nature of the problem

under consideration.

Proposition 3.8. Let {ρN1
k
}∞k=1 and {ρN2

k
}∞k=1 be two weakly convergent subsequences of

the truncated Φ3
3-measures {ρN}N∈N defined in (1.25), converging weakly to ρ(1) and ρ(2) as

k → ∞, respectively. Then, we have ρ(1) = ρ(2).

Proof. • Step 1: We first show that

lim
k→∞

ZN1
k
= lim

k→∞
ZN2

k
, (3.61)

where ZN is as in (1.26). By taking a further subsequence, we may assume that N1
k ≥ N2

k ,

k ∈ N. Recall the change of variables (3.12) and let R̂⋄
N (Y +ΥN +σZN ) be as in (3.33). Then,

by the Boué-Dupuis variational formula (Lemma 3.1), we have

− logZ
Nj

k
= inf

Υ̇
N

j
k∈H1

a

E
[
R̂⋄

Nj
k

(Y +ΥNj
k + σZ

Nj
k
) +

1

2

∫ 1

0
∥Υ̇Nj

k (t)∥2H1
x
dt

]
(3.62)

for j = 1, 2 and k ∈ N. We point out that Y and ZN do not depend on the drift Υ̇N in (3.62).

Given δ > 0, let ΥN2
k be an almost optimizer for (3.62) with j = 2:

− logZN2
k
≥ E

[
R̂⋄

N2
k
(Y +ΥN2

k + σZN2
k
) +

1

2

∫ 1

0
∥Υ̇N2

k (t)∥2H1
x
dt

]
− δ. (3.63)

By setting ΥN2
k
:= πN2

k
ΥN2

k , we have

πN1
k
ΥN2

k
= ΥN2

k
(3.64)
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since N1
k ≥ N2

k . Then, by choosing ΥN1
k = ΥN2

k
, it follows from (3.63) and (3.64) that

− logZN1
k
+ logZN2

k

≤ inf
Υ̇

N1
k∈H1

a

E
[
R̂⋄

N1
k
(Y +ΥN1

k + σZN1
k
) +

1

2

∫ 1

0
∥Υ̇N1

k (t)∥2H1
x
dt

]

− E
[
R̂⋄

N2
k
(Y +ΥN2

k + σZN2
k
) +

1

2

∫ 1

0
∥Υ̇N2

k (t)∥2H1
x
dt

]
+ δ

≤ E
[
R̂⋄

N1
k
(Y +ΥN2

k
+ σZN1

k
) +

1

2

∫ 1

0
∥Υ̇N2

k
(t)∥2H1

x
dt

]
− E

[
R̂⋄

N2
k
(Y +ΥN2

k + σZN2
k
) +

1

2

∫ 1

0
∥Υ̇N2

k (t)∥2H1
x
dt

]
+ δ

≤ E
[
R̂⋄(YN1

k
+ΥN2

k
+ σZ̃N1

k
)− R̂⋄(YN2

k
+ΥN2

k
+ σZ̃N2

k
)
]
+ δ, (3.65)

where Z̃
Nj

k
= π

Nj
k
Z
Nj

k
is as in (3.19). Here, R̂⋄ is defined by

R̂⋄(Y +Υ+ σZ) = −σ
∫
T3

YΘ2dx− σ

3

∫
T3

Θ3dx

+A

∣∣∣∣ ∫
T3

(
:Y 2 : +2YΘ+Θ2

)
dx

∣∣∣∣3, (3.66)

where Θ = Υ+ σZ.

We now estimate the right-hand side of (3.65). The main point is that in the difference

E
[
R̂⋄(YN1

k
+ΥN2

k
+ σZ̃N1

k
)− R̂⋄(YN2

k
+ΥN2

k
+ σZ̃N2

k
)
]
, (3.67)

we only have differences in Y -terms and Z-terms, which allows us to gain a negative power of

N2
k . The contribution from the first term on the right-hand side in (3.66) is given by

−σE
[ ∫

T3

(YN1
k
− YN2

k
)Υ2

N2
k
dx

]
− σ2E

[ ∫
T3

(YN1
k
− YN2

k
)(2ΥN2

k
+ σZ̃N1

k
)Z̃N1

k
dx

]
− σ2E

[ ∫
T3

YN2
k
(Z̃N1

k
− Z̃N2

k
)(2ΥN2

k
+ σZ̃N1

k
+ σZ̃N2

k
)dx

]
.

(3.68)

Let UN2
k
= UN2

k
(Υ̇

N2
k ) be as in (3.24) with ΥN = ΥN2

k
and ΥN = ΥN2

k . Then, from Lemmas 3.2

and 3.6, we have

E
[
∥ΥN2

k
∥2H1 + ∥ΥN2

k
∥6L2

]
≲ 1 + UN2

k
.
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Now, proceeding as in (3.38) together with Hölder’s inequality in ω and Young’s inequality,

we bound the first term in (3.68) by

E
[
∥YN1

k
− YN2

k
∥
C− 1

2−ε∥ΥN2
k
∥

3
2
−2ε

L2 ∥ΥN2
k
∥

1
2
+2ε

H1

]
≤ ∥YN1

k
− YN2

k
∥
L

6
3−4ε
ω C

− 1
2−ε

x

∥ΥN2
k
∥

3
2
−2ε

L6
ωL

2
x
∥ΥN2

k
∥

1
2
+2ε

L2
ωH

1
x

≲ (N2
k )

−a∥ΥN2
k
∥

3
2
−2ε

L6
ωL

2
x
∥ΥN2

k
∥

1
2
+2ε

L2
ωH

1
x

≲ (N2
k )

−a
(
1 + UN2

k

)
,

(3.69)

where the second inequality follows from a modification of the proof of Lemma 3.2 (i) and

noting that the Fourier transform of YN1
k
− YN2

k
is supported on the frequencies {|n| ≳ N2

k},
which allows us to gain a small negative power of N2

k . Note that the implicit constants

in (3.69) depend on A > 0 and σ. However, the sizes of A and |σ| do not play any role in the

subsequent analysis and thus we suppress the dependence on A and σ in the following. The

same comment applies to Subsections 3.3 and 3.4.

The second and third terms in (3.68) and the second term on the right-hand side of (3.66)

can be handled in a similar manner (with (3.25) to control the Z̃
Nj

k
-terms). As a result, we

can bound the first two terms on the right-hand side of (3.66) by

(N2
k )

−a
(
C(YN1

k
, YN2

k
,ZN1

k
,ZN2

k
) + UN2

k

)
≲ (N2

k )
−a
(
1 + UN2

k

)
(3.70)

for some small a > 0, where C(YN1
k
, YN2

k
,ZN1

k
,ZN2

k
) denotes certain high moments of various

stochastic terms involving Y
Nj

k
and Z

Nj
k
, j = 1, 2, which are bounded by some constant,

independent of N j
k , j = 1, 2, in view of Lemma 3.2 and (3.25).

It remains to treat the difference coming from the last term in (3.66). By Young’s and

Hölder’s inequalities, we have

E

[∣∣∣∣ ∫
T3

(
:Y 2

N1
k
: +2YN1

k
(ΥN2

k
+ σZ̃N1

k
) + (ΥN2

k
+ σZ̃N1

k
)2
)
dx

∣∣∣∣3
−
∣∣∣∣ ∫

T3

(
:Y 2

N2
k
: +2YN2

k
(ΥN2

k
+ σZ̃N2

k
) + (ΥN2

k
+ σZ̃N2

k
)2
)
dx

∣∣∣∣3]
≲

{∥∥∥∥∫
T3

(
:Y 2

N1
k
: − :Y 2

N2
k
:
)
dx

∥∥∥∥
L3
ω

+

∥∥∥∥∫
T3

(YN1
k
− YN2

k
)ΥN2

k
dx

∥∥∥∥
L3
ω

+

∥∥∥∥∫
T3

(YN1
k
− YN2

k
)Z̃N1

k
dx

∥∥∥∥
L3
ω

+

∥∥∥∥∫
T3

YN2
k
(Z̃N1

k
− Z̃N2

k
)dx

∥∥∥∥
L3
ω

+

∥∥∥∥∫
T3

(Z̃N1
k
− Z̃N2

k
)(2ΥN2

k
+ σZ̃N1

k
+ σZ̃N2

k
)dx

∥∥∥∥
L3
ω

}

×

{∥∥∥∥∫
T3

(
:Y 2

N1
k
: +2YN1

k
(ΥN2

k
+ σZ̃N1

k
) + (ΥN2

k
+ σZ̃N1

k
)2
)
dx

∥∥∥∥2
L3
ω

+

∥∥∥∥∫
T3

(
:Y 2

N2
k
: +2YN2

k
(ΥN2

k
+ σZ̃N2

k
) + (ΥN2

k
+ σZ̃N2

k
)2
)
dx

∥∥∥∥2
L3
ω

}
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=: I × II. (3.71)

We divide I into two groups:

I =

(
I −

∥∥∥∥∫
T3

(YN1
k
− YN2

k
)ΥN2

k
dx

∥∥∥∥
L3
ω

)
+

∥∥∥∥∫
T3

(YN1
k
− YN2

k
)ΥN2

k
dx

∥∥∥∥
L3
ω

=: I1 + I2.

(3.72)

By the definition (1.19) of the cube frequency projector πN = πcubeN , we have∫
T3

(YN1
k
− YN2

k
)ΥN2

k
dx

∫
T3

πN2
k
(YN1

k
− YN2

k
) ·ΥN2

k
dx = 0 (3.73)

and thus I2 = 0.

By Lemma 2.1, Hölder’s inequality in ω, and Young’s inequality, followed by Lemma 3.6

with (3.24), we can estimate I1 in (3.72) by

I1 ≲ ∥ :Y 2
N1

k
: − :Y 2

N2
k
: ∥L3

ωC
−1−ε
x

+ ∥YN1
k
− YN2

k
∥
L6
ωC

− 1
2−ε

x

∥Z̃N1
k
∥L6

ωC
1−ε
x

+ ∥YN2
k
∥
L6
ωC

− 1
2−ε

x

∥Z̃N1
k
− Z̃N2

k
∥L6

ωC
1−ε
x

+ ∥Z̃N1
k
− Z̃N2

k
∥L6

ωC
1−ε
x

(
∥ΥN2

k
∥L6

ωL
2
x
+ ∥Z̃N1

k
∥L6

ωC
1−ε
x

+ ∥Z̃N2
k
∥L6

ωC
1−ε
x

)
≲ (N2

k )
−a
(
1 + UN2

k

) 1
6
,

(3.74)

where we used Lemma 3.2 and (3.25) in bounding the terms involving Y
Nj

k
and Z̃

Nj
k
= π

Nj
k
Z
Nj

k
.

As for II in (3.71), it follows from (3.60), Lemma 3.6, and (3.24) that∥∥∥∥∫
T3

(
:Y 2

Nj
k

: +2Y
Nj

k
(ΥN2

k
+ σZ̃

Nj
k
) + (ΥN2

k
+ σZ̃

Nj
k
)2
)
dx

∥∥∥∥
L3
ω

≲ 1 +

∥∥∥∥∫
T3

Y
Nj

k
ΥN2

k
dx

∥∥∥∥
L3
ω

+ ∥ΥN2
k
∥2L6

ωL
2
x

≲ 1 + U
1
3

N2
k
.

(3.75)

From (3.26), (3.16), (3.17), (3.33), and replacing ΥN2
k by 0 in view of (3.62), we have

sup
k∈N

UN2
k
(Υ̇

N2
k ) ≤ 10C ′

0 + 10 sup
k∈N

E
[
R̂⋄

N2
k
(Y +ΥN2

k + σZN2
k
) +

1

2

∫ 1

0
∥Υ̇N2

k (t)∥2H1
x
dt

]
≲ 1 + δ + sup

k∈N
E
[
R̂⋄

N2
k
(Y + 0 + σZN2

k
)
]

≲ 1.

(3.76)

Hence, from (3.73), (3.74), (3.75), and (3.76), we obtain that

I · II ≲ (N2
k )

−a −→ 0, (3.77)

as k → ∞. Therefore, from (3.70) and (3.77), we conclude that

E
[
R̂⋄(YN1

k
+ΥN2

k
+ σZ̃N1

k
)− R̂⋄(YN2

k
+ΥN2

k
+ σZ̃N2

k
)

]
−→ 0, (3.78)
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as k → ∞. Since the choice of δ > 0 was arbitrary, it follows from (3.65) and (3.78) that

lim
k→∞

ZN1
k
≥ lim

k→∞
ZN2

k
. (3.79)

By taking a subsequence of {N2
k}k∈N, still denoted by {N2

k}k∈N, we may assume that N1
k ≤ N2

k .

By repeating the computation above, we then obtain

lim
k→∞

ZN1
k
≤ lim

k→∞
ZN2

k
. (3.80)

Therefore, (3.61) follows from (3.79) and (3.80).

• Step 2: Next, we prove ρ(1) = ρ(2). This claim follows from a small modification of Step 1.

For this purpose, we need to prove that for every bounded Lipschitz continuous function

F : C−100(T3) → R, we have

lim
k→∞

∫
exp(F (u))dρN1

k
≥ lim

k→∞

∫
exp(F (u))dρN2

k

under the condition N1
k ≥ N2

k , k ∈ N (which can be always satisfied by taking a subsequence

of {N1
k}k∈N). In view of (1.26) and (3.61), it suffices to show

lim sup
k→∞

[
− log

(∫
exp(F (u)−R⋄

N1
k
(u))dµ

)
+ log

(∫
exp(F (u)−R⋄

N2
k
(u))dµ

)]
≤ 0.

(3.81)

By the Boué-Dupuis variational formula (Lemma 3.1), we have

− log
(∫

exp(F (u)−R⋄
Nj

k

(u))dµ
)

= inf
Υ̇

N
j
k∈H1

a

E
[
− F (Y +ΥNj

k + σZ
Nj

k
)

+ R̂⋄
Nj

k

(Y +ΥNj
k + σZ

Nj
k
) +

1

2

∫ 1

0
∥Υ̇Nj

k (t)∥2H1
x
dt

]
,

(3.82)

where R̂⋄
Nj

k

(Y +ΥNj
k + σZ

Nj
k
) is as in (3.33). Given δ > 0, let ΥN2

k be an almost optimizer

for (3.82) with j = 2:

− log
(∫

exp(F (u)−R⋄
N2

k
(u))dµ

)
≥ E

[
− F (Y +ΥN2

k + σZN2
k
)

+ R̂⋄
N2

k
(Y +ΥN2

k + σZN2
k
) +

1

2

∫ 1

0
∥Υ̇N2

k (t)∥2H1
x
dt

]
− δ.
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Then, by choosing ΥN1
k = ΥN2

k
= πN2

k
ΥN2

k and proceeding as in (3.65), we have

− log
(∫

exp(F (u)−R⋄
N1

k
(u))dµ

)
+ log

(∫
exp(F (u)−R⋄

N2
k
(u))dµ

)
≤ E

[
− F (Y +ΥN2

k
+ σZN1

k
)

+ R̂⋄
N1

k
(Y +ΥN2

k
+ σZN1

k
) +

1

2

∫ 1

0
∥Υ̇N2

k
(t)∥2H1

x
dt

]
− E

[
− F (Y +ΥN2

k + σZN2
k
)

+ R̂⋄
N2

k
(Y +ΥN2

k + σZN2
k
) +

1

2

∫ 1

0
∥Υ̇N2

k (t)∥2H1
x
dt

]
+ δ

≤ Lip(F ) · E
[
∥π⊥N2

k
ΥN2

k − σ(ZN1
k
− ZN2

k
)∥C−100

]
+ E

[
R̂⋄(YN1

k
+ΥN2

k
+ σZ̃N1

k
)− R̂⋄(YN2

k
+ΥN2

k
+ σZ̃N2

k
)
]
+ δ, (3.83)

where π⊥N = Id − πN and R̂⋄ is as in (3.66). We can proceed as in Step 1 to show that

the second term on the right-hand side of (3.83) satisfies (3.78). Here, we need to use the

boundedness of F in showing an analogue of (3.76) in the current context (with an almost

optimizer ΥN2
k for (3.82)).

Finally, we estimate the first term on the right-hand side of (3.83). Write

E
[
∥π⊥N2

k
ΥN2

k − σ(ZN1
k
− ZN2

k
)∥C−100

]
≲ E

[
∥π⊥N2

k
ΥN2

k∥C−100

]
+ E

[
∥ZN1

k
− ZN2

k
∥C−100

]
.

A standard computation with (3.11) shows that the second term on the right-hand side tends

to 0 as k → ∞. As for the first term, from Lemma 3.2 and (an analogue of) (3.76), we obtain

E
[
∥π⊥N2

k
ΥN2

k∥C−100

]
≲ (N2

k )
−a∥ΥN2

k∥L2
ωH

1
x
≲ (N2

k )
−a
(
sup
k∈N

UN2
k

) 1
2 −→ 0,

as k → ∞. Since the choice of δ > 0 was arbitrary, we conclude (3.81) and hence ρ(1) = ρ(2).

This completes the proof of Proposition 3.8. □

Remark 3.9. In the proof of Proposition 3.8, we used the orthogonality relation (3.73) to

conclude that I2 = 0. While the same orthogonality holds for the ball frequency projector πballN

in (1.41), such an orthogonality relation is false for the smooth frequency projector πsmooth
N

in (1.42). As seen from the proof of Lemma 3.6 and the uniform bound (3.76) on UN2
k
(Υ̇

N2
k ),

the quantity I2 in (3.72) is critical (with respect to the spatial regularity/integrability and also

with respect to the ω-integrability). From Remark 3.7 and (3.76), we see that the quantity

I2 is bounded, uniformly in k ∈ N. In the absence of the orthogonality (3.73), however, we

do not know how to show that this term tends to 0 as k → ∞ in the case of the smooth

frequency projector πsmooth
N . We point out that the same issue also appears in the proofs of

Propositions 4.1 and 6.10 in the case of the smooth frequency projector πsmooth
N .
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3.4. Singularity of the Φ3
3-measure. We conclude this section by proving mutual singularity

of the Φ3
3-measure ρ, constructed in the previous subsections, and the base Gaussian free

field µ in (1.16). In Section 4 of [4], Barashkov and Gubinelli proved the singularity of the

Φ4
3-measure by making use of the shifted measure. In the following, we follow our previous

work [53] and present a direct proof of singularity of the Φ3
3-measure without referring to a

shifted measure. See also Appendix A, where we construct a shifted measure with respect to

which the Φ3
3-measure is absolutely continuous.

Proposition 3.10. Let RN be as in (1.23) with γ = 3, and ε > 0. Then, there exists a

strictly increasing sequence {Nk}k∈N ⊂ N such that the set

S :=
{
u ∈ H− 1

2
−ε(T3) : lim

k→∞
(logNk)

− 3
4RNk

(u) = 0
}

satisfies

µ(S) = 1 but ρ(S) = 0. (3.84)

In particular, the Φ3
3-measure ρ and the massive Gaussian free field µ in (1.16) are mutually

singular.

Proof. From (1.23) with γ = 3, the Wiener chaos estimate (Lemma 2.5), Lemma 2.6, and

Lemma 2.4, we have

∥RN (u)∥2L2(µ) ≲

∥∥∥∥∫
T3

:u3N : dx

∥∥∥∥2
L2(µ)

+

∥∥∥∥∫
T3

:u2N : dx

∥∥∥∥6
L6(µ)

≲

∥∥∥∥∫
T3

:u3N : dx

∥∥∥∥2
L2(µ)

+

∥∥∥∥∫
T3

:u2N : dx

∥∥∥∥6
L2(µ)

≲
∑

n1+n2+n3=0
nj∈NQ

⟨n1⟩−2⟨n2⟩−2⟨n3⟩−2 +

( ∑
n1+n2=0
nj∈NQ

⟨n1⟩−2⟨n2⟩−2

)3

≲
∑

|n1|,|n−n1|≲N

⟨n1⟩−2⟨n− n1⟩−1 + 1

≲ logN,

where Q denotes the cube of side length 2 in R3 centered at the origin as in (1.21). Thus, we

have

lim
N→∞

(logN)−
3
4 ∥RN (u)∥L2(µ) ≲ lim

N→∞
(logN)−

1
4 = 0.

Hence, there exists a subsequence such that

lim
k→∞

(logNk)
− 3

4RNk
(u) = 0,

almost surely with respect to µ. This proves µ(S) = 1 in (3.84).

Given k ∈ N, define Gk(u) by

Gk(u) = (logNk)
− 3

4RNk
(u). (3.85)

In the following, we show that eGk(u) tends to 0 in L1(ρ). This will imply that there exists a

subsequence of Gk(u) tending to −∞, almost surely with respect to the Φ3
3-measure ρ, which

in turn yields the second claim in (3.84): ρ(S) = 0.



STOCHASTIC QUANTIZATION OF Φ3
3 41

Let ϕ be a smooth bump function as in Subsection 2.1. By Fatou’s lemma, the weak

convergence of ρM to ρ, the boundedness of ϕ, and (1.25), we have∫
eGk(u)dρ(u) ≤ lim inf

K→∞

∫
ϕ

(
Gk(u)

K

)
eGk(u)dρ(u)

= lim inf
K→∞

lim
M→∞

∫
ϕ

(
Gk(u)

K

)
eGk(u)dρM (u)

≤ lim
M→∞

∫
eGk(u)dρM (u) = Z−1 lim

M→∞

∫
eGk(u)−R⋄

M (u)dµ(u)

=: Z−1 lim
M→∞

CM,k,

(3.86)

provided that limM→∞CM,k exists. Here, Z = limM→∞ ZM denotes the partition function

for ρ.

Our main goal is to show that the right-hand side of (3.86) tends to 0 as k → ∞. As in

the previous subsections, we proceed with the change of variables (3.12):

Υ̇M (t) = Θ̇(t)− σŻM (t).

Then, by the Boué-Dupuis variational formula (Lemma 3.1) and (3.85), we have

− logCM,k = inf
Υ̇M∈H1

a

E
[
− (logNk)

− 3
4RNk

(Y +ΥM + σZM )

+ R̂⋄
M (Y +ΥM + σZM ) +

1

2

∫ 1

0
∥Υ̇M (t)∥2H1

x
dt

]
=: inf

Υ̇M∈H1
a

ŴM,k(Υ̇
M ),

(3.87)

where R̂⋄
N is as in (3.33). In the following, we prove that the right-hand side (and hence the

left-hand side) of (3.87) diverges to ∞ as k → ∞.

Proceeding as in Subsection 3.2 (see (3.26)), we bound the last two terms on the right-hand

side of (3.87) as

E
[
R̂⋄

M (Y +ΥM + σZM ) +
1

2

∫ 1

0
∥Υ̇M (t)∥2H1

x
dt

]
≥ −C0 +

1

10
UM , (3.88)

where UM = UM (Υ̇M ) is given by (3.24) with ΥN = πMΥM and ΥN = ΥM :

UM = E
[
A

2

∣∣∣∣ ∫
T3

(
2YMπMΥM + (πMΥM )2

)
dx

∣∣∣∣3 + 1

2

∫ 1

0
∥Υ̇M (t)∥2H1

x
dt

]
. (3.89)

Next, we study the first term on the right-hand side of (3.87), which gives the main

(divergent) contribution. From (1.23) with γ = 3, we have

RNk
(Y +ΥM + σZM ) = −σ

3

∫
T3

:Y 3
Nk

: dx− σ

∫
T3

:Y 2
Nk

: ΘNk
dx

− σ

∫
T3

YNk
Θ2

Nk
dx− σ

3

∫
T3

Θ3
Nk
dx

+A

∣∣∣∣ ∫
T3

(
:Y 2

Nk
: +2YNk

ΘNk
+Θ2

Nk

)
dx

∣∣∣∣3
=: I + II + III + IV + V

(3.90)
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for Nk ≤M , where ΘNk
is given by

ΘNk
:= πNk

Θ = πNk
ΥM + σπNk

ZM . (3.91)

As we see below, under an expectation, the second term II on the right-hand side of (3.90)

(which is precisely the term removed by the second renormalization) gives a divergent contri-

bution; see (3.97) below. From Lemma 3.2, the first term I on the right-hand side of (3.90)

gives 0 under an expectation. As for the last three terms, we proceed as in Subsection 3.2

(see also the proof of Proposition 3.8) and obtain∣∣E[III + IV + V
]∣∣ ≲ C(YNk

, πNk
ZM ) + UNk

≲ 1 + UNk (3.92)

where C(YNk
, πNk

ZM ) denotes certain high moments of various stochastic terms involving

YNk
and πNk

ZM and UNk
= UNk

(∂tπNk
ΥM ) is given by (3.24) with ΥN = ΥN = πNk

ΥM :

UNk
= E

[
A

2

∣∣∣∣ ∫
T3

(
2YNk

πNk
ΥM + (πNk

ΥM )2
)
dx

∣∣∣∣3 + 1

2

∫ 1

0
∥∂t(πNk

ΥM )(t)∥2H1
x
dt

]
. (3.93)

In view of the smallness of (logNk)
− 3

4 in (3.87), the second term in (3.93) can be controlled

by the positive terms UM in (3.88) (in particular by the second term in (3.89)). As for the

first term in (3.93), it follows from (3.60), πNk
ΥM = πNk

πMΥM for Nk ≤M , and Lemma 3.6

with (3.89) that

E

[∣∣∣∣ ∫
T3

(
2YNk

ΥM + (πNk
ΥM )2

)
dx

∣∣∣∣3
]
≲

∥∥∥∥∫
T3

YNk
πNk

ΥMdx

∥∥∥∥3
L3
ω

+ ∥πNk
ΥM∥6L6

ωL
2
x

≲ 1 + ∥πMΥM∥6L6
ωL

2
x
+ ∥ΥM∥2L2

ωH
1
x

≲ 1 + UM

for Nk ≤M . Hence, UNk
in (3.93) can be controlled by UM in (3.89):

UNk
≲ 1 + UM . (3.94)

Hence, from (3.87), (3.88), (3.90), (3.92), and (3.94), we obtain

ŴM,k(Υ̇
M ) ≥ σ(logNk)

− 3
4E
[ ∫

T3

:Y 2
Nk

: ΘNk
dx

]
− C1 +

1

20
UM (3.95)

for any M ≥ Nk ≫ 1.

Therefore, it remains to estimate the contribution from the second term on the right-hand

side of (3.90). Let us first state a lemma whose proof is presented at the end of this subsection.

Lemma 3.11. We have

E
[ ∫ 1

0
⟨ŻN (t), ŻM (t)⟩H1

x
dt

]
∼ logN (3.96)

for any 1 ≤ N ≤M , where ŻN = πN ŻN .

By assuming Lemma 3.11, we complete the proof of Proposition 3.10. By (3.10), (3.11) with

ZNk
= πNk

ZNk , (3.91), Lemma 3.11, Cauchy’s inequality (with small ε0 > 0), and Lemma 3.2
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(see (3.7)), we have

σE
[ ∫

T3

:Y 2
Nk

: ΘNk
dx

]
= σE

[ ∫ 1

0

∫
T3

:Y 2
Nk

(t) : Θ̇Nk
(t)dt

]
= σ2E

[ ∫ 1

0
⟨ŻNk

(t), ŻM (t)⟩H1
x
dt

]
+ σE

[ ∫ 1

0
⟨ŻNk

(t), Υ̇M (t)⟩H1
x
dt

]
≥ c logNk − ε0E

[ ∫ 1

0
∥ :Y 2

Nk
(t) : ∥2

H−1
x
dt

]
− Cε0E

[ ∫ 1

0
∥Υ̇M (t)∥2H1

x
dt

]
≥ c

2
logNk − Cε0E

[ ∫ 1

0
∥Υ̇M (t)∥2H1

x
dt

]
(3.97)

for M ≥ Nk ≫ 1. Thus, putting (3.87), (3.95), and (3.97) together, we have

− logCM,k ≥ inf
Υ̇M∈H1

a

{
c(logNk)

1
4 − C2 +

1

40
UM

}
≥ c(logNk)

1
4 − C2 (3.98)

for any sufficiently large k ≫ 1 (such that Nk ≫ 1). Hence, from (3.98), we obtain

CM,k ≲ exp
(
− c(logNk)

1
4

)
(3.99)

for M ≥ Nk ≫ 1, uniformly in M ∈ N. Therefore, by taking limits in M → ∞ and then

k → ∞, we conclude from (3.86) and (3.99) that

lim
k→∞

∫
eGk(u)dρ(u) = 0

as desired. This completes the proof of Proposition 3.10. □

We conclude this section by presenting the proof of Lemma 3.11.

Proof of Lemma 3.11. For simplicity, we suppress the time dependence in the following.

