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Decoupling Long- and Short-Term Patterns in
Spatiotemporal Inference

Junfeng Hu, Yuxuan Liang, Zhencheng Fan, Li Liu, Yifang Yin, Roger Zimmermann, Senior Member, IEEE

Abstract—Sensors are the key to environmental monitoring,
which impart benefits to smart cities in many aspects, such
as providing real-time air quality information to assist human
decision-making. However, it is impractical to deploy massive
sensors due to the expensive costs, resulting in sparse data
collection. Therefore, how to get fine-grained data measure-
ment has long been a pressing issue. In this paper, we aim
to infer values at non-sensor locations based on observations
from available sensors (termed spatiotemporal inference), where
capturing spatiotemporal relationships among the data plays a
critical role. Our investigations reveal two significant insights
that have not been explored by previous works. Firstly, data
exhibits distinct patterns at both long- and short-term temporal
scales, which should be analyzed separately. Secondly, short-
term patterns contain more delicate relations including those
across spatial and temporal dimensions simultaneously, while
long-term patterns involve high-level temporal trends. Based on
these observations, we propose to decouple the modeling of short-
term and long-term patterns. Specifically, we introduce a joint
spatiotemporal graph attention network to learn the relations
across space and time for short-term patterns. Furthermore, we
propose a graph recurrent network with a time skip strategy to
alleviate the gradient vanishing problem and model the long-
term dependencies. Experimental results on four public real-
world datasets demonstrate that our method effectively captures
both long- and short-term relations, achieving state-of-the-art
performance against existing methods.

Index Terms—Spatiotemporal Inference, Urban Computing,
Graph Neural Network, Attention Mechanism

I. INTRODUCTION

In recent years, numerous sensors have been deployed in
different locations to sense the environment. They constantly
report spatially-correlated and time-varying readings, such as
traffic flows on roads and air quality measurements. Real-time
monitoring of spatiotemporal data is of great importance to
smart city efforts. For example, air quality information, e.g.,
the concentration of PM2.5 particles, can support air pollution
control and alert the public for health concerns. Unfortunately,
one of the critical prerequisites for the above benefits is the
fine-grained deployment of sensors, which usually leads to
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(a) Spatiotemporal relations. (b) Stations and unknown locations.

(c) PM2.5 Readings of S1, S2, S3 and wind information over time.

S1

S3

S2L2

Time skip for long-term learning

S1

Ti
m

e

S2 L1
What are readings of now?

L3
L4

L5

L1Re
al-

tim
e

Hi
sto

ric
al

Hi
sto

ric
al

1
2

3

Joint attention for

short-term learning

Fig. 1. (a) Examples of three types of spatiotemporal dependencies. (b)
Geographical distribution of stations and unknown locations. (c) PM2.5
readings and wind condition. The curves represent approximated trends and
the arrows are time skips for long-term learning. The gray string denotes the
time of 16:00, 09/11/2017 where signals do not tally with location relations.

considerable expenditure and high energy consumption [1].
Worse still, even existing sensors might lose readings due
to factors such as a poor Internet connection. Thus, how to
compensate for the pitfall of lacking sensors has become an
urgent and challenging problem. In this paper, we provide
one solution by investigating the problem of spatiotemporal
inference: given historical and real-time readings of existing
sensors, we infer the real-time information at arbitrary loca-
tions under a graph structure. As exemplified in Figure 1(b),
both historical and current readings of S1–S3 are leveraged
to infer the real-time air quality status of locations L1–L5

without actual sensors in those places.
Spatiotemporal inference requires delicate spatial and tem-

poral dependency modeling [1]. Early methods infer nodes
based on linear dependencies, such as k-nearest neighbors
(KNN) and inverse distance weighting (IDW) [2]. Then,
non-linear relations are captured by subsequent approaches
such as Gaussian processes (GPs) [3]. However, the Gaus-
sian assumption is rigid and the expensive computation also
limits its applicability [4]. Recently, deep learning methods
have emerged as a dominant paradigm. Among them, Spatio-
Temporal Graph Neural Networks (STGNNs) are widely
adopted due to their superior ability to handle non-Euclidean
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sensory data in graph structures [5], [6]. While the spatial
relations among locations are naturally defined by the graph
[4], the temporal correlations among time points can also
be captured, e.g., by concatenating a sequence of readings
within a time window as the model input [7]. In other
related areas such as forecasting, approaches usually combine
GNNs with recurrent neural networks (RNNs) [8] or temporal
convolutional networks (TCNs) [9], [10] to learn spatial and
temporal dynamics separately. While these methods effectively
capture spatiotemporal dependencies, they encounter two ma-
jor drawbacks when applied to the inference problem.

