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Based on the optical Raman lattice technique, we experimentally realize the Qi-Wu-Zhang model
for quantum anomalous Hall phase in ultracold fermions with two-dimensional (2D) spin-orbit (SO)
coupling. We develop a novel protocol of pump-probe quench measurement to probe, with minimal
heating, the resonant spin flipping on particular quasi-momentum subspace called band-inversion
surfaces. With this protocol we demonstrate the first Dirac-type 2D SO coupling in a fermionic
system, and detect non-trivial band topology by observing the change of band-inversion surfaces as
the two-photon detuning varies. The non-trivial band topology is also observed by slowly loading
the atoms into optical Raman lattices and measuring the spin textures. Our results show solid
evidence for the realization of the minimal SO-coupled quantum anomalous Hall model, which can
provide a feasible platform to investigate novel topological physics including the correlation effects
with SO-coupled ultracold fermions.

Quantum anomalous Hall (QAH) effect denotes the
quantum Hall effect without the Landau levels due to
an external magnetic field [1, 2]. Over three decades
ago, Haldane proposed the first fundamental model for
the QAH effect based on spinless fermions with staggered
flux in a honeycomb lattice [3]. However, the QAH phase
has been realized and widely studied only in the recent
years [4–6] in solid-state experiments based on the con-
siderable progress of topological insulators [7–9], which
has been strongly promoted by the other fundamental
QAH model proposed by Qi, Wu, and Zhang based on
spin-1/2 fermions in a square lattice and two-dimensional
(2D) spin-orbit (SO) coupling [10, 11].

The Qi-Wu-Zhang model [10] has broad impact on con-
densed matter research and quantum simulation. Firstly,
it is the basic building block of the Bernevig-Hughes-
Zhang model [12] underlying the quantum spin Hall ef-
fect [7, 8, 12, 13]. Secondly, it initiated a series of theoret-
ical works [14–17] that inspired the successful experimen-
tal realization of the QAH effect based on magnetically
doping a topological insulator [4–6]. Thirdly, unlike the
Haldane model where s-wave interaction cannot be di-
rectly added, the Qi-Wu-Zhang model allows for incorpo-
rating s-wave interaction and thus provides a promising
route towards the realization of topological superconduc-
tor [7, 8, 18–21] and topological superfluid [22].

Ultracold atoms provide a highly versatile platform ca-
pable of strictly implementing these fundamental QAH
models [23]. To realize the Qi-Wu-Zhang model, a novel
scheme based on the optical Raman lattice technique was
proposed to achieve Dirac-type 2D SO couplings in ultra-
cold fermions [22]. Follow-up studies on 2D SO couplings
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have been carried out for Bose-Einstein condensates [24–
27]. However, the Qi-Wu-Zhang model has yet to be re-
alized in any fermionic system. Such an implementation
is related to the non-interacting limit of a four-Fermi-
Wilson model [28, 29] and will provide a promising plat-
form for further studies of intriguing correlated physics
in interacting regimes, including non-Abelian dynamical
gauge fields [28, 29] and topological superfluidity [22].

Due to their insensitivity to external fields [30],
alkaline-earth atoms (AEAs) have additional advantages
for realizing highly stable SO-coupled systems and the
Qi-Wu-Zhang model. AEAs enable a unique technique,
the optical a.c. Stark shift [31], to achieve stable and
spin-dependent ground-state energy shifts [32]. Based on
narrow-linewidth transitions, one-dimensional (1D) SO
couplings [33–35] have been implemented, where heating
due to spontaneous emission is significantly suppressed.

In this Letter, we report the first experimental realiza-
tion of the Qi-Wu-Zhang model in a fermionic system.
We implement this model using strontium (87Sr) Fermi
gases with 2D SO couplings induced by optical Raman
lattices. A controlled crossover between 2D and quasi-
1D SO couplings and the band topology are observed
with a new protocol of pump-probe quench measurement
developed here, which employs a Raman pulse to drive
momentum-dependent spin-flipping. The identification
of band topology is further supported by measuring the
spin texture in quasi-momentum space after slowly load-
ing the fermions into optical Raman lattices. Our work
lays an experimental foundation for further studies of
topological physics with ultracold fermions.

Experimental setup.—We realize the Qi-Wu-Zhang
model by implementing an optical Raman lattice
scheme [25, 26] in 87Sr Fermi gases. As shown in
Fig. 1(a), two Raman beams, which are both linearly
polarized at a wavelength of λ0 ≈ 689.4 nm, propagate
along the X̂ and −Ŷ horizontal directions, intersect at
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the atoms, and are each phase-shifted and retro-reflected
to form 2D optical lattices for a pair of spin ground states:
|↑〉 ≡ 1S0 |F = 9

2 ,mF = 9
2 〉 and |↓〉 ≡ | 92 ,

7
2 〉. Two pairs

of orthogonal polarization components, (E
XZ

, E
Y X

) and
(E

XY
, E

Y Z
), form two independent lattices of Raman

couplings (Ω1 and Ω2) between the |↑〉 and |↓〉 states.
This 2D optical Raman lattice configuration corresponds
to a minimum model of QAH Hamiltonian:

Ĥ =
p2

2m
+ V

latt
(x, y) + ΩR(x, y) +

δ0
2
σz, (1)

where m is the atomic mass, σx,y,z are Pauli matrices,
and δ0 is a two-photon Raman detuning. Here, the lattice
potential matrix is given by

V
latt

(x, y) =

(
V

latt↑(x, y) 0
0 V

latt↓(x, y)

)
, (2)