From (3.11), we have ̂̇ZN (n) = ⟨n⟩−2
∑

n1,n2∈Z3

n=n1+n2 ̸=0

ŶN (n1)ŶN (n2) (3.100)

for n ̸= 0. On the other hand, when n = 0, it follows from Lemma 2.6 that

E
[
|̂̇ZN (0)|2

]
= E

[( ∑
n1∈Z3

n1∈NQ

(
|ŶN (n1)|2 − ⟨n1⟩−2

))2]
≲
∑

n1∈Z3

⟨n1⟩−4 ≲ 1, (3.101)

where Q is as in (1.21). Hence, from (3.100) and (3.101), we have

E
[ ∫ 1

0
⟨ŻN (t), ŻM (t)⟩H1

x
dt

]
=

∫ 1

0
E

[ ∑
n∈Z3

⟨n⟩2̂̇ZN (n, t)̂̇ZM (n, t)

]
dt

=

∫ 1

0
E

[ ∑
n∈Z3\{0}

⟨n⟩2̂̇ZN (n, t)̂̇ZM (n, t)

]
dt+O(1).
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We now proceed as in the proof of (3.7) in Lemma 3.2 (i). By applying (3.11) and Lemma 2.6,

and summing over
{
|n| ≤ 2

3N,
1
4 |n| ≤ |n1| ≤ 1

2 |n|
}
(which implies |n2| ∼ |n| and |nj | ≤ N ,

j = 1, 2), we have

E

[ ∑
n∈Z3\{0}

⟨n⟩2̂̇ZN (n, t)̂̇ZM (n, t)

]

=
∑
n∈Z3

χN (n)χM (n)

⟨n⟩2

×
∫
T3
x×T3

y

E
[
H2(YN (x, t); tσN )H2(YN (y, t); tσN )

]
en(y − x)dxdy

=
∑
n∈Z3

t2χN (n)χM (n)

⟨n⟩2
∑

n1,n2∈Z3

χ2
N (n1)χ

2
N (n2)

⟨n1⟩2⟨n2⟩2

∫
T3
x×T3

y

en1+n2−n(x− y)dxdy

=
∑
n∈Z3

t2χN (n)χM (n)

⟨n⟩2
∑

n=n1+n2

χ2
N (n1)χ

2
N (n2)

⟨n1⟩2⟨n2⟩2
∼ t2 logN,

where χN (nj) is as in (1.20). By integrating on [0, 1], we obtain the desired bound (3.96). □

4. Non-normalizability in the strongly nonlinear regime

4.1. Reference measures and the σ-finite Φ3
3-measure. In this section, we prove non-

normalizability of the Φ3
3-measure in the strongly nonlinear regime (Theorem 1.8 (ii)). In [53],

we introduced a strategy for establishing non-normalizability in the context of the focusing

Hartree Φ4
3-measures on T3, using the Boué-Dupuis variational formula. We point out that,

in [53], the focusing Hartree Φ4
3-measures were absolutely continuous with respect to the

base Gaussian free field µ. Moreover, the truncated potential energy RHartree
N (u) and the

corresponding density e−RHartree
N (u) of the truncated focusing Hartree Φ4

3-measures formed

convergent sequences. In [53], we proved the following version of the non-normalizability of

the focusing Hartree Φ4
3-measure:

sup
N∈N

Eµ

[
e−RHartree

N (u)
]
= ∞. (4.1)

Denoting the limiting density by e−RHartree(u), this result says that the σ-finite version of the

focusing Hartree Φ4
3-measure:

e−RHartree(u)dµ(u)

is not normalizable (i.e. there is no normalization constant to make this into a probability

measure). See also [60] for an analogous non-normalizability result for the log-correlated

focusing Gibbs measures with a quartic interaction potential.

The main new difficulty in our current problem is the singularity of the Φ3
3-measure. In

particular, the potential energy R⋄
N (u) in (1.24) (and the corresponding density e−R⋄

N (u)) does

not converge to any limit. Hence, even if we prove a non-normalizability statement of the

form (4.1), it might still be possible that by choosing a sequence of constants ẐN appropriately,

the measure Ẑ−1
N e−R⋄

N (u)dµ has a weak limit. This is precisely the case for the Φ4
3-measure;

see [3]. The non-convergence claim in Theorem 1.8 (ii) for the truncated Φ3
3-measures (see

Proposition 4.4 below) tells us that this is not the case for the Φ3
3-measure.
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In order to overcome this issue, we first construct a reference measure νδ as a weak limit of

the following tamed version of the truncated Φ3
3-measure (with δ > 0):

dνN,δ(u) = Z−1
N,δ exp

(
− δF (πNu)−R⋄

N (u)
)
dµ(u)

for some appropriate taming function F ; see (4.6). See Proposition 4.1. We also show that

F (u), without the frequency projection πN on u, is well defined almost surely with respect

to the limiting reference measure νδ = limN→∞ νN,δ. This allows us to construct a σ-finite

version of the Φ3
3-measure:

dρδ = eδF (u)dνδ = lim
N→∞

Z−1
N,δ e

δF (u)e−δF (πNu)−R⋄
N (u)dµ(u). (4.2)

The main point is that while the truncated Φ3
3-measure ρN (= νN,δ with δ = 0) may not

be convergent, the tamed version νN,δ of the truncated Φ3
3-measure converges to the limit

νδ, thus allowing us to define a σ-finite version of the Φ3
3-measure. We then show that this

σ-finite version ρδ of the Φ3
3-measure in (4.2) is not normalizable in the strongly nonlinear

regime. See Proposition 4.2. Furthermore, as a corollary to this non-normalizability result of

the σ-finite version ρδ of the Φ3
3-measure, we also show that the sequence {ρN}N∈N of the

truncated Φ3
3-measures defined in (1.25) does not converge weakly in a natural space17 A(T3)

(see (4.3) below) for the Φ3
3-measure. See Proposition 4.4.

We first state the construction of the reference measure. Let pt be the kernel of the heat

semigroup et∆. Then, define the space A = A(T3) via the norm:

∥u∥A := sup
0<t≤1

(
t
3
8 ∥pt ∗ u∥L3(T3)

)
. (4.3)

Recall from [44, Theorem 5.3]18 (see also [75, (2.41)] and [2, Theorem 2.34]) that

A = B
− 3

4
3,∞(T3). (4.4)

In particular, the space A contains the support of the massive Gaussian free field µ on T3

and thus we have ∥u∥A < ∞, µ-almost surely. See Lemma 4.6 below. In the following, for

simplicity of notation, we use A rather than B
− 3

4
3,∞(T3). Moreover, the notation A is suitable

for our purpose, since we make use of the characterization (4.3) extensively via the Schauder

estimate, which we recall now (see for example [59]):

∥pt ∗ u∥Lq(T3) ≤ Cα,p,q t
−α

2
− 3

2
( 1
p
− 1

q
)∥⟨∇⟩−αu∥Lp(T3) (4.5)

for any α ≥ 0 and 1 ≤ p ≤ q ≤ ∞. From the Schauder estimate (4.5) (or directly from (4.4)),

we see that W− 3
4
,3(T3) ⊂ A.

Given N ∈ N, we set uN = πNu. Then, given δ > 0 and N ∈ N, we define the measure

νN,δ by

dνN,δ(u) = Z−1
N,δ exp

(
− δ∥uN∥20A −R⋄

N (u)
)
dµ(u) (4.6)

17For example, in the weakly nonlinear regime, the support of the limiting Φ3
3-measure constructed in

Theorem 1.8 (i) is contained in the space A(T3) ⊃ C− 3
4 (T3).

18The discussion in [44] is on Rd, but a slight modification yields the corresponding result on Td.



46 T. OH, M. OKAMOTO, AND L. TOLOMEO

for N ∈ N and δ > 0, where R⋄
N is as in (1.24) and

ZN,δ =

∫
exp

(
− δ∥uN∥20A −R⋄

N (u)
)
dµ(u). (4.7)

Namely, νN,δ is a tamed version of the truncated Φ3
3-measure ρN in (1.25). We prove that the

sequence {νN,δ}N∈N converges weakly to some limiting probability measure νδ.

Proposition 4.1. Let σ ̸= 0 and γ ≥ 3. Then, given any δ > 0, the sequence of measures

{νN,δ}N∈N defined in (4.6) converges weakly to a unique probability measure νδ, and similarly

ZN,δ converges to Zδ. Moreover, ∥u∥A is finite νδ-almost surely, and we have

dνδ(u) =
exp(−(δ − δ′)∥u∥20A )∫

exp(−(δ − δ′)∥u∥20A )dνδ′(u)
dνδ′(u) (4.8)

for δ > δ′ > 0.

This proposition allows us to define a σ-finite version of the Φ3
3-measure by

dρδ = eδ∥u∥
20
A dνδ (4.9)

for any δ > 0. At a very formal level, δ∥u∥20A in the exponent of (4.9) and −δ∥uN∥20A in the

exponent of (4.6) cancel each other in the limit as N → ∞, and thus the right-hand side

of (4.8) formally looks like Z−1
δ limN→∞ e−R⋄

N (u)dµ. While this discussion is merely formal,

it explains why we refer to the measure ρδ as a σ-finite version of the Φ3
3-measure. The

identity (4.8) shows how νδ’s for different values of δ > 0 are related. When δ = 0, the

expression Zδρδ would formally correspond to a limit of e−R⋄
N (u)dµ, but in order to achieve

the weak convergence claimed in Proposition 4.1 and construct a σ-finite version of the

Φ3
3-measure, we need to start with a tamed version (i.e. δ > 0) of the truncated Φ3

3-measure.

For the sake of concreteness, we chose a taming via the A-norm but it is possible to consider

a different taming (say, based on some other norm) and obtain the same result.

The next proposition shows that the σ-finite version ρδ of the Φ3
3-measure defined in (4.9)

is not normalizable in the strongly nonlinear regime.

Proposition 4.2. Let σ ≫ 1 and γ ≥ 3. Given δ > 0, let νδ be the measure constructed in

Proposition 4.1 and let ρδ be as in (4.9). Then, we have∫
1 dρδ =

∫
exp

(
δ∥u∥20A

)
dνδ = ∞. (4.10)

Remark 4.3. (i) A slight modification of the computation in Subsection 3.4 combined with

the analysis in Subsection 4.2 presented below (Step 1 of the proof of Proposition 4.1) shows

that the tamed version νδ of the Φ3
3-measure, constructed in Proposition 4.1, and the massive

Gaussian free field µ are mutually singular, just like the Φ3
3-measure in the weakly nonlinear

regime, constructed in Section 3. As a consequence, the σ-finite version ρδ of the Φ3
3-measure

defined in (4.9) and the massive Gaussian free field µ are mutually singular.

(ii) In Appendix A, we show that the limiting Φ3
3-measure is absolutely continuous with

respect to the shifted measure Law(Y (1) + σZ(1) +W(1)) in the weakly nonlinear regime. A

slight modification of the argument in Appendix A also shows that the tamed version νδ of

the Φ3
3-measure constructed in Proposition 4.1 and the σ-finite version ρδ of the Φ3

3-measure

in (4.9) are also absolutely continuous with respect to the same shifted measure, even in the
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strongly nonlinear regime. See Remark A.3. This shows that the measure ρδ in (4.9) is a

quite natural candidate to consider as a σ-finite version of the Φ3
3-measure.

As a corollary to (the proofs of) Propositions 4.1 and 4.2, we show the following non-

convergence result for the truncated Φ3
3-measure ρN in (1.25).

Proposition 4.4. Let σ ≫ 1, γ ≥ 3, and A = A(T3) be as in (4.3). Then, the sequence

{ρN}N∈N of the truncated Φ3
3-measures defined in (1.25) does not converge weakly to any limit

as probability measures on A. The same claim holds for any subsequence {ρNk
}k∈N.

In Subsection 4.2, we present the proof of Proposition 4.1. In Subsection 4.3, we then prove

the non-normalizability (Proposition 4.2). Finally, we present the proof of Proposition 4.4 in

Subsection 4.4.

4.2. Construction of the reference measure. In this subsection, we present the proof of

Proposition 4.1 on the construction of the reference measure νδ. We first establish several

preliminary lemmas.

Lemma 4.5. Let the A-norm be as in (4.3). Then, we have

∥u∥A ≲ ∥u∥
H− 1

4
.

Proof. This is immediate from the Schauder estimate (4.5). □

Lemma 4.6. We have W− 3
4
,3(T3) ⊂ A and thus the quantity ∥u∥A is finite µ-almost surely.

Moreover, given any 1 ≤ p <∞, we have

Eµ

[
∥πNu∥pA

]
≤ Cp <∞, (4.11)

uniformly in N ∈ N ∪ {∞} with the understanding that π∞ = Id.

Proof. As we already mentioned, the first claim follows from the Schauder estimate (4.5) (or

from (4.4)). As for the bound (4.11), from the Schauder estimate (4.5), Minkowski’s integral

inequality, and the Wiener chaos estimate (Lemma 2.5) with (1.18), we have

Eµ

[
∥πNu∥pA

]
≲ Eµ

[
∥u∥p

W− 3
4 ,3

]
≲
∥∥∥∥⟨∇⟩−

3
4u(x)∥Lp(µ)

∥∥∥p
L3
x

≤ p
p
2

∥∥∥∥⟨∇⟩−
3
4u(x)∥L2(µ)

∥∥∥p
L3
x

≤ p
p
2

( ∑
n∈Z3

1

⟨n⟩
7
2

)p

<∞.

This proves (4.11). □

We now present the proof of Proposition 4.1.

Proof of Proposition 4.1. • Step 1: In this first part, we prove that ZN,δ in (4.7) is uniformly

bounded in N ∈ N. As for the tightness of {νN,δ}N∈N and the uniqueness of νδ claimed in

the statement, we can repeat arguments analogous to those in Subsections 3.2 and 3.3 and

thus we omit details.
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From (4.7) and the Boué-Dupuis variational formula (Lemma 3.1) with the change of

variables (3.12), we have

− logZN,δ = inf
Υ̇N∈H1

a

E
[
δ∥YN +ΘN∥20A − σ

∫
T3

YNΘ2
Ndx− σ

3

∫
T3

Θ3
Ndx

+A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣γ
+

1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
,

(4.12)

where ΘN = ΥN +σZ̃N with Z̃N = πNZN as in (3.19). Our goal is to establish a uniform lower

bound on the right-hand side of (4.12). Unlike Subsection 3.2, we do not assume smallness

on |σ|. In this case, a rescue comes from the extra positive term δ∥YN +ΘN∥20A as compared

to (3.17).

Given any 0 < c0 < 1, it follows from Young’s inequality (3.40) with γ ≥ 3 that∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣γ ≥ c0

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣3 − C. (4.13)

Then, taking an expectation and applying Lemmas 3.5 and 3.6 with Lemma 3.2 and (3.25),

we have

E

[
A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣γ
]
≥ C0E

[
∥ΥN∥6L2

]
− C1E

[
∥ΥN∥2H1

]
− C (4.14)

for some C0 > 0 and 0 < C1 ≤ 1
4 . Hence, it follows from (4.12), (4.14), and Lemma 3.5

together with Lemma 3.2 and (3.25) that there exists C2 > 0 such that

− logZN,δ ≥ inf
Υ̇N∈H1

a

E
[
δ∥YN +ΥN + σZ̃N∥20A − σ

3

∫
T3

(ΥN + σZ̃N )3dx

+ C2∥ΥN∥6L2 + C2∥ΥN∥2H1

]
− C.

(4.15)

By Young’s inequality, we have∣∣∣∣ ∫
T3

Υ2
N Z̃Ndx

∣∣∣∣+ ∣∣∣∣ ∫
T3

ΥN Z̃2
Ndx

∣∣∣∣ ≤ ∥ΥN∥2L2∥ZN∥C1−ε + ∥ΥN∥L2∥ZN∥2C1−ε

≤ C2

2|σ|
∥ΥN∥6L2 + ∥ZN∥cC1−ε + Cσ.

(4.16)

Hence, from (4.15) and (4.16) with (3.40) (with γ = 20) and Lemma 4.6, we obtain

− logZN,δ ≥ inf
Υ̇N∈H1

a

E
[
δ

2
∥ΥN∥20A − |σ|

3
∥ΥN∥3L3

+
C2

2
∥ΥN∥6L2 + C2∥ΥN∥2H1

]
− C.

(4.17)
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Now, we need to estimate the L3-norm of ΥN . From (4.3), Sobolev’s inequality, and the mean

value theorem: |1− e−t|n|2 | ≲ (t|n|2)θ for any 0 ≤ θ ≤ 1, we have

∥ΥN∥3L3 ≲ t−
9
8 ∥ΥN∥3A + ∥ΥN − pt ∗ΥN∥3

H
1
2

≲ t−
9
8 ∥ΥN∥3A + t

3
4 ∥ΥN∥3H1

for 0 < t ≤ 1. By choosing t
3
4 ∼

(
1 + |σ|

C2
∥ΥN∥H1

)−1
and applying Young’s inequality, we

obtain

|σ|∥ΥN∥3L3 ≤ CC2,|σ|∥ΥN∥
3
2

H1∥ΥN∥3A +
C2

4
∥ΥN∥2H1 + 1

≤ CC2,|σ|,δ +
δ

4
∥ΥN∥20A +

C2

2
∥ΥN∥2H1 .

(4.18)

Therefore, from (4.17) and (4.18), we conclude that

ZN,δ ≤ Cδ <∞,

uniformly in N ∈ N.

• Step 2: Next, we show that ∥u∥A is finite νδ-almost surely. Let η be a smooth function

with compact support with
∫
R3 |η(ξ)|2dξ = 1 and set

ρ̂(ξ) =

∫
R3

η(ξ − ξ1)η(−ξ1)dξ1.

Given ε > 0, define ρε by

ρε(x) =
∑
n∈Z3

ρ̂(εn)ein·x. (4.19)

Since the support of ρ̂ is compact, the sum on the right-hand side is over finitely many

frequencies. Thus, given any ε > 0, there exists N0(ε) ∈ N such that

ρε ∗ u = ρε ∗ uN (4.20)

for any N ≥ N0(ε). From the Poisson summation formula, we have

ρε(x) =
∑
n∈Z3

ε−3
∣∣F−1

R3 (η)(ε
−1x+ 2πn)

∣∣2 ≥ 0,

where F−1
R3 denotes the inverse Fourier transform on R3. Noting that

∥ρε∥L1(T3) =

∫
T3

ρε(x)dx = ρ̂(0) = ∥η∥2L2(R3) = 1,

we have, from Young’s inequality, that

∥ρε ∗ u∥A ≤ ∥u∥A. (4.21)

Moreover, {ρε} defined above is an approximation to the identity on T3 and thus for any

distribution u on T3, ρε ∗ u→ u in the A-norm, as ε→ 0.
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Let δ > δ′ > 0. By Fatou’s lemma, the weak convergence of {νN,δ}N∈N from Step 1 with

(4.20), (4.21), and the definition (4.6) of νN,δ, we have∫
exp

(
(δ − δ′)∥u∥20A

)
dνδ ≤ lim inf

ε→0

∫
exp

(
(δ − δ′)∥ρε ∗ u∥20A

)
dνδ

= lim inf
ε→0

lim
N→∞

∫
exp

(
(δ − δ′)∥ρε ∗ uN∥20A

)
dνN,δ

≤ lim
N→∞

∫
exp

(
(δ − δ′)∥uN∥20A

)
dνN,δ

= lim
N→∞

ZN,δ′

ZN,δ

∫
1 dνN,δ′

=
Zδ′

Zδ
.

Hence, we have ∫
exp

(
(δ − δ′)∥u∥20A

)
dνδ <∞

for any δ > δ′ > 0. By choosing δ′ = δ
2 , we obtain∫

exp
(δ
2
∥u∥20A

)
dνδ <∞,

which shows that ∥u∥A is finite almost surely with respect to νδ.

• Step 3: Finally, we prove the relation (4.8). We first note that it suffices to show that

Zδ

Zδ′
dνδ = exp

(
− (δ − δ′)∥u∥20A

)
dνδ′ (4.22)

for any δ > δ′ > 0. In fact, once we have (4.22), by integration, we obtain

Zδ

Zδ′
=

∫
exp

(
− (δ − δ′)∥u∥20A

)
dνδ′ (4.23)

and thus (4.8) follows from (4.22) and (4.23).

Let F : C−100(T3) → R be a bounded Lipschitz function with F ≥ 0. The dominated

convergence theorem, the weak convergence of {νN,δ}N∈N from Step 1, and (4.6) yield that

Zδ

Zδ′

∫
F (u)dνδ −

∫
F (u) exp

(
− (δ − δ′)∥u∥20A

)
dνδ′

= lim
ε→0

(
Zδ

Zδ′

∫
F (u)dνδ −

∫
F (u) exp

(
− (δ − δ′)∥ρε ∗ u∥20A

)
dνδ′

)
= lim

ε→0
lim

N→∞

(
ZN,δ

ZN,δ′

∫
F (u)dνN,δ −

∫
F (u) exp

(
− (δ − δ′)∥ρε ∗ uN∥20A

)
dνN,δ′

)
= lim

ε→0
lim

N→∞

∫
F (u)

[
exp

(
− (δ − δ′)∥uN∥20A

)
− exp

(
− (δ − δ′)∥ρε ∗ uN∥20A

)]
dνN,δ′ .
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Therefore, we have∣∣∣∣ Zδ

Zδ′

∫
F (u)dνδ −

∫
F (u) exp

(
− (δ − δ′)∥u∥20A

)
dνδ′

∣∣∣∣
≲ lim sup

ε→0
lim sup
N→∞

∫ ∣∣∣ exp(− (δ − δ′)∥uN∥20A
)

− exp
(
− (δ − δ′)∥ρε ∗ uN∥20A

)∣∣∣ dνN,δ′(u)

≲ lim sup
ε→0

lim sup
N→∞

∫ ∣∣∣ exp(− (δ − δ′)∥πNuN (ω)∥20A
)

− exp
(
− (δ − δ′)∥ρε ∗ πNuN (ω)∥20A

)∣∣∣ dP(ω),

(4.24)

where uN is a random variable with Law(uN ) = νN,δ′ . Noting that the integrand is uniformly

bounded by 2, it follows from the bounded convergence theorem that the right-hand side

of (4.24) tends to 0 once we show that ∥ρε ∗ πNuN (ω)− πNu
N (ω)∥A tends to 0 in measure

(with respect to P). Namely, it suffices to show

lim
ε→0

lim
N→∞

P
(
{ω ∈ Ω : ∥ρε ∗ πNuN (ω)− πNu

N (ω)∥A > α
)

= lim
ε→0

lim
N→∞

νN,δ′
({

∥uN − ρε ∗ uN∥A > α}
)
= 0

for any α > 0.

From (4.3) and (4.5), we have

∥uN − ρε ∗ uN∥A ≲ ∥uN − ρε ∗ uN∥
W− 3

4 ,3 ≲ ε
1
8 ∥uN∥

W− 5
8 ,3 . (4.25)

Hence, from Chebyshev’s inequality and (4.25), it suffices to prove∫
∥uN∥

W− 5
8 ,3dνN,δ′ ≲

∫
exp

(
∥uN∥

W− 5
8 ,3

)
dνN,δ′ ≤ Cδ′ <∞, (4.26)

uniformly in N ∈ N. We use the variational formulation as in (4.12), and write

− log

(∫
exp

(
∥uN∥

W− 5
8 ,3

)
dνN,δ′

)
= inf

Υ̇N∈H1
a

E
[
δ′∥YN +ΘN∥20A − ∥YN +ΘN∥

W− 5
8 ,3 − σ

∫
T3

YNΘ2
Ndx

− σ

3

∫
T3

Θ3
Ndx+A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣γ
+

1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
+ logZN,δ′ ,

where ΘN = ΥN + σZ̃N . From Lemma 3.2 and (3.25), we have, for any finite p ≥ 1,

E
[
∥YN∥p

W− 5
8 ,3

+ ∥ZN∥p
W− 5

8 ,3

]
<∞, (4.27)
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uniformly in N ∈ N. See also the proof of Lemma 4.6. Then, arguing as in (4.17) and (4.18)

with Young’s inequality, Sobolev’s inequality, and (4.27), we obtain

− log

(∫
exp

(
∥uN∥

W− 5
8 ,3

)
dνN,δ′

)
≥ inf

Υ̇N∈H1
a

E
[
− ∥ΥN∥

W− 5
8 ,3 + C0

(
∥ΥN∥6L2 + ∥ΥN∥2H1

)
+
δ′

4
∥ΥN∥20A

]
− CC0,δ′

≳ −1.

This proves (4.26) and hence concludes the proof of Proposition 4.1. □

4.3. Non-normalizability of the σ-finite measure ρδ. In this subsection, we present the

proof of Proposition 4.2 on the non-normalizability of the σ-finite version ρδ of the Φ
3
3-measure

defined in (4.9).

Given ε > 0, let ρε be as in (4.19). Then, by (4.21), the weak convergence of {νN,δ}N∈N
(Proposition 4.1), (4.20), and (4.6), we have∫

exp
(
δ∥u∥20A

)
dνδ ≥

∫
exp

(
δ∥ρε ∗ u∥20A

)
dνδ

≥ lim sup
L→∞

∫
exp

(
δmin

(
∥ρε ∗ u∥20A , L

))
dνδ

= lim sup
L→∞

lim
N→∞

∫
exp

(
δmin

(
∥ρε ∗ uN∥20A , L

))
dνN,δ

= lim sup
L→∞

lim
N→∞

Z−1
N,δ

∫
exp

(
δmin

(
∥ρε ∗ uN∥20A , L

)
− δ∥uN∥20A −R⋄

N (u)
)
dµ(u).

Hence, (4.10) is reduced to showing that

lim sup
L→∞

lim
N→∞

Eµ

[
exp

(
δmin

(
∥ρε ∗ uN∥20A , L

)
− δ∥uN∥20A −R⋄

N (u)
)]

= ∞. (4.28)

Let Y = Y (1) be as in (3.2). By the Boué-Dupuis variational formula (Lemma 3.1) with

the change of variables (3.12), we have

− logE
[
exp

(
δmin

(
∥ρε ∗ uN∥20A , L

)
− δ∥uN∥20A −R⋄

N (u)
)]

= inf
Υ̇N∈H1

a

E
[
− δmin

(
∥ρε ∗ (YN +ΥN + σZ̃N )∥20A , L

)
+ δ∥YN +ΥN + σZ̃N∥20A

+ R̂⋄
N (Y +ΥN + σZN ) +

1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
,

(4.29)

where R̂⋄
N is as in (3.33) with the third power in the last term replaced by the γth power.

With ΘN = ΥN + σZ̃N , a slight modification of (3.38) yields∣∣∣∣ ∫
T3

YNΘ2
Ndx

∣∣∣∣ = ∣∣∣∣ ∫
T3

YN (Υ2
N + 2σΥN Z̃N + σ2Z̃2

N )dx

∣∣∣∣
≤ Cσ

(
1 + ∥YN∥c

C− 1
2−ε

+ ∥ZN∥cC1−ε

)
+

1

100|σ|

(
∥ΥN∥3L2 + ∥ΥN∥2H1

)
.

(4.30)
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By Young’s inequality, we have∣∣∣∣ ∫
T3

Θ3
Ndx−

∫
T3

Υ3
Ndx

∣∣∣∣ = ∣∣∣∣ ∫
T3

(
3σΥ2

N Z̃N + 3σ2ΥN Z̃2
N + σ3Z̃3

N

)
dx

∣∣∣∣
≤ Cσ∥ZN∥3C1−ε +

1

100|σ|
∥ΥN∥3L2 .

(4.31)

Then, applying (4.30) and (4.31) with Lemma 3.2 and (3.25) to (4.29), we obtain

− logE
[
exp

(
δmin

(
∥ρε ∗ u∥20A , L

)
− δ∥uN∥20A −R⋄

N (u)
)]

≤ inf
Υ̇N∈H1

a

E
[
− δmin

(
∥ρε ∗ (YN +ΥN + σZ̃N )∥20A , L

)
+ δ∥YN +ΥN + σZ̃N∥20A

− σ

3

∫
T3

Υ3
Ndx+ ∥ΥN∥3L2 +A

∣∣∣∣ ∫
T3

(
:Y 2

N : +2YNΘN +Θ2
N

)
dx

∣∣∣∣γ
+

3

4

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
+ Cσ,

(4.32)

where ΘN = ΥN + σZ̃N .

In the following, we show that the right-hand side of (4.32) tends to −∞ as N,L → ∞,

provided that |σ| > 0 is sufficiently large. By following the strategy introduced in our

previous works [53, 60], we construct a drift Υ̇N , achieving this goal. The main idea is to

construct a drift Υ̇N such that ΥN looks like “−Y (1)+ a perturbation” (see (4.41)), where

the perturbation term is bounded in L2(T3) but has a large cubic integral (see (4.36) below).

While we do not make use of solitons in this paper, one should think of this perturbation as

something like a soliton or a finite blowup solution (at a fixed time) with a highly concentrated

profile.

Remark 4.7. While our construction of the drift follows that in [53], we need to proceed

more carefully in our current problem in handling the first two terms under the expectation

in (4.32). If we simply apply (3.40) (with γ = 20) to separate ΥN from YN and σZ̃N , we end

up with an expression like

−δmin
(1
2
∥ρε ∗ΥN∥20A , L

)
+ 2δ∥ΥN∥20A

such that the coefficients of ∥ρε ∗ΥN∥20A and ∥ΥN∥20A no longer agree, which causes a serious

trouble. We instead need to keep the same coefficient for the first two terms under the

expectation in (4.32) and make use of the difference structure. Compare this with the analysis

in [53, 60], where no such cancellation was needed.

Fix a parameter M ≫ 1. Let f : R3 → R be a real-valued Schwartz function such that the

Fourier transform f̂ is a smooth even non-negative function supported
{
1
2 < |ξ| ≤ 1} such

that
∫
R3 |f̂(ξ)|2dξ = 1. Define a function fM on T3 by

fM (x) :=M− 3
2

∑
n∈Z3

f̂
( n
M

)
en, (4.33)
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where f̂ denotes the Fourier transform on R3 defined by

f̂(ξ) =
1

(2π)
3
2

∫
R3

f(x)e−in·xdx.

Then, a direct calculation shows the following lemma.

Lemma 4.8. For any M ∈ N and α > 0, we have∫
T3

f2Mdx = 1 +O(M−α), (4.34)∫
T3

(⟨∇⟩−1fM )2dx ≲M−2, (4.35)∫
T3

|fM |3dx ∼
∫
T3

f3Mdx ∼M
3
2 . (4.36)

Proof. As for (4.34) and (4.35), see the proof of Lemma 5.13 in [53]. From (4.33) and the fact

that f̂ is supported on {1
2 < |ξ| ≤ 1}, we have∫

T3

f3Mdx =M− 9
2

∑
n1,n2∈Z3

f̂
(n1
M

)
f̂
(n2
M

)
f̂
(
− n1 + n2

M

)
∼M

3
2 . (4.37)

The bound ∥fM∥3L3 ≳M
3
2 follows from (4.37), while ∥fM∥3L3 ≲M

3
2 follows from Hausdorff-

Young’s inequality. This proves (4.36). □

We define ZM and αM by

ZM :=
∑

|n|≤M

Ŷ
(
1
2)(n)en and αM := E

[
Z2
M (x)

]
. (4.38)

Note that αM is independent of x ∈ T3 thanks to the spatial translation invariance of ZM .

Then, we have the following lemma. See Lemma 5.14 in [53] for the proof.

Lemma 4.9. Let M ≫ 1 and 1 ≤ p <∞. Then, we have

αM ∼M, (4.39)

E
[ ∫

T3

|ZM |pdx
]
≤ C(p)M

p
2 ,

E
[(∫

T3

Z2
Mdx− αM

)2]
+ E

[(∫
T3

YNZMdx−
∫
T3

Z2
Mdx

)2]
≲ 1,

E
[(∫

T3

YNfMdx
)2]

+ E
[(∫

T3

ZMfMdx
)2]

≲M−2

for any N ≥M .

We now present the proof of Proposition 4.2.

Proof of Proposition 4.2. As described above, our main goal is to prove (4.28).