Firstly, they neglect the difference between long- and short-
term patterns in the time series data. For example, readings
can fluctuate within a short period in Figure 1(c). On the
contrary, when focusing on three curves from 00:00 AM
to the next day at 12:00 PM, they still follow an increas-
ing trend. This suggests that long- and short-term relations
have inconsistent influences. Unfortunately, the GNN-based
inference method [7] concatenates temporal data as features,
ignoring this phenomenon. To resolve this, RNN might be
feasible as the recurrent structure concentrates more on the
latest frames. However, the gradient vanishing problem makes
it hard to capture either long-term trends or delicate short-
term patterns. Although different strategies, such as adopting
adversarial training [11], are proposed to mitigate the problem,
they are at the cost of computations and training difficulties.

Secondly, existing inference models lack the ability to
effectively learn complex and dynamic spatiotemporal rela-
tionships. As illustrated in Figure 1(a), readings are affected
by both spatial relations in the graph (i.e., blue arrows) and
its historical readings in the temporal dimension (i.e., orange
arrows). Moreover, there exist more complicated joint spa-
tiotemporal dependencies (i.e., red arrows) that are influenced
by sensors at different spatial and temporal positions directly.
Unfortunately, the above GNN-RNN structures fail to explic-
itly consider them, which significantly hobbles the model’s
performance. Song et al. [12] attempt to capture the joint
dependencies by a temporal-extended static graph structure.
However, this static graph definition struggles to grasp the
highly dynamic relations. To illustrate this, in Figure 1(b)
and (c), S2 is geographically close to S3 but around 16:00
of 09/11/2017, PM2.5 of S2 is close to that of S1, possibly
due to the fickle wind condition. While several models are
introduced to model dynamic relations [13]–[15], the majority
of them focus on forecasting, and the inference problem is so
far an under-explored research area.

To tackle these issues, we propose a Dual Joint
SpatioTemporal Network (DualSTN) for real-time spatiotem-
poral inference based on graph structures. Our DualSTN
decouples short- and long-term learning into dual components:
a Joint SpatioTemporal Graph Attention neTwork (JST-GAT)
and a Skip Graph Gated Recurrent Unit (SG-GRU). The first
component adopts attention blocks to measure the impact
between a node and its spatial neighboring nodes within
temporal short-term frames, as the yellow circle shows in
Figure 1(c). In this way, JST-GAT learns joint spatiotemporal
relations explicitly, discarding the separate learning structures.
Meanwhile, impacts are measured by real-time sensor sig-

nals, which improves the method’s ability to model potential
dynamic relations. Inspired by Lai et al. [16], the second
component consists of a graph GRU with a time skip strategy,
aiming to reach the same time span with fewer recurrent steps.
This enables the model to capture the long-term temporal
trends while ignoring dedicated short-term patterns, as the
purple arrows illustrated in Figure 1(c). For long-term dynamic
relations, an intuitive way is to learn an adaptive adjacency ma-
trix at each recurrent step as suggested by Wu et al. [9] and We
et al. [17]. However, their transductive design is incompatible
with the inductive setting of our task where target locations
are not involved during training. Thus, we improve the existing
matrix learning method by making node embeddings rely on
current input readings. Additionally, we further leverage a
graph sampling strategy to train the model [18], which further
enhances its generalization ability.

We compare our model with state-of-the-art methods on
four real-world datasets. Results show that our DualSTN
outperforms the competitors clearly. To evaluate the effec-
tiveness and influence of each module, we also visualize
the inference results and the attention weights to interpret
DualSTN’s ability on modeling long- and short-term patterns
as well as dynamic spatiotemporal relations. Our code is
available at https://bit.ly/DualSTN and the main contributions
are summarized as follows:

• We propose a new framework for spatiotemporal infer-
ence, which decouples the long- and short-term pattern
learning into separate modules.