V
latt↑,↓(x, y) = V0X↑,↓ cos2 k0x+ V0Y ↑,↓ cos2 k0y,

and the Raman coupling matrix

ΩR(x, y) =

(
0 Ω1 + eiδϕΩ2

Ω∗1 + e−iδϕΩ∗2 0

)
(3)

shall generate the SO couplings, where V0X↑,↓ (V0Y ↑,↓)
denotes the optical lattice depth along the X(Y ) direc-
tion for the |↑〉 or |↓〉 state, Ω1(x, y) = Ω01 sin k0x cos k0y,
Ω2(x, y) = Ω02 cos k0x sin k0y, δϕ is the relative phase
between two sets of Raman couplings, and the lattice
spacing and wavevector amplitude are given by a = λ0/2
and k0 = 2π/λ0, respectively. These Raman beams are
detuned relative to the 1S0(F = 9

2 )→3P1(F ′ = 11
2 ) tran-

sition by -1 GHz (Fig. 1(b)). We further define an ef-
fective Zeeman splitting as mz ≡ δ0/2 + (ε↑ − ε↓)/2,
where ε↑(↓) is the onsite energy of the | ↑〉 (| ↓〉) Wan-
nier function at δ0 = 0. In the tight-binding regime
when only the nearest-neighbor hopping is relevant,
Eq. 1 corresponds to the original Qi-Wu-Zhang Hamil-
tonian [10, 24], Ĥ(q) =

∑
i=x,y,z

hi(q)σi +U0(q)I, where

q is the Bloch wavevector, hx/y = 2tSO sin(qy/xa), hz =
mz − 2t̄0(cos(qxa) + cos(qya)), U0(q) is an overall en-
ergy shift, and I is the identity matrix. Here, tSO and
t̄0 = (t0↑+t0↓)/2 represent the spin-flip and mean value of
spin-conserved (t0↑,↓) hopping coefficients, respectively.

To isolate the |↑〉 and |↓〉 states from the rest of the
ten nuclear spin ground states and to control their en-
ergy difference, we apply an additional “shift beam” to
induce optical a.c. Stark shifts for 87Sr atoms [36]. As
shown in Fig. 1(b), the shift beam is blue-detuned by
690 MHz from the F = 9

2 → F ′ = 11
2 transition, which

separates out an effective spin-1/2 manifold with an en-
ergy difference of about 100 kHz between | ↑〉 and | ↓〉.
Based on fractional laser intensity noise controlled to the
10−4 level, the stability of a.c. Stark shift is on the 10-Hz
level, which is comparable to the ultrahigh stability in the
Zeeman shift of an alkali metal atom under a 10-Gauss
magnetic field with 1ppm control [37].

We prepare and detect SO-coupled fermions as follows.
An almost spin-polarized ultracold 87Sr Fermi gas is pre-
pared by optical pumping and subsequent evaporative
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FIG. 1. Optical Raman lattice scheme for realizing the Qi-
Wu-Zhang model and 2D SO couplings for ultracold fermions.
(a) Experimental setup. The magnetic field B along the Z
direction defines the quantization axis of atoms. Two inci-
dent lasers are reflected to construst 2D optical lattices and
Raman coupling lattices. The strengths of optical lattices are
different for the two spin states (red for |↑〉 and blue for |↓〉).
Two sets of Raman couplings (Ω1 and Ω2) are formed with
their maximum values residing in between atomic positions
(grid points). (b) Energy level diagram and the Raman cou-
pling scheme. The relative phase δϕ between Ω1 and Ω2 is
controlled by a composite waveplate λph shown in (a).

cooling [36, 38]. About 6 × 104 atoms are cooled to a
temperature below 200 nK; 85% of these atoms are po-
larized into the | ↑〉 state. The shift beam intensity is
ramped to its final value, and the optical Raman lattices
are then turned on suddenly (for quench measurements)
or slowly (for slow loading) to generate SO couplings. In
the end, we shut off all lasers within 1 µs and perform
spin-resolved time-of-flight (TOF) measurements [27, 35]
to extract the atomic distributions n↑,↓ of the |↑〉 and |↓〉
states [36]. The spin texture is then given by the spin po-

larization P (q) =
n↑(q)−n↓(q)
n↑(q)+n↓(q) in the first Brillouin zone.

Pump-probe quench measurement.—We develop a
novel protocol of pump-probe quench measurement
(PPQM) to probe SO couplings and band topology. As
shown in Fig. 2(a), we initially prepare atoms in the |↑〉
state without lattice, and suddenly shine a pulse of op-
tical Raman lattice onto these atoms for a short period
of time. We then shut off all traps and perform spin-
resolved TOF measurement of atomic distributions, with
the results being mapped to the quasi-momentum space
of the optical Raman lattice. Due to the pulse, atoms in
the |↑〉 state can be selectively pumped to |↓〉 at those
quasi-momenta where the lowest spin-up and spin-down
bands are inverted and coupled resonantly by two-photon
Raman transitions, namely, at the band-inversion surface
(BIS) which is a 1D ring or open line structure for the
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FIG. 2. Pump-probe quench measurement and the demon-
stration of 2D SO couplings in ultracold fermions. (a) Di-
agram of the pump-probe quench measurement. (b) TOF
images of atoms in the |↓〉 state under various relative phase
δϕ between two Raman couplings. The cyan square marks
the size of the first Brillouin zones. (c) Crossover between
2D and quasi-1D SO couplings, presented by the imbalance
parameter W as a function of δϕ. Black circles are measure-
ments and the blue line is a fit. An optimum 2D SO coupling
is achieved at W = 0, where the diffracted atomic population
in the first and third quadrants (N1+2) equals that in the sec-
ond and fourth quadrants (N3+4). Upper inset: illustration of
N1,2,3,4. Lower inset: original data of N1+2 and N3+4. Error
bars represent 1σ statistical uncertainties.

present system in 2D optical Raman lattices [39]. The
BISs are an essential concept to depict non-trivial band
topology with lower-dimensional information [39–47].