Fix N ∈ N, appearing in (4.32). ForM ≫ 1, we set fM , ZM , and αM as in (4.33) and (4.38).

We now choose a drift Υ̇N for (4.32) by setting

Υ̇N (t) = 2 · 1t> 1
2
⟨∇⟩

(
− ZM + sgn(σ)

√
αMfM

)
, (4.40)
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where sgn(σ) is the sign of σ ̸= 0. Then, we have

ΥN := I(Υ̇N )(1) =

∫ 1

0
⟨∇⟩−1Υ̇N (t)dt = −ZM + sgn(σ)

√
αMfM . (4.41)

Note that for N ≥M ≥ 1, we have ΥN = πNΥN = ΥN , since ZM and fM are supported on

the frequencies {|n| ≤M}.
Let us first make some preliminary computations. We start with the first two terms under

the expectation in (4.32):

−δmin
(
∥ρε ∗ (YN +ΥN + σZ̃N )∥20A , L

)
+ δ∥YN +ΥN + σZ̃N∥20A

= −δmin
(
∥ρε ∗ (YN +ΥN + σZ̃N )∥20A − ∥YN +ΥN + σZ̃N∥20A ,

L− ∥YN +ΥN + σZ̃N∥20A
)

=: −δmin(I, II).

(4.42)

We first consider II. From Lemma 4.5, (2.3), and Lemma 4.8, we have

∥fM∥A ≲ ∥fM∥
H− 1

4
≲ ∥fM∥

3
4

L2∥fM∥
1
4

H−1 ≲M− 1
4 . (4.43)

From (4.41), (4.39) in Lemma 4.9, and (4.43), we have

II ≥ L− 2α10
M∥fM∥20A − C

(
∥YN∥20A + ∥ZM∥20A + |σ|∥ZN∥20A

)
≥ L− C0M

5 − C
(
∥YN∥20A + ∥ZM∥20A + |σ|∥ZN∥20A

)
≥ 1

2
L− C

(
∥YN∥20A + ∥ZM∥20A + |σ|∥ZN∥20A

) (4.44)

for L≫M5. Note that the second term on the right-hand side is harmless since it is bounded

under an expectation. Next, we turn to I in (4.42). Let δ0 denote the Dirac delta on T3.

Then, by applying (4.41), Young’s inequality, Lemma 4.5, (4.39), and (4.34) in Lemma 4.8

and by choosing ε = ε(M) > 0 sufficiently small, we have

I ≥ −
∣∣∣∥ρε ∗ (YN +ΥN + σZ̃N )∥20A − ∥YN +ΥN + σZ̃N∥20A

∣∣∣
≥ −C∥(ρε − δ0) ∗ (YN +ΥN + σZ̃N )∥A∥YN +ΥN + σZ̃N∥19A
≥ −Cα10

M∥(ρε − δ0) ∗ fM∥20
H− 1

4
− C

(
∥YN∥20A + ∥ZM∥20A + |σ|∥ZN∥20A

)
≥ −Cε5M10 − C

(
∥YN∥20A + ∥ZM∥20A + |σ|∥ZN∥20A

)
= −C0 − C

(
∥YN∥20A + ∥ZM∥20A + |σ|∥ZN∥20A

)
.

(4.45)

Therefore, from (4.42), (4.44), and (4.45) together with (4.38), Lemma 4.6 and (3.25), we

obtain

E
[
− δmin(I, II)

]
≤ C(δ, σ). (4.46)
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Next, we treat the third term under the expectation in (4.32). This term gives the main

contribution. From (4.41) and Young’s inequality with Lemma 4.8, we have

σ

∫
T3

Υ3
Ndx− |σ|α

3
2
M

∫
T3

f3Mdx

= −σ
∫
T3

Z3
Mdx+ 3|σ|

∫
T3

Z2
M

√
αMfMdx− 3σ

∫
T3

ZMαMf
2
Mdx

≥ −η|σ|α
3
2
M

∫
T3

f3Mdx− Cη|σ|
∫
T3

|ZM |3dx

(4.47)

for any 0 < η < 1. Then, it follows from (4.47) with η = 1
2 and Lemmas 4.8 and 4.9 that

E
[
σ

∫
T3

Υ3
Ndx

]
≥ (1− η)|σ|α

3
2
M

∫
T3

f3Mdx− Cη|σ|E
[ ∫

T3

|ZM |3dx
]

≳ |σ|M3 − |σ|M
3
2

≳ |σ|M3

(4.48)

for M ≫ 1.

We now treat the fourth and sixth terms under the expectation in (4.32). From (4.41),

we have ΥN ∈ H≤1. Then, by the Wiener chaos estimate (Lemma 2.5) and (4.41) with

Lemmas 4.8 and 4.9, we have

E
[
∥ΥN∥3L2

]
≲ E

[
∥ΥN∥2L2

] 3
2
≲M

3
2 . (4.49)

Recall that both ẐM and f̂M are supported on {|n| ≤ M}. Then, from (4.40), (4.41), and

Lemmas 4.8 and 4.9 as above, we have

E
[ ∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
≲M2E

[
∥ΥN∥2L2

]
≲M3. (4.50)

We state a lemma which controls the fifth term under the expectation in (4.32). We present

the proof of this lemma at the end of this subsection.

Lemma 4.10. Let γ > 0. Then, we have

E
[∣∣∣ ∫

T3

: (YN +ΥN + σZ̃N )2 : dx
∣∣∣γ] ≤ C(σ, γ) <∞, (4.51)

uniformly in N ≥M ≥ 1.19

Therefore, putting (4.32), (4.46), (4.48), (4.49), (4.50), and Lemma 4.10 together, we obtain

− logE
[
exp

(
δmin

(
∥ρε ∗ u∥20A , L

)
− δ∥uN∥20A −R⋄

N (u)
)]

≤ −C1|σ|M3 + C2M
3 + C(δ, σ, γ)

(4.52)

for some C1, C2 > 0, provided that L ≫ M5 ≫ 1 and ε = ε(M) > 0 sufficiently small. By

taking the limits in N and L, we conclude from (4.52) that

lim sup
L→∞

lim
N→∞

Eµ

[
exp

(
δmin

(
∥ρε ∗ uN∥20A , L

)
− δ∥uN∥20A −R⋄

N (u)
)]

≥ exp
(
C1|σ|M3 − C2M

3 − C0(σ)
)
−→ ∞,

19Recall from (4.41) that the definition of ΥN depends on M .
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as M → ∞, provided that |σ| is sufficiently large. This proves (4.28) and thus we conclude

the proof of Proposition 4.2. □

We conclude this subsection by presenting the proof of Lemma 4.10.

Proof of Lemma 4.10. From (3.11) and (3.19), we have

∫
T3

ΥN Z̃Ndx =

∫ 1

0

∫
T3

⟨∇⟩−
3
4ΥN · ⟨∇⟩−

5
4π2N (:Y 2

N (t) :)dxdt

≤ ∥ΥN∥
H− 3

4

∫ 1

0
∥ :Y 2

N (t) : ∥
H− 5

4
dt.

(4.53)

As for the first factor, it follows from (4.41), (2.3), (4.39), and Lemma 4.8 that

∥ΥN∥
H− 3

4
≲ ∥ZM∥

H− 3
4
+
√
αM∥fM∥

H− 3
4

≲ ∥ZM∥
H− 3

4
+
√
αM∥fM∥

3
4

H−1∥fM∥
1
4

L2

≲ ∥ZM∥
H− 3

4
+M− 1

4 .

(4.54)

Hence, from (4.53), (4.54), (4.38), and Lemma 3.2, we obtain

E
[∣∣∣ ∫

T3

ΥN Z̃Ndx
∣∣∣2] ≲ E

[
∥ΥN∥2

H− 3
4

]
+ E

[
∥ :Y 2

N (t) : ∥2
L1
t ([0,1];H

− 5
4

x )

]
≲ 1. (4.55)

From (4.41), we have

Υ2
N + 2YNΥN

= Z2
M − 2 sgn(σ)

√
αMZMfM + αMf

2
M

− 2YNZM + 2 sgn(σ)
√
αMYNfM

= (Z2
M − αM )− 2 sgn(σ)

√
αMZMfM + αM (−1 + f2M ) + 2αM

− 2(YNZM − Z2
M )− 2(Z2

M − αM )− 2αM + 2 sgn(σ)
√
αMYNfM

= −(Z2
M − αM )− 2 sgn(σ)

√
αMZMfM + αM (−1 + f2M )

− 2(YNZM − Z2
M ) + 2 sgn(σ)

√
αMYNfM .

(4.56)

Note from (3.11) and (4.41) that
∫
T3 : (YN +ΥN + σZ̃N )2 : dx ∈ H≤4. Then, from the Wiener

chaos estimate (Lemma 2.5), (4.41), (4.55), (4.56), and Lemmas 3.2 and 4.9 with (4.34), we
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have

E
[∣∣∣ ∫

T3

: (YN +ΥN + σZ̃N )2 : dx
∣∣∣γ]

≤ C(γ)

{
E
[∣∣∣ ∫

T3

: (YN +ΥN + σZ̃N )2 : dx
∣∣∣2]} γ

2

= C(γ)

{
E
[∣∣∣ ∫

T3

: Y 2
N : dx+

∫
T3

(Υ2
N + 2YNΥN )dx+ σ2

∫
T3

Z̃2
Ndx

+ 2σ

∫
T3

ΥN Z̃Ndx+ 2σ

∫
T3

YN Z̃Ndx
∣∣∣2]} γ

2

≤ C(γ)

{
E
[(∫

T3

: Y 2
N : dx

)2]
+ σ4E

[(∫
T3

Z̃2
Ndx

)2]
+ σ2E

[(∫
T3

ΥN Z̃Ndx
)2]

+ σ2E
[(∫

T3

YN Z̃Ndx
)2]

+ E
[(

−
∫
T3

YNZMdx+

∫
T3

Z2
Mdx

)2]
+ E

[(∫
T3

Z2
Mdx− αM

)2]
+ α2

M

(
− 1 +

∫
T3

f2Mdx

)2

+ αME
[(∫

T3

YNfMdx
)2]

+ αME
[(∫

T3

ZMfMdx
)2]} γ

2

≤ C(σ, γ),

which yields the bound (4.51). □

4.4. Non-convergence of the truncated Φ3
3-measures. In this subsection, we present the

proof of Proposition 4.4 on non-convergence of the truncated Φ3
3-measures {ρN}N∈N.

We first define a slightly different tamed version of the truncated Φ3
3-measure by setting

dν
(N)
δ (u) = (Z

(N)
δ )−1 exp

(
− δ∥u∥20A −R⋄

N (u)
)
dµ(u) (4.57)

for N ∈ N and δ > 0, where the A-norm and R⋄
N are as in (4.3) and (1.24), respectively, and

Z
(N)
δ =

∫
exp

(
− δ∥u∥20A −R⋄

N (u)
)
dµ(u).

As compared to νN,δ in (4.6), there is no frequency cutoff πN in the taming −δ∥u∥20A in (4.57).

As a corollary to the proof of Proposition 4.1, we obtain the following convergence result

for ν
(N)
δ .

Lemma 4.11. Let δ > 0, Then, as measures on C−100(T3), the sequence of measures

{ν(N)
δ }N∈N defined in (4.57) converges weakly to the limiting measure νδ constructed in

Proposition 4.1.
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Proof. By the definitions (4.6) and (4.57) of νN,δ and ν
(N)
δ , it suffices to prove

lim
N→∞

{∫
F (u) exp

(
− δ∥u∥20A −R⋄

N (u)
)
dµ(u)

−
∫
F (u) exp

(
− δ∥uN∥20A −R⋄

N (u)
)
dµ(u)

}
= 0

for any bounded continuous function F : C−100(T3) → R. In the following, we prove

lim
N→∞

∫ ∣∣∣ exp(− δ∥u∥20A −R⋄
N (u)

)
− exp

(
− δ∥uN∥20A −R⋄

N (u)
)∣∣∣dµ(u) = 0. (4.58)

By the uniform boundedness of the frequency projector πN on A, we have

∥uN∥A ≲ ∥u∥A, (4.59)

uniformly in N ∈ N. Then, it follows from the mean-value theorem, (4.59), and the Schauder

estimate (4.5) that there exists c0 > 0 such that∫ ∣∣∣ exp(− δ∥u∥20A −R⋄
N (u)

)
− exp

(
− δ∥uN∥20A −R⋄

N (u)
)∣∣∣ dµ(u)

≲ δ

∫
exp

(
− δmin

(
∥u∥20A , ∥uN∥20A

)
−R⋄

N (u)
)∣∣∥u∥20A − ∥uN∥20A

∣∣ dµ(u)
≲ δ

∫
exp

(
− δc0∥uN∥20A −R⋄

N (u)
)
∥u− uN∥A∥u∥19A dµ(u)

≲ δ

∫
exp

(
− δc0∥uN∥20A −R⋄

N (u)
)
N− 1

8 ∥u∥20
W− 5

8 ,3
dµ(u).

(4.60)

In the last step, we used the following bound:

∥u− uN∥A ≲ ∥π⊥Nu∥W− 3
4 ,3 ≲ N− 1

8 ∥u∥
W− 5

8 ,3 ,

which follows from (4.3), (4.5), and the fact that π⊥Nu = u− uN has the frequency support

{|n| ≳ N}. Therefore, by (4.6), Proposition 4.1, and (4.26), we obtain

lim sup
N→∞

∫ ∣∣∣ exp(− δ∥u∥20A −R⋄
N (u)

)
− exp

(
− δ∥uN∥20A −R⋄

N (u)
)∣∣∣dµ(u)

≲ δ lim
N→∞

∫
exp

(
− δc0∥uN∥20A −R⋄

N (u)
)
N− 1

8 ∥u∥20
W− 5

8 ,3
dµ(u)

= δ lim
N→∞

N− 1
8ZN,c0δ

∫
∥u∥20

W− 5
8 ,3
dνN,c0δ

= 0.

This proves (4.58). □

Remark 4.12. In the penultimate step of (4.60), we used the boundedness of the cube

frequency projector πN = πcubeN on L3(T3) and hence this argument does not work for the

ball frequency projector πballN defined in (1.41).

We conclude this section by presenting the proof of Proposition 4.4.
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Proof of Proposition 4.4. Suppose by contradiction that, as probability measures on A,

{ρNk
}k∈N has a weak limit ν0. Then, given any δ > 0, from Lemma 4.11 with (4.57)

and (1.25), we have

dνδ = lim
k→∞

exp
(
− δ∥u∥20A −R⋄

Nk
(u)
)

∫
exp

(
− δ∥v∥20A −R⋄

Nk
(v)
)
dµ(v)

dµ(u)

= lim
k→∞

exp
(
− δ∥u∥20A

)∫
exp

(
− δ∥v∥20A

)
dρNk

(v)
dρNk

(u)

=
exp

(
− δ∥u∥20A

)∫
exp

(
− δ∥v∥20A

)
dν0(v)

dν0(u),

(4.61)

where the limits are interpreted as weak limits of measures on C−100(T3). Note that, in

the last step, we used the weak convergence in A of the truncated Φ3
3-measures ρNk

, since

exp(−δ∥u∥20A ) is continuous on A, but not on C−100(T3). Therefore, from (4.61) and (4.9), we

obtain

dν0(u) =

(∫
exp

(
− δ∥v∥20A

)
dν0(v)

)
dρδ(u). (4.62)

By assumption, ν0 is a probability measure on A and thus ∥u∥A <∞, ν0-almost surely. By

the fact that ν0 is a probability measure, (4.62), and Proposition 4.2, we obtain

1 =

∫
1 dν0

=

∫
exp

(
− δ∥u∥20A

)
dν0(u)

∫
1 dρδ(u)

= ∞,

which yields a contradiction. Therefore, no subsequence of the truncated Φ3
3-measures ρN has

a weak limit as probability measures on A. □

5. Local well-posedness

In this section, we present the proof of Theorem 1.14 on local well-posedness of the

(renormalized) hyperbolic Φ3
3-model (1.33):

∂2t u+ ∂tu+ (1−∆)u− σ :u2 : +M( :u2 : )u =
√
2ξ, (5.1)

where M is defined as in (1.34). For the local theory, the size of σ ̸= 0 does not play any role

and hence we set σ = 1 in the remaining part of this section. As mentioned in Section 1, local

well-posedness of (5.1) follows from a slight modification of the argument in [35, 53]. We,

however, point out that the argument in [35] on the quadratic SNLW alone is not sufficient due

to the additional term M( :u2 : )u, coming from the taming in constructing the Φ3
3-measure.

5.1. Paracontrolled approach. In this subsection, we go over a paracontrolled approach to

rewrite the equation (5.1) into a system of three unknowns. While our presentation closely

follows those in [35, 53], we present some details for readers’ convenience. Proceeding in the

spirit of [17, 47, 35, 53], we transform the quadratic SdNLW (5.1) to a system of PDEs. In

order to treat the additional term M( :u2 : )u in (5.1), which contains an ill-defined product

in :u2 : , we follow the approach in our previous work [53] on the focusing Hartree Φ4
3-model,
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which leads to the system of three equations; see (5.28) below. Compare this with [17, 47, 35],

where the resulting systems consist of two equations. At the end of this subsection, we state

a local well-posedness result of the resulting system.

The main difficulty in studying the hyperbolic Φ3
3-model (5.1) comes from the roughness of

the space-time white noise. This is already manifested at the level of the linear equation. Let

Ψ denote the stochastic convolution, satisfying the following linear stochastic damped wave

equation: {
∂2tΨ+ ∂tΨ+ (1−∆)Ψ =

√
2ξ

(Ψ, ∂tΨ)|t=0 = (ϕ0, ϕ1),

where (ϕ0, ϕ1) = (ϕω0 , ϕ
ω
1 ) is a pair of the Gaussian random distributions with Law(ϕω0 , ϕ

ω
1 ) =

µ⃗ = µ⊗ µ0 in (1.16). Define the linear damped wave propagator D(t) by

D(t) = e−
t
2

sin
(
t
√

3
4 −∆

)
√

3
4 −∆

viewed as a Fourier multiplier operator. By setting

[[n]] =

√
3

4
+ |n|2, (5.2)

we have

D(t)f = e−
t
2

∑
n∈Z3

sin(t[[n]])

[[n]]
f̂(n)en. (5.3)

Then, the stochastic convolution Ψ can be expressed as

Ψ(t) = S(t)(ϕ0, ϕ1) +
√
2

∫ t

0
D(t− t′)dW (t′), (5.4)

where S(t) is defined by

S(t)(f, g) = ∂tD(t)f +D(t)(f + g) (5.5)

and W denotes a cylindrical Wiener process on L2(T3) defined in (3.1). It is easy to see that

Ψ almost surely lies in C(R+;W
− 1

2
−ε,∞(T3)) for any ε > 0; see Lemma 5.4 below. In the

following, we use ε > 0 to denote a small positive constant, which can be arbitrarily small.

In the following, we adopt Hairer’s convention to denote the stochastic terms by trees; the

vertex “ ” corresponds to the space-time white noise ξ, while the edge denotes the Duhamel

integral operator I given by

I(F )(t) =
∫ t

0
D(t− t′)F (t′)dt′ =

∫ t

0
e−

t−t′
2

sin
(
(t− t′)

√
3
4 −∆

)
√

3
4 −∆

F (t′)dt′. (5.6)

With a slight abuse of notation, we set

:= Ψ, (5.7)
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where Ψ is as in (5.4), with the understanding that in (5.7) includes the random linear

solution S(t)(ϕ0, ϕ1). As mentioned above, has (spatial) regularity20 −1
2−.

Given N ∈ N, we define the truncated stochastic terms N and N by

N := πN and N := I( N ) =

∫ t

0
D(t− t′) N (t′)dt′, (5.8)

where πN is the frequency projector defined in (1.19) and N is the Wick power defined by

N := 2
N − σN (5.9)

with

σN = E
[

2
N (x, t)

]
=
∑
n∈Z3

χ2
N (n)

⟨n⟩2
∼ N −→ ∞, (5.10)

as N → ∞. Note that σN in (5.10) is independent21 of (x, t) ∈ T3 × R+ and agrees with σN
defined in (1.22). Note that we have = limN→∞ N in C([0, T ];W−1−,∞(T3)) almost surely.

See Lemma 5.4.

Next, we define the second order stochastic term :

:= I( ) =

∫ t

0
D(t− t′) (t′)dt′,

as a limit of N defined in (5.8). With a naive regularity counting, with one degree of

smoothing from the damped wave Duhamel integral operator I in (5.6), one may expect

that has regularity 0− = 2(−1
2−) + 1. However, by exploiting the multilinear dispersive

smoothing effect, Gubinelli, Koch, and the first author showed that there is an extra 1
2 -

smoothing for and that has regularity 1
2−. See Lemma 5.6 below. See also [51, 13, 64] for

analogous multilinear dispersive smoothing for the random wave equations. In particular, see

[13, 64], where multilinear smoothing has been studied extensively for higher order stochastic

objects in the cubic case.

If we proceed with the second order expansion as in [35]:

u = + + v,

the residual term v satisfies the equation of the form:

(∂2t + ∂t + 1−∆)v = 2v + 2 + other terms.

Inheriting the worse regularity −1
2− of , the second term has regularity −1

2−. Hence, we

expect v to have regularity at most 1
2− = (−1

2−) + 1. In particular, the product v is not

well defined since (12−) + (−1
2−) < 0.

In order to overcome this problem, we now introduce a paracontrolled ansatz as in [47, 35]:

u = + +X + Y, (5.11)

20We only discuss spatial regularities of various stochastic objects in this part. Hereafter, we use a− to
denote a− ε for arbitrarily small ε > 0.

21This comes from the space-time translation invariance of the truncated stochastic convolution N .
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where X and Y satisfy

(∂2t + ∂t + 1−∆)X = 2(X + Y + ) < −M( :u2 : ) , (5.12)

(∂2t + ∂t + 1−∆)Y = (X + Y + )2 + 2(X + Y + ) ⩾

−M( :u2 : )(X + Y + )
(5.13)

with the understanding that

:u2 : = (X + Y + )2 + 2(X + Y ) + 2 + . (5.14)

Here, ⩾ = > + =. Note that, in the X-equation (5.12), we collected the worst terms from

the v-equation, while all the terms in the Y -equation (5.13) are expected to behave better

(that is, if the resonant product in (5.13) can be given a meaning). We point out that the

problematic term M( :u2 : ) appears in both equations, unlike the situation in [35].

There are two resonant products in the system (5.12) - (5.13), which do not a priori make

sense: = and X = . We can use stochastic analysis and multilinear harmonic analysis to

give a meaning to the first resonant product:

=
:= =

as a distribution of regularity 0− = (12−) + (−1
2−) (without renormalization). See Lemma 5.7

below. This in particular says that Y has expected regularity 1−.

In view of Lemma 2.2, the right-hand side of (5.12) has regularity −1
2− (if we pretend that

M( : u2 : ) makes sense), and thus we expect that X has regularity 1
2−. In particular, the

resonant product X = in the Y -equation is not well defined since the sum of the regularities

is negative. In [35], this issue was overcome by substituting the Duhamel formulation of

the X-equation into the resonant product X = and then introducing certain paracontrolled

operators (see (5.20), (5.21), and (5.23) below). This was possible in [35] since there was

no additional term M( :u2 : ) in the system, in particular in the X-equation. In our current

problem, the problematic resonant product X = also appears in M( :u2 : ), in particular, in

the X-equation. Thus, a strategy in [47, 35] of substituting the Duhamel formulation of the

X-equation into X = would lead to an infinite iteration of such substitutions. We point out

that such an infinite iteration of the Duhamel formulation works in certain situations but we

choose an alternative approach which is simpler.

The main idea is to follow the strategy in our previous work [53] and introduce a new

unknown, representing the problematic resonant product:

“R = X = ” (5.15)

which leads to a system of three unknowns (X,Y,R).

We now turn our attention to : u2 : in (5.14). Let QX,Y to denote a good part of : u2 :

defined by

QX,Y = (X + Y )2 + 2(X + Y ) + 2X < + 2X > + 2Y . (5.16)

In view of X < and Y , QX,Y has (expected) regularity −1
2− From (5.11), (5.15), and (5.16),

we can write :u2 : as

:u2 : = QX,Y + 2R+ 2 + 2 + , (5.17)
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where denotes the product of and given by

= < +
=
+ > .

By substituting the Duhamel formulation of the X-equation (5.12) and (5.17) into (5.15), we

obtain

R = 2I
(
(X + Y + ) <

)
= − I

(
M
(
QX,Y + 2R+ 2 + 2 +

) )
= . (5.18)

As we see below, both resonant products on the right-hand side are not well defined at this

point.

Let us consider the first term on the right-hand side of (5.18):

I
(
(X + Y + ) <

)
= . (5.19)

Due to the paraproduct structure (with the high frequency part given by ) under the Duhamel

integral operator I, we see that the resonant product in (5.19) is not well defined at this

point since a term I(w < ) has (at best) regularity 1
2−. In order to give a precise meaning to

the right-hand side of (5.18), we now recall the paracontrolled operators introduced in [35].22

We point out that in the parabolic setting, it is at this step where one would introduce

commutators and exploit their smoothing properties. For our dispersive problem, however,

one of the commutators does not provide any smoothing and thus such an argument does not

seem to work. See [35, Remark 1.17].

Given a function w on T3 × R+, define

I< (w)(t) := I(w < )(t)

=
∑
n∈Z3

en
∑

n=n1+n2
|n1|≪|n2|

∫ t

0
e−

t−t′
2

sin((t− t′)[[n]])

[[n]]
ŵ(n1, t

′)̂(n2, t′)dt′, (5.20)

where [[n]] is as in (5.2). Here, |n1| ≪ |n2| signifies the paraproduct < in the definition of I< .23

As mentioned above, the regularity of I< (w) is (at best) 1
2− and thus the resonant product

I< (w) = does not make sense in terms of deterministic analysis. Proceeding as in [35], we

divide the paracontrolled operator I< into two parts. Fix small θ > 0. Denoting by n1 and

n2 the spatial frequencies of w and as in (5.20), we define I
(1)
< and I

(2)
< as the restrictions of

I< onto {|n1| ≳ |n2|θ} and {|n1| ≪ |n2|θ}. More concretely, we set

I
(1)
< (w)(t) :=

∑
n∈Z3

en
∑

n=n1+n2

|n2|θ≲|n1|≪|n2|

∫ t

0
e−

t−t′
2

sin((t− t′)[[n]])

[[n]]
ŵ(n1, t

′)̂(n2, t′)dt′ (5.21)

and

I
(2)
< (w) := I< (w)− I

(1)
< (w). (5.22)

22Strictly speaking, the paracontrolled operators introduced in [35] are for the undamped wave equation.
Since the local-in-time mapping property remains unchanged, we ignore this minor point.

23For simplicity of the presentation, we use the less precise definitions of paracontrolled operators. For

example, see (5.41) for the precise definition of the paracontrolled operator I
(1)

<
.
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As for the first paracontrolled operator I
(1)
< , the lower bound |n1| ≳ |n2|θ and the positive

regularity of w allow us to prove a smoothing property such that the resonant product

I
(1)
< (w) = is well defined. See Lemma 5.8 below.

As noted in [35], the second paracontrolled operator I
(2)
< does not seem to possess a

(deterministic) smoothing property. One of the main novelties in [35] was then to directly

study the random operator I<,= defined by

I<,= (w)(t) := I
(2)
< (w) = (t)

=
∑
n∈Z3

en

∫ t

0

∑
n1∈Z3

ŵ(n1, t
′)An,n1(t, t

′)dt′,
(5.23)

where An,n1(t, t
′) is given by

An,n1(t, t
′) = 1[0,t](t

′)
∑

n−n1=n2+n3

|n1|≪|n2|θ
|n1+n2|∼|n3|

e−
t−t′
2

sin((t− t′)[[n1 + n2]])

[[n1 + n2]]
̂(n2, t′)̂(n3, t). (5.24)

Here, the condition |n1 + n2| ∼ |n3| is used to denote the spectral multiplier corresponding to

the resonant product = in (5.23). See (5.43) and (5.44) for the precise definitions. The almost

sure bounded property of the random operator I<,= was studied in [35, 53]. See Lemma 5.9

below.

Next, we consider the second term on the right-hand side of (5.18):

I
(
M
(
QX,Y + 2R+ 2 + 2 +

) )
= . (5.25)

Once again, the resonant product is not well defined since the sum of regularities is negative.

The term (5.25) appeared in our previous work [53] on the focusing Hartree Φ4
3-model, where

we introduced the following stochastic term:

A(x, t, t′) =
∑
n∈Z3

en(x)
∑

n=n1+n2
|n1|∼|n2|

e−
t−t′
2

sin((t− t′)[[n1]])

[[n1]]
̂(n1, t′)̂(n2, t) (5.26)

for t ≥ t′ ≥ 0, where |n1| ∼ |n2| signifies the resonant product. Then, we have

(
I
(
M(w)

)
=

)
(t) =

∫ t

0
M(w)(t′)A(t, t′)dt′. (5.27)

We point out that the Fourier transform Â(n, t, t′) corresponds to An,0(t, t
′) defined in (5.24)

and thus the analysis for A is closely related to that for the paracontrolled operator I<,=

in (5.23). See Lemma 5.10 below for the almost sure regularity of A.

Finally, we are ready to present the full system for the three unknowns (X,Y,R). Putting

together (5.12), (5.13), (5.16), (5.18), (5.21), (5.23), and (5.27), we arrive at the following
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system:

(∂2t + ∂t + 1−∆)X = 2(X + Y + ) <

−M
(
QX,Y + 2R+ 2 + 2 +

)
,

(∂2t + ∂t + 1−∆)Y = (X + Y + )2 + 2(R+ Y = +
=
) + 2(X + Y + ) >

−M
(
QX,Y + 2R+ 2 + 2 +

)
(X + Y + ),

R = 2I
(1)
<

(
X + Y +

)
= + 2I<,=

(
X + Y +

)
−
∫ t

0
M
(
QX,Y + 2R+ 2 + 2 +

)
A(t, t′)dt′,

(X, ∂tX,Y, ∂tY )|t=0 = (X0, X1, Y0, Y1).

(5.28)

By viewing the following random distributions and operator in the system above:

, , ,
=
, A, and I<,= , (5.29)

as predefined deterministic data with certain regularity /mapping properties, we prove the

following local well-posedness of the system (5.28).