• We introduce a JST-GAT module that measures the
interactions between nodes in different time and spatial
dimensions concurrently, which captures the joint spa-
tiotemporal relations explicitly.

• We propose an SG-GRU to facilitate long-term pattern
modeling and optimization, where skip operations are
introduced to maintain the same time span with fewer
recurrent steps.

• Our DualSTN model achieves state-of-the-art perfor-
mance on real-world datasets in diverse applications.
These results demonstrate the effectiveness and gener-
alization ability of our method.

II. RELATED WORK

A. Spatiotemporal Inference

Spatiotemporal inference aims to infer signals of target loca-
tions with surrounding observed readings in a spatiotemporal
domain. To solve the task, early statistical methods leverage
linear relations modeling. For instance, k-nearest neighbors
search and averages neighbor readings as the results while
inverse distance weighting (IDW) [2] further utilizes inverse
distances as the weights. In addition, several approaches
attempt to capture non-linear dependencies, and Kriging [3],
[19] is one of the prevalent methods. Based on Gaussian
Processes, it designs specialized kernels for the estimation of
covariance between nodes and then infers targets by its poste-
rior. However, the Gaussian assumption may not be followed
by datasets and in this case, a transformation of non-Gaussian
data is required [20]. Wallin et al. [21] attempt to map data

https://bit.ly/DualSTN
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TABLE I
MAJOR CHARACTERISTICS OF MODELS. # MEANS THE NUMBER OF.

Model Year Temporal Relation Spatial Relation Learning Approach
Method Method #-hop

KNN None None Linear 1-hop None
IDW [2] 2008 None Linear 1-hop None
OKriging [19] 2015 None Gaussian 1-hop None
GLTL [24] 2014 Low-Rank Assumption Low-Rank Assumption 1-hop Transductive
KCN [4] 2020 None GNN 1-hop Inductive
IGNNK [7] 2021 GNN GNN n-hop Inductive
SATCN [27] 2021 TCN Graph Aggregation n-hop Inductive
DualSTN (ours) New Joint Attention, GRU Joint Attention n-hop Inductive

into a geo-statistical configuration to weaken the assumption.
Besides spatial relations, temporal dependencies are also taken
into account. As an example, Yi et al. [22] model them by
hybrid variables derived from local and global spatiotemporal
views. Alternatively, the problem can be regarded as anomaly
detection [23] or matrix/tensor completion [24]. Ozkan et
al. [23] propose an anomaly detection algorithm that adopts a
posteriori estimator to fill the missing data while Yu et al. [25]
complete the matrix by a low-rank matrix assumption.

Recently, deep learning methods have merged as a rife
paradigm thanks to their abilities on learning spatiotempo-
ral relations in a data-driven way [26]. Appleby et al. [4]
propose a Kriging Convolutional Network (KCN) for spatial
data inference, which adopts graph convolutional networks
to extract dependencies from one-hop neighboring sensors.
IGNNK [7] concatenates readings of a sequence along the
channel dimension as the inputs of the model to further
capture temporal relations. This design, however, treats tem-
poral dependencies uniformly, ignoring inconsistency in the
temporal relations. Recently, Wu et al. [27] propose SATCN
consisting of a Spatial Aggregation Network with multiple
aggregation functions to gather diverse spatial information.
Then, TCNs are used to capture temporal dependencies. Some
solutions concentrate on specific applications. For instance,
Cheng et al. [28] describe a neural attention model using
external features such as weather and POI, named ADAIN.
Han et al. [29] introduce a novel multi-channel attention model
(MCAM) that views external information as feature channels
and utilizes LSTM for temporal modeling. However, these
deep learning models learn spatial and temporal dependencies
separately and external information is not always available,
which limits the models’ applications.

B. Spatiotemporal Graph Neural Network

Spatiotemporal graph neural networks (STGNNs) are pop-
ular for spatiotemporal data modeling nowadays, following
mainly two categories. They either couple GNNs with RNNs
[30]–[33] or TCNs [9], [34]–[36]. In the first category, GNNs
are employed for capturing spatial dependencies, while RNNs
are used to model temporal dynamics. For example, Li et
al. [37] first propose a diffusion convolution that learns the
spatial relations through bidirectional random walks on a
graph and then capture temporal relations by RNNs. More
advanced RNN models such as LSTM and GRU are also

utilized in [32], [38]. Xu et al. [32] aggregate representations
from node neighborhoods as the inputs of a graph GRU
while Lai et al. [16] use LSTM for long- and short-term
modeling, which has a similar motivation to us but only
focus on temporal relations. In the second category, TCNs
are adopted to learn temporal relationships and enjoy faster
running speed than RNNs. For example, Liu et al. [34] use
the structure to identify more critical data and model it by
the proposed adversarial algorithm. Wu et al. [9] propose a
dilated inception temporal convolution to discover relations
with different temporal scales.