The PPQM technique is a new protocol that combines
two important experimental methods: the pump-probe
measurement, as widely applied in condensed matter ex-
periments [48–50] and ultrafast optics studies [51, 52],
and the quench measurement, as applied in previous
cold-atom and solid-state experiments [27, 45–47, 53–
60]. Compared with conventional pump-probe measure-
ments, the PPQM protocol pumps atoms from ground
state of initial Hamiltonian to the states of a completely
new Hamiltonian, rather than to the excited states of the
original Hamiltonian, revealing the band topology of the
new Hamiltonian. Compared with conventional quench
measurements, the PPQM protocol switches on the post-
quench topological Hamiltonian during the application of
a very short pulse (Tquench = 200 µs [36] in this work),
which pumps the atoms to the states of the new Hamilto-
nian, rather than inducing oscillatory quench dynamics
of a steady Hamiltonian. Thus, the PPQM technique
can maximally suppress detrimental effects like heating
and has the advantage in exploring intriguing topological
quantum physics even with only short lifetimes. For ex-
ample, the PPQM method holds the promise to promote

studies of non-Hermitian topological systems [61–65] in
the quantum regime, where the characterization of such
quantum systems (e.g. those based on ultracold atoms)
is often hampered by short lifetime and heating effect.
SO coupling and band topology.—We first demonstrate

a continuous crossover between 2D and quasi-1D SO
couplings based on PPQM. The relative phase δϕ be-
tween two Raman couplings (that are proportional to
E

XZ
E∗

Y X
and E

XY
E∗

Y Z
) can be tuned by a variable com-

posite waveplate [36] (see λph in Fig. 1(a)) that plays
the role of an electro-optic phase modulator controlling
the phase shift between E

Y Z
and E

Y X
[26]. Fig. 2(b)

shows a series of momentum distribution of atoms trans-
ferred to |↓〉, where the typical line segments along the

X̂ + Ŷ and X̂ − Ŷ directions are consistent with the BIS
under the corresponding experimental condition. Four
groups of |↓〉 atoms (marked by N1 to N4 in the upper
inset of Fig. 2(c)) appear in accordance with the four di-
rections, (±k0,±k0), of SO-coupling-induced momentum
transfer. As δϕ changes, N1+2 shows an out-of-phase
variation with respect to N3+4 (lower inset of Fig. 2(c)).
We further define the population imbalance

W =
(N1 +N2)− (N3 +N4)

(N1 +N2) + (N3 +N4)
, (4)

and observe that W obeys a sinusoidal dependence on
δϕ (Fig. 2(c)), as shown by a fit to the function W =
Wmax cos(δϕ) [26, 36]. Here, δϕ = 0◦ or −180◦ corre-
sponds to that only σx remains in the Raman coupling
matrix, which is similar to 1D SO couplings for fermions
in free space [35, 66, 67]. By contrast, the optimal 2D
Dirac-type SO coupling [25] is achieved at δϕ = ±90◦,
where balanced |↓〉 populations of N1 ∼ N4 are observed
with W = 0. These results reveal the crossover between
2D and quasi-1D SO couplings in our fermionic system,
where the optimal 2D SO coupling is chosen as the ex-
perimental condition for subsequent measurements.

Next, we perform tomographic studies of the post-
quench band topology based on PPQM at various two-
photon detunings. We choose V0X↑ = V0Y ↑ = 0.6E0,
V0X↓ = V0Y ↓ = 0.3E0, Ω01 = 0.53E0 and Ω02 = 0.22E0,

where E0 =
~2k20
2m is the recoil energy. Fig. 3(a) shows

that under different mz values, atoms are pumped to the
|↓〉 state at different quasi-momenta in the first Brillouin
zone (FBZ), and the maximum density of these |↓〉 atoms
shows ring-like structures in the 2D distributions. As mz

increases from negative to positive, the ring structure
shrinks towards the center of FBZ (Γ point), which char-
acterizes a topological transition [39]. Fig. 3(b) shows
numerical simulations that are very similar to the mea-
surements. We further perform azimuthal averaging of
each 2D distribution in Fig. 3(a) and then extract a “ring
radius” Rring that corresponds to the maximum density
in the 1D profile, as showcased in Fig. 3(c) and (d). In
Fig. 3(e), the measured ring radii Rring are presented
together with a series of computed average radii of the
BISs [36], showing good agreement between the measured
and computed values. In particular, our measurements
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FIG. 3. Tomographic determination of post-quench band
topology based on PPQM. (a)-(b) Experimental observation
of band-inversion ring structures (a), represented by pumped
| ↓〉 atoms in the first Brillouin zone after quenches, which
provides a key feature of the post-quench band topology and
agrees well with numerical computation (b). The distinct
patterns that band-inversion rings surround the Γ(0, 0) or
M(±k0,±k0) point mark two different topological regimes.
(c)-(d) Azimuthally averaged profiles of characteristic 2D dis-
tributions in (a), under mz/E0 = −0.42 (c) and 0.41 (d),
respectively, which are used to determine the ring radius
Rring. (e) Measured radii Rring as a function of mz are com-
pared with the computed momenta of the BIS (red solid line).
Dashed lines mark Rring = 0 and

√
2k0, corresponding to two

boundaries of the whole topological regime and an extracted
mz-width of (1.93± 0.12)E0 based on the measurements. Er-
ror bars represent 1σ statistical uncertainties.

cross with the upper and lower boundaries of Rring at
two mz values separated by (9.3± 0.6) kHz, correspond-
ing to a width of (1.93 ± 0.12) E0. This result agrees
well with the numerically computed mz-width of 1.93 E0

for the topological regime based on exact diagonalization
of the Hamiltonian Eq. 1 [36] and Chern number analy-
sis [24, 36, 68], showing the remarkable feature that the
PPQM protocol reveals accurate information of the band
topology for the Qi-Wu-Zhang model.