Theorem 5.1. Let 1
4 < s1 <

1
2 < s2 ≤ s1 +

1
4 and s2 − 1 ≤ s3 < 0. Then, there exist

θ = θ(s3) > 0 and ε = ε(s1, s2, s3) > 0 such that if

• is a distribution-valued function belonging to C([0, 1];W− 1
2
−ε,∞(T3)) ∩

C1([0, 1];W− 3
2
−ε,∞(T3)),

• is a distribution-valued function belonging to C([0, 1];W−1−ε,∞(T3)),

• is a distribution-valued function belonging to C([0, 1];W
1
2
−ε,∞(T3)) ∩

C1([0, 1];W−1−ε,∞(T3)),

•
=
is a distribution-valued function belonging to C([0, 1];H−ε(T3)),

• A(t, t′) is a distribution-valued function belonging to L∞
t′ L

3
t (∆2(1);H

−ε(T3)), where

∆2(T ) ⊂ [0, T ]2 is defined by

∆2(T ) = {(t, t′) ∈ R2
+ : 0 ≤ t′ ≤ t ≤ T}, (5.30)

• the operator I<,= belongs to the class L2

(
3
2 , 1
)
, where L2(q, T )) is defined by

L2(q, T ) := L(Lq([0, T ];L2(T3))) ; L∞([0, T ];Hs3(T3))), (5.31)

then the system (5.28) is locally well-posed in Hs1(T3)×Hs2(T3). More precisely, given any

(X0, X1, Y0, Y1) ∈ Hs1(T3) ×Hs2(T3), there exist T > 0 and a unique solution (X,Y,R) to

the hyperbolic Φ3
3-system (5.28) on [0, T ] in the class:

Zs1,s2,s3(T ) = Xs1(T )× Y s2(T )× L3([0, T ];Hs3(T3)). (5.32)

Here, Xs1(T ) and Y s2(T ) are the energy spaces at the regularities s1 and s2 intersected with

appropriate Strichartz spaces defined in (5.47) below. Furthermore, the solution (X,Y,R)

depends Lipschitz-continuously on the enhanced data set :(
X0, X1, Y0, Y1, , , ,

=
, A, I<,=

)
(5.33)
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in the class:

X s1,s2,ε
T = Hs1(T3)×Hs2(T3)

×
(
C([0, T ];W− 1

2
−ε,∞(T3)) ∩ C1([0, T ];W− 3

2
−ε,∞(T3))

)
× C([0, T ];W−1−ε,∞(T3))

×
(
C([0, T ];W

1
2
−ε,∞(T3)) ∩ C1([0, T ];W−1−ε,∞(T3))

)
× C([0, T ];H−ε(T3))× L∞

t′ L
3
t (∆2(T );H

−ε(T3))× L2

(
3
2 , T

)
.

Given the a priori regularities of the enhanced data, Theorem 5.1 follows from the standard

energy and Strichartz estimates for the wave equation. While the proof is a slight modification

of those in [35, 53], we present the proof of Theorem 5.1 in Subsection 5.4 for readers’

convenience. The local well-posedness of the hyperbolic Φ3
3-model (Theorem 1.14) follows

from Theorem 5.1 and the almost sure convergence of the truncated stochastic objects:

N , N , N , =

N
, AN , and IN<,= (5.34)

to the elements in the enhanced data set in (5.29); see Lemmas 5.4, 5.6, 5.7, 5.8, 5.9, and 5.10

in Subsection 5.3. See Remark 5.2 below.

Remark 5.2. (i) For the sake of the well-posedness of the system (5.28), we considered

general initial data (X0, X1, Y0, Y1) ∈ Hs1(T3)×Hs2(T3) in Theorem 5.1. However, in order to

go back from the system (5.28) to the hyperbolic Φ3
3-model (5.1) with the identification (5.15)

(in the limiting sense), we need to set (X0, X1) = (0, 0) since the resonant product of the

linear solution S(t)(X0, X1) and is not well defined in general. As we see in Section 6, we

simply use the zero initial data for the system (5.28) in constructing global-in-time invariant

Gibbs dynamics for the hyperbolic Φ3
3-model (5.1).

(ii) Our choice of the norms for
=
is crucial in the globalization argument. See Proposition 6.5

and Remark 6.6.

(iii) In proving the local well-posedness result of the system (5.28) stated in Theorem 5.1, we

do not need to use the C1
T -norms for and . However, we will need these C1

T -norms for

and in the globalization argument presented in Section 6 and thus have included them in

the hypothesis and the definition of Theorem 5.1 of the space X s1,s2,ε
T . See also (5.49) and

Remark 5.11.

Furthermore, with this definition of the space X s1,s2,ε
T , the map from an enhanced data

set in (5.33) (with (X0, X1, Y0, Y1) = (0, 0, u0, u1)) to (u, ∂tu), where u = + +X + Y as

in (5.11) becomes a continuous map from X s1,s2,ε
T to C([0, T ];H− 1

2
−ε(T3)).

5.2. Strichartz estimates. Given 0 ≤ s ≤ 1, we say that a pair (q, r) is s-admissible (a pair

(q̃, r̃) is dual s-admissible,24 respectively) if 1 ≤ q̃ < 2 < q ≤ ∞, 1 < r̃ ≤ 2 ≤ r <∞,

1

q
+

3

r
=

3

2
− s =

1

q̃
+

3

r̃
− 2,

1

q
+

1

r
≤ 1

2
, and

1

q̃
+

1

r̃
≥ 3

2
.

24Here, we define the notion of dual s-admissibility for the convenience of the presentation. Note that (q̃, r̃)
is dual s-admissible if and only if (q̃′, r̃′) is (1− s)-admissible.
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We say that u is a solution to the following nonhomogeneous linear damped wave equation:{
(∂2t + ∂t + 1−∆)u = F

(u, ∂tu)|t=0 = (u0, u1)
(5.35)

on a time interval containing t = 0, if u satisfies the following Duhamel formulation:

u = S(t)(u0, u1) +

∫ t

0
D(t− t′)F (t′)dt′,

where S(t) and D(t) are as in (5.5) and (5.3), respectively. We now recall the Strichartz

estimates for solutions to the nonhomogeneous linear damped wave equation (5.35).

Lemma 5.3. Given 0 ≤ s ≤ 1, let (q, r) and (q̃, r̃) be s-admissible and dual s-admissible pairs,

respectively. Then, a solution u to the nonhomogeneous linear damped wave equation (5.35)

satisfies

∥(u, ∂tu)∥L∞
T Hs

x
+ ∥u∥Lq

TLr
x
≲ ∥(u0, u1)∥Hs + ∥F∥

Lq̃
TLr̃

x
(5.36)

for all 0 < T ≤ 1. The following estimate also holds:

∥(u, ∂tu)∥L∞
T Hs

x
+ ∥u∥Lq

TLr
x
≲ ∥(u0, u1)∥Hs + ∥F∥L1

THs−1
x

(5.37)

for all 0 < T ≤ 1. The same estimates also holds for any finite T > 1 but with the implicit

constants depending on T .

The Strichartz estimates on Rd are well known; see [28, 45, 40] in the context of the

undamped wave equation (with the linear part ∂2t −∆). For the undamped Klein-Gordon

equation (with the linear part ∂2t +1−∆), see [41]. Thanks to the finite speed of propagation,

these estimates on T3 follow from the corresponding estimates on R3.

As for the current damped case, by setting v(t) = e
t
2u(t), the damped wave equation (5.35)

becomes {
(∂2t +

3
4 −∆)v = e

t
2F

(v, ∂tv)|t=0 = (u0, u1),

to which the Strichartz estimates for the Klein-Gordon equation apply. By undoing the

transformation, we then obtain the Strichartz estimates for the damped equation (5.35) on

finite time intervals [0, T ], where the implicit constants depend on T .

In proving Theorem 5.1, we use the fact that
(
8, 83
)
and (4, 4) are 1

4 -admissible and
1
2 -admissible, respectively. We also use a dual 1

2 -admissible pair
(
4
3 ,

4
3

)
.

5.3. Stochastic terms and paracontrolled operators. In this subsection, we collect

regularity properties of stochastic terms and the paracontrolled operators. See [35, 53] for

the proofs. Note that the stochastic objects are constructed from the stochastic convolution

= Ψ in (5.4). In particular, in the following, probabilities of various events are measured

with respect to the Gaussian initial data and the space-time white noise.25

First, we state the regularity properties of and . See Lemma 3.1 in [35] and Lemma 4.1

in [53].

25With the notation in Section 6 (see (6.4)), this is equivalent to saying that we measure various events
with respect to µ⃗⊗ P2.
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Lemma 5.4. Let T > 0.

(i) For any ε > 0, N in (5.8) converges to in C([0, T ];W− 1
2
−ε,∞(T3)) ∩

C1([0, T ];W− 3
2
−ε,∞(T3)) almost surely. In particular, we have

∈ C([0, T ];W− 1
2
−ε,∞(T3)) ∩ C1([0, T ];W− 3

2
−ε,∞(T3))

almost surely. Moreover, we have the following tail estimate:

P
(
∥ N∥

CTW
− 1

2−ε,∞
x ∩C1

TW
− 3

2−ε,∞
x

> λ
)
≤ C(1 + T ) exp

(
− cλ2

)
(5.38)

for any T > 0 and λ > 0, uniformly in N ∈ N ∪ {∞} with the understanding that ∞ = .

(ii) For any ε > 0, N in (5.9) converges to in C([0, T ];W−1−ε,∞(T3)) almost surely. In

particular, we have

∈ C([0, T ];W−1−ε,∞(T3))

almost surely. Moreover, we have the following tail estimate:

P
(
∥ N∥

CTW−1−ε,∞
x

> λ
)
≤ C(1 + T ) exp

(
− cλ

)
for any T > 0 and λ > 0, uniformly in N ∈ N ∪ {∞} with the understanding that ∞ = .

Remark 5.5. A slight modification of the proof of the exponential tail estimate (5.38) shows

that there exists small δ > 0 such that

P
(
N δ

2∥ N1 − N2∥
CTW

− 1
2−ε,∞

x ∩C1
TW

− 3
2−ε,∞

x

> λ
)
≤ C(1 + T ) exp

(
− cλ2

)
for any T > 0 and λ > 0, uniformly in N1 ≥ N2 ≥ 1. A similar comment applies to the other

elements N , N ,
=

N
, AN , and IN<,= in the truncated enhanced data set in (5.34).

The next two lemmas treat and the resonant product
=
, exhibiting an extra 1

2 -smoothing.

See Propositions 1.6 and 1.8 in [35]. While the exponential tail estimates (5.39) and (5.40)

were not proven in [35], they follow from the second moment bounds on the Fourier coefficients

of N and
=

N
obtained in [35] and arguing as in the proof of Lemma 2.3 in [36], using a

version of the Garsia-Rodemich-Rumsey inequality (see Lemma 2.2 in [36]) with the fact that

N ∈ H2 and
=

N
∈ H≤3. Since the required argument is verbatim from [36], we omit details.

Lemma 5.6. Let T > 0. Then, N converges to in C([0, T ];W
1
2
−ε,∞(T3)) ∩

C1([0, T ];W−1−ε,∞(T3)) almost surely for any ε > 0. In particular, we have

∈ C([0, T ];W
1
2
−ε,∞(T3)) ∩ C1([0, T ];W−1−ε,∞(T3))

almost surely for any ε > 0. Moreover, we have the following tail estimate:

P
(
∥ N∥

CTW
1
2−ε,∞
x ∩C1

TW−1−ε,∞
x

> λ
)
≤ C(1 + T ) exp

(
− cλ

)
(5.39)

for any T > 0 and λ > 0, uniformly in N ∈ N ∪ {∞} with the understanding that ∞ = .

Lemma 5.7. Let T > 0. Then,
=

N
:= N

= N converges to
=
in C([0, T ];W−ε,∞(T3))

almost surely for any ε > 0. In particular, we have

=
∈ C([0, T ];W−ε,∞(T3))
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almost surely for any ε > 0. Moreover, we have the following tail estimate:

P
(
∥

=

N
∥CTW−ε,∞

x
> λ

)
≤ C(1 + T ) exp

(
− cλ

2
3
)

(5.40)

for any T > 0 and λ > 0, uniformly in N ∈ N ∪ {∞} with the understanding that
= ∞

=
=
.

Next, we state the almost sure mapping properties of the paracontrolled operators. We

first consider the paracontrolled operator I
(1)
< defined in (5.21). By writing out the frequency

relation |n2|θ ≲ |n1| ≪ |n2| in a more precise manner, we have

I
(1)
< (w)(t) =

∑
n∈Z3

en
∑

n=n1+n2

∑
θk+c0≤j<k−2

φj(n1)φk(n2)

×
∫ t

0
e−

t−t′
2

sin((t− t′)[[n]])

[[n]]
ŵ(n1, t

′)̂(n2, t′)dt′, (5.41)

where φj is as in (2.1) and c0 ∈ R is some fixed constant. Given a pathwise regularity of ,

the mapping property of I
(1)
< can be established in a deterministic manner. See Lemma 7.1

in [53]. See also Corollary 5.2 in [35].

Lemma 5.8. Let s > 0 and T > 0. Then, given small θ > 0, there exists small ε = ε(s, θ) > 0

such that the following deterministic estimate holds the paracontrolled operator I
(1)
< defined

in (5.21):

∥I(1)< (w)∥
L∞
T H

1
2+3ε
x

≲ ∥w∥L2
THs

x
∥ ∥

L2
TW

− 1
2−ε,∞

x

. (5.42)

In particular, I
(1)
< belongs almost surely to the class

L1(T ) = L(L2([0, T ];Hs(T3)) ; C([0, T ];H
1
2
+3ε(T3))).

Moreover, by letting I
(1),N
< , N ∈ N, denote the paracontrolled operator in (5.21) with replaced

by the truncated stochastic convolution N in (5.8), the truncated paracontrolled operator

I
(1),N
< converges almost surely to I

(1)
< in L1(T ).

Next, we consider the random operator I<,= defined in (5.23). By writing out the frequency

relations more carefully as in (5.41), we have

I<,= (w)(t) =
∑
n∈Z3

en

∫ t

0

∞∑
j=0

∑
n1∈Z3

φj(n1)ŵ(n1, t
′)An,n1(t, t

′)dt′, (5.43)

where An,n1(t, t
′) is given by

An,n1(t, t
′) = 1[0,t](t

′)

∞∑
k=0

0≤j<θk+c0

∞∑
ℓ,m=0

|ℓ−m|≤2

∑
n−n1=n2+n3

φk(n2)φℓ(n1 + n2)φm(n3)

× e−
t−t′
2

sin((t− t′)[[n1 + n2]])

[[n1 + n2]]
̂(n2, t′)̂(n3, t).

(5.44)

Then, we have the following almost sure mapping property of the random operator I<,= . See

Proposition 2.5 in [53]. See also Proposition 1.11 in [35].
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Lemma 5.9. Let s3 < 0 and T > 0. Then, there exists small θ = θ(s3) > 0 such that, for

any finite q > 1, the paracontrolled operator I<,= defined by (5.23) and (5.24) belongs to

L2(q, T ) defined in (5.31), almost surely. Furthermore the following tail estimate holds for

some C, c > 0:

P
(
∥I<,=∥L2(q,T ) > λ

)
≤ C(1 + T ) exp(−λ) (5.45)

for any λ≫ 1.

If we define the truncated paracontrolled operator IN<,= , N ∈ N, by replacing in (5.23)

and (5.24) with the truncated stochastic convolution N in (5.8), then the truncated para-

controlled operators IN<,= converge almost surely to I<,= in L2(q, T ). Furthermore, the tail

estimate (5.45) holds for the truncated paracontrolled operators IN<,= , uniformly in N ∈ N.

Finally, we state the regularity property of A defined in (5.26). See Lemma 7.2 in [53].

Given N ∈ N, we define the truncated version AN :

AN (x, t, t′) =
∑
n∈Z3

en(x)
∑

n=n1+n2
|n1|∼|n2|

e−
t−t′
2

sin((t− t′)[[n1]])

[[n1]]
̂N (n1, t

′)̂N (n2, t) (5.46)

by replacing by N in (5.26).

Lemma 5.10. Fix finite q ≥ 2. Then, given any T, ε > 0 and finite p ≥ 1, {AN}N∈N is

a Cauchy sequence in Lp(Ω;L∞
t′ L

q
t (∆2(T );H

−ε(T3))), converging to some limit A (formally

defined by (5.26)) in Lp(Ω;L∞
t′ L

q
t (∆2(T );H

−ε(T3))), where ∆2(T ) is as in (5.30). Moreover,

AN converges almost surely to the same limit in L∞
t′ L

q
t (∆2(T );H

−ε(T3)). Furthermore, we

have the following uniform tail estimate:

P
(
∥AN∥L∞

t′ L
q
t (∆2(T );H−ε

x ) > λ
)
≤ C(1 + T ) exp(−λ)

for any λ≫ 1, and N ∈ N ∪ {∞}, where A∞ = A.

5.4. Proof of local well-posedness. In this subsection, we present the proof of Theorem 5.1.

In the following, we assume that s3 < 0 < s1 < s2 < 1. Recall that
(
8, 83
)
and (4, 4) are

1
4 -admissible and 1

2 -admissible, respectively. Given 0 < T ≤ 1, we define Xs1(T ) (and Y s2(T ))

as the intersection of the energy spaces of regularity s1 (and s2, respectively) and the Strichartz

space:

Xs1(T ) = C([0, T ];Hs1(T3)) ∩ C1([0, T ];Hs1−1(T3)) ∩ L8([0, T ];W s1− 1
4
, 8
3 (T3)),

Y s2(T ) = C([0, T ];Hs2(T3)) ∩ C1([0, T ];Hs2−1(T3)) ∩ L4([0, T ];W s2− 1
2
,4(T3)),

(5.47)

and set

Zs1,s2,s3(T ) = Xs1(T )× Y s2(T )× L3([0, T ];Hs3(T3)).
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By writing (5.28) in the Duhamel formulation, we have

X = Φ1(X,Y,R)

:= S(t)(X0, X1) + 2I
(
(X + Y + ) <

)
− I

(
M
(
QX,Y + 2R+ 2 + 2 +

) )
,

Y = Φ2(X,Y,R)

:= S(t)(Y0, Y1) + I
(
(X + Y + )2

)
(5.48)

+ 2I
(
R+ Y = +

=

)
+ 2I

(
(X + Y + ) >

)
− I

(
M
(
QX,Y + 2R+ 2 + 2 +

)
(X + Y + )

)
,

R = Φ3(X,Y,R)

:= 2I
(1)
<

(
X + Y +

)
= + 2I<,=

(
X + Y +

)
−
∫ t

0
M
(
QX,Y + 2R+ 2 + 2 +

)
A(t, t′)dt′.

In the following, we use ε = ε(s1, s2, s3) > 0 to denote a small positive number. Given an

enhanced data set as in (5.33), we set

Ξ =
(
, , ,

=
, A, I<,=

)
and

∥Ξ∥X ε
T
= ∥ ∥

CTW
− 1

2−ε,∞
x ∩C1

TW
− 3

2−ε,∞
x

+ ∥ ∥
CTW−1−ε,∞

x

+ ∥ ∥
CTW

1
2−ε,∞
x ∩C1

TW−1−ε,∞
x

+ ∥
=
∥CTH−ε

x

+ ∥A∥L∞
t′ L

3
t (∆2;H

−ε
x ) + ∥I<,=∥L2(

3
2
,T )

(5.49)

for some small ε = ε(s1, s2, s3) > 0. Moreover, we assume that

∥(X0, X1)∥Hs1 + ∥(Y0, Y1)∥Hs2 + ∥Ξ∥X ε
1
≤ K (5.50)

for some K ≥ 1. Here, we assume the bound on Ξ for the time interval [0, 1].

Remark 5.11. As for proving local well-posedness stated in Theorem 5.1, we do not need to

use the C1
TW

− 3
2
−ε,∞

x -norm for and the C1
TW

−1−ε,∞
x -norm for . However, in constructing

global-in-time dynamics, we need to make use of these norms and thus we have included them

in the definition of the X ε
T -norm in (5.49).

We first establish preliminary estimates. By Sobolev’s inequality, we have

∥f2∥H−a ≲ ∥f2∥
L

6
3+2a

= ∥f∥2
L

12
3+2a

≲ ∥f∥2
H

3−2a
4

(5.51)
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for any 0 ≤ a < 3
2 . By (5.16), (5.51), Lemma 2.2, Lemma 2.3 (ii), and Hölder’s inequality

with (5.50), we have

∥QX,Y ∥L∞
T H−100

x
≲ ∥(X + Y )2∥L∞

T H−100
x

+ ∥X ∥L∞
T H−100

x
+ ∥Y ∥L∞

T H−100
x

+ ∥X < ∥L∞
T H−100

x
+ ∥X > ∥L∞

T H−100
x

+ ∥Y ∥L∞
T H−100

x

≲ ∥X∥2L∞
T Hε

x
+ ∥Y ∥2L∞

T Hε
x

+
(
∥X∥L∞

T L2
x
+ ∥Y ∥L∞

T L2
x

)
∥ ∥L∞

T L∞
x

(5.52)

+ ∥X∥L∞
T L2

x
∥ ∥

L∞
T W

− 1
2−ε,∞

x

+ ∥Y ∥
L∞
T H

1
2+ε
x

∥ ∥
L∞
T W

− 1
2−ε,∞

x

≲ ∥(X,Y,R)∥2Zs1,s2,s3 (T ) +K2,

provided that s1 ≥ ε and s2 ≥ 1
2 + ε.

We now estimate Φ1(X,Y,R) in (5.48). By (5.47), Lemmas 5.3 and 2.2, (1.34), and (5.52)

with (5.50), we have

∥Φ1(X,Y,R)∥Xs1 (T ) ≲ ∥(X0, X1)∥Hs1 +
∥∥(X + Y + ) <

∥∥
L1
TH

s1−1
x

+
∥∥M(QX,Y + 2R+ 2 + 2 +

) ∥∥
L1
TH

s1−1
x

≲ ∥(X0, X1)∥Hs1 + T∥X + Y + ∥L∞
T L2

x
∥ ∥

L∞
T W

− 1
2−ε,∞

x

(5.53)

+ T
1
3 ∥QX,Y + 2R+ 2 + 2 + ∥2

L3
TH−100

x
∥ ∥

L∞
T H

s1−1
x

≲ ∥(X0, X1)∥Hs1 + T
1
3K
(
∥(X,Y,R)∥4Zs1,s2,s3 (T ) +K4

)
,

provided that ε ≤ s1 <
1
2 − ε, s2 ≥ 1

2 + ε, and s3 ≥ −100.

Next, we estimate Φ2(X,Y,R) in (5.48). By (5.47) and Lemma 5.3 with the fractional

Leibniz rule (Lemma 2.3 (i)), we have∥∥I((X + Y + )2
)∥∥

Y s2 (T )
≲ ∥⟨∇⟩s2−

1
2 (X + Y + )2∥

L
4
3
T,x

≲ T
1
4

(
∥⟨∇⟩s2−

1
2X∥2

L8
TL

8
3
x

+ ∥⟨∇⟩s2−
1
2Y ∥2L4

T,x
+ ∥⟨∇⟩s2−

1
2 ∥2L∞

T,x

)
(5.54)

≲ T
1
4

(
∥(X,Y,R)∥2Zs1,s2,s3 (T ) +K2

)
,

provided that 1
2 ≤ s2 ≤ min(1− ε, s1 +

1
4). By Lemmas 5.3 and 2.2, (5.54), and (5.52) with

(5.50), we have

∥Φ2(X,Y,R)∥Y s2 (T )

≲ ∥(Y0, Y1)∥Hs2 +
∥∥I((X + Y + )2

)∥∥
Y s2 (T )

+ ∥R∥
L1
TH

s2−1
x

+ ∥Y = ∥
L1
TH

s2−1
x

+ ∥
=
∥
L1
TH

s2−1
x

+ ∥(X + Y + ) > ∥
L1
TH

s2−1
x

+
∥∥M(QX,Y + 2R+ 2 + 2 +

)
(X + Y + )

∥∥
L1
TH

s2−1
x

≲ ∥(Y0, Y1)∥Hs2 + T
1
4

(
∥(X,Y,R)∥2Zs1,s2,s3 (T ) +K2

)
+ T

2
3 ∥R∥L3

TH
s3
x

+ T∥
=
∥L∞

T H−ε
x

+ T
(
∥X∥L∞

T H
s1
x

+ ∥Y ∥L∞
T H

s2
x

+ ∥ ∥
L∞
T W

1
2−ε
x

)
∥ ∥

L∞
T W

− 1
2−ε

x

(5.55)
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+ T
1
3 ∥QX,Y + 2R+ 2 + 2 + ∥2

L3
TH−100

x

×
(
∥X∥L∞

T H
s1
x

+ ∥Y ∥L∞
T H

s2
x

+ ∥ ∥
L∞
T W

1
2−ε,∞
x

)
≲ ∥(Y0, Y1)∥Hs2 + T

1
4

(
∥(X,Y,R)∥5Zs1,s2,s3 (T ) +K5

)
,

provided that s1 ≥ ε, 1
2 + ε < s2 ≤ min(1− 3ε, s1 +

1
4 , s3 + 1), and s3 ≥ −100.

Finally, we estimate Φ3(X,Y,R) in (5.48). By Lemma 2.2, Lemma 5.8 (in particular (5.42)),

and (5.52) with (5.50), we have

∥Φ3(X,Y,R)∥L3
TH

s3
x

≲
∥∥I(1)<

(
X + Y +

)
=

∥∥
L3
TH

s3
x

+ ∥I<,=
(
X + Y +

)∥∥
L3
TH

s3
x

+

∥∥∥∥∫ t

0
M
(
QX,Y + 2R+ 2 + 2 +

)
A(t, t′)dt′

∥∥∥∥
L3
TH

s3
x

≲ T
1
3 ∥I(1)<

(
X + Y +

)∥∥
L∞
T H

1
2+3ε
x

∥ ∥
L∞
T W

− 1
2−ε,∞

x

+ T
1
3K∥X + Y + ∥L∞

T L2
x

+

∫ T

0
|M(QX,Y + 2R+ 2 + 2 + )(t′)| · ∥A(t, t′)∥L3

t ([t
′,T ];H

s3
x )dt

′ (5.56)

≲ T
1
3K2

(
∥X∥L∞

T H
s1
x

+ ∥Y ∥L∞
T H

s2
x

+ ∥ ∥
L∞
T W

1
2−ε,∞
x

)
+ T

1
3K∥QX,Y + 2R+ 2 + 2 + ∥2

L3
TH−100

x

≲ T
1
3K
(
∥(X,Y,R)∥4Zs1,s2,s3 (T ) +K4

)
provided that s1 > 0 with sufficiently small ε = ε(s1) > 0 (in view of Lemma 5.8), s2 ≥ 1

2 + ε,

and −100 ≤ s3 ≤ −ε.
Note that |x|x is differentiable with a locally bounded derivative. In view of (1.34), this

allows us to estimate the difference M(w1)−M(w2). By repeating a similar computation, we

also obtain the difference estimate:

∥Φ⃗(X,Y,R)− Φ⃗(X̃, Ỹ , R̃)∥Zs1,s2,s3 (T )

≲ T
1
4

(
∥(X,Y,R)∥4Zs1,s2,s3 (T ) +K4

)
∥(X,Y,R)− (X̃, Ỹ , R̃)∥Zs1,s2,s3 (T ),

(5.57)

where

Φ⃗ := (Φ1,Φ2,Φ3).

Therefore, by choosing T = T (K) > 0 sufficiently small, we conclude from (5.53), (5.55),

(5.56), and (5.57) that Φ⃗ = (Φ1,Φ2,Φ3) is a contraction on the closed ball BR ⊂ Zs1,s2,s3(T )

of radius R ∼ 1+∥(X0, X1)∥Hs1 +∥(Y0, Y1)∥Hs2 centered at the origin. A similar computation

yields Lipschitz continuous dependence of the solution (X,Y,R) on the enhanced data set

(X0, X1, Y0, Y1,Ξ) measured in the X s1,s2,ε
T -norm by possibly making T > 0 smaller. This

concludes the proof of Theorem 5.1.
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6. Invariant Gibbs dynamics

In this section, we present the proof of Theorem 1.15. In the remaining part of this section,

we work in the weakly nonlinear regime. Namely, we fix σ ̸= 0 such that |σ| ≤ σ0, where σ0 is

as in Theorem 1.8 (i). We also fix sufficiently large A≫ 1 as in Theorem 1.8 (i) such that the

Φ3
3-measure ρ is constructed as the limit of the truncated Φ3

3-measures ρN in (1.25). With

these parameters, consider the truncated Gibbs measure ρ⃗N :

ρ⃗N = ρN ⊗ µ0 (6.1)

for N ∈ N, where µ0 is the white noise measure; see (1.15) with s = 0. A standard argument

[36, 58, 53] shows that the truncated Gibbs measure ρ⃗N is invariant under the truncated

hyperbolic Φ3
3-model (1.38):

∂2t uN + ∂tuN + (1−∆)uN

− σπN
(
: (πNuN )2 :

)
+M( : (πNuN )2 : )πNuN =

√
2ξ,

(6.2)

where : (πNuN )2 : = (πNuN )2 − σN and πN and σN are as in (1.19) and (1.22), respectively.

See Lemma 6.4 below. Moreover, as a corollary to Theorem 1.8 (i), the truncated Gibbs

measure ρ⃗N in (6.1) converges weakly to the Gibbs measure ρ⃗ = ρ⊗ µ0 in (1.32).

Our main goal is to construct global-in-time dynamics for the limiting hyperbolic Φ3
3-

model (1.33) almost surely with respect to the Gibbs measure ρ⃗, and prove invariance of

the Gibbs measure ρ⃗ under the limiting hyperbolic Φ3
3-dynamics. A naive approach would

be to apply Bourgain’s invariant measure argument [8, 10], by exploiting the invariance

of the truncated Gibbs measure ρ⃗N under the truncated hyperbolic Φ3
3-dynamics, and to

try to construct global-in-time limiting dynamics for the limiting process u = limN→∞ uN .

There are, however, two issues in the current situation: (i) the truncated Gibbs measure

ρ⃗N converges to the limiting Gibbs measure ρ⃗ only weakly and (ii) the Gibbs measure ρ⃗

and the base Gaussian measure µ⃗ = µ ⊗ µ0 in (1.16) are mutually singular. Moreover, our

local theory relies on the paracontrolled approach, which gives additional difficulty. As a

result, Bourgain’s invariant measure argument [8, 10] is not directly applicable to our problem.