In addition, attention mechanisms can be utilized to enhance
the performance of STGNNS [38]–[41]. Zheng et al. [42]
propose a multi-attention network to model spatial and tem-
poral relations independently by attention. Wang et al. [43]
propose a multi-hop graph attention to calculate weights of
context information from multi-hop neighbors. Cai et al. [44]
explore data periodicity by dividing data into segments. The
extracted segments are then fed into the attention network to
capture temporal dependencies. Huang et al. [45] combine
GNNs and attention networks as a spatial gated block and
adopt gated linear units (GLU) for temporal dimension, which
achieved compelling performances for both short- and long-
term forecasting tasks. These designs, however, fail to capture
the joint spatiotemporal relations that we aim to address.

To model hidden relations that the adjacency matrix cannot
reflect, Li et al. [46] and Bai et al. [47] propose graph
generation methods to learn an adaptive adjacency matrix and
STGNNs take these two matrices to learn spatial relations.
Unfortunately, the static structure cannot capture dynamic
relations and their transductive learning approach is not suit-
able for our task. To solve the challenge, Shin et al. [48]
progressively optimize the learned graph for new nodes that
are not involved in training, based on their available readings.
However, as readings of target locations are completely miss-
ing in our problem, this approach is also not applicable.

C. Comparison to Existing Approaches

We compare our model with other inference methods to
highlight the differences in this section. KNN, IDW [2], and
OKriging [19] are statistical methods, while our DualSTN
is a data-driven method. Meanwhile, OKriging is a geo-
location method only applied to geographic data. On the
contrary, our method is suitable for various datasets. The
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transductive GLTL [24] is based on the low-rank assumption,
while our model does not require any explicit assumption
and is inductive. For the deep learning methods, KCN and
KCN-SAGE [4] are one-hop models. Instead, our approach is
an n-hop method and also takes temporal dependencies into
consideration. IGNNK [7] adopts GNNs but ignores different
long- and short-term patterns. SATCN [27] utilizes TCNs
to capture temporal relations while our method decouples
long- short-term learning and could model spatiotemporal
dependencies simultaneously. Table I summarizes the model
characteristics.

III. PRELIMINARIES

A. Problem Formulation

In this work, we focus on the real-time spatiotemporal data
inference task under a graph structure (see Figure 1 (a), (b)).
A graph is represented by G = (V, E ,A), where V is the
node set, E is the set of edges and A is the pre-defined
adjacency matrix. Suppose we have No stations with observed
spatiotemporal signals, we denote sensor signals at time t as
Xt = [x1

t , ..,x
No
t ] ∈ RNo×D, where D is the number of

attributes in a node. The goal aims to use available station
readings [Xτ−T+1,Xτ−T+2, ..,Xτ ] of time window T to infer
signals Yτ of Nu locations at time τ given their spatial
relations in the graph G,

[Xτ−T+1,Xτ−T+2, ..,Xτ ,G]
fΛ(·)−→ [Yτ ], (1)

where fΛ(·) is the learned mapping function with parameters
Λ and assume N = No + Nu. Note that at any time τ , we
only use historical and current station readings Xτ−T+1:τ to
infer target locations Yτ , which follows the definition of real-
time inference as no future readings are available. Further,
it is possible that several stations lose readings due to a bad
Internet connection or some sensors may be removed or added
to the graph. This requires our model to be inductive to various
numbers of stations and target locations by design.