Determination of band topology.— In order to further
reveal the energy band topology, we measure the spin
textures after a Fermi gas is slowly loaded into the op-
tical Raman lattices. For this purpose, the Fermi gas is
initially populated in the |↑〉 state and then slowly loaded
into 2D optical Raman lattices in 11 ms and further held
for 1 ms. This ramp time is an order of magnitude longer
than the typical inter-band relaxation time scales [36]
such that our measured spin textures reveal the prop-
erty of the lowest energy band. Here, the two-photon
detuning remains fixed during the loading process; we
choose V0X↑ = V0Y ↑ = 0.7E0, V0X↓ = V0Y ↓ = 1.2E0,
Ω01 = 0.80E0 and Ω02 = 0.33E0. As shown in Fig. 4(a),
the majority of atoms occupy the | ↑〉 state at mz =
−0.6E0, while they occupy the |↓〉 state at mz = 0.6E0.
The spin texture experiences a smooth change between

(a)

(b)

(c) (d)
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FIG. 4. Determination of band topology based on spin tex-
ture measurements. (a) Measured spin textures after slowly
loading the atoms into optical Raman lattices. Red and blue
colors denote |↑〉 and |↓〉, respectively. (b) Numerical simu-
lations for zero temperature. (c) Spin polarizations at four
highly symmetric momenta in the FBZ: Γ(0, 0), X1(0,±k0),
X2(±k0, 0), and M(±k0,±k0). (d) The sign product Θ =
Π4

i=1sgn[P (Λi)] and extracted Chern number Ch1 as a func-
tion of mz. (e) Widths of the topological regime for mz:
PPQM (empty circles), slow loading (empty squares), theory
under experimental conditions (solid squares), and theory un-
der vanishing SO couplings (dashed line). Here (W↑ +W↓)/2
is the average of the bare ground bandwidths for |↑〉 and |↓〉.
Error bars represent 1σ statistical uncertainties.

these two cases as mz increases. Fig. 4(b) shows the cor-
responding simulations for zero temperature, exhibiting
similar behaviors as the measurements [36]. Based on
the spin textures, we determine the spin polarizations
P (Λi) at four highly symmetric points Λ1,2,3,4 = Γ(0, 0),
X1(0,±k0), X2(±k0, 0), and M(±k0,±k0) in the FBZ
(Fig. 4(c)), and further determine the Chern number ac-
cording to the signs of P (Λi) [24, 36, 68]. As shown in
Fig. 4(d), we extract a trivial-to-topological transition
at mz/E0 = (−0.46 ± 0.09), and another topological-
to-trivial phase boundary at mz/E0 = (0.60 ± 0.20).
These experimentally determined phase boundaries are
to be compared with numerically computed results of
mz/E0 ≈ ±0.93; the measured topological regime has
a width that is 57% of the numerical result (Fig. 4(e)).
By comparison, PPQM determines a width of topological
regime that is (100±6)% of the numerical result. There-
fore, both the loading measurement and PPQM reveal
the band topologies and are consistent with each other.
Furthermore, PPQM is superior in accurately determin-
ing the phase boundaries.

Discussion and conclusion.— We discuss the lifetime
of our system. Near mz = 0, we hold the SO-coupled
fermions for different periods of time, measure the de-
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cay of the total atom number, and determine a 1/e life-
time [36] of τ0 & 11 ms in typical experimental config-
urations for two-spin 2D-SO-coupled Fermi gases. At
present, τ0 is limited by technical impediments such as
residual moving lattice potentials and has not reached
the scattering-rate-limited value [36]. In future experi-
ments, we expect to enhance the lifetime to over 100 ms
by implementing a new optical Raman lattice scheme
that eliminates moving lattice potentials. With a longer
lifetime, the realization of the Qi-Wu-Zhang model in
ultracold fermions shall facilitate further studies of equi-
librium and non-equilibrium topological physics.

In summary, we have realized the Qi-Wu-Zhang model
with 2D-SO-coupled ultracold Fermi gases. We devel-
oped a novel and robust pump-probe quench measure-
ment protocol to probe the band topology with mini-
mized heating effect. The band topology with 2D SO
coupling is observed by measuring the BISs and spin tex-
tures. The realization of the Qi-Wu-Zhang model with
spinful ultracold fermions enables the tuning of on-site
interactions [69] and can provide a platform for further
studies of the interplay between quantum correlations
and topological physics [70, 71]. Future developments

of our system also hold the promise to study correlated
quantum dynamics [39, 72–74], simulate dynamical gauge
fields [28, 29, 75–79], and explore topological superflu-
ids [19, 22, 80, 81] and topological orders in the interact-
ing regimes [82–84].
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SUPPLEMENTAL MATERIAL

I. PREPARATION AND DETECTION OF
FERMI GASES

A. Optical pumping and evaporative cooling

The realization of the Qi-Wu-Zhang model for quan-
tum anomalous Hall phase relies on two-dimensional (2D)
SO couplings. In our system, this model is realized
via 2D SO couplings induced by 2D optical Raman lat-
tices based on two-photon Raman transitions between a
pair of spin states of fermionic strontium (87Sr) atoms:
|↑〉 ≡ 1S0

∣∣F = 9
2 ,mF = 9

2

〉
and |↓〉 ≡

∣∣ 9
2 ,

7
2

〉
. For 87Sr,

the nuclear spin I equals 9
2 and the ground state 1S0 has

ten magnetic sublevels. Thus, it is necessary to initially
polarize the atoms to the |↑〉 state before loading them
into optical Raman lattices.

To achieve a Fermi gas that is as spin-polarized as pos-
sible and still reach fairly low temperatures, we apply
a circularly (σ+-) polarized, frequency-modulated opti-
cal pumping laser that interrogates the 1S0

∣∣F = 9
2

〉
→

3P0

∣∣F ′ = 9
2

〉
689-nm transitions before the evaporative

cooling process. We note that in a 100%-spin-polarized
Fermi gas, s-wave collisions are forbidden, and p-wave (or
higher-order-wave) collisions under low-temperatures are
strongly suppressed by energy barriers. Therefore, we
carefully engineer the power, frequency modulation, and
pulse length of the pumping beam as well as the mag-
netic field such that (1) during the evaporation, atoms
are partially polarized and still experience effective col-
lisions and (2) at the end of evaporation, about 85% of
atoms occupy the state |↑〉 with a temperature of less
than 200 nK.