In [13], Bringmann encountered a similar problem in the context of the defocusing Hartree

NLW on T3, where he overcame this issue by introducing a new globalization argument, by

using the fact that the (truncated) Gibbs measure is absolutely continuous with respect to a

shifted measure (as in Appendix A below) [53, 12] in a uniform manner and establishing a

(rather involved) large time stability theory, where sets of large probabilities are characterized

via the shifted measures.

In the following, we introduce a new alternative globalization argument. This new argument

has the advantage of being conceptually simple and straightforward. Our approach consists of

several steps:

1. In the first step, we establish a uniform (inN) exponential integrability of the truncated

enhanced data set ΞN (see (6.10) below) with respect to the truncated measure ρ⃗N⊗P2

(Proposition 6.5). Here, P2 is the measure for the stochastic forcing defined in (6.4)

below. By combining the variational approach with space-time estimates, we prove

this uniform exponential integrability without any reference to (the truncated version

of) the shifted measure Law(Y (1) + σZ(1) +W(1)) constructed in Appendix A. As a

corollary, we construct the limiting enhanced data set Ξ associated with the Gibbs
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measure ρ⃗ (see (6.11) below) by establishing convergence of the truncated enhanced

data set ΞN almost surely with respect to the limiting measure ρ⃗⊗ P2.

2. In the second step, we establish a stability result (Proposition 6.8). We prove this

stability result by a simple contraction argument, where we use a norm with an

exponentially decaying weight in time. As a result, the proof follows from a small

modification of that of the local well-posedness (Theorem 5.1). As compared to [13],

our stability argument is very simple (both in terms of the statements and the proofs).

3. In the third step, we establish a uniform (in N) control on the solution (XN , YN ,RN )

to the truncated system (see (6.58) below) with respect to the truncated measure

ρ⃗N ⊗ P2 (Proposition 6.9). The proof is based on the invariance of the truncated

Gibbs measure ρ⃗N and a discrete Gronwall argument.

4. In the fourth step, we study the pushforward measures (ΞN )#(ρ⃗N ⊗P2) and (Ξ)#(ρ⃗⊗
P2). In particular, by using ideas from theory of optimal transport (the Kantorovich

duality) and the Boué-Dupuis variational formula, we prove that the pushforward

measure (ΞN )#(ρ⃗N ⊗ P2) converges to (Ξ)#(ρ⃗⊗ P2) in the Wasserstein-1 distance, as

N → ∞; see Proposition 6.10 below.

Once we establish Steps 1 - 4, the proof of Theorem 1.15 follows in a straightforward

manner. In Subsection 6.1, we first study the truncated dynamics (6.2) and briefly go over

almost sure global well-posedness of (6.2) and invariance of the truncated Gibbs measure ρ⃗N
(Lemma 6.4). We then discuss the details of Step 1 above. In Subsection 6.2, we first go over

the details of Steps 2, 3, and 4 and then present the proof of Theorem 1.15.

Notations: By assumption, the Gaussian field µ⃗ = µ⊗µ0 in (1.16) and hence the (truncated)

Gibbs measure are independent of (the distribution of) the space-time white noise ξ in (1.33)

and (6.2). Hence, we can write the probability space Ω as

Ω = Ω1 × Ω2 (6.3)

such that the random Fourier series in (1.18) depend only on ω1 ∈ Ω1, while the cylindrical

Wiener process W in (3.1) depends only on ω2 ∈ Ω2. In view of (6.3), we also write the

underlying probability measure P on Ω as

P = P1 ⊗ P2, (6.4)

where Pj is the marginal probability measure on Ωj , j = 1, 2.

With the decomposition (6.3) in mind, we set

(t; u⃗0, ω2) = S(t)u⃗0 +
√
2

∫ t

0
D(t− t′)dW (t′, ω2) (6.5)

for u⃗0 = (u0, u1) ∈ H− 1
2
−ε(T3) and ω2 ∈ Ω2, where S(t) and D(t) are as in (5.5) and (5.3),

respectively. When it is clear from the context, we may suppress the dependence on u⃗0 and/or

ω2. Given N ∈ N, we set

N (u⃗0, ω2) = πN (u⃗0, ω2), (6.6)
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where πN is as in (1.19). We also set

N (u⃗0, ω2) =
2
N (u⃗0, ω2)− σN ,

N (u⃗0, ω2) = πNI( N (u⃗0, ω2)),

=

N
(u⃗0, ω2) = N (u⃗0, ω2) = N (u⃗0, ω2),

(6.7)

and define AN (u⃗0, ω2) as in (5.46) by replacing N with N (u⃗0, ω2). We define the paracon-

trolled operator ĨN<,= = ĨN<,= (u⃗0, ω2) in a manner analogous to IN<,= in Lemma 5.9, but with

an extra frequency cutoff πN . Namely, instead of (5.20), we first define ĨN< by

ĨN< (w)(t) = I(πN (w < N ))(t), (6.8)

where N = N (u⃗0, ω2) is as in (6.6). We then define Ĩ
(1),N
< and Ĩ

(2),N
< as in (5.21) and (5.22)

with an extra frequency cutoff χN (n), depending on |n1| ≳ |n2|θ or |n1| ≪ |n2|θ. Note that

the conclusion of Lemma 5.8 (in particular the estimate (5.42)) holds for Ĩ
(1),N
< , uniformly in

N ∈ N. Finally, we define ĨN<,= by

ĨN<,= (w)(t) = Ĩ
(2),N
< (w) = N (t), (6.9)

namely, by inserting a frequency cutoff χN (n1 + n2) and replacing by N = N (u⃗0, ω2)

in (5.24). We then define the truncated enhanced data set ΞN (u⃗0, ω2) by

ΞN (u⃗0, ω2) =
(

N , N , N , =

N
, AN , Ĩ

N
<,=

)
, (6.10)

where, on the right-hand side, we suppressed the dependence on (u⃗0, ω2) for notational

simplicity. Note that, given u⃗0 ∈ H− 1
2
−ε(T3), the enhanced data set ΞN (u⃗0, ω2) does not

converge in general. Nonetheless, for the notational purpose, let us formally define the

(untruncated) enhanced data set Ξ(u⃗0, ω2) by setting

Ξ(u⃗0, ω2) =
(
, , ,

=
, A, I<,=

)
, (6.11)

where each term on the right-hand side is a limit of the corresponding term in (6.10) (if it

exists). In Corollary 6.7, we will construct the enhanced data set Ξ(u⃗0, ω2) in (6.11) as a limit

of the truncated enhanced data set ΞN (u⃗0, ω2) in (6.10) almost surely with respect to ρ⃗⊗ P2.

In the remaining part of this section, we fix s1, s2, s3 ∈ R satisfying

1

4
< s1 <

1

2
< s2 < s1 +

1

4
and s2 − 1 < s3 < 0. (6.12)

Furthermore, we take both s1 and s2 to be sufficiently close to 1
2 (such that the conditions

in (6.82) are satisfied, say with r1 = r2 = 3).

Remark 6.1. (i) In view of (6.6) with (1.19), we have N (u⃗0, ω2) = N (πN u⃗0, ω2) and thus

ΞN (u⃗0, ω2) = ΞN (πN u⃗0, ω2).

Namely, the truncated enhanced data set ΞN (u⃗0, ω2) in (6.10) depends only on the low

frequency part πN u⃗0 of the initial data.

(ii) Note that the terms N ,
=

N
, and ĨN<,= in (6.10) come with an extra frequency cutoff as

compared to the corresponding terms studied in Section 5. When Law(u⃗0) = µ⃗, the results

in Lemmas 5.6, 5.7, and 5.9, and Remark 5.5 from Subsection 5.3 also apply to N (u⃗0, ω2),

=

N
(u⃗0, ω2), and ĨN<,= (u⃗0, ω2).
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(iii) Note that the X ε
T -norm for enhanced data sets defined in (5.49) also measures the time

derivatives of N and N in appropriate space-time norms. In view of (6.7) and (5.6), the

time derivative of N (u⃗0, ω2) is given by

∂t N (t; u⃗0, ω2) = πN

∫ t

0
∂tD(t− t′) N (t′; u⃗0, ω2)dt

′.

As for the stochastic convolution, recall that, unlike the heat or Schrödinger case, the stochastic

convolution for the damped wave equation is differentiable in time and the time derivative of

N (u⃗0, ω2) is given by

∂t N (t; u⃗0, ω2) = πN∂tS(t)u⃗0 +
√
2πN

∫ t

0
∂tD(t− t′)dW (t′, ω2). (6.13)

The formula (6.13) easily follows from viewing the stochastic integral in (6.5) (with an extra

frequency cutoff πN ) as a Paley-Wiener-Zygmund integral and taking a time derivative.

6.1. On the truncated dynamics. In this subsection, we study the truncated hyperbolic

Φ3
3-model (6.2). We first go over local well-posedness of the truncated equation (6.2) and

then almost sure global well-posedness and invariance of the truncated Gibbs measure ρ⃗N ; see

Lemmas 6.2 and 6.4. Then, by combining the Boué-Dupuis variational formula (Lemma 3.1)

and space-time estimates, we prove uniform (in N) exponential integrability of the truncated

enhanced data set ΞN (u⃗0, ω2) with respect to ρ⃗N ⊗ P2 on (u⃗0, ω2); see Proposition 6.5. As a

corollary, we prove that the truncated enhanced data set ΞN (u⃗0, ω2) in (6.10) converges to

the limiting enhanced data set Ξ(u⃗0, ω2) in (6.11) almost surely with respect to the limiting

measure ρ⃗⊗ P2 (Corollary 6.7).

Given N ∈ N, let u⃗0 = (u0, u1) be a pair of random distributions such that Law((u0, u1)) =

ρ⃗N = ρN ⊗µ0. Let uN be a solution to the truncated equation (6.2) with (uN , ∂tuN )|t=0 = u⃗0.

With :(πNuN )2 : = (πNuN )2 − σN , we write (6.2) as
∂2t uN + ∂tuN + (1−∆)uN

− σπN
(
(πNuN )2 − σN

)
+M

(
(πNuN )2 − σN

)
πNuN =

√
2ξ

(uN , ∂tuN )|t=0 = u⃗0,

(6.14)

where M is as in (1.34). Note that, due to the presence of the frequency projector πN , the

dynamics (6.14) on high frequencies {|n| ≳ N} and low frequencies {|n| ≲ N} are decoupled.

The high frequency part of the dynamics (6.14) is given by{
∂2t π

⊥
NuN + ∂tπ

⊥
NuN + (1−∆)π⊥NuN =

√
2π⊥Nξ

(π⊥NuN , ∂tπ
⊥
NuN )|t=0 = π⊥N u⃗0.

(6.15)

The solution π⊥NuN to (6.15) is given by

π⊥NuN = π⊥N (u⃗0), (6.16)

where (u⃗0) is as in (6.5) with the ω2-dependence suppressed. With vN = πNuN , the low

frequency part of the dynamics (6.14) is given by
∂2t vN + ∂tvN + (1−∆)vN

− σπN
(
(πNvN )2 − σN

)
+M

(
(πNvN )2 − σN

)
πNvN =

√
2πNξ

(vN , ∂tvN )|t=0 = πN u⃗0,

(6.17)
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where we kept πN in several places to emphasize that (6.17) depends only on finite many

frequencies {n ∈ NQ} with Q as in (1.21). By writing (6.17) in the Duhamel formulation, we

have

vN (t) = πNS(t)u⃗0 +

∫ t

0
D(t− t′)NN (vN )(t′)dt′ + N (t; 0), (6.18)

where the truncated nonlinearity NN (vN ) is given by

NN (vN ) = σπN
(
(πNvN )2 − σN

)
−M

(
(πNvN )2 − σN

)
πNvN . (6.19)

and N (t; 0) is as in (6.6) with u⃗0 = 0:

N (t; 0, ω2) =
√
2

∫ t

0
D(t− t′)πNdW (t′, ω2).

For each fixed N ∈ N, we have N (t; 0) = πN (t; 0) ∈ C1(R+;C
∞(T3)); see Remark 6.1. By

viewing N (t; 0) in (6.18) as a perturbation, it suffices to study the following damped NLW

with a deterministic perturbation:

vN (t) = πNS(t)(v0, v1) +

∫ t

0
D(t− t′)NN (vN )(t′)dt′ + F, (6.20)

where (v0, v1) ∈ H1(T3), σN is as in (1.22), and F ∈ C1(R+;C
∞(T3)) is a given deterministic

function.

A standard contraction argument with the one degree of smoothing from the Duhamel

integral operator I in (5.6) and Sobolev’s inequality yields the following local well-posedness

of (6.20). Since the argument is standard, we omit details. See, for example, the proof of

Lemma 9.1 in [53].

Lemma 6.2. Let N ∈ N. Given any (v0, v1) ∈ H1(T3) and F ∈ C1([0, 1];H1(T3)) with

∥(v0, v1)∥H1 ≤ R and ∥F∥C1([0,1];H1) ≤ K

for some R,K ≥ 1, there exist τ = τ(R,K,N) > 0 and a unique solution vN to (6.20) on

[0, τ ], satisfying the bound :

∥vN∥
X̃1(τ)

≲ R+K,

where

X̃1(τ) = C([0, τ ];H1(T3)) ∩ C1([0, τ ];L2(T3)).

Moreover, the solution vN is unique in X̃1(τ).

Remark 6.3. (i) A standard contraction argument gives τ = τ(R,K,N) ∼ (R+K +N)−θ

for some θ > 0, in particular the local existence depends on N ∈ N.
(ii) We also point out that the uniqueness statement for vN in Lemma 6.2 is unconditional,

namely, the uniqueness of the solution vN holds in the entire class X̃1(τ). Then, from (6.16)

and the unconditional uniqueness of the solution vN = vN (πN u⃗0) to (6.17), we obtain the

unique representation of uN :

uN = π⊥N (u⃗0) + vN (πN u⃗0).

See for example (6.129) below, where we use a different representation of uN .
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Before proceeding further, let us introduce some notations. Given the cylindrical Wiener

process W in (3.1), by possibly enlarging the probability space Ω2, there exists a family of

translations τt0 : Ω2 → Ω2 such that

W (t, τt0(ω2)) =W (t+ t0, ω2)−W (t0, ω2)

for t, t0 ≥ 0 and ω2 ∈ Ω2. Denote by ΦN (t) the stochastic flow map to the truncated

hyperbolic Φ3
3-model (6.2) constructed in Lemma 6.2 (which is not necessarily global at this

point). Namely,

u⃗N (t) = (uN (t), ∂tuN (t)) = ΦN (t)(u⃗0, ω2)

=
(
ΦN
1 (t)(u⃗0, ω2),Φ

N
2 (t)(u⃗0, ω2)

) (6.21)

is the solution to (6.2) with u⃗N |t=0 = u⃗0, satisfying Law(u⃗0) = ρ⃗N , and the noise ξ(ω2). We

now extend ΦN (t) as

Φ̂N (t)(u⃗0, ω2) =
(
ΦN (t)(u⃗0, ω2), τt(ω2)

)
. (6.22)

Note that by the uniqueness of the solution to (6.2), we have

ΦN (t1 + t2)(u⃗0, ω2) = ΦN (t2)
(
ΦN (t1)(u⃗0, ω2), τt1(ω2)

)
= ΦN (t2)

(
Φ̂N (t1)(u⃗0, ω2)

)
for t1, t2 ≥ 0 as long as the flow is well defined.

By writing the truncated dynamics (6.2) as a superposition of the deterministic NLW:

∂2t uN + (1−∆)uN −NN (uN ) = 0, (6.23)

where NN (uN ) is as in (6.19), and the Ornstein-Uhlenbeck process (for ∂tuN ):

∂t(∂tuN ) = −∂tuN +
√
2ξ, (6.24)

we see that the truncated Gibbs measure ρ⃗N in (6.1) is formally26 invariant under the dynamics

of (6.2), since ρ⃗N is invariant under the NLW dynamics (6.23), while the white noise measure

µ0 on ∂tuN (and hence ρ⃗N = ρN⊗µ0 on (uN , ∂tuN )) is invariant under the Ornstein-Uhlenbeck

dynamics (6.24). Then, by exploiting the formal invariance of the truncated Gibbs measure

ρ⃗N , Bourgain’s invariant measure argument [8] yields the following result on almost sure global

well-posedness of the truncated hyperbolic Φ3
3-model (6.2) and invariance of the truncated

Gibbs measure ρ⃗N . Since the argument is standard (for fixed N ∈ N), we omit details. See

the proof of Lemma 9.3 in [53] for details.

Lemma 6.4. Let N ∈ N. Then, the truncated hyperbolic Φ3
3-model (6.2) is almost surely

globally well-posed with respect to the random initial data distributed by the truncated Gibbs

measure ρ⃗N in (6.1). Furthermore, ρ⃗N is invariant under the resulting dynamics and, as a

consequence, the measure ρ⃗N ⊗ P2 is invariant under the extended stochastic flow map Φ̂N (t)

defined in (6.22). More precisely, there exists ΣN ⊂ Ω = Ω1 ×Ω2 with ρ⃗N ⊗ P2(ΣN ) = 1 such

that the solution uN = uN (u⃗0, ω2) to (6.2) exists globally in time and Law(uN (t), ∂tuN (t)) =

ρ⃗N for any t ∈ R+.

Next, we establish uniform exponential integrability of the truncated enhanced data set

ΞN (u⃗0, ω2) in (6.10) with respect to the truncated measure ρ⃗N ⊗P2. We also establish uniform

exponential integrability for the difference of the truncated enhanced data sets.

26Namely, as long as the dynamics is well defined.
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Proposition 6.5. Let T > 0. Then, we have∫
EP2

[
exp

(
∥ΞN (u⃗0, ω2)∥αX ε

T

)]
dρ⃗N (u⃗0) ≤ C(T, ε, α) <∞ (6.25)

for 0 < α < 1
3 , uniformly in N ∈ N, where the X ε

T -norm and the truncated enhanced data set

ΞN (u⃗0, ω2) are as in (5.49) and (6.10), respectively. Here, EP2 denotes an expectation with

respect to the probability measure P2 on ω2 ∈ Ω2 defined in (6.4).

Moreover, there exists small β > 0 such that∫
EP2

[
exp

(
Nβ

2 ∥ΞN1(u⃗0, ω2)− ΞN2(u⃗0, ω2)∥αX ε
T

)]
dρ⃗N (u⃗0) ≤ C(T, ε, α) <∞ (6.26)

for 0 < α < 1
3 , uniformly in N,N1, N2 ∈ N with N ≥ N1 ≥ N2.

Proof. For simplicity, we only prove (6.25) and (6.26) for the random operator ĨN<,= defined

in (6.9). The other terms in ΞN (u⃗0, ω2) can be estimated in an analogous manner. See

Remark 6.6.

• Part 1: We first prove the following uniform exponential integrability:∫
EP2

[
exp

(∥∥ĨN<,=∥∥αL2(q,T )

)]
dρ⃗N (u⃗0) ≤ C(T, ε, α) <∞ (6.27)

for any T > 0, any finite q > 1, and 0 < α < 1
2 , uniformly in N ∈ N. Note that the

range 0 < α < 1
2 of the exponent in (6.27) comes from the presence of ∥ZN∥2W 1−ε,∞ in (6.41)

and (6.45), since ZN defined in one line below (3.11) belongs to H≤2. Similarly, the overall

restriction 0 < α < 1
3 in this proposition comes from the terms involving ψ1 in (6.51), where

ψ1 is defined in (6.36) with (6.34). Namely, the worst contribution in (6.51) behaves like

∥ZN∥3αW 1−ε,∞ which is exponentially integrable only for α < 1
3 ; see (6.52).

From (6.8) and (6.9), we see that ĨN<,= depends on two entries of N = πN (u⃗0, ω2). We

now generalize the definition of ĨN<,= to allow general entries. Given ψj ∈ C(R+;D′(T3)),

j = 1, 2, we first define ĨN< [ψ1] by

ĨN< [ψ1](w) = I
(
πN (w < (πNψ1))

)
. (6.28)

As in (5.21) and (5.22), define Ĩ
(2),N
< [ψ1] to be the restriction of ĨN< [ψ1] onto {|n1| ≪ |n2|θ}:

Ĩ
(2),N
< [ψ1](w) = I

(
πN (Kθ(w, πNψ1))

)
, (6.29)

where Kθ is the bilinear Fourier multiplier operator with the multiplier 1{|n1|≪|n2|θ}. More

precisely, we have

Ĩ
(2),N
< [ψ1](w)(t) =

∑
n∈Z3

χN (n)en
∑

n=n1+n2

∑
0≤j<θk+c0

φj(n1)φk(n2)χN (n2)

×
∫ t

0
e−

t−t′
2

sin((t− t′)[[n]])

[[n]]
ŵ(n1, t

′) ψ̂1(n2, t
′)dt′,

(6.30)

where χN is as in (1.20) and c0 ∈ R is as in (5.41). Then, we define ĨN<,= [ψ1, ψ2] by

ĨN<,= [ψ1, ψ2](w) = Ĩ
(2),N
< [ψ1](w) = (πNψ2). (6.31)
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Note that ĨN<,= [ψ1, ψ2] is bilinear in ψ1 and ψ2. We also set

ĨN<,= [ψ] = ĨN<,= [ψ,ψ] (6.32)

for simplicity. With this notation, we can write ĨN<,= in (6.27) as ĨN<,= [ (u⃗0, ω2)], where

u⃗0 = (u0, u1). Note that we have ĨN<,= [πNψ] = ĨN<,= [ψ]. Before proceeding further, we record

the following boundedness of Kθ defined in (6.29) and (6.30); a slight modification of the

proof of (2.7) in Lemma 2.2 yields

∥Kθ(f, g)∥Bs2
p,q

≲ ∥f∥Lp1∥g∥Bs2
p2,q

(6.33)

for any s2 ∈ R and 1 ≤ p, p1, p2, q ≤ ∞ such that 1
p = 1

p1
+ 1

p2
.

By the Boué-Dupuis variational formula (Lemma 3.1) with the change of variables (3.12),

we have

− log

∫
exp

(∥∥ĨN<,= [ (u⃗0, ω2)]
∥∥α
L2(q,T )

)
dρN (u0)

= inf
Υ̇N∈H1

a

E
[
−
∥∥ĨN<,= [ (Y +Θ, u1, ω2)]

∥∥α
L2(q,T )

+ R̂⋄
N (Y +ΥN + σZN ) +

1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
+ logZN ,

where R̂⋄
N is as in (3.33) and

Θ = ΥN + σZN . (6.34)

Recall the notation YN = πNY and ΥN = πNΥN . Then, from Lemmas 3.5 and 3.6 with

Lemma 3.2 and (3.25), there exists ε0, C0 > 0 such that

− log

∫
exp

(∥∥ĨN<,= [ (u⃗0, ω2)]
∥∥α
L2(q,T )

)
dρN (u0)

≥ inf
Υ̇N∈H1

a

E
[
−
∥∥ĨN<,= [ (Y +Θ, u1, ω2)]

∥∥α
L2(q,T )

+ ε0
(
∥ΥN∥2H1 + ∥ΥN∥6L2

)]
− C0,

(6.35)

uniformly in u1 and ω2.

In view of (6.5), we write (Y +Θ, u1, ω2) as

(Y +Θ, u1, ω2) = (Y, u1, ω2) + S(t)(Θ, 0) =: ψ0 + ψ1, (6.36)

where S(t) is as in (5.5). By (6.32), we have∥∥ĨN<,= [ (Y +Θ, u1, ω2)]
∥∥
L2(q,T )

≤
∥∥ĨN<,= [ψ0, ψ0]

∥∥
L2(q,T )

+
∥∥ĨN<,= [ψ0, ψ1]

∥∥
L2(q,T )

+
∥∥ĨN<,= [ψ1, ψ0]

∥∥
L2(q,T )

+
∥∥ĨN<,= [ψ1, ψ1]

∥∥
L2(q,T )

.
(6.37)

Under the truncated Gibbs measure ρ⃗N , we have Law(u1) = µ0 and thus we have Law(Y, u1) =

µ⃗ = µ⊗ µ0. Then, from the uniform exponential tail estimates in Lemmas 5.4 and 5.9 (see

also Remark 6.1) with (3.11), there exists K(Y, u1, ω2) such that∥∥ĨN<,= [ψ0]
∥∥
L2(q,T )

+ ∥ψ0∥2
L∞
T W

− 1
2−ε,∞

x

+ ∥ZN∥W 1−ε,∞ ≤ K(Y, u1, ω2) (6.38)

and

Eµ⃗⊗P2

[
exp(δK(Y, u1, ω2))

]
<∞ (6.39)
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for sufficiently small δ > 0.

We now estimate the last three terms on the right-hand side of (6.37). Let s3 < 0. By

Sobolev’s inequality, (6.31), Hölder’s inequality,27 (6.29), Sobolev’s inequality, Lemma 5.3,

and (6.33) with (6.36), we have∥∥ĨN<,= [ψ0, ψ1](w)
∥∥
L∞
T H

s3
x

≲
∥∥Ĩ(2),N< [ψ0](w) = (πNψ1)

∥∥
L∞
T L

6
3−2s3
x

≲
∥∥Ĩ(2),N< [ψ0](w)

∥∥
L∞
T L

3
1−s3−ε
x

∥πNψ1∥
L∞
T L

6
1+2ε
x

≲ ∥I(Kθ(w, πNψ0))∥
L∞
T H

s3+
1
2+ε

x

∥ψ1∥L∞
T H1−ε

x

≲ ∥Kθ(w, πNψ0)∥
L1
TH

s3−
1
2+ε

x

∥Θ∥H1−ε

≲ ∥w∥L1
TL2

x
∥ψ0∥

L∞
T W

− 1
2−2ε,∞

x

∥Θ∥H1−ε ,

(6.40)

for ε > 0 sufficiently small such that 4ε ≤ −s3. Hence, by the definition (5.31) of the

L(q, T )-norm, Cauchy’s inequality, and (6.34), we obtain∥∥ĨN<,= [ψ0, ψ1]
∥∥
L2(q,T )

≲ T
q−1
q ∥ψ0∥

L∞
T W

− 1
2−2ε,∞

x

∥Θ∥H1−ε

≲ T
q−1
q

(
∥ψ0∥2

L∞
T W

− 1
2−ε,∞

x

+ ∥ΥN∥2H1 + ∥ZN∥2W 1−ε,∞

)
.

(6.41)

Proceeding as in (6.40) and applying Sobolev’s embedding theorem with (6.34) and (6.36),

we have ∥∥ĨN<,= [ψ1, ψ1]
∥∥
L2(q,T )

≲ T
q−1
q ∥ψ1∥

L∞
T W

− 1
2−2ε,∞

x

∥Θ∥H1−ε ≲ T
q−1
q ∥Θ∥2H1−ε

≲ T
q−1
q

(
∥ΥN∥2H1 + ∥ZN∥2W 1−ε,∞

)
.

(6.42)

Finally, from Lemma 2.2, Lemma 5.3, Sobolev’s inequality, and (6.33), we have∥∥ĨN<,= [ψ1, ψ0](w)
∥∥
L∞
T H

s3
x

≤
∥∥Ĩ(2),N< [ψ1](w) = (πNψ0)

∥∥
L∞
T L2

x

≲ ∥I(Kθ(w, πNψ1)∥
L∞
T H

1
2+2ε
x

∥ψ0∥
L∞
T W

− 1
2−ε,∞

x

≲ ∥Kθ(w, πNψ1)∥
L1
TH

− 1
2+2ε

x

∥ψ0∥
L∞
1 W

− 1
2−ε,∞

x

≲ ∥Kθ(w, πNψ1)∥
L1
TL

3
2−2ε
x

∥ψ0∥
L∞
T W

− 1
2−ε,∞

x

≲ ∥w∥Lq
TL2

x
∥ψ1∥Lq′

T B0
6

1−4ε ,2

∥ψ0∥
L∞
T W

− 1
2−ε,∞

x

.

(6.43)

27To be more precise, this is the Coifman-Meyer theorem on T3 to estimate a resonant product. The
Coifman-Meyer theorem on T3 follows from the Coifman-Meyer theorem for functions on Rd [30, Theorem
7.5.3] and the transference principle [25, Theorem 3]. We may equally proceed with (2.9) in Lemma 2.2 with a
slight loss of derivative which does not affect the estimate.
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Note that ( 1
3ε ,

6
1−4ε) is (1− ε)-admissible. Since q > 1, we can choose ε > 0 sufficiently small

such that q′ ≤ 1
3ε . Then, by Minkowski’s integral inequality, (6.36), and Lemma 5.3, we have

∥ψ1∥Lq′
T B0

6
1−4ε ,2

≤
( ∞∑

j=0

∥S(t)(PjΘ, 0)∥2
Lq′
T L

6
1−4ε
x

) 1
2

≲ ∥Θ∥H1−ε , (6.44)

where Pj is the Littlewood-Paley projector onto the frequencies {|n| ∼ 2j}. Hence, from

(5.31), (6.43), (6.44), and Cauchy’s inequality with (6.34), we obtain

∥∥ĨN<,= [ψ1, ψ0]
∥∥
L2(q,T )

≤ C(T )∥ψ0∥
L∞
T W

− 1
2−ε,∞

x

∥Θ∥H1−ε

≤ C(T )
(
∥ψ0∥2

L∞
T W

− 1
2−ε,∞

x

+ ∥ΥN∥2H1 + ∥ZN∥2W 1−ε,∞

)
.

(6.45)

By (6.37), (6.38), (6.41), (6.42), (6.45), and Young’s inequality (with α < 1) we have

inf
Υ̇N∈H1

a

E
[
−
∥∥ĨN<,= [ (Y +Θ, u1, ω2)]

∥∥α
L2(q,T )

+ ε0
(
∥ΥN∥2H1 + ∥ΥN∥6L2

)]
≥ −cE

[
K(Y, u1, ω2)

2α
]
+ inf

Υ̇N∈H1
a

(
− c∥ΥN∥2αH1 + ε0∥ΥN∥2H1

)
− C1

≳ −E
[
K(Y, u1, ω2)

2α
]
− C2.