B. Graph Convolution Layer

As an essential operation to learn interactions among nodes
defined by a graph structure [49], the graph convolution
aggregates node features from its neighbors to learn spatial
correlations. By stacking convolution layers, the model is
capable of learning dependencies from multi-hop neighbors
to improve the modeling ability. From the spatial perspective,
a graph convolutional layer is formulated as:

Z = ϕ(PXW), (2)

where P = D−1(A + I) ∈ RN×N denotes the normalized
adjacency matrix with self-loops, D is the degree matrix,
X ∈ RN×D are the input readings, W ∈ RD×F are learnable
parameters, ϕ(·) is an activation function. Li et al. [37]
further introduce a diffusion convolution that propagates graph
features with K steps:

Z = ϕ(

K∑
k=1

PkXWk). (3)

To capture hidden graph structures that the pre-defined adja-
cency matrix cannot reflect, Wu et al. [17] propose an adaptive
adjacency matrix learning method for the graph convolution,
which results in:

Z = ϕ(

K∑
k=1

PkXWk + ÂkXUk), (4)

where Â is the adaptive adjacency matrix learned by a
network. We term these two graph convolutions as Θ⋆G(X,A)
and Θ⋆G(X,A, Â), where Θ are learnable parameters. The
important notations in the paper are reported in Table II.

TABLE II
IMPORT NOTATIONS FOR DATA INFERENCE.

Notation Description

N , No, Nu number of nodes / observed sensors / target locations
T time length for inference
ts, tk short-term time window, number of skip steps
A, Â pre-defined / learned adaptive adjacency matrix
xi
t, Xt, X readings of the i-th sensor / all sensors at time t / all sensors

Ŷs
τ , Ŷl

τ inferred signals of short- / long-term learning at target time τ
Θ⋆G(X,A) graph convolution only with pre-defined adjacency matrix
Θ⋆G(X,A, Â) that with learned adaptive adjacency matrix

IV. METHODOLOGY

A. Overview of DualSTN

Figure 2 illustrates the overall framework of our Dual
SpatioTemporal Network (DualSTN) which consists of two
backbone components for long- and short-term spatiotemporal
patterns learning. The short-term Joint SpatioTemporal Graph
Attention Network (JST-GAT) first generates pseudo nodes for
unknown locations for the following attention blocks. Then,
stacked graph convolutions and spatiotemporal attention layers
are used to learn joint spatiotemporal dependencies, followed
by a fully-connected layer to generate short-term inference
results. At each recurrent step, the long-term Skip Graph Gated
Recurrent Unit (SG-GRU) first learns an adaptive adjacency
matrix for the graph in an inductive approach. Then, the graph
GRU further takes the learned matrix and hidden states to
encode current readings. Last, it integrates short-term results as
the input to generate long-term inference results. In the below
sections, we first introduce the graph sampling strategy for
inductive learning and then describe the details of DualSTN.

B. Graph Sampling for Inductive Learning

In a real-world environment, new sensors might be added
to the graph and even existing sensors could retire after
some time. In this situation, models need to be compatible
with different graphs and input sensors. In addition, they
ought to have a better generalization ability, which makes the
task more challenging. Previous model Kriging Convolutional
Network [4] designed an inductive model but trained the
model using a static graph, which is suboptimal and prone to
overfitting. Nowadays, approaches solve this by either learning
node embedding functions [6] or sampling subgraphs during
training [7], [18]. In this paper, we adopt the sampling method
which does not involve more parameters. As Figure 3 shows,
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randomly.

given a training graph in (a), for each iteration, we first
randomly sample a subgraph in (b). Then in (c), the sub-
graph is randomly divided into two groups dubbed observed
sensors and target locations. In (d), we leverage observed
sensors to infer signals of target locations and optimize the
network. In this way, the model is less likely to be optimized
according to knowledge from the absolute node locations and
can capture universal spatiotemporal relations shared among
sensors, strengthening its generalization ability. Algorithm 1
describes the graph sampling process in detail. After obtaining
the subgraph, we can fetch a batch of data as the inputs for
training. Note that we use N to denote the number of nodes
in the subgraph in the following sections.

C. Joint Spatiotemporal Graph Attention Network

1) K-nearest Inverse Distance Weighting: As we do not
have signals of target locations in a graph, the attention
mechanism is suboptimal to be applied directly. Thus, we first

Algorithm 1 Graph Sampling for Each Iteration
Input: graph G = (V, E ,A), sensor readings X , where X ∈

RT×N×D.
Output: subgraph Gs, sampled known sensor readings Xs,

sampled readings for inference Ys.
1: Randomly generate two integers No, Nu indicating the

number of known sensors and unknown locations such
that No +Nu ≤ N .