B. Optical a.c. Stark shift

The optical a.c. Stark shift beam has a vertical po-
larization that is aligned with the magnetic field B,
corresponding to a π polarization. Due to the narrow
linewidth (Γ ≈ 7.5 kHz) of the 1S0 → 3P1 transition and
the hyperfine splitting energy structure of the 3P1 man-
ifold, the a.c. Stark shift is non-linear with respect to
the magnetic quantum number mF . For example, when
the differential a.c. Stark shift is 100 kHz between the
| ↑〉 and | ↓〉 states, the same beam leads to a differen-
tial shift of only 75 kHz between the | 92 ,

7
2 〉 and | 92 ,

5
2 〉

states. Therefore, by properly choosing the frequency
difference between the two Raman beams, we can realize
near-resonance two-photon Raman transitions only be-
tween the |↑〉 and |↓〉 states; that is to say, the a.c. Stark
shift beam isolates the |↑〉 and |↓〉 states from the rest of
the spin ground states.

C. Spin-resolved time-of-flight measurements

In order to extract the momentum distributions of the
|↑〉 and |↓〉 states, we perform a spin-resolved time-of-
flight (TOF) detection that comprises of three measure-
ments under different conditions. In the first measure-
ment, shortly after the traps are shut off and TOF starts,
we pulse on a σ+-polarized, frequency-modulated ‘Blast’
beam [35] that removes the |↑〉 state by interrogating
the

∣∣F = 9
2 ,mF = 9

2

〉
→
∣∣F ′ = 11

2 ,m
′
F = 11

2

〉
transition,

which is followed by additional TOF expansion and a fi-
nal 461-nm absorption imaging, producing a momentum
distribution I1. Similarly, in the second measurement,
we change the frequency modulation range of the Blast
beam to remove both the |↑〉 and |↓〉 states, producing
a momentum distribution I2. In the third measurement,
we apply no Blast pulse and measure the momentum dis-
tribution I0 of all spin states. Based on these three mea-
surements, the momentum distributions of the |↑〉 and |↓〉
states are extracted as I0 − I1 and I1 − I2, respectively.

In Fig. 2 of the main text, the TOF images show the
momentum distributions. In Figs. 3 and 4, we map the
TOF results to the quasi-momentum space of the optical
Raman lattice with a procedure similar to that employed
in the works on 2D-SO-coupled ultracold bosons [24, 27].

II. COHERENCE BETWEEN TWO 1D SO
COUPLINGS

The realization of a 2D SO coupling relies on coherent
superposition of two lattices of Raman couplings. Here,
we first use a 1D SO-coupled Fermi gas to verify the
coherence between two sets of Raman couplings in the
double-Λ configuration (see Fig. 1(b) in the main text).
In this simplified case, we can directly measure the Ra-
man Rabi oscillation and show the variation of a total
Rabi frequency as a function of a controlled relative phase
between two sets of Raman couplings.

In a setup similar to that in Fig. 1(a) of the main text
but without the retro-reflecting mirrors, two linearly po-
larized “Raman” beams cross at the atoms, with their
polarizations each rotated by 58◦ from the vertical di-
rection. A variable composite waveplate λph is placed in

the Raman beam path along the −Ŷ direction and plays
the role of an electro-optic phase modulator that tunes
the relative phase between E

Y Z
and E

Y X
[26]; see sec-

tion III A for details. In this way, the relative phase δϕ
1D

between the two Raman couplings (that are proportional
to E

XZ
E∗

Y X
and E

XY
E∗

Y Z
) can be controlled. As illus-

trated by the inset of Fig. S1, the total Rabi frequency f
T

is the superposition of two individual Raman couplings
f1 and f2, which depends on the relative phase δϕ

1D
be-

tween the two Raman SO couplings. Here, fT can be
determined via Raman Rabi oscillation measurements.

As shown in Fig. S1, the measured f
T

varies with δϕ
1D

and the measurements can be well described by a model
f
T

=
√
f2

1 + f2
2 + 2f1f2 cos (δϕ

1D
), where δϕ

1D
= 0 is
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2
T

1D

f

δϕ1

f

f

FIG. S1. Coherent interference between two 1D SO cou-
plings. The total Rabi frequency fT varies when the relative
phase δϕ1D between two Raman couplings changes. The black
dots are measurements and the blue line is a fit to a model
fT =

√
f2
1 + f2

2 + 2f1f2 cos (δϕ1D), where the parameters are
determined as f1 = 8.7 kHz, f2 = 4.8 kHz.

identified as the experimental condition where f
T

reaches
its maximum. The fitted f1 and f2 agree with the values
determined using the Raman beam powers and waists.
These results demonstrate the coherence between two
Raman couplings, which lays the foundation of realizing
2D SO couplings.

III. CROSSOVER BETWEEN 2D AND
QUASI-1D SO COUPLINGS

Loading ultracold fermions into 2D optical Raman
lattices realizes a minimal model of quantum anoma-
lous Hall (QAH) Hamiltonian, namely the Qi-Wu-Zhang
model, as described by the Eqs. 1 to 3 in the main
text. To better understand the crossover between 2D
and quasi-1D SO coupling when δϕ varies, we rewrite
the Eq. 3 in the main text as follows:

ΩR(x, y) = σx(Ω1 + Ω2 cos δϕ)− σyΩ2 sin δϕ, (S1)

where σx and σy are Pauli matrices. At δϕ = ±90◦,
ΩR(x, y) = σxΩ1 ∓ σyΩ2 represents the optimal 2D SO
coupling configurations [25, 26]. At δϕ = 0◦ or 180◦,
ΩR(x, y) = σx(Ω1 ± Ω2) represents a configuration that
closely resembles a 1D SO coupling for fermions [35, 66,
67]. When Ω01 = Ω02 and δϕ = 0◦ or 180◦, ΩR will reach
a purely 1D SO coupling similar to that demonstrated in
ultracold bosons [26].