(6.46)

Therefore, from (6.35), (6.46), Young’s inequality, and Jensen’s inequality, we obtain

∫
exp

(∥∥IN<,= [ (u⃗0, ω2)]
∥∥α
L2(q,1)

)
dρN (u0) ≲ exp

(
CE
[
K(Y, u1, ω2)

2α
])

≤ exp
(
δE
[
K(Y, u1, ω2)

])
≤
∫

exp
(
δK(Y, u1, ω2)

)
dµ(Y )

for 0 < α < 1
2 . Finally, by integrating in (u1, ω2) with respect to µ2 ⊗ P2, we obtain the

desired bound (6.27) from (6.39).

• Part 2: Next, we briefly discuss how to prove (6.26) for the random operator ĨN<,= . For

N ≥ N1 ≥ N2 ≥ 1, proceeding as in Part 1, we arrive at

− log

∫
exp

(
Nβ

2

∥∥ĨN1
<,=

[ (u⃗0, ω2)]− ĨN2
<,=

[ (u⃗0, ω2)]
∥∥α
L2(q,T )

)
dρN (u0)

≥ inf
Υ̇N∈H1

a

E
[
−Nβ

2

∥∥ĨN1
<,=

[ (Y +Θ, u1, ω2)]− ĨN2
<,=

[ (Y +Θ, u1, ω2)]
∥∥α
L2(q,T )

+ ε0
(
∥ΥN∥2H1 + ∥ΥN∥6L2

)]
− C0,
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uniformly in u1 and ω2. See (6.35). With ψ0 and ψ1 as in (6.36), we write

N
β
α
2

∥∥ĨN1
<,=

[ (Y +Θ, u1, ω2)]− ĨN2
<,=

[ (Y +Θ, u1, ω2)]
∥∥
L2(q,T )

≤ N
β
α
2

∥∥ĨN1
<,=

[ψ0, ψ0]− ĨN2
<,=

[ψ0, ψ0]
∥∥
L2(q,T )

+N
β
α
2

∥∥ĨN1
<,=

[ψ0, ψ1]− ĨN2
<,=

[ψ0, ψ1]
∥∥
L2(q,T )

+N
β
α
2

∥∥ĨN1
<,=

[ψ1, ψ0]− ĨN2
<,=

[ψ1, ψ0]
∥∥
L2(q,T )

+N
β
α
2

∥∥ĨN1
<,=

[ψ0, ψ1]− ĨN2
<,=

[ψ1, ψ1]
∥∥
L2(q,T )

.

(6.47)

In view of Remark 6.1 (see also Lemma 5.9 and Remark 5.5), we see that there exists

K(Y, u1, ω2) such that

N
β
α
2

∥∥ĨN1
<,=

[ψ0, ψ0]− ĨN2
<,=

[ψ0, ψ0]
∥∥
L2(q,T )

+ ∥ψ0∥2
L∞
T W

− 1
2−ε,∞

x

+ ∥ZN∥W 1−ε,∞ ≤ K̃(Y, u1, ω2)
(6.48)

and

Eµ⃗⊗P2

[
exp(δK̃(Y, u1, ω2))

]
<∞ (6.49)

for sufficiently small δ > 0, provided that β > 0 is sufficiently small. The last three terms

on the right-hand side of (6.47) can be handled as in (6.41), (6.42), and (6.45). By noting

that one of the factors comes with πN1 − πN2 , we gain a small negative power of N2 by losing

small regularity in (6.41), (6.42), and (6.45), while keeping the resulting regularities on the

right-hand sides unchanged. This allows us to hide N
β
α
2 in (6.47). The rest of the argument

follows precisely as in Part 1. □

Remark 6.6. In the proof of Proposition 6.5, we only treated ĨN<,= from the truncated

enhanced data set ΞN (u⃗0, ω2) in (6.10). Let us briefly discuss how to treat the other terms in

ΞN (u⃗0, ω2) to get the exponential integrability bound (6.25). The second bound (6.26) follows

in a similar manner. The terms N , N , N , and AN can be estimated in a similar manner

since they are (at most) quadratic in (Y +Θ, u1, ω2) and the product ψ0ψ1 is well defined,

where ψj , j = 0, 1, is as in (6.36).

As for
=

N
, with the notation above and (6.36), we have

=

N
[ (Y +Θ, u1, ω2)] = =

N
[ψ0 + ψ1]

= N [ψ0 + ψ1] = (πNψ0) + N [ψ0 + ψ1] = (πNψ1).
(6.50)

Let 0 < α < 1
3 . Then, by Lemma 2.2 and Young’s inequality, we can estimate the second

term on the right-hand side as

∥ N [ψ0 + ψ1] = (πNψ1)∥αCTH−ε
x

≲ ∥ N [ψ0 + ψ1]∥α
CTW

1
2−ε,∞
x

∥ψ1∥αCTH1−ε
x

≲ ∥ N [ψ0 + ψ1]∥
3
2
α

CTW
1
2−ε,∞
x

+ ∥ψ1∥3αCTH1−ε
x

.
(6.51)

Noting that 3
2α <

1
2 and 3α < 1, we can control the first term on the right-hand side of (6.51)

by the exponential integrability bound for N under ρ⃗N ⊗ P2, while by Young’s inequality
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with (6.36) and (6.34), we can bound the second term by

δ
(
∥ΥN∥H1 + ∥ZN∥W 1−ε,∞

)
+ Cδ. (6.52)

for any small δ > 0.

Let us consider the first term on the right-hand side of (6.50). In view of (6.7), by writing

N [ψ0 + ψ1] = (πNψ0) = N [ψ0] = (πNψ0) + 2
(
πNI

(
(πNψ0)(πNψ1)

))
= (πNψ0)

+
(
πNI

(
(πNψ1)

2
))

= (πNψ0).
(6.53)

Note that we have N [ψ0] = (πNψ0) = =

N
((Y, u1), ω2), where the latter term is as in (6.7).

While there is an extra frequency cutoff as compared to
=

N
in Lemma 5.7, the conclusion

of Lemma 5.7 also holds for N [ψ0] = (πNψ0) = =

N
((Y, u1), ω2). Hence, we can control the

first term on the right-hand side of (6.53) by the exponential tail estimate in Lemma 5.7 with

0 < α < 1
3 . The third term on the right-hand side of (6.53) causes no issue since the resonant

product of πNI
(
(πNψ1)

2
)
and πNψ0 is well defined.

Lastly, let us consider the second term on the right-hand side of (6.53). In view of (6.28),

(6.29), and (6.31), we have(
πNI

(
(πNψ0)(πNψ1)

))
= (πNψ0) =

(
πNI

(
(πNψ1) ⩾ (πNψ0)

))
= (πNψ0)

+ Ĩ
(1),N
< [ψ0](πNψ1) = (πNψ0) + ĨN<,= [ψ0](πNψ1),

(6.54)

where Ĩ
(1),N
< [ψ0] is defined by

Ĩ
(1),N
< [ψ0] := ĨN< [ψ0]− Ĩ

(2),N
< [ψ0]. (6.55)

From Lemma 2.2 and the one degree of smoothing from the Duhamel integral operator I, we
see that I

(
(πNψ1) ⩾ (πNψ0)

)
∈ C([0, T ];H

3
2
−3ε(T3)), which allows us to handle the first term

on the right-hand side of (6.54).

Next, we estimate the second term on the right-hand side of (6.54). Recall from (6.36) that

ψ0 = (Y, u1, ω2) with Law(Y, u1) = µ⃗. Namely, Ĩ
(1),N
< [ψ0] defined in (6.55) is nothing but

I
(1),N
< in Lemma 5.8 with an extra frequency cutoff χN (n). Hence, the conclusion of Lemma 5.8

(in particular (5.42)) holds true for Ĩ
(1),N
< [ψ0]. Then, from Lemma 2.2 and Lemma 5.8, we

have ∥∥Ĩ(1),N< [ψ0](πNψ1) = (πNψ0)
∥∥α
CTH−ε

x
≲
∥∥Ĩ(1),N< [ψ0](πNψ1)

∥∥α
CTH

1
2+3ε
x

∥ψ0∥α
CTW

− 1
2−ε,∞

x

≤ C(T )∥ψ1∥αCTH1−ε
x

∥ψ0∥2α
CTW

− 1
2−ε,∞

x

.

Then, Young’s inequality allows us to handle this term.

Finally, we treat the third term on the right-hand side of (6.54). From (5.31) and Young’s

inequality, we have∥∥ĨN<,= [ψ0](πNψ1)
∥∥α
CTH−ε

x
≤
∥∥ĨN<,= [ψ0]

∥∥α
L( 3

2
,T )

∥ψ1∥α
L

3
2
T L2

x

≲ C(T )
(∥∥ĨN<,= [ψ0]

∥∥ 3
2
α

L( 3
2
,T )

+ ∥ψ1∥3α
L

3
2
T L2

x

)
,

which can be controlled by (6.27) and (6.52).
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Therefore, Proposition 6.5 holds for all the elements in the truncated enhanced data set

ΞN (u⃗0, ω2) in (6.10).

We conclude this subsection by constructing the full enhanced data set Ξ(u⃗0, ω2) in (6.11)

under ρ⃗⊗ P2 as a limit of the truncated enhanced data set ΞN (u⃗0, ω2) in (6.10).

Corollary 6.7. Let T > 0. Then, the truncated enhanced data set ΞN (u⃗0, ω2) in (6.10)

converges to the enhanced data set Ξ(u⃗0, ω2) in (6.11), with respect to the X ε
T -norm defined

in (5.49), almost surely and in measure with respect to the limiting measure ρ⃗⊗ P2.

Proof. Let 0 < α < 1
3 and β > 0 be as in Proposition 6.5. Then, by Fatou’s lemma, the weak

convergence of ρ⃗N ⊗ P2 to ρ⃗⊗ P2, and Proposition 6.5, we have∫
exp

(
Nβ

2 ∥ΞN1(u⃗0, ω2)− ΞN2(u⃗0, ω2)∥αX ε
T

)
d(ρ⃗⊗ P2)(u⃗0, ω2)

≤ lim inf
L→∞

∫
exp

(
min

(
Nβ

2 ∥ΞN1(u⃗0, ω2)− ΞN2(u⃗0, ω2)∥αX ε
T
, L
))
d(ρ⃗⊗ P2)(u⃗0, ω2)

= lim inf
L→∞

lim
N→∞

∫
exp

(
min

(
Nβ

2 ∥ΞN1(u⃗0, ω2)

− ΞN2(u⃗0, ω2)∥αX ε
T
, L
))
d(ρ⃗N ⊗ P2)(u⃗0, ω2)

≤ lim
N→∞

∫
exp

(
Nβ

2 ∥ΞN1(u⃗0, ω2)− ΞN2(u⃗0, ω2)∥αX ε
T

)
d(ρ⃗N ⊗ P2)(u⃗0, ω2)

≲ 1, (6.56)

uniformly in N1 ≥ N2 ≥ 1. Then, by Chebyshev’s inequality, we have

ρ⃗⊗ P2

(
∥ΞN1(u⃗0, ω2)− ΞN2(u⃗0, ω2)∥αX ε

T
> λ

)
≤ Ce−cNβ

2 λα

for any λ > 0 and N1 ≥ N2 ≥ 1. This shows that {ΞN (u⃗0, ω2)}N∈N is Cauchy in measure

with respect to ρ⃗⊗ P2 and thus converges in measure to the full enhanced data set Ξ(u⃗0, ω2)

in (6.11). By Fatou’s lemma and (6.56), we also have∫
exp

(
Nβ

2 ∥Ξ(u⃗0, ω2)− ΞN2(u⃗0, ω2)∥αX ε
T

)
d(ρ⃗⊗ P2)(u⃗0, ω2) ≲ 1,

uniformly in N1 ≥ N2 ≥ 1, which in turn implies

ρ⃗⊗ P2

(
∥Ξ(u⃗0, ω2)− ΞN2(u⃗0, ω2)∥αX ε

T
> λ

)
≤ Ce−cNβ

2 λα

for any λ > 0 and N2 ∈ N. By summing in N2 ∈ N and invoking the Borel-Cantelli lemma,

we also conclude almost sure convergence ΞN (u⃗0, ω2) to Ξ(u⃗0, ω2) with respect to ρ⃗⊗ P2. □

6.2. Proof of Theorem 1.15. In this subsection, we present the proof of Theorem 1.15.

The main task is to prove convergence of the solution (uN , ∂tuN ) to the truncated hyperbolic

Φ3
3-model (6.2). We first carry out Steps 2, 3, and 4 described at the beginning of this section.

Namely, we first establish a stability result (Proposition 6.8) as a slight modification of the

local well-posedness argument (Theorem 5.1). Next, we establish a uniform (in N) control

on the solution (XN , YN ,RN ) to the truncated system (see (6.57) below) with respect to the

truncated measure ρN × P2 (Proposition 6.9). Then, by using ideas from theory of optimal

transport, we study the convergence property of the pushforward measure (ΞN )#(ρ⃗N ⊗ P2) to

(Ξ)#(ρ⃗⊗ P2) with respect to the Wasserstein-1 distance (Proposition 6.10).
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Let ΦN
1 (t)(u⃗0, ω2) be the first component of ΦN (t)(u⃗0, ω2) in (6.21). Then, by decomposing

ΦN
1 (t)(u⃗0, ω2) as in (5.11):

ΦN
1 (t)(u⃗0, ω2) = (t; u⃗0, ω2) + σ N (t; u⃗0, ω2) +XN (t) + YN (t), (6.57)

we see that XN , YN , and RN := XN = N (u⃗0, ω2) satisfy the following system:

(∂2t + ∂t + 1−∆)XN

= 2σπN

((
XN + YN + σ N

)
< N

)
−M(QXN ,YN

+ 2RN + σ2 2
N + 2σ N + N ) N ,

(∂2t + ∂t + 1−∆)YN

= σπN

((
XN + YN + σ N

)2
+ 2
(
RN + YN = N + σ

=

N

)
+ 2
(
XN + YN + σ N

)
> N

)
−M(QXN ,YN

+ 2RN + σ2 2
N + 2σ N + N )(XN + YN + σ N ),

RN = 2σĨ
(1),N
<

(
XN + YN + σ N

)
= N

+ 2σĨN<,=
(
XN + YN + σ N

)
−
∫ t

0
M(QXN ,YN

+ 2RN + σ2 2
N + 2σ N + N )(t′)AN (t, t′)dt′,

(XN , ∂tXN , YN , ∂tYN )|t=0 = (0, 0, 0, 0),

(6.58)

where M is as in (1.34), QXN ,YN
is as in (5.16) with replaced by N = N (u⃗0, ω2) as in (6.6),

and the enhanced data set is given by ΞN (u⃗0, ω2) in (6.10).

We first establish the following stability result. The main idea is that by introducing a

norm with an exponential decaying weight in time (see (6.63)), the proof essentially follows

from a straightforward modification of the local well-posedness argument (Theorem 5.1). A

simple, but key observation is (6.65) below.

Proposition 6.8. Let T ≫ 1, K ≫ 1, and C0 ≫ 1. Then, there exist N0(T,K,C0) ∈ N and

small κ0 = κ0(T,K,C0) > 0 such that the following statements hold. Suppose that for some

N ≥ N0, we have

∥ΞN (u⃗′0, ω
′
2)∥X ε

T
≤ K (6.59)

and

∥(XN , YN ,RN )∥Zs1,s2,s3 (T ) ≤ C0 (6.60)

for the solution to (XN , YN ,RN ) to the truncated system (6.58) on [0, T ] with the truncated

enhanced data set ΞN (u⃗′0, ω
′
2). Furthermore, suppose that we have

∥Ξ(u⃗0, ω2)− ΞN (u⃗′0, ω
′
2)∥X ε

T
≤ κ (6.61)

for some 0 < κ ≤ κ0 and some (u⃗0, ω2), where Ξ(u⃗0, ω2) denotes the enhanced data set

in (6.11). Then, there exists a solution (X,Y,R) to the full system (5.28) on [0, T ] with the

zero initial data and the enhanced data set Ξ(u⃗0, ω2), satisfying the bound

∥(X,Y,R)∥Zs1,s2,s3 (T ) ≤ C0 + 1.
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Conversely, suppose that

∥Ξ(u⃗0, ω2)∥X ε
T
≤ K

and that the full system (5.28) with the zero initial data and the enhanced data set Ξ(u⃗0, ω2)

has a solution (X,Y,R) on [0, T ], satisfying

∥(X,Y,R)∥Zs1,s2,s3 (T ) ≤ C0.

Then, if (6.61) holds for some N ≥ N0, 0 < κ ≤ κ0, and (u⃗′0, ω
′
2), then there exists a solution

(XN , YN ,RN ) to the truncated system (6.58) on [0, T ] with the enhanced data set ΞN (u⃗′0, ω
′
2),

satisfying

∥(XN , YN ,RN )− (X,Y,R)∥Zs1,s2,s3 (T ) ≤ A(T,K,C0)(κ+N−δ) (6.62)

for some A(T,K,C0) > 0 and some small δ > 0.

Proof. Fix T ≫ 1. Given λ ≥ 1 (to be determined later), we define Zs1,s2,s3
λ (T ) by

∥(X,Y,R)∥Zs1,s2,s3
λ (T ) = ∥(e−λtX, e−λtY, e−λtR)∥Zs1,s2,s3 (T ). (6.63)

For notational simplicity, we set Z = (X,Y, Z), ZN = (XN , YN ,RN ), Ξ = Ξ(u⃗0, ω2), and

ΞN = ΞN (u⃗′0, ω
′
2).

In the following, given N ∈ N, we assume that (6.59), (6.60), and (6.61) hold. Without

loss of generality, assume that κ ≤ 1. Then, from (6.59) and (6.61), we have

∥Ξ(u⃗0, ω2)∥X ε
T
≤ K + κ ≤ K + 1 =: K0. (6.64)

In the following, we study the difference of the Duhamel formulation28 (5.48) of the sys-

tem (5.28) with the zero initial data (i.e. (X0, X1, Y0, Y1) = (0, 0, 0, 0)) and the Duhamel

formulation of the truncated system (6.58) with respect to the Zs1,s2,s3
λ (T )-norm by choosing

appropriate λ = λ(T,K0, R) ≫ 1. See (6.72) below.

The main observation is the following bound:

e−λt∥eλt′∥Lq

t′ ([0,t])
≲ λ

− 1
q . (6.65)

Let I be the Duhamel integral operator defined in (5.6). Then, using (6.65), we have

∥e−λtI(F )∥CTHs
x
≤
∥∥∥∥e−λt

∫ t

0
eλt

′∥e−λt′F (t′)∥Hs−1
x

dt′
∥∥∥∥
L∞
T

≲ λ
− 1

q ∥e−λt′F (t′)∥
Lq′
T Hs−1

x

(6.66)

for any 1 ≤ q ≤ ∞. Let (q1, r1) be an s1-admissible pair with 0 < s1 < 1. Then, there exists

an s2-admissible pair (q2, r2) with 0 < s1 < s2 < 1 such that

1

q1
=

θ

∞
+

1− θ

q2
,

1

r1
=
θ

2
+

1− θ

r2
, and s1 = θ · 0 + (1− θ)s2

28Recall that we set σ = 1 in Section 5 for simplicity and thus need to insert σ in appropriate locations
of (5.48).
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for some 0 < θ < 1. By the homogeneous Strichartz estimate ((5.36) with F = 0), we have

∥e−λtI(F )∥Lq2
T L

r2
x

≤
∥∥∥∥∫ t

0
e−λ(t−t′)D(t− t′)(e−λt′F (t′))dt′

∥∥∥∥
L
q2
T L

r2
x

≤
∫ T

0
∥D(t− t′)(e−λt′F (t′))∥Lq2

t ([0,T ];L
r2
x )dt

′

≲ ∥e−λt′F (t′)∥
L1
TH

s2−1
x

.

(6.67)

Thus, given any δ > 0, it follows from interpolating (6.66) with large q ≫ 1 and (6.67) that

there exists small θ = θ(δ) > 0 such that

∥e−λtI(F )∥Lq1
T L

r1
x

≤ C(T )λ−θ∥e−λt′F (t′)∥
L1+δ
T H

s1−1
x

. (6.68)

Recalling that (4, 4) is 1
2 -admissible, it follows from (6.66), (6.68), and Sobolev’s inequality

that

∥e−λtI(F )∥
CTH

1
2
x ∩L4

TL4
x

≤ C(T )λ−θ∥e−λt′F (t′)∥
L1+δ
T H

− 1
2

x

≤ C(T )λ−θ∥e−λt′F (t′)∥
L1+δ
T L

3
2
x

.
(6.69)

By writing (6.58) in the Duhamel formulation, we have

XN = Φ1,N (XN , YN ,RN )

:= 2σπNI
((
XN + YN + σ N

)
< N

)
− I

(
M(QXN ,YN

+ 2RN + σ2 2
N + 2σ N + N ) N

)
,

YN = Φ2,N (XN , YN ,RN )

:= σπNI
((
XN + YN + σ N

)2)
+ 2σπNI

(
RN + YN = N + σ

=

N

)
+ 2σπNI

((
XN + YN + σ N

)
> N

)
− I

(
M(QXN ,YN

+ 2RN + σ2 2
N + 2σ N + N )(XN + YN + σ N )

)
,

RN = Φ3,N (XN , YN ,RN ),

:= 2σĨ
(1),N
<

(
XN + YN + σ N

)
= N

+ 2σĨN<,=
(
XN + YN + σ N

)
−
∫ t

0
M(QXN ,YN

+ 2RN + σ2 2
N + 2σ N + N )(t′)AN (t, t′)dt′.

(6.70)

Then, Z − ZN = (X −XN , Y − YN ,R−RN ) satisfies the system

X −XN = Φ1(X,Y,R)− Φ1,N (XN , YN ,RN ),

Y − YN = Φ2(X,Y,R)− Φ2,N (XN , YN ,RN ),

R−RN = Φ3(X,Y,R)− Φ3,N (XN , YN ,RN ).

(6.71)

By setting

δXN = X −XN , δYN = Y − YN , and δRN = R−RN ,
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we have

X = δXN +XN , Y = δYN + YN , and R = δRN +RN .

Then, we can view the system (6.71) for the system for the unknown

δZN = (δXN , δYN , δRN )

with given source terms ZN = (XN , YN , ZN ), ΞN , and Ξ. We thus rewrite (6.71) as

δXN = Ψ1(δXN , δYN , δRN ),

δYN = Ψ2(δXN , δYN , δRN ),

δRN = Ψ3(δXN , δYN , δRN ),

(6.72)

where Ψj , j = 1, 2, 3, is given by

Ψj(δXN , δYN , δRN )

= Φj(δXN +XN , δYN + YN , δRN +RN )− Φj,N (XN , YN ,RN ).
(6.73)

We now study the system (6.72). We basically repeat the computations in Subsection 5.4

by first multiplying the Duhamel formulation by e−λt and using (6.66), (6.68), and (6.69) as a

replacement of the Strichartz estimates (Lemma 5.3). This allows us to place e−λt′ on one of

the factors of δXN (t′), δYN (t′), or δRN (t′) appearing on the right-hand side of (6.72) under

some integral operator (with integration in the variable t′). Our main goal is to prove that

Ψ⃗ = (Ψ1,Ψ2,Ψ3) (6.74)

is a contraction on a small ball in Zs1,s2,s3
λ (T ). In the following, however, we first establish

bounds on Ψj in (6.73) for δZN ∈ B1, where B1 ⊂ Zs1,s2,s3(T ) denotes the closed ball of

radius 1 (with respect to the Zs1,s2,s3(T )-norm) centered at the origin. For δZN ∈ B1, it

follows from (6.60) that

∥Z∥Zs1,s2,s3 (T ) ≤ ∥δZN∥Zs1,s2,s3 (T ) + ∥ZN∥Zs1,s2,s3 (T )

≤ 1 + C0 =: R.
(6.75)

We first study the first equation in (6.72). From (6.73) with (5.48), (6.70), and (6.73), we

have

e−λtΨ1(δXN , δYN , δRN )(t) = e−λtI1(t) + e−λtI2(t) + e−λtI3(t), (6.76)

where (i) I1 contains the difference of one of the elements in the enhanced data sets Ξ and

ΞN , (ii) I2 contains the terms with the high frequency projection π⊥N = Id−πN onto the

frequencies {|n| ≳ N}, and (iii) I3 consists of the rest, which contains at least one of the

differences δXN , δYN , or δRN (other than those in Z = δZN + ZN ).

In view of (6.61), the contribution from I1 gives a small number κ, while the contribution

from I2 with π⊥N gives a small negative power of N by losing a small amount of regularity.29

Proceeding as in (5.53) with (6.59), (6.60), (6.61), (6.64), and (6.75), we have

∥e−λtI1 + e−λtI2∥Xs1 (T ) ≤ C(T )(κ+N−δK0)(R
4 +K4

0 )

≤ C(T )(κ+N−δ)K0(R
4 +K4

0 )
(6.77)

29We have sharp inequalities in (6.12) as compared to the regularity condition in Theorem 5.1. This allows
us to gain a small negative power of N , by losing a small amount of regularity and using π⊥

N .
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for any δZN ∈ B1 and some small δ > 0. As for the last term on the right-hand side of (6.76),

we use (6.66) and (6.68) in place of Lemma 5.3. Then, a slight modification of (5.53) yields

∥e−λtI3∥Xs1 (T ) ≤ C(T )λ−θK0

(
R3∥δZN∥Zs1,s2,s3

λ (T ) +K4
0

)
(6.78)

for any δZN ∈ B1.

Next, we study the second equation in (6.72). As in (6.76), we can write

e−λtΨ2(δXN , δYN , δRN )(t) = e−λtII1(t) + e−λtII2(t) + e−λtII3(t), (6.79)

where (i) II1 contains the difference of one of the elements in the enhanced data sets Ξ and

ΞN , (ii) II2 contains the terms with the high frequency projection π⊥N = Id−πN onto the

frequencies {|n| ≳ N}, and (iii) II3 consists of the rest, which contains at least one of the

differences δXN , δYN , or δRN (other than those in Z = δZN + ZN ). As for the first two

terms on the right-hand side of (6.79), we can proceed as in (5.55) with (6.59), (6.60), (6.61),

(6.64), and (6.75), and obtain

∥e−λtII1 + e−λtII2∥Y s2 (T ) ≤ C(T )(κ+N−δ)(R5 +K5
0 ) (6.80)

for any δZN ∈ B1 and some small δ > 0. Before we proceed to study the last term e−λtII3(t),

let us make a preliminary computation. By the fractional Leibniz rule (Lemma 2.3 (i)) and

Sobolev’s inequality, we have

∥⟨∇⟩s2−
1
2 (fg)∥

L
3
2
≲ ∥⟨∇⟩s2−

1
2 f∥Lr1∥g∥Lr2 + ∥f∥Lr2∥⟨∇⟩s2−

1
2 g∥Lr1

≲ ∥⟨∇⟩s1−
1
4 f∥

L
8
3
∥⟨∇⟩s1−

1
4 g∥

L
8
3
,

(6.81)

provided that 1
r1

+ 1
r2

= 2
3 with 1 < r1, r2 <∞,

s1 − s2 +
1
4

3
≥ 3

8
− 1

r1
and

s1 − 1
4

3
≥ 3

8
− 1

r2
. (6.82)

This condition is easily satisfied by taking s1 <
1
2 < s2 both sufficiently close to 1

2 and

r1 = r2 = 3. By (6.69), (6.81), and Lemma 2.3 (i), we have∥∥e−λtI
(
(X1 + Y1 + Ξ0)(X2 + Y2 + Ξ0)

)∥∥
Y s2 (T )

≤ C(T )λ−θ
∥∥e−λt⟨∇⟩s2−

1
2
(
(X1 + Y1 + Ξ0)(X2 + Y2 + Ξ0)

)∥∥
L1+δ
T L

3
2
x

≤ C(T )λ−θ
(
∥⟨∇⟩s1−

1
4X1∥

L8
TL

8
3
x

+ ∥⟨∇⟩s2−
1
2Y1∥L4

T,x
+ ∥⟨∇⟩s2−

1
2Ξ0∥L∞

T,x

)
×
(
∥e−λt⟨∇⟩s1−

1
4X2∥

L8
TL

8
3
x

+ ∥e−λt⟨∇⟩s2−
1
2Y2∥L4

T,x
+ ∥⟨∇⟩s2−

1
2Ξ0∥L∞

T,x

)
,

(6.83)

provided that s1 <
1
2 < s2 are both sufficiently close to 1

2 . Compare this with (5.54). Then,

from (6.66), (6.68), and (6.83) with (6.59), (6.60), (6.64), and (6.75), a slight modification of

(5.55) yields

∥e−λtII3∥Y s2 (T ) ≤ C(T )λ−θ
(
R4∥δZN∥Zs1,s2,s3

λ (T ) +K5
0

)
(6.84)

for any δZN ∈ B1.

Finally, we study the third equation in (6.72). As in (6.76) and (6.79), we can write

e−λtΨ3(δXN , δYN , δRN )(t) = e−λtIII1(t) + e−λtIII2(t) + e−λtIII3(t), (6.85)
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where (i) III1 contains the difference of one of the elements in the enhanced data sets Ξ and

ΞN , (ii) III2 contains the terms with the high frequency projection π⊥N = Id−πN onto the

frequencies {|n| ≳ N}, and (iii) III3 consists of the rest, which contains at least one of the

differences δXN , δYN , or δRN (other than those in Z = δZN + ZN ). Proceeding as in (5.56)

with (6.59), (6.60), (6.61), (6.64), and (6.75), we have

∥e−λtIII1 + e−λtIII2∥L3
TH

s3
x

≤ C(T )(κ+N−δ)K0(R
4 +K4

0 ) (6.86)

for any δZN ∈ B1 and some small δ > 0. As for the last term on the right-hand side of (6.85),

let us fist consider the terms with the random operator I<,= . By (6.64) and (6.65), we have∥∥e−λt I<,=
(
X1 + Y1 + Ξ0)(t)− e−λt I<,=

(
X2 + Y2 + Ξ0)(t)

∥∥
L3
TH

s3
x

≤ K0

∥∥∥e−λt∥eλt′(e−λt′(X1 + Y1 −X2 − Y2))∥
L

3
2
t′ ([0,t];L

2
x)

∥∥∥
L3
T

≤ C(T )λ−θK0

(
∥e−λt(X1 −X2)∥L∞

T H
s1
x

+ ∥e−λt(Y1 − Y2)∥L∞
T H

s2
x

)
for some θ > 0. The other terms can be estimated in a similar manner and thus we obtain

∥e−λtIII3∥L3
TH

s3
x

≤ C(T )λ−θK0

(
R3∥δZN∥Zs1,s2,s3

λ (T ) +K4
0

)
(6.87)

for any δZN ∈ B1.