2: Sample a subset of nodes Vs from V such that |Vs| =
No +Nu

3: Divide Vs into two subsets Vk and Vu such that |Vk| = No,
|Vu| = Nu and Vk ∩ Vu = ∅.

4: Retrieve sensor readings from two subsets: Vk → Xs and
Vu → Ys.

5: Retrieve edges Es from Vs.
6: Construct the adjacency matrix As using Es and A.
7: return Gs, Xs, Ys.

calculate initial readings for them by k-nearest inverse distance
weighting (k-IDW). To be specific, we fill short-term values
of the locations (termed pseudo nodes) at time τ and its short-
term neighbor frames in the window [τ − ts, τ −1]. As shown
in the yellow arrows of Figure 4, k-IDW follows the idea of
k-nearest neighbors that first searches the spatially k-nearest
observed sensors for each target location. Then, the inverse
distances from the location to its neighbors are utilized as
weights to calculate the mean:

x̃t,i =

∑k
j=1 xt,j ⊙ di,j

−ρ∑k
j=1 di,j

−ρ
, (5)

where t ∈ [τ−ts, τ ], k denotes the assigned number of nearest
neighbors, di,j is the distance between a tarrget location i
and the neighbor j, ρ means the decay rate, and ⊙ represents
the Hadamard product. After obtaining pseudo nodes, they
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can be used to compute attention scores and we regard
pseudo nodes and observed sensors uniformly, notated as
Xt = [xt,1, ..,xt,No , x̃t,1, .., x̃t,Nu ] ∈ RN×D below.

2) Joint Spatiotemporal Attention: Spatiotemporal data are
influenced by conditions from surrounding locations which are
highly interactive and difficult to capture the patterns. To learn
these relationships, attention networks are proven to be an
effective tool [39]. Among them, researchers mainly utilize
individual attention blocks to handle the spatial relations and
temporal dynamics respectively, followed by a fusion module
to integrate them [41], [42], [50]. However, these models fail to
explicitly consider joint spatiotemporal dependencies directly.
For instance, assuming a north wind, PM2.5 particles will be
blown toward the south over time. In addition, a car accident
will clog traffic on an upstream road after a short time. The
phenomena involve synchronous spatiotemporal shifts and are
hard for separate attention modules to model. We propose
a joint spatiotemporal attention mechanism to capture them
simultaneously, as illustrated in Figure 4.

Given features of a target frame Zl−1
τ at layer l− 1 and its

neighbor frames Zl−1
t in the short-term window [τ−ts, τ−1],

we first employ a graph convolution layer with skip connection
to learn the spatial relations in each frame:

Zl
t = γZl−1

t + µΘl
⋆G

(
Zl−1

t ,A
)

t ∈ [τ − ts, τ ], (6)

where Z0
t = Xt, γ and µ are hyperparameters for skip

connection. Here, the adjacency matrix A defines static spatial
relations as a prior so the attention mechanism relieves from
learning it again, reducing learning difficulties. Then, the
attention operation captures joint spatiotemporal dependencies.
We first calculate attention weights between sensor zlτ,i and
other sensors zlt,j in the window formulated by:

elt,i,j = v⊤
a tanh(Waz

l
τ,i +Uaz

l
t,j + ba), (7)

elt,i,j =
exp(elt,i,j)∑τ

t=τ−ts

∑N
j=1 exp(e

l
t,i,j)

, (8)

where va,ba ∈ RF , Wa,Ua ∈ RD×F are learnable param-
eters. Note that the parameters are shared across all frames
to reduce the computational cost. We also compute attention

scores within the target frame and in this situation, the block
degrades into spatial attention. Finally, we obtain an attention
map El ∈ R(ts+1)×N×N , where the second dimension N
refers to sensor features at the target time τ and the third
dimension N denotes sensors in the ts + 1 frames. Next, we
use features of short-term frames and the attention map to
learn short-term inference representations:

zlτ,i =

τ∑
t=τ−ts

N∑
j=1

El
t,i,jz

l
t,j . (9)

We stack the joint attention blocks for L layers. On the
top layer L, a fully connected layer is used to generate the
short-term outputs:

Ŷs
τ = ZL

τ Wfs + bfs, (10)

where Wfs ∈ RF×D, bfs ∈ RD are parameters and
Ŷs

T ∈ RN×D are short-term inference results. Finally, the joint
spatiotemporal dependencies can be learned by a single JST-
GAT without separate modules. Moreover, the attention block
aids interpretability by visualizing weights to understand how
the model learns the spatiotemporal relations.