A. Control of δϕ via a variable composite waveplate

To tune the relative phase δϕ between two sets of Ra-
man couplings, we implement a variable composite wave-
plate λph using three waveplates. Under the basis of

vertical and horizontal (V and H) polarizations, the uni-
tary transformation matrix of a half-waveplate (HW) or
a quarter-waveplate (QW) acting on a horizontally prop-
agating laser beam is given by

U
HW

(θ) =

(
cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ sin2 θ − cos2 θ

)
, (S2)

U
QW

(θ) =

(
cos2 θ + i sin2 θ (1− i) cos θ sin θ
(1− i) cos θ sin θ sin2 θ + i cos2 θ

)
,

where θ represents the angle between the slow axis of a
waveplate and the V direction, and the V and H polar-

izations corresponds to

(
1
0

)
and

(
0
1

)
, respectively.

In our three-waveplate setup, a half-waveplate is sand-
wiched between two quarter-waveplates. The slow axes of
both quarter-waveplates are fixed to the same angle (45◦

with respect to the V direction), whereas the slow axis of
the half-waveplate has a tunable angle ϕHW . The total
transformation matrix Tph(ϕ

HW
) of this variable compos-

ite waveplate λph is as follows:

Tph(ϕHW ) = UQW (45◦)UHW (ϕHW )UQW (45◦)

= ie−i·2ϕ
HW

(
1 0
0 −ei·4ϕHW

)
. (S3)

Therefore, by choosing ϕHW for the half-waveplate, we
implement an additional relative phase of 4ϕHW between
the V and H polarizations (namely E

Y Z
and E

Y X
in the

main text), which in turn tunes the relative phase δϕ
between the two Raman couplings [26].

B. Crossover between 2D and quasi-1D SO
couplings

In our measurements for the 2D-quasi-1D crossover
(Fig. 2 in the main text), atoms are transferred from the
|↑〉 state to the |↓〉 state by SO couplings. The Raman
coupling term, Eq. S1, can be rewritten as

ΩR(x, y) =
1

4i
[σx(Ω01 + Ω02 cos δϕ)− σyΩ02 sin δϕ]

×
[
eik0(x+y) − e−ik0(x+y)

]
+

1

4i
[σx(Ω01 − Ω02 cos δϕ) + σyΩ02 sin δϕ]

×
[
eik0(x−y) − e−ik0(x−y)

]
. (S4)

Eq. S4 shows that the Raman coupling transfers mo-
mentum according to the exponential functions while it
flips the spin state, which leads to the typical line seg-
ments displayed in Fig. 2(b) along the X̂+ Ŷ and X̂− Ŷ
directions.

In the limit of short pulses (when the pulse is short
compared to the π pulse length for a Raman Rabi fre-
quency of Ω01 + Ω02), the |↓〉 atom numbers for mo-

mentum transfer along the X̂ ± Ŷ directions (namely
N1+2 = N1 +N2 and N3+4 = N3 +N4 in the main text)
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are proportional to (Ω01±Ω02 cos δϕ)2+(Ω02 sin δϕ)2, re-
spectively. Thus the population imbalance is determined
as follows:

W =
(N1 +N2)− (N3 +N4)

(N1 +N2) + (N3 +N4)

=
2(Ω01/Ω02)

(Ω01/Ω02)2 + 1
cos δϕ. (S5)

Eq. S5 shows that the imbalance parameter W oscillates
with the relative phase δϕ in a form of W = Wmax cos δϕ,

where Wmax is predicted to be 2(Ω01/Ω02)
(Ω01/Ω02)2+1 in the short-

pulse limit.
In our experimental configuration, Ω01/Ω02 ≈ 2.4,

which leads to a predicted Wmax,theo ≈ 0.71 in the short-
pulse limit. We further perform numerical simulations
at the actual pulse length and observe that the varia-
tion of W with respect to δϕ is still close to a cosine
function. The simulation yields an oscillation amplitude
Wmax,simu ≈ 0.69 for a 200 µs pulse length in our ex-
periment. From the fitted result of experimental data
(Fig. 2(c) in the main text), we extract an oscillation
amplitude Wmax,exp = 0.40± 0.02, which is smaller than
the predicted value. The difference between Wmax,exp

and Wmax,theo or Wmax,simu may be caused by the finite
temperature of our Fermi gases.

IV. PUMP-PROBE QUENCH MEASUREMENT
(PPQM) AND NUMERICAL SIMULATIONS

A. A physical picture for PPQM

Here we provide a simple physical picture for our
PPQM protocol. We denote the initial state as |Ψ(q)〉 =
φ(q) |↑〉, where |φ(q)|2 describes the atomic density at
quasi-momentum q. When the Raman lattice is pulsed
on, the evolution of the quantum state is described by the
evolution operator Û(t) = exp[−iĤf(q)t], where Ĥf(q)
is the post-quench Bloch Hamiltonian. Thus, the time-
evolved spin polarization is determined by 〈σz(q, t)〉 =

〈↑| Û†(t)σzÛ(t) |↑〉. In other words, the spin-flip evolu-
tion is the same no matter whether atoms are prepared
in an optical lattice or not. Furthermore, we measure
the band-inversion surface (BIS) based on the transfer of
atoms from the | ↑ 〉 state to the | ↓ 〉 state, which is insen-
sitive to the atomic distribution |φ(q)|2. Therefore, our
PPQM protocol not only effectively probes the BISs as
has been achieved in the previous experiments [27], but
also demonstrates a simplified method without the need
of optical lattices before the quench, which suppresses
heating and other detrimental effects.

We note that the analysis of the PPQM measurements
can be further simplified under our experimental con-
ditions. Because we use relatively shallow lattice depths
for the post-quench Hamiltonian, the ground-band atoms
appear mostly in the first Brillouin zone (FBZ) after the
time-of-flight. Since this work focuses primarily on the

|↑〉 → |↓〉 spin flipping process between the SO-coupled
ground bands, the majority of the corresponding atomic
signal resides within the FBZ. We thus ignore the atomic
signal outside the FBZ in the analysis of our PPQM mea-
surements of band topology (Fig. 3 of the main text).