Hence, putting (6.77), (6.78), (6.80), (6.84), (6.86), and (6.87) together, we obtain

∥Ψ⃗(δZN )∥Zs1,s2,s3
λ (T ) ≤ C(T,K0, R)λ

−θ∥δZN∥Zs1,s2,s3
λ (T )

+ C(T,K0, R)(κ+N−δ)
(6.88)

for any δZN ∈ B1, where Ψ⃗ is as in (6.74). By a similar computation, we also obtain the

difference estimate:

∥Ψ⃗(δZ
(1)
N )− Ψ⃗(δZ

(2)
N )∥Zs1,s2,s3

λ (T ) ≤ C(T,K0, R)λ
−θ∥δZ(1)

N − δZ
(2)
N ∥Zs1,s2,s3

λ (T ) (6.89)

for any δZ
(1)
N , δZ

(2)
N ∈ B1. We now introduce small r = r(T, λ) > 0 such that, in view of (6.63),

we have

∥δZN∥Zs1,s2,s3 (T ) ≤ eλT ∥δZN∥Zs1,s2,s3
λ (T ) ≤ eλT r ≤ 1 (6.90)

for any δZN ∈ Bλ
r , where B

λ
r ⊂ Zs1,s2,s3

λ (T ) is the closed ball of radius r (with respect to the

Zs1,s2,s3
λ (T )-norm) centered at the origin. From (6.90), we see that both (6.88) and (6.89)

hold on Bλ
r . Therefore, by choosing large λ = λ(T,K0, R) ≫ 1, small κ = κ(T,K0, R) > 0,

and large N0 = N0(T,K0, R) ∈ N, we conclude that Ψ⃗ is a contraction on Bλ
r for any N ≥ N0.

Hence, there exists a unique solution δZN ∈ Bλ
r to the fixed point problem δZN = Ψ⃗(δZN ).

We need to check that by setting Z = δZN + ZN , Z satisfies the Duhamel formulation (5.48)

of the full system (5.28) with the zero initial data and the enhanced data set Ξ = Ξ(u⃗0, ω2).

From (6.72) and (6.70), we have

Z = δZN + ZN = Ψ⃗(δZN ) + Φ⃗N (ZN )

= Φ⃗(δZN + ZN ) = Φ⃗(Z),

where Φ⃗N = (Φ1,N ,Φ2,N ,Φ3,N ). This shows that Z indeed satisfies the Duhamel formula-

tion (5.48) with the zero initial data and the enhanced data set Ξ = Ξ(u⃗0, ω2). Lastly, we
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point out that from (6.64) and (6.75), we have K0 = K + 1 and R = C0 + 1 and thus the

parameters λ, κ, and N0 depend on T , K, and C0.

As for the second claim in this proposition, we write ZN = Z − (Z − ZN ) and study the

system for δZN = Z − ZN :

δZN = Ψ⃗N (δZN )

where Ψ⃗N = (ΨN
1 ,Ψ

N
2 ,Ψ

N
3 ) and ΨN

j , j = 1, 2, 3, is given by

ΨN
j (δXN , δYN , δRN )

= Φj(X,Y,R)− Φj,N (X − δXN , Y − δYN ,R− δRN ).

Here, we view Z = (X,Y, Z), ΞN , and Ξ as given source terms. By a slight modification of

the computation presented above, we obtain

∥Ψ⃗N (δZN )∥Zs1,s2,s3
λ (T ) ≤ C(T,K0, R)λ

−θ∥δZN∥Zs1,s2,s3
λ (T )

+ C(T,K0, R)(κ+N−δ)
(6.91)

and

∥Ψ⃗N (δZ
(1)
N )− Ψ⃗N (δZ

(2)
N )∥Zs1,s2,s3

λ (T ) ≤ C(T,K0, R)λ
−θ∥δZ(1)

N − δZ
(2)
N ∥Zs1,s2,s3

λ (T )

for any δZN , δZ
(1)
N , δZ

(2)
N ∈ B1. This shows that there exists a solution

ZN = Z − δZN = Φ(Z)− Ψ⃗N (δZN ) = Φ⃗N (ZN )

to the truncated system (6.58) on [0, T ]. Furthermore, from (6.91) with λ = λ(T,K0, R) ≫ 1,

we have

∥Z − ZN∥Zs1,s2,s3 (T ) ≤ eλT ∥Ψ⃗N (δZN )∥Zs1,s2,s3
λ (T )

≤ C(T,K0, R)e
λT (κ+N−δ) −→ 0,

as N → ∞ and κ→ 0. This proves (6.62). This concludes the proof of Proposition 6.8. □

Next, we prove that the solution (XN , YN ,RN ) to the truncated system (6.58) has a uniform

bound with a large probability. The proof is based on the invariance of the truncated Gibbs

measure ρ⃗N under the truncated hyperbolic Φ3
3-model (6.2) (Lemma 6.4) and a discrete

Gronwall argument.

Proposition 6.9. Let T > 0. Then, given any δ > 0, there exists C0 = C0(T, δ) ≫ 1 such

that

ρ⃗N ⊗ P2

(
∥(XN , YN ,RN )∥Zs1,s2,s3 (T ) > C0

)
< δ, (6.92)

uniformly in N ∈ N, where (XN , YN ,RN ) is the solution to the truncated system (6.58) on

[0, T ] with the truncated enhanced data set ΞN (u⃗0, ω2) in (6.10).

Proof. Let (uN , ∂tu) = ΦN (t)(u⃗0, ω2) be a global solution to (6.2) constructed in Lemma 6.4,

where ΦN (t)(u⃗0, ω2) is as in (6.21). Then, by the invariance of the truncated Gibbs measure

ρ⃗N (Lemma 6.4), we have∫
F (ΦN (t)(u⃗0, ω2))d(ρ⃗N ⊗ P2)(u⃗0, ω2) =

∫
F (u⃗0)dρN (u⃗0) (6.93)
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for any bounded continuous function F : C−100(T3) × C−100(T3) → R and t ∈ R+. By

Minkowski’s integral inequality, (6.93), (1.34), and Proposition 6.5, we have, for any finite

p ≥ 1,

∥∥∥∥∫ T

0
|M( : (πNuN )2 : )(t)|dt

∥∥∥∥
Lp
u⃗0,ω2

(ρ⃗N⊗P2)

≤
∫ T

0
∥M( : (πNu0)

2 : )∥Lp
u⃗0,ω2

(ρ⃗N⊗P2)dt

≤ C(T, p) <∞,

(6.94)

for any 0 ≤ t ≤ T and p ≥ 1, uniformly in N ∈ N. By defining

vN := uN − ,

we see that vN satisfies the equation

(∂2t + ∂t + 1−∆)vN = σπN
(
: (πNuN )2 :

)
−M( : (πNuN )2 : )πNuN

with the zero initial data, or equivalently

vN (t) =

∫ t

0
e−

t−t′
2

sin((t− t′)[[∇]])

[[∇]]

(
σπN ( : (πNuN )2 : )−M( : (πNuN )2 : )πNuN

)
(t′)dt′.

Thus, we have

∥vN (t)∥W−ε,∞
x

≤
∫ t

0

(∥∥∥sin((t− t′)[[∇]])

[[∇]]
σπN ( : (πNuN )2 : )(t′)

∥∥∥
W−ε,∞

x

+
∥∥∥M( : (πNuN )2 : )(t′)

sin((t− t′)[[∇]])

[[∇]]
πNuN (t′)

∥∥∥
W−ε,∞

x

)
dt′

for any t > 0. Then, by using Minkowski’s integral inequality, (6.93), and Proposition 6.5

once again, we have∥∥∥∥vN (t)∥W−ε,∞
x

∥∥∥
Lp
u⃗0,ω2

(ρ⃗N⊗P2)

≲
∫ t

0

(∥∥∥sin(τ [[∇]])

[[∇]]
πN ( : (πNu0)

2 : )
∥∥∥
Lp
u⃗0,ω2

(ρ⃗N⊗P2;W
−ε,∞
x )

+
∥∥∥M( : (πNu0)

2 : )
sin(τ [[∇]])

[[∇]]
πNu0

∥∥∥
Lp
u⃗0,ω2

(ρ⃗N⊗P2;W
−ε,∞
x )

)
dτ

≤ C(T, p) <∞

(6.95)

for any 0 ≤ t ≤ T , p ≥ 1, and ε > 0, uniformly in N ∈ N.
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We rewrite the system (6.58) as

(∂2t + ∂t + 1−∆)XN = 2σπN (vN < N )−M( : (πNuN )2 : ) N ,

(∂2t + ∂t + 1−∆)YN

= σπN

(
vN
(
XN + YN + σ N

)
+ 2
(
RN + YN = N + σ

=

N

)
+ 2(XN + YN + σ N ) > N

)
−M( : (πNuN )2 : )(XN + YN + σ N ),

RN = 2σĨ
(1),N
<

(
XN + YN + σ N

)
= N + 2σĨN<,=

(
XN + YN + σ N

)
−
∫ t

0
M( : (πNuN )2 : )(t′)AN (t, t′)dt′,

(6.96)

where we used (5.17) (with the frequency truncations and extra σ’s in appropriate places)

and vN = σ +XN + YN so that the right-hand side is linear in (XN , YN ,RN ).

Let δ > 0. In view of Proposition 6.5, we choose K = K(T, δ) ≫ 1 such that

ρ⃗N ⊗ P2

(
∥ΞN (u⃗0, ω2)∥X ε

T
> K

)
<
δ

3
, (6.97)

uniformly in N ∈ N. We also define L(t) by

L(t) = 1 + ∥vN (t)∥W−ε,∞
x

+ |M( : (πNuN )2 : )(t)|. (6.98)

In view of (6.94) and (6.95), we choose L1 = L1(T, δ) ≫ 1 such that

ρ⃗N ⊗ P2

(
∥L∥L3

T
> L1

)
<
δ

3
. (6.99)

In the following, we work on the set

∥ΞN (u⃗0, ω2)∥X ε
T
≤ K and ∥L∥L3

T
≤ L1. (6.100)

By applying Lemma 5.3 with (5.47) and Lemma 2.2 to (6.96) and using (5.49), (6.98), and

(6.100), we have

∥XN∥Xs1 (T ) ≲
∫ T

0

(
∥vN < N (t)∥

H
s1−1
x

+ |M( : (πNuN )2 : )(t)| · ∥ N (t)∥
H

s1−1
x

)
dt

≲ K

∫ T

0
L(t)dt.

(6.101)

Since s2 < 1, we can choose sufficiently small ε > 0 such that Lemma 2.3 (ii) yields

∥vN (XN + YN + N )∥
H

s2−1
x

≲ ∥vN∥W−ε,∞
x

∥XN + YN + N∥Hε
x

≲ ∥vN∥W−ε,∞
x

(
∥XN∥Hs1

x
+ ∥YN∥Hs2

x
+ ∥ΞN (u⃗0, ω2)∥X ε

T

)
.



STOCHASTIC QUANTIZATION OF Φ3
3 97

Hence, by (6.96), Lemma 5.3 with (5.47), Lemma 2.2 (see also (5.55)), (6.98), and (6.100),

we have

∥YN∥Y s2 (T ) ≲
∫ T

0

(
∥vN (t)(XN (t) + YN (t) + N (t))∥

H
s2−1
x

+ ∥RN (t) + YN (t) = N (t) + σ
=

N
(t)∥

H
s2−1
x

+ ∥(XN (t) + YN (t) + σ N (t)) > N (t)∥
H

s2−1
x

+ |M( : (πNuN )2 : )(t)| · ∥XN (t) + YN (t) + σ N (t)∥
H

s2−1
x

)
dt (6.102)

≤ C(T )K2 +K

∫ T

0
L(t)

(
1 + ∥XN∥Xs1 (T ) + ∥YN∥Y s2 (t)

)
dt

+

∫ T

0
∥RN (t)∥Hs3

x
dt.

Fix 0 < τ < 1 and set

Lq
Ik

= Lq(Ik), where Ik = [kτ, (k + 1)τ ].

By a computation analogous to that in (5.56), we obtain

∥RN∥L3
Ik

H
s3
x

≲ ∥Ĩ(1),N<

(
XN + YN + σ N

)
= N∥L3

Ik
H

s3
x

+ ∥ĨN<,=
(
XN + YN + σ N

)
∥L3

Ik
H

s3
x

+

∫ T

0
|M( : (πNuN )2 : )(t′)| · ∥AN (t, t′)∥L3

t ([t
′,T ];H

s3
x )dt

′

≤ C(T )K2
(
K + ∥XN∥Xs1 (T ) + ∥YN∥Y s2 ((k+1)τ)

)
+K

∫ T

0
L(t)dt.

(6.103)

Given 0 < t ≤ T , let k∗(t) be the largest integer such that k∗(t)τ ≤ t. Then, from (6.102) and

(6.103), we have

∥YN∥Y s2 (t) ≤ ∥YN∥Y s2 ((k∗(t)+1)τ)

≤ C(T )K2 + C1(T )K
3

k∗(t)∑
k=0

τ
2
3

(
1 + ∥L(t)∥L3

Ik

)(
1 + ∥XN (t)∥Xs1 (T )

)

+ C2KT

k∗(t)∑
k=0

τ
1
3 ∥L(t)∥L3

Ik

+ C3K
2

k∗(t)∑
k=0

τ
2
3

(
1 + ∥L(t)∥L3

Ik

)
∥YN∥Y s2 ((k+1)τ).

(6.104)

Now, choose τ = τ(K,L1) = τ(T, δ) > 0 sufficiently small such that

C3K
2τ

2
3L1 ≪ 1. (6.105)

In view of (6.94) and (6.95), and define L2 = L2(T, δ) ≫ 1 such that

ρ⃗N ⊗ P2

( k∗(T )∑
k=0

τ
1
3

(
1 + ∥L(t)∥L3

Ik

)
> L2

)
<
δ

3
. (6.106)
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In the following, we work on the set

k∗(T )∑
k=0

τ
1
3

(
1 + ∥L(t)∥L3

Ik

)
≤ L2. (6.107)

It follows from (6.104) with (6.100), (6.101), (6.105), and (6.107) that

∥YN∥Y s2 ((k∗(t)+1)τ) ≤ C(T )K4L1L2 + C4K
2

k∗(t)−1∑
k=0

τ
2
3 ∥L(t)∥L3

Ik

∥YN∥Y s2 ((k+1)τ).

By applying the discrete Gronwall inequality with (6.107), we then obtain

∥YN∥Y s2 (t) ≤ ∥YN∥Y s2 ((k∗(t)+1)τ)

≤ C(T )K4L1L2 exp

(
C4K

2

k∗(t)−1∑
k=0

τ
2
3 ∥L(t)∥L3

Ik

)
≤ C(T )K4L1L2 exp

(
C4K

2L2

)
.

(6.108)

Therefore, from (6.101) and (6.108), we have

∥XN∥Xs1 (T ) + ∥YN∥Y s2 (T ) ≤ C(T )KL1 + C(T )K4L1L2 exp
(
C4K

2L2

)
.

Together with (6.103), we then obtain

∥(XN , YN ,RN )∥Zs1,s2,s3 (T ) ≤ C5(T,K,L1, L2)

under the conditions (6.100) and (6.107). Hence, by choosing C0 = C0(T, δ) > 0 in (6.92)

such that C0 > C5(T,K,L1, L2), we have

ρ⃗N ⊗ P2

({
∥(XN , YN ,RN )∥Zs1,s2,s3 (T ) > C0

}
∩
{
∥ΞN (u⃗0, ω2)∥X ε

T
≤ K

}
∩
{
∥L∥L3

T
≤ L1

}
∩
{ k∗(T )∑

k=0

τ
1
3 ∥L(t)∥L3

Ik

≤ L2

})
= 0.

(6.109)

Finally, the bound (6.92) follows from (6.97), (6.99) (6.106), and (6.109). □

Given a map S from a measure space (X,µ) to a space Y , we use S#µ to denote the image

measure (the pushforward) of µ under S. Fix T > 0 and we set

νN = (ΞN )#(ρ⃗N ⊗ P2) and ν = Ξ#(ρ⃗⊗ P2), (6.110)

where we view ΞN = ΞN (u⃗0, ω2) in (6.10) and Ξ = Ξ(u⃗0, ω2) in (6.11) as maps from

H− 1
2
−ε(T3) × Ω2 to X ε

T defined in (5.49). In view of the weak convergence of ρ⃗N ⊗ P2

to ρ⃗⊗ P2 (Theorem 1.8 (i)) and the ρ⃗⊗ P2-almost sure convergence of ΞN (u⃗0, ω2) to Ξ(u⃗0, ω2)

(Corollary 6.7), we see that νN converges weakly to ν. Indeed, given a bounded continuous
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function F : X ε
T → R, by the dominated convergence theorem, we have∣∣∣∣ ∫ F (Ξ)dνN −

∫
F (Ξ)dν

∣∣∣∣
=

∣∣∣∣ ∫ F (ΞN (u⃗0, ω2))d(ρ⃗N ⊗ P2)−
∫
F (Ξ(u⃗0, ω2))d(ρ⃗⊗ P2)

∣∣∣∣
≤ ∥F∥L∞

∣∣∣∣ ∫ 1 d
(
(ρ⃗N ⊗ P2)− (ρ⃗⊗ P2)

)∣∣∣∣
+

∣∣∣∣ ∫ (F (ΞN (u⃗0, ω2))− F (Ξ(u⃗0, ω2))
)
d(ρ⃗⊗ P2)

∣∣∣∣
−→ 0,

as N → ∞.

Next, we prove that νN = (ΞN )#(ρ⃗N ⊗P2) converges to ν = Ξ#(ρ⃗⊗P2) in the Wasserstein-1

metric. We view this problem as of Kantorovich’s mass optimal transport problem and study

the dual problem under the Kantorovich duality, using the Boué-Dupuis variational formula.

This proposition plays a crucial role in the proof of almost sure global well-posedness and

invariance of the Gibbs measure ρ⃗ presented at the end of this section.

Proposition 6.10. Fix T > 0. Then, there exists a sequence {pN}N∈N of probability measures

on X ε
T ×X ε

T with the first and second marginals ν and νN on X ε
T , respectively, namely,∫

Ξ2∈X ε
T

dpN (Ξ1,Ξ2) = dν(Ξ1) and

∫
Ξ1∈X ε

T

dpN (Ξ1,Ξ2) = dνN (Ξ2), (6.111)

such that ∫
X ε

T×X ε
T

min(∥Ξ1 − Ξ2∥X ε
T
, 1)dpN (Ξ1,Ξ2) −→ 0,

as N → ∞. Namely, the total transportation cost associated to pN tends to 0 as N → ∞.

Remark 6.11. In view of the weak convergence of the truncated Gibbs measure ρ⃗N to ρ⃗

(Theorem 1.8) and the almost sure convergence of the truncated enhanced data set ΞN to

Ξ with respect to ρ⃗⊗ P2 (Corollary 6.7), it suffices to define pN = (Ξ,ΞN )#(ρ⃗⊗ P2). In the

following, however, we present the full proof of Proposition 6.10, using the Kantorovich duality

and the variational approach since we believe that such an argument is of general interest.

Proof of Proposition 6.10. Define a cost function c(Ξ1,Ξ2) on X ε
T ×X ε

T by setting

c(Ξ1,Ξ2) = min(∥Ξ1 − Ξ2∥X ε
T
, 1).

Then, define the Lipschitz norm for a function F : X ε
T → R by

∥F∥Lip = sup
Ξ1,Ξ2∈X ε

T

Ξ1 ̸=Ξ2

|F (Ξ1)− F (Ξ2)|
c(Ξ1,Ξ2)

.



100 T. OH, M. OKAMOTO, AND L. TOLOMEO

Note that ∥F∥Lip ≤ 1 implies that F is bounded and Lipschitz continuous. From the

Kantorovich duality (the Kantorovich-Rubinstein theorem [77, Theorem 1.14]), we have

inf
p∈Γ(ν,νN )

∫
X ε

T×X ε
T

c(Ξ1,Ξ2)dp(Ξ1,Ξ2)

= sup
∥F∥Lip≤1

(∫
F (Ξ)dνN (Ξ)−

∫
F (Ξ)dν(Ξ)

)
,

(6.112)

where Γ(ν, νN ) is the set of probability measures on X ε
T × X ε

T with the first and second

marginals ν and νN on X ε
T , respectively.

For a function F with ∥F∥Lip ≤ 1, let

G := F − inf F + 1.

Then, we have∫
F (Ξ)dνN (Ξ)−

∫
F (Ξ)dν(Ξ) =

∫
G(Ξ)dνN (Ξ)−

∫
G(Ξ)dν(Ξ). (6.113)

Note that ∥G∥Lip = ∥F∥Lip ≤ 1 and 1 ≤ G ≤ 2. Moreover, the mean value theorem yields

that

1

e
≤ log x− log y

x− y
≤ 1 (6.114)

for any x, y ∈ [1, e] with x ̸= y. Set {a}+ = max(a, 0) for any a ∈ R. By (6.113) and (6.114),

we obtain ∫
F (Ξ)dνN (Ξ)−

∫
F (Ξ)dν(Ξ)

≲

{
− log

(∫
G(Ξ)dν(Ξ)

)
+ log

(∫
G(Ξ)dνN (Ξ)

)}
+

(6.115)

for any N ∈ N.
Finally, define H = logG. Then, from (6.114) and 1 ≤ G ≤ 2, we have ∥H∥Lip ≲ 1. Hence,

it follows from (6.112), (6.113), and (6.115) that

inf
p∈Γ(ν,νN )

∫
X ε

T×X ε
T

c(Ξ1,Ξ2)dp(Ξ1,Ξ2)

≲ sup
0≤H≤1

∥H∥Lip≲1

{
− log

(∫
exp(H(Ξ))dν(Ξ)

)
+ log

(∫
exp(H(Ξ))dνN (Ξ)

)}
+

.

Our goal is to show that the right-hand side tends 0 as N → ∞. Since ∥H∥Lip ≲ 1, H is

bounded and Lipschitz continuous. Then, by the weak convergence of {νN}N∈N to ν, it suffices

to show that

lim sup
N→∞

sup
0≤H≤1

∥H∥Lip≲1

sup
M≥N

{
− log

(∫
exp(H(Ξ))dνM (Ξ)

)

+ log
(∫

exp(H(Ξ))dνN (Ξ)
)}

+

≤ 0.

(6.116)
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From (6.110), (6.1), and (6.114) with 0 ≤ H ≤ 1, we have{
− log

(∫
exp(H(Ξ))dνM (Ξ)

)
+ log

(∫
exp(H(Ξ))dνN (Ξ)

)}
+

=

{
− log

(∫∫∫
exp(H(ΞM (u⃗0, ω2)))dρM (u0)dµ0(u1)dP2(ω2)

)
+ log

(∫∫∫
exp(H(ΞN (u⃗0, ω2)))dρN (u0)dµ0(u1)dP2(ω2)

)}
+

≲

{
−
∫∫∫

exp(H(ΞM (u⃗0, ω2)))dρM (u0)dµ0(u1)dP2(ω2)

+

∫∫∫
exp(H(ΞN (u⃗0, ω2)))dρN (u0)dµ0(u1)dP2(ω2)

}
+

≲
∫∫ [{

−
∫

exp(H(ΞM (u⃗0, ω2)))dρM (u0)

+

∫
exp(H(ΞN (u⃗0, ω2)))dρN (u0)

}
+

]
dµ0(u1)dP2(ω2)

≲
∫∫ [{

− log
(∫

exp(H(ΞM (u⃗0, ω2)))dρM (u0)
)

+ log
(∫

exp(H(ΞN (u⃗0, ω2)))dρN (u0)
)}

+

]
dµ0(u1)dP2(ω2). (6.117)

In the following, we study the integrand of the (u1, ω2)-integral. Thus, we fix u1 and ω2 and

write ΞN (u⃗0, ω2) = ΞN (u0, u1, ω2) as ΞN (u0) for simplicity of notation. By the Boué-Dupuis

variational formula (Lemma 3.1) with the change of variables (3.12), we have

− log

(∫
exp(H(ΞM (u0)))dρM (u0)

)
+ log

(∫
exp(H(ΞN (u0)))dρN (u0)

)
= inf

Υ̇M∈H1
a

E
[
−H(ΞM (Y +ΥM + σZM )) + R̂⋄

M (Y +ΥM + σZM )

+
1

2

∫ 1

0
∥Υ̇M (t)∥2H1

x
dt

]
− inf

Υ̇N∈H1
a

E
[
−H(ΞN (Y +ΥN + σZN )) + R̂⋄

N (Y +ΥN + σZN )

+
1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
+ logZM − logZN ,

(6.118)

where R̂⋄
N is as in (3.33). Given δ > 0, let ΥN be an almost optimizer, namely,

inf
Υ̇N∈H1

a

E
[
−H(ΞN (Y +ΥN + σZN )) + R̂⋄

N (Y +ΥN + σZN ) +
1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
≥ E

[
−H(ΞN (Y +ΥN + σZN )) + R̂⋄

N (Y +ΥN + σZN ) +
1

2

∫ 1

0
∥Υ̇N

(t)∥2H1
x
dt

]
− δ.
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Then, by choosing ΥM = ΥN and the Lipschitz continuity of H, we have

inf
Υ̇M∈H1

a

E
[
−H(ΞM (Y +ΥM + σZM )) + R̂⋄

M (Y +ΥM + σZM ) +
1

2

∫ 1

0
∥Υ̇M (t)∥2H1

x
dt

]
− inf

Υ̇N∈H1
a

E
[
−H(ΞN (Y +ΥN + σZN )) + R̂⋄

N (Y +ΥN + σZN ) +
1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
≤ δ + E

[
H(ΞN (Y +ΥN + σZN ))−H(ΞM (Y +ΥN + σZM ))

+ R̂⋄
M (Y +ΥN + σZM )− R̂⋄

N (Y +ΥN + σZN )
]

≤ δ + ∥H∥Lip · E
[
∥ΞM (Y +ΥN + σZN )− ΞN (Y +ΥN + σZM )∥X ε

T

]
+ E

[
R̂⋄

M (Y +ΥN + σZM )− R̂⋄
N (Y +ΥN + σZN )

]
. (6.119)

Proceeding as in Subsection 3.3 with 0 ≤ H ≤ 1, we have (3.76). Then, using the computations

from (3.67) to (3.78) we obtain

E
[
R̂⋄

M (Y +ΥN + σZM )− R̂⋄
N (Y +ΥN + σZN )

]
−→ 0, (6.120)

as M ≥ N → ∞. We also note that as a consequence of (3.76) with (3.24) and Lemma 3.2,

we have

E
[
∥ΥN∥2H1

]
≲ 1, (6.121)

uniformly in N ∈ N.
Moreover, by slightly modifying (part of) the proof of Proposition 6.5, we can show that

E
[∥∥ΞM (Y +ΥN + σZN )− ΞN (Y +ΥN + σZM )

∥∥
X ε

T

]
−→ 0, (6.122)

as M ≥ N → ∞. Here, we only consider the contribution from ĨN<,= . The other terms in the

truncated enhanced data sets can be handled in a similar manner. With the notations (6.31)

and (6.32) (recall that we suppress the dependence on u1 and ω2), we have

ĨM<,= [ (Y +ΥN + σZM )]− ĨN<,= [ (Y +ΥN + σZN )]

= ĨM<,= [ (Y +ΥN + σZM ), (σ(ZM − ZN ))]

+ ĨM<,= [ (σ(ZM − ZN )), (Y +ΥN + σZN )]

+
(
ĨM<,= [ (Y +ΥN + σZN )]− ĨN<,= [ (Y +ΥN + σZN )]

)
=: I + II + III.

(6.123)

It follows from (6.41), (6.42), and (6.45) together with Remark 5.5 that there exists small

δ0 > 0 such that

∥I∥L2(q,T ) + ∥II∥L2(q,T )

≤ C(T )
(
∥Y ∥

L∞
T W

− 1
2−ε,∞

x

+ ∥ΥN∥H1 + ∥ZN∥W 1−ε,∞

)
∥ZN − ZM∥W 1−ε,∞

≤ C(T )N−δ0
(
∥Y ∥

L∞
T W

− 1
2−ε,∞

x

+ ∥ΥN∥H1 + ∥ZN∥W 1−ε,∞

)2
+N δ0∥ZN − ZM∥2W 1−ε,∞

(6.124)
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and

E
[
N δ0∥ZN − ZM∥2W 1−ε,∞

]
−→ 0, (6.125)

as M ≥ N → ∞. From (6.29) and (6.31), we have

ĨN<,= [ψ1, ψ2](w) = I
(
πN (Kθ(w, πNψ1))

)
= (πNψ2).

Hence, when we consider the difference in III, we see that one of the factors comes with

πM − πN , from which we can gain a small negative power of N . Hence, by repeating the

calculation above with this observation, we obtain∥∥III− (ĨN<,= [ (Y )]− ĨM<,= [ (Y )])
∥∥
L2(q,T )

≲ N−δ0
(
∥Y ∥

L∞
T W

− 1
2−ε,∞

x

+ ∥ΥN∥H1 + ∥ZN∥W 1−ε,∞

)2 (6.126)

for any M ≥ N ≥ 1. Lastly, from (6.48) and (6.36), there exists δ > 0 such that∥∥ ĨN<,= [ (Y )]− ĨM<,= [ (Y )]
∥∥
L2(q,T )

≤ N−δ0K̃(Y, u1, ω2) (6.127)

for any M ≥ N ≥ 1, where, in view of (6.49), E[K̃(Y, u1, ω2)] ≤ C(u1, ω2) < ∞ for almost

every u1 and ω2. Therefore, from (6.123), (6.124), (6.125), (6.126), and (6.127) with the

bound (6.121), we obtain

E
[∥∥ĨM<,= [Y +ΥN

δ + σZM ]− ĨN<,= [Y +ΥN
δ + σZN ]

∥∥
L2(q,T )

]
−→ 0,

as M ≥ N → ∞.

Note that {ZN}N∈N is a convergent sequence and δ > 0 was arbitrary. Hence, it follows

from (6.118), (6.119), (6.120), and (6.122) that

lim sup
N→∞

sup
0≤H≤1

∥H∥Lip≲1

sup
M≥N

{
− log

(∫
exp(H(ΞM (u0, u1, ω2)))dρM (u0)

)

+ log

(∫
exp(H(ΞN (u0, u1, ω2)))dρN (u0)

)}
+

≤ 0,

(6.128)

for almost every u1 and ω2, where the supremum in H was trivially dropped in the last step

of (6.119). Therefore, (6.116) follows from (6.117) and (6.128) with Fatou’s lemma. This

concludes the proof of Proposition 6.10. □

Finally, we present the proof of Theorem 1.15.

Proof of Theorem 1.15. • Part 1: We first prove almost sure global well-posedness of the

hyperbolic Φ3
3-model. As in [8, 18, 5], it suffices to prove “almost” almost sure global well-

posedness. More precisely, it suffices to prove that given any T > 0 and small δ > 0, there

exists ΣT,δ ⊂ H− 1
2
−ε(T3) × Ω2 with ρ⃗ ⊗ P2(Σ

c
T,δ) < δ such that for each (u⃗0, ω2) ∈ ΣT,δ,

the solution (X,Y,R) to (5.28), with the zero initial data and the enhanced data Ξ(u⃗0, ω)

in (6.11), exists on the time interval [0, T ].

We assume this “almost” almost sure global well-posedness claim for the moment. Denote

by (XN , YN ,RN ) the solution to the truncated system (6.58) with the truncated enhanced

data ΞN (u⃗0, ω) in (6.10) and set

uN (u⃗0, ω2) = (u⃗0, ω2) + σ N (u⃗0, ω2) +XN + YN , (6.129)
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which is the solution to the truncated hyperbolic Φ3
3-model (6.2) with the initial data

(uN , ∂tuN )|t=0 = u⃗0 = (u0, u1) and the noise ξ = ξ(ω2). Here, we used the uniqueness

of the solution uN to (6.2); see Remark 6.3. Then, we conclude from Corollary 6.7 (on the

almost sure convergence of ΞN (u⃗0, ω) to Ξ(u⃗0, ω)) and the second part of Proposition 6.8 that

(uN , ∂tuN )(u⃗0, ω2) in (6.129) converges to (u, ∂tu)(u⃗0, ω2) in C([0, T ];H− 1
2
−ε(T3)) for each

(u⃗0, ω2) ∈ ΣT,δ, where u(u⃗0, ω2) is defined by

u(u⃗0, ω2) = (u⃗0, ω2) + σ (u⃗0, ω2) +X + Y. (6.130)

Now, we define

Σ =
∞⋃
k=1

∞⋂
j=1

Σ2j ,2−jk−1 .

Then, we have ρ⃗ ⊗ P2(Σ) = 1 and, for each (u⃗0, ω2) ∈ Σ, the solution (uN , ∂tuN )(u⃗0, ω2)

to the truncated hyperbolic Φ3
3-model (6.2) converges to (u, ∂tu)(u⃗0, ω2) in (6.130) in

C(R+;H− 1
2
−ε(T3)) (endowed with the compact-open topology in time). This proves the

almost sure global well-posedness claim in Theorem 1.15, assuming “almost” almost sure

global well-posedness.

We now prove “almost” almost sure global well-posedness. Fix T > 0 and small δ > 0. Given

Ξ = (Ξ1, . . . ,Ξ6) ∈ X ε
T , let Z(Ξ) = (X,Y,R)(Ξ) be the solution to (5.28) with the zero initial

data and the enhanced data set given by Ξ, namely, Ξj replacing the jth element in (5.29).

Note that Ξ here denotes a general element in X ε
T and is not associated with any specific

(u⃗0, ω2) ∈ H− 1
2
−ε(T3)×Ω2. Similarly, given N ∈ N and Ξ ∈ X ε

T , let ZN (Ξ) = (XN , YN ,RN )(Ξ)

be the solution to (6.58) with the enhanced data set Ξ, namely, Ξj replacing the jth element

of ΞN (u⃗0, ω2) in (6.10).

Given C0 > 0, define the set ΣC0 ⊂ X ε
T such that, for each Ξ ∈ ΣC0 , the solution Z(Ξ)

to (5.28), with the zero initial data and the enhanced data Ξ, exists on the time interval [0, T ],

satisfying the bound

∥Z(Ξ)∥Zs1,s2,s3 (T ) ≤ C0 + 1. (6.131)

Let N ∈ N. Given K,C0 > 0, we set

AN,K,C0 =
{
Ξ′ ∈ X ε

T : ∥Ξ′∥X ε
T
≤ K, ∥ZN (Ξ′)∥Zs1,s2,s3 (T ) ≤ C0

}
(6.132)

and

BN,K,C0 =
{
(Ξ,Ξ′) ∈ X ε

T ×X ε
T : ∥Ξ− Ξ′∥X ε

T
≤ κ, Ξ′ ∈ AN,K,C0

}
, (6.133)

where κ > 0 is a small number to be chosen later. Then, from the stability result (the first claim

in Proposition 6.8) with (6.131), (6.132), and (6.133), there exists small κ(T,K,C0) ∈ (0, 1)

and N0 = N0(T,K,C0) ∈ N such that

ΣC0 ×X ε
T ⊃ BN,K,C0 (6.134)

for any N ≥ N0.
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Let C0 = C0(T, δ) ≫ 1 be as in Proposition 6.9 and let pN , N ∈ N, be as in Proposition 6.10.

Then, from (6.110), (6.111), and (6.134), we have

ρ⃗⊗ P2

(
Ξ(u⃗0, ω2) ∈ ΣC0

)
=

∫
1Ξ∈ΣC0

(Ξ,Ξ′)dpN (Ξ,Ξ′)

≥
∫

1BN,K,C0
(Ξ,Ξ′)dpN (Ξ,Ξ′)

≥ 1−
∫

1{∥Ξ−Ξ′∥Xε
T
>κ}dpN (Ξ,Ξ′)−

∫
1Ac

N,K,C0
(Ξ′)dpN (Ξ,Ξ′)

≥ 1− 1

κ

∫
min(∥Ξ− Ξ′∥X ε

T
, 1)dpN (Ξ,Ξ′)− ρ⃗N ⊗ P2({ΞN (u⃗′0, ω

′
2) ∈ Ac

N,K,C0
})

> 1− 1

κ

∫
min(∥Ξ− Ξ′∥X ε

T
, 1)dpN (Ξ,Ξ′)− 2δ,

(6.135)

where the last step follows from Proposition 6.5 by choosing K = K(δ) ≫ 1, together with

Proposition 6.9. By Proposition 6.10, we have

1

κ

∫
min(∥Ξ− Ξ′

N∥X ε
T
, 1)dpN (Ξ,Ξ′

N ) −→ 0, (6.136)

as N → ∞. Therefore, we conclude from (6.135) and (6.136) that

ρ⃗⊗ P2

(
Ξ(u⃗0, ω2) ∈ ΣC0

)
> 1− 2δ.

This proves “almost” almost sure global well-posedness with

ΣT,δ = {(u⃗0, ω2) ∈ H− 1
2
−ε(T3)× Ω2 : Ξ(u⃗0, ω2) ∈ ΣC0},

and hence almost sure global well-posedness of the hyperbolic Φ3
3-model, namely, the unique

limit u = u(u⃗0, ω2) in (6.130) exists globally in time almost surely with respect to ρ⃗⊗ P2.

• Part 2: Next, we prove invariance of the Gibbs measure ρ⃗ = ρ ⊗ µ0 under the limiting

hyperbolic Φ3
3-dynamics. In the following, we prove∫

F (Φ(t)(u⃗0, ω2))d(ρ⃗⊗ P2)(u⃗0, ω2) =

∫
F (u⃗0)dρ⃗(u⃗0) (6.137)

for any bounded Lipschitz functional F : C−100(T3) × C−100(T3) → R and t ∈ R+, where

Φ(u⃗0, ω2) is the limit of the solution (uN , ∂tuN ) = ΦN (u⃗0, ω2) to the truncated hyperbolic

Φ3
3-model defined in (6.21).

As in Part 1, we use the notation (X,Y,R) = (X,Y,R)(Ξ), etc. Also, let pN , N ∈ N, be as

in Proposition 6.10. Then, by the decomposition (6.57) (also for N = ∞), (6.110), (6.111),

and the invariance of ρ⃗N under the truncated hyperbolic Φ3
3-model (6.2) (Lemma 6.4), we

have ∫
F (Φ(t)(u⃗0, ω2))d(ρ⃗⊗ P2)(u⃗0, ω2)

=

∫
F (Φ(t)(Ξ))dpN (Ξ,Ξ′)

=

∫
F (ΦN (t)(Ξ′))dpN (Ξ,Ξ′) +

∫ [
F (Φ(t)(Ξ))− F (ΦN (t)(Ξ′))

]
dpN (Ξ,Ξ′)

=

∫
F (u⃗0)dρ⃗N (u⃗0) +

∫ [
F (Φ(t)(Ξ))− F (ΦN (t)(Ξ′))

]
dpN (Ξ,Ξ′).
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By the weak convergence of ρ⃗N to ρ⃗, we have

lim
N→∞

∫
F (u⃗0)dρ⃗N (u⃗0) =

∫
F (u⃗0)dρ⃗(u⃗0).

Hence, since F is bounded and Lipschitz, (6.137) is reduced to showing that∫
min

(
∥Φ(t)(Ξ)− ΦN (t)(Ξ′)∥C−100×C−100 , 1

)
dpN (Ξ,Ξ′) −→ 0, (6.138)

as N → ∞.

As in (6.21), we write

Φ(t)(Ξ) =
(
Φ1(t)(Ξ),Φ2(t)(Ξ)

)
and ΦN (t)(Ξ′) =

(
ΦN
1 (t)(Ξ′),ΦN

2 (t)(Ξ′)
)
,

where Ξ = (Ξ1, . . . ,Ξ6) and Ξ′ = (Ξ′
1, . . . ,Ξ

′
6) (see also (6.10) and (6.11)). With the decompo-

sition as in (6.57), we have

Φ1(t)(Ξ) = Ξ1 + σΞ3 +X(Ξ) + Y (Ξ),

ΦN
1 (t)(Ξ′) = Ξ′

1 + σΞ′
3 +XN (Ξ′) + YN (Ξ′),

(6.139)

and Φ2(t)(Ξ) = ∂tΦ1(t)(Ξ) and ΦN
2 (t)(Ξ′) = ∂tΦ

N
1 (t)(Ξ′) are given by term-by-term differ-

entiation of the terms on the right-hand sides of (6.139). From the definition (5.49) of the

X ε
T -norm, we clearly have

∥(Ξ1 + σΞ3)(t)− (Ξ′
1 + σΞ′

3)(t)∥C−100

+ ∥(∂tΞ1 + σ∂tΞ3)(t)− (∂tΞ
′
1 + σ∂tΞ

′
3)(t)∥C−100 ≲ ∥Ξ− Ξ′∥X ε

T
.

Hence, in view of (5.32) with (5.47), (6.138) is reduced to showing that∫
min

(
∥Z(Ξ)− ZN (Ξ′)∥Zs1,s2,s3 (T ), 1

)
dpN (Ξ,Ξ′) −→ 0, (6.140)

as N → ∞, where Z(Ξ) = (X,Y,R)(Ξ) and ZN (Ξ′) = (XN , YN ,RN )(Ξ′) as in Part 1.

It follows from the second part of Proposition 6.8 (with κ = ∥Ξ−Ξ′∥X ε
T
) and Proposition 6.10

that ∫
min

(
∥Z(Ξ)− ZN (Ξ′)∥Zs1,s2,s3 (T ), 1

)
dpN (Ξ,Ξ′)

≤ A
(
T, ∥Ξ∥X ε

T
, ∥Z(Ξ)∥Zs1,s2,s3 (T )

)
×
∫

min
(
∥Ξ− Ξ′∥X ε

T
+N−δ, 1

)
dpN (Ξ,Ξ′) −→ 0,

as N → ∞. This proves (6.140) and therefore, we conclude (6.137), which proves invariance

of the Gibbs measure ρ⃗ under the limiting hyperbolic Φ3
3-model. □

Appendix A. Absolute continuity with respect to the shifted measure

A.1. Preliminary lemmas. In this appendix, we prove that the Φ3
3-measure ρ in the weakly

nonlinear regime (|σ| ≪ 1), constructed in Theorem 1.8 (i), is absolutely continuous with

respect to the shifted measure Law(Y (1) + σZ(1) +W(1)), where Y is as in (3.2), Z is defined

as the limit of the antiderivative of ŻN in (3.11) as N → ∞, and the auxiliary process W is

defined by

W(t) = (1−∆)−1

∫ t

0
⟨∇⟩−

1
2
−ε
(
⟨∇⟩−

1
2
−εY (t′)

)5
dt′ (A.1)
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for some small ε > 0. For the proof, we construct a drift as in the discussion in Section 3

of [4]. See also Appendix C in [53]. The coercive term W is introduced to guarantee global

existence of a drift on the time interval [0, 1]. See Lemma A.2 below. We closely follow the

presentation in Appendix C of our previous work [53].

First, we recall the following general lemma, giving a criterion for absolute continuity. See

Lemma C.1 in [53] for the proof.

Lemma A.1. Let µn and ρn be probability measures on a Polish space X. Suppose that µn
and ρn converge weakly to µ and ρ, respectively. Furthermore, suppose that for every ε > 0,

there exist δ(ε) > 0 and η(ε) > 0 with δ(ε), η(ε) → 0 as ε→ 0 such that for every continuous

function F : X → R with 0 < inf F ≤ F ≤ 1 satisfying

µn({F ≤ ε}) ≥ 1− δ(ε)

for any n ≥ n0(F ), we have

lim sup
n→∞

∫
F (u)dρn(u) ≤ η(ε).

Then, ρ is absolutely continuous with respect to µ.

By regarding ŻN in (3.11) and W in (A.1) as functions of Y , we write them as

ŻN (Y )(t) = (1−∆)−1 :Y 2
N (t) : , (A.2)

W(Y )(t) = (1−∆)−1

∫ t

0
⟨∇⟩−

1
2
−ε
(
⟨∇⟩−

1
2
−εY (t′)

)5
dt′

and we set ŻN (Y ) = πN ŻN (Y ). Then, from (A.2), we have

ŻN (Y +Θ)− ŻN (Y ) = (1−∆)−1πN (2ΘNYN +Θ2
N ), (A.3)

where ΘN = πNΘ. We also define WN (Y )(t) by

WN (Y )(t) = (1−∆)−1πN

∫ t

0
⟨∇⟩−

1
2
−ε
(
⟨∇⟩−

1
2
−εYN (t′)

)5
dt′. (A.4)

Next, we state a lemma on the construction of a drift Θ.

Lemma A.2. Let σ ∈ R and Υ̇ ∈ L2([0, 1];H1(T3)). Then, given any N ∈ N, the Cauchy

problem for Θ:{
Θ̇ + σ(1−∆)−1πN (2ΘNYN +Θ2

N ) + ẆN (Y +Θ)− Υ̇ = 0

Θ(0) = 0
(A.5)

is almost surely globally well-posed on the time interval [0, 1] such that a solution Θ belongs to

C([0, 1];H1(T3)). Moreover, if ∥Υ̇∥2L2([0,τ ];H1
x)

≤ M for some M > 0 and for some stopping

time τ ∈ [0, 1], then, for any 1 ≤ p <∞, there exists C = C(M,p) > 0 such that

E
[
∥Θ̇∥p

L2([0,τ ];H1
x)

]
≤ C(M,p), (A.6)

where C(M,p) is independent of N ∈ N.
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A.2. Absolute continuity. In this subsection, we prove the absolute continuity of the

Φ3
3-measure ρ with respect to Law(Y (1) + σZ(1) + W(1)) by assuming Lemma A.2. We

present the proof of Lemma A.2 at the end of this appendix. For simplicity, we use the same

short-hand notations as in Sections 3 and 4, for instance, Y = Y (1), Z = Z(1), W = W(1),

and WN = WN (1).

Given L ≫ 1, let δ(L) and R(L) satisfy δ(L) → 0 and R(L) → ∞ as L → ∞, which will

be specified later. In view of Lemma A.1, it suffices to show that if G : C−100(T3) → R is a

bounded continuous function with G > 0 and

P
(
{G(Y + σZN +WN ) ≥ L}

)
≥ 1− δ(L), (A.7)

then we have

lim sup
N→∞

∫
exp(−G(u))dρN (u) ≤ exp(−R(L)), (A.8)

where ρN denotes the truncated Φ3
3-measure defined in (1.25). Here, think of Law(Y + σZN +

WN ) as the measure µN , weakly converging to µ = Law(Y + σZ+W).

By the Boué-Dupuis variational formula (Lemma 3.1) and the change of variables (3.12),

we have

− log

(∫
exp(−G(u)−R⋄

N (u))dµ(u)

)
= inf

Υ̇N∈H1
a

E
[
G(Y +ΥN + σZN ) + R̂⋄

N (Y +ΥN + σZN ) +
1

2

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
,

where R̂⋄
N is as in (3.33). We proceed as in Subsection 3.2, using Lemmas 3.5 and 3.6 with

Lemma 3.2, (3.25), and the smallness of |σ|. See (3.17), (3.24), and (3.27). Thus, we have

− log

(∫
exp(−G(u)−R⋄

N (u))dµ(u)

)
≥ inf

Υ̇N∈H1
a

E
[
G(Y +ΥN + σZN ) +

1

20

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt

]
− C1

(A.9)

for some constant C1 > 0. For Υ̇N ∈ H1
a, let Θ

N be the solution to (A.5) with Υ̇ replaced by

Υ̇N . For any M > 0, define the stopping time τM as

τM = min

(
1, min

{
τ :

∫ τ

0
∥Υ̇N (t)∥2H1

x
dt =M

}
,

min

{
τ :

∫ τ

0
∥Θ̇N (t)∥2H1

x
dt = 2C(M, 2)

})
,

(A.10)

where C(M, 2) is the constant appearing in (A.6) with p = 2. Let

ΘN
M (t) := ΘN (min(t, τM )). (A.11)

From (3.2), we have Y (0) = 0, while ZN (0) = 0 by definition. Then, from the change of

variables (3.12) with Θ(0) = 0, we see that ΥN (0) = 0. We also have WN (0) = 0 from (A.4).

Then, substituting (A.3) into (A.5) and integrating from t = 0 to 1 gives

Y +ΥN + σZN = Y +ΘN
M + σZN (Y +ΘN

M ) +WN (Y +ΘN
M ) (A.12)

on the set {τM = 1}.
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From the definition (A.11) with (A.10), we have

∥Θ̇N
M∥2L2

t ([0,1];H
1
x)

≤ 2C(M, 2) (A.13)

and thus the Novikov condition is satisfied. Then, Girsanov’s theorem [20, Theorem 10.14]

yields that Law(Y +ΘN
M ) is absolutely continuous with respect to Law(Y ); see (A.16) below.

Let Q = QΘ̇N
M the probability measure whose Radon-Nikodym derivative with respect to P is

given by the following stochastic exponential:

dQ
dP

= e
−

∫ 1
0 ⟨Θ̇N

M (t),dY (t)⟩
H1
x
− 1

2

∫ 1
0 ∥Θ̇N

M (t)∥2
H1
x
dt

(A.14)

such that, under this new measure Q, the process

W Θ̇N
M (t) =W (t) + ⟨∇⟩Θ̇N

M (t) = ⟨∇⟩(Y + Θ̇N
M )(t)

is a cylindrical Wiener process on L2(T3). By setting Y Θ̇N
M (t) = ⟨∇⟩−1W Θ̇N

M (t), we have

Y Θ̇N
M (t) = Y (t) + ΘN

M (t). (A.15)

Moreover, from Cauchy-Schwarz inequality with (A.14) and the bound (A.13), and then (A.15),

we have

P
(
{Y +ΘN

M ∈ E}
)
=

∫
1{Y+ΘN

M∈E}
dP
dQ

dQ ≤ CM

(
Q
(
{Y Θ̇N

M ∈ E}
)) 1

2

= CM

(
P
(
{Y ∈ E}

)) 1
2

(A.16)

for any measurable set E.

From (A.9), (A.12), and the non-negativity of G, we have

(A.9) ≥ inf
Υ̇N∈H1

a

E
[(
G
(
Y +ΘN

M + σZN (Y +ΘN
M ) +WN (Y +ΘN

M )
)

+
1

20

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt
)
1{τM=1}

+
(
G(Y +ΥN + σZN ) +

1

20

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt
)
1{τM<1}

]
− C1

≥ inf
Υ̇N∈H1

a

E
[
G
(
Y +ΘN

M + σZN (Y +ΘN
M ) +WN (Y +ΘN

M )
)
· 1{τM=1}

+
1

20

∫ 1

0
∥Υ̇N (t)∥2H1

x
dt · 1{τM<1}

]
− C1.
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Then, using the definition (A.10) of the stopping time τM and applying (A.16) and (A.7), we

have

(A.9) ≥ inf
Υ̇N∈H1

a

E
[
L · 1{τM=1}∩{G(Y+ΘN

M+σZN (Y+ΘN
M )+WN (Y+ΘN

M ))≥L}

+
M

20
· 1{τM<1}∩{

∫ 1
0 ∥Θ̇N

M (t)∥2
H1
x
dt<2C(M,2)}

]
− C1

≥ inf
Υ̇N∈H1

a

{
L
(
P({τM = 1})− CMδ(L)

1
2

)
+
M

20
P
(
{τM < 1} ∩

{∫ 1

0
∥Θ̇N

M (t)∥2H1
x
dt < 2C(M, 2)

})}
− C1. (A.17)

In view of (A.6) with (A.10) and (A.11), Markov’s inequality gives

P
(∫ 1

0
∥Θ̇N

M (t)∥2H1
x
dt =

∫ τM

0
∥Θ̇N

M (t)∥2H1
x
dt ≥ 2C(M, 2)

)
≤ 1

2
,

which yields

P
(
{τM < 1} ∩

{∫ 1

0
∥Θ̇N

M (t)∥2H1
x
dt < 2C(M, 2)

})
≥ P({τM < 1})− 1

2
. (A.18)

Now, we set M = 20L. Note from (A.10) that P({τM = 1}) + P({τM < 1}) = 1. Then,

from (A.17) and (A.18), we obtain

− log

(∫
exp(−G(u)−R⋄

N (u))dµ(u)

)
≥ inf

Υ̇N∈H1
a

{
L
(
P({τM = 1})− C ′

Lδ(L)
1
2

)
+ L

(
P({τM < 1})− 1

2

)}
− C1

= L
(1
2
− C ′

Lδ(L)
1
2

)
− C1.

Therefore, by choosing δ(L) > 0 such that C ′
Lδ(L)

1
2 → 0 as L→ ∞, this shows (A.8) with

R(L) = L
(1
2
− C ′

Lδ(L)
1
2

)
− C1 + logZ,

where Z = limN→∞ ZN denotes the limit of the partition functions for the truncated Φ3
3-

measures ρN .

A.3. Proof of Lemma A.2. We conclude this appendix by presenting the proof of Lemma

A.2.

Proof of Lemma A.2. By Lemma 2.3 (ii) and Sobolev’s inequality, we have

∥(1−∆)−1(2ΘNYN +Θ2
N )(t)∥H1

x
≲ ∥(2ΘNYN +Θ2

N )(t)∥H−1
x

≲ ∥ΘN (t)∥
H

1
2+ε
x

∥YN (t)∥
W

− 1
2−ε,∞

x

+ ∥Θ2
N (t)∥

L
6
5
x

≲ ∥ΘN (t)∥H1
x
∥YN (t)∥

W
− 1

2−ε,∞
x

+ ∥ΘN (t)∥2H1
x

(A.19)
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for small ε > 0. Moreover, from (A.1), we have

∥ẆN (Y (t) + Θ(t))∥H1
x
≲ ∥⟨∇⟩−

1
2
−εYN (t)∥5L∞

x
+ ∥⟨∇⟩−

1
2
−εΘN (t)∥5L∞

x

≲ ∥YN (t)∥5
W

− 1
2−ε,∞

x

+ ∥ΘN (t)∥5H1
x
.

(A.20)

Therefore, by studying the integral formulation of (A.5), a contraction argument in

L∞([0, T ];H1(T3)) for small T > 0 with (A.19) and (A.20) yields local well-posedness. Here,

the local existence time T depends on ∥Θ(0)∥H1 , ∥Υ̇∥L2
TH1

x
, and ∥YN∥

L6
TW

− 1
2−ε,∞

x

, where the

last term is almost surely bounded in view of Lemma 3.2 and (2.4).

Next, we prove global existence on [0, 1] by establishing an a priori bound on the H1-norm

of a solution. From (A.5) with (A.4), we have

1

2

d

dt
∥Θ(t)∥2H1 = −σ

∫
T3

(2ΘN (t)YN (t) + Θ2
N (t))ΘN (t)dx

−
∫
T3

(
⟨∇⟩−

1
2
−ε(YN (t) + ΘN (t))

)5 · ⟨∇⟩−
1
2
−εΘN (t)dx

+

∫
T3

⟨∇⟩Θ(t) · ⟨∇⟩Υ̇(t)dx.

(A.21)

The second term on the right-hand side of (A.21), coming from W is a coercive term, allowing

us to hide part of the first term on the right-hand side.

From Lemma 2.1 and Young’s inequality, we have∣∣∣∣ ∫
T3

(2ΘN (t)YN (t) + Θ2
N (t))ΘN (t)dx

∣∣∣∣
≲ ∥ΘN (t)∥2H1 + ∥ΘN (t)∥3L3 + ∥YN (t)∥c

C− 1
2−ε

(A.22)

for small ε > 0 and some c > 0. We now estimate the second term on the right-hand side

of (A.22). By (2.3), we have

∥ΘN (t)∥3L3 ≲ ∥ΘN (t)∥
3+6ε
3+2ε

H1 ∥ΘN (t)∥
6

3+2ε

W− 1
2−ε,6

≤ ∥ΘN (t)∥2H1 + ε0∥ΘN (t)∥6
W− 1

2−ε,6
+ Cε0

(A.23)

for small ε, ε0 > 0. As for the coercive term, from (3.40) and Young’s inequality, we have∫
T3

(
⟨∇⟩−

1
2
−ε(YN (t) + ΘN (t))

)5⟨∇⟩−
1
2
−εΘN (t)dx

≥ 1

2

∫
T3

(⟨∇⟩−
1
2
−εΘN (t))6dx− c

∫
T3

∣∣(⟨∇⟩−
1
2
−εYN (t))5⟨∇⟩−

1
2
−εΘN (t)

∣∣dx
≥ 1

2
∥ΘN (t)∥6

W− 1
2−ε,6

− c∥YN (t)∥5
W− 1

2−ε,6
∥ΘN (t)∥

W− 1
2−ε,6

≥ 1

4
∥ΘN (t)∥6

W− 1
2−ε,6

− c∥YN (t)∥6
W− 1

2−ε,6
.

(A.24)

Therefore, putting (A.21), (A.22), (A.23), and (A.24) together we obtain

d

dt
∥Θ(t)∥2H1 ≲ ∥Θ(t)∥2H1 + ∥Υ̇(t)∥2H1 + ∥Y (t)∥c

C− 1
2−ε

+ ∥Y (t)∥6
W− 1

2−ε,6
+ 1.



112 T. OH, M. OKAMOTO, AND L. TOLOMEO

By Gronwall’s inequality, we then obtain

∥Θ(t)∥2H1 ≲ ∥Υ̇∥2L2([0,t];H1
x)

+ ∥YN∥c
Lc([0,1];C

− 1
2−ε

x )
+ ∥Y ∥6

L6([0,1];W
− 1

2−ε,6
x )

+ 1, (A.25)

uniformly in 0 ≤ t ≤ 1. The a priori bound (A.25) together with Lemma 3.2 allows us to

iterate the local well-posedness argument, guaranteeing existence of the solution Θ on [0, 1].

Lastly, we prove the bound (A.6). From (A.19), (A.20), and (A.25), we have

∥σ(1−∆)−1(2ΘNYN +Θ2
N ) + ẆN (Y +Θ)∥L2([0,τ ];H1

x)

≲ ∥Υ̇∥5L2([0,τ ];H1
x)

+ ∥YN∥c0
Lq([0,1];C

− 1
2− 1

2 ε
x )

+ 1
(A.26)

for some finite q, c0 ≥ 1 and for any 0 ≤ τ ≤ 1. Then, using the equation (A.5), the

bound (A.6) follows from (A.26), the bound on Υ̇, and the following corollary to Lemma 3.2:

E
[
∥YN∥p

Lq([0,1];C
− 1

2− 1
2 ε

x )

]
<∞

for any finite p, q ≥ 1, uniformly in N ∈ N. □

Remark A.3. A slight modification of the argument presented above shows that the tamed Φ3
3-

measure νδ constructed in Proposition 4.1 is absolutely continuous with respect to the shifted

measure Law(Y (1) + σZ(1) +W(1)). In this setting, we can use the analysis in Subsection 4.2

(Step 1 of the proof of Proposition 4.1) to arrive at (A.9). The rest of the argument remains

unchanged. As a consequence, the σ-finite version ρδ of the Φ3
3-measure defined in (4.9) is

also absolutely continuous with respect to the shifted measure Law(Y (1) + σZ(1) +W(1)) for

any δ > 0.
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[7] M. Boué, P. Dupuis, A variational representation for certain functionals of Brownian motion, Ann. Probab.

26 (1998), no. 4, 1641–1659.
[8] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166

(1994), no. 1, 1–26.



STOCHASTIC QUANTIZATION OF Φ3
3 113

[9] J. Bourgain, Nonlinear Schrödinger equations, Hyperbolic equations and frequency interactions (Park
City, UT, 1995), 3–157, IAS/Park City Math. Ser., 5, Amer. Math. Soc., Providence, RI, 1999.

[10] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math.
Phys. 176 (1996), no. 2, 421–445.

[11] J. Bourgain, Invariant measures for the Gross-Piatevskii equation, J. Math. Pures Appl. 76 (1997), no. 8,
649–702.

[12] B. Bringmann, Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlin-
earity I: measures, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 1, 1–89.

[13] B. Bringmann, Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlin-
earity II: dynamics, to appear in J. Eur. Math. Soc.

[14] B. Bringmann, Y. Deng, A. Nahmod, H. Yue Invariant Gibbs measures for the three dimensional cubic
nonlinear wave equation, arXiv:2205.03893 [math.AP].

[15] D. Brydges, G. Slade, Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation,
Comm. Math. Phys. 182 (1996), no. 2, 485–504.
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