B. Note on the experimentally chosen pulse
duration

In the main text, we describe a short PPQM pulse with
a duration Tquench = 200 µs. This duration is chosen with
the following two considerations.

Firstly, Tquench cannot be too small. Otherwise, the
signal of atoms transferred to |↓〉 at the BIS will also be
small and proportional to (ΩmodTquench)2, where Ωmod

is the modified Rabi frequency. This small signal from
the BIS can be overwhelmed by the “noise” contributed
by the small amount of atoms transferred to |↓〉 at other
quasi-momenta where Ωmod is higher due to the larger
two-photon detuning.

Secondly, instead of studying dynamical oscillations
between two spin states, we only need to pump suffi-
cient atoms from the |↑〉 state to the |↓〉 state. Therefore,
Tquench does not need to be too large compared with the
typical period of the two-photon Raman Rabi oscillation.
In fact, it only needs to reach a fraction of the duration
of a π-pulse for the minimum energy gap that is reached
at the BIS.

In the main text, we describe the following Raman
coupling parameters used in the PPQM: Ω01 = 0.53E0

and Ω02 = 0.22E0, where E0 ≈ h × 4.8 kHz is the re-
coil energy at λ0 ≈ 689.4 nm, and h is the Planck con-
stant. Under an optimal 2D SO configuration, these pa-
rameters lead to a minimum energy gap (at the BIS)

of ∆min ∼
√

Ω2
01 + Ω2

02/2 ≈ 0.29E0 that also equals
the characteristic Raman Rabi frequency. The corre-
sponding π-pulse duration can then be determined as
Tπ = h

2∆min
≈ 360 µs. The experimentally chosen Tquench

should not exceed Tπ.
In the measurements, we have chosen Tquench = 200 µs
≈ 0.56Tπ, which satisfies the aforementioned two consid-
erations.

C. Numerical simulation of the band-inversion
surfaces

We demonstrate the effectiveness and robustness of
our PPQM protocol by numerically computing the BISs
based on the equilibrium spin textures. For this purpose,
we employ the plane-wave basis

|m,n〉↑ = Cmn,↑ |qx + 2mk0, qy + 2nk0〉 , (S6)

|l, j〉↓ = Clj,↓ |qx + 2lk0 + k0, qy + 2jk0 + k0〉 ,

where Cmn,↑ and Clj,↓ are coefficients for normalization.
The post-quench Bloch Hamiltonian during the Raman
pulse is then expressed as
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Ĥf =
∑

m,n,σ=↑,↓

Vσ (|m,n〉σ 〈m,n+ 1|σ + |m,n〉σ 〈m+ 1, n|σ)

+
∑
m′,n′

[
(Mx + iMy) |m′, n′〉↑ 〈m

′, n′|↓ +
δ0
2
|m′, n′〉↑ 〈m

′, n′|↑ −
δ0
2
|m′, n′〉↓ 〈m

′, n′|↓

]
+ h.c. (S7)

where Mx/y denotes the Raman couplings in the x/y di-
rection, and δ0 is the two-photon detuning. After diag-
onalizing Ĥf , the BISs are identified as momenta where
the |↑〉 and |↓〉 populations are equal, and are denoted by
white lines in Fig. S2(a) where the condition for simula-
tions is the same as that in the post-quench Hamiltonian
for Fig. 3 in the main text.

For comparison, the simulated 2D quasi-momentum
distributions of |↓〉 atoms following our PPQM proto-
col (Fig. 3(b) in the main text) are shown in Fig. S2(b),
which agrees well with the computed BISs. These results
further support the measurement-simulation agreement
shown in Fig. 3(e) of the main text and demonstrate the
capability of the PPQM method to precisely measure the
band topology.

V. DETERMINE THE BAND TOPOLOGY VIA
SPIN-TEXTURE MEASUREMENTS

The QAH Hamiltonian Ĥ (given by Eq. 1 in the
main text) satisfies an inversion symmetry defined by

P̂ ≡ R̂2D ⊗ σ̂z [24, 68]. Here, R̂2D represents a
2D spatial operator that transforms the Bravais lat-
tice vector from R to −R, and σ̂z is the Pauli matrix.
The Hamiltonian Ĥ can be transformed to a form ex-
pressed in the momentum space, where we obtain the
Bloch Hamiltonian H(q) for a given quasi-momentum

q. It can be verified that P̂ ĤP̂−1 = Ĥ and that
the Bloch Hamiltonian satisfies P̂ Ĥ(q)P̂−1 = Ĥ(−q)
[68]. Thus at the four highly symmetric momenta
{Λi} = {Γ(0, 0), X1(0,±k0), X2(±k0, 0),M(±k0,±k0)}
in the FBZ, we have the commutation relation
[Ĥ(Λi), P̂ ] = 0. Therefore, the Bloch states are eigen-

states of P̂ at the four highly symmetric momenta Λi
with eigenvalues P (Λi), and the signs of these four eigen-
values can be used to define a topological invariant that
determines the band topology [24, 68]. Here, the first
Chern number is given by

Ch1 = −1−Θ

4

4∑
i=1

sgn[P (Λi)], (S8)

where the topological invariant Θ is defined by

Θ =
∏
i=1

sgn[P (Λi)]. (S9)

In the experiment, measurements of spin-polarization at
low but finite temperature can be applied to determine
the Chern number of Bloch bands [24, 68].

A. The slow ramping-up of optical Raman lattices.

In this work, we apply a procedure similar to that used
in the studies of 2D SO-coupled bosons [24, 26]. Here,
the Zeeman term mz is kept fixed during the ramp, while
the Raman lattice beam intensities are slowly ramped up
in 11 ms, such that the Fermi gas is slowly loaded into
2D optical Raman lattices. This ramp can be considered
sufficiently slow based on a few considerations. Firstly,
the typical energy gap at the highly symmetric points
in the first Brillouin zone is about 1 kHz, corresponding
to a time scale of 1 ms, which is ten times shorter than
our ramp time. Secondly, even if there is some residual
excitation to higher bands at the smallest energy gap,
the atomic relaxation into the lowest band is also pretty
fast, with a typical time scale of about 1 ms [27], which
is again ten times shorter than our ramp time. Thus, the
measured spin texture should be able to reflect the spin
texture distributed over the lowest energy band, which
provides a determination of the topology of the lowest
band.

VI. LIFETIME OF 2D-SO-COUPLED FERMI
GAS

A. Heating rate due to optical scattering

We estimate a heating rate by considering the single-
photon scattering process. Such heating of Fermi gases
in our system is mainly caused by the a.c. Stark shift
beam and the optical Raman lattice beams. Here, the
scattering rate is determined as

Rscatt =
Γ

2

∑
F ′

2Ω2
F ′/Γ2

1 + 2Ω2
F ′/Γ2 + 4∆2

F ′/Γ2
, (S10)

where Γ = 7.5 kHz is the natural linewidth of the
1S0 → 3P1 transition at 689 nm, ∆F ′ and ΩF ′ are the fre-
quency detuning and Rabi frequency for a single-photon
transition to a manifold of excited states with F ′ = 11/2,
9/2 and 7/2. The corresponding heating rate is then
determined by the scattering rate Rscatt and the recoil
energy E0:

Ṫ =
E0Rscatt

kB
, (S11)

where kB is the Boltzmann constant.
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FIG. S2. Equilibrium spin textures and post-PPQM atomic distributions in the FBZ. (a) The computed equilibrium spin
textures under the same parameters as those in the post-quench Hamiltonian for Fig. 3 in the main text. (b) Simulated
distribution of |↓〉 atoms in the FBZ after the PPQM. The horizontal and vertical axes correspond to the qx and qy directions,
respectively.

513 ms 73 ms

142 ms 16 ms

(a) (b)

(c) (d)

FIG. S3. Lifetime measurements under various experimen-
tal conditions. Black dots are experimental data, and blue
lines are exponential fits. Here, ∆f is the frequency differ-
ence between two Raman lattice beams. (a) (Measurement
with) dipole trap only. (b) Dipole trap and the a.c. Stark
shift beam (where the differential shift between |↑〉 and |↓〉
is about 100 kHz). (c) Dipole trap and the optical Raman
lattice beams with ∆f = 1 MHz (where the two-photon de-
tuning is large). (d) Dipole trap, the a.c. Stark shift beam,
and the optical Raman lattice beams with ∆f = 100 kHz
(where the two-photon detuning is near zero).

With a relatively strong a.c. Stark shift beam (that
leads to a differential shift of about 100 kHz between
|↑〉 and |↓〉), the heating rate due to the aforementioned
single-photon scattering (Rscatt ∼ 14 s−1) by the a.c.
Stark shift beam is about 3 nK/ms. We also estimate
that the heating rate due to the optical Raman lattice
beams is much smaller by more than a factor of ten.
Thus the scattering limited lifetime of the Fermi gas is
on the order of 100 ms.

B. Lifetime measurement and improvement

We determine the lifetime of the Fermi gas by holding
the atoms under a certain experimental condition and

measuring the atom number as a function of the hold
time. We use an exponential function to fit the decay of
the total atom number. Under experimental conditions
as used for Figs. 3 and 4 in the main text, we obtain typi-
cal 1/e lifetime of τ0 ≈ 11 ∼ 16 ms for SO-coupled Fermi
gases (see Fig. S3(d) for an example), which is signifi-
cantly shorter than the single-photon-scattering-limited
value (on the order of 100 ms). We note that τ0 is fairly
insensitive to mz when it takes values used in Figs. 3 and
4 in the main text.

As shown by Fig. S3, the lifetime for Fermi gases
with near-resonance SO couplings (Fig. S3(d)) is signifi-
cantly shorter than gases with far-off-resonance couplings
(Fig. S3(c)) or no Raman beams (Fig. S3(b)). A likely
cause of the limitation on τ0 is the heating due to moving
optical lattices [85], which has a technical nature. Due
to the limited power of the a.c. Stark shift beam (about
45 mW), The |↑〉 and |↓〉 states are separated by about
100 kHz, which dictates the frequency difference between
two Raman beams to be also about 100 kHz for generat-
ing near-resonance SO couplings. In our current optical
design, such frequency difference between the two Ra-
man beams (as well as their retro-reflected beams) leads
to time-varying and spatially periodic potentials, namely
moving optical lattices. Such moving lattices can drag
and heat the atoms, which limits the lifetime of the Fermi
gas.

Discussion on improving the lifetime.—After the com-
pletion of this work, in order to sufficiently reduce the
heating effects caused by moving lattices and to enhance
the atomic lifetime, we designed a new setup for the opti-
cal Raman lattices. In this new setup, the characteristic
frequency difference underlying the moving lattices are
pushed to a few MHz, which is much further away from
the typical frequency scales for physical processes in our
optical Raman lattice experiment. Thus the expected
heating rate can be suppressed and the lifetime can be
significantly enhanced.

Recently, we performed a preliminary test of the sim-
plest version of the new optical setup, and observe that,
encouragingly, the lifetime of 2D-SO-coupled Fermi gas
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has already been enhanced by more than a factor of 5.
This improvement demonstrates the advantages of study-
ing high-dimensional SO-coupled physics using AEAs,
which is also one of the main motivations of the current
work. A full implementation of the new optical Raman

lattice design holds the promise to further increase the
atomic lifetime towards the order of 100 ms. The cor-
responding research is well worth further investigations,
which is beyond the scope of this paper and will be pre-
sented elsewhere.
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