D. Skip Graph Gated Recurrent Unit

1) Inductive Dynamic Graph Generation: To model the
hidden relations among nodes, previous works learn an adap-
tive adjacency matrix during training and it remains static
during testing [9], [17], [47]. However, this disregards the
dynamic dependencies of the graph structure over the timeline.
Later, Li et al. [46] model the dynamic connections by
learning an adaptive matrix at each step of a recurrent network.
Unfortunately, the method significantly relies on embeddings
of training nodes which is not available in the inductive setting.
To solve these challenges, we propose an inductive graph
generation module that updates the adjacency matrix in an
inductive fashion based on [9]. To be specific, at time step
t, we use the historical hidden states Ht−tk , Xt and A to
learn graph structure information. Here, the tk is a skip step
described below. The node embedding is replaced by a fully-
connected layer FC(·) taking Ht−tk as input. In summary,
the adaptive adjacency matrix Ât at time t is calculated by:

M1
t = tanh(Θ1⋆G (Xt,A)⊙ FC1(Ht−tk)),

M2
t = tanh(Θ2⋆G (Xt,A)⊙ FC2(Ht−tk)),

Ât = ReLU(tanh(α(M1
tM

2
t
⊤ −M2

tM
1
t
⊤
))),

(11)

where Mt
1 and Mt

2 ∈ RN×F are source node encoder and
target node encoder, respectively, σ(·) is the sigmoid activation
function and α is the saturation rate hyperparameter.

2) Skip Graph Gated Recurrent Unit: GRU is one of the
recurrent structures designed to capture historical temporal
information in a recurrent way [51]. However, the gradient
vanishing and overwhelming state estimation of the latest
inputs cause difficulties to capture long-term temporal pat-
terns [52]. To alleviate this, motivated by [16] we propose a
graph GRU with skips to maintain a temporal span with fewer
recurrent steps. To be specific, hidden states are updated using
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Algorithm 2 Training Procedure of DualSTN
Input: graph G = (V, E), sensor readings of training set X ,

time window T ; initialized model DualSTN().
Output: optimized learnable weights.

1: for i = 1 → Num Iteration do
2: Initialize batch list Xb = [], Yb = [].

{Sampling Graph}
3: Gs, Xs, Ys = Graph Sampling(G, X ).
4: for j = 1 → Batch Size do
5: Randomly choose a start time t.
6: Append {Xs}t:t+T to Xb.
7: Append {Ys}t+T to Yb.
8: end for
9: end for

10: Ŷs
b, Ŷl

b = DualSTN(Gs,Xb).
11: Compute MAE(Ŷs

b,Yb)+MAE(Ŷl
b,Yb) and derive the

gradients.
12: Update learnable weights using the optimizer.

historical hidden states of a certain number of skips tk, which
can be formulated as:

rt = σ(Θr⋆G(Xt|Ht−tk ,A, Â) + br),

ut = σ(Θu⋆G(Xt|Ht−tk ,A, Â) + bu),

ct = tanh(Θc⋆G(Xt|(Ht−tk ⊙ rt),A, Â) + bc),

Ht = ut ⊙Ht−tk + (1− ut)⊙ ct,

(12)

where | means concatenation, rt and ut ∈ RN×F are reset
gate and update gate, respectively. Through the recurrent
skip, the module is encouraged to focus on the high-level
long-term temporal patterns, which ignores delicate relations
among consecutive frames. The decreased recurrent steps also
facilitate the optimization process. At the last recurrent step
at which the short-term inference results Ŷs

τ are computed,
we feed Ŷs

τ to the graph GRU to compute the corresponding
hidden states Hτ . Finally, a fully connected layer is used to
obtain the long-term inference outputs:

Ŷl
τ = HτWfl + bfl, (13)

where Wfl ∈ RF×D, bfl ∈ RD are parameters, and Ŷl
τ ∈

RN×D are long-term inference outputs.

E. Loss Function and Training Procedure

To strengthen the generalization ability, we train our model
by reconstructing all sensor signals instead of just target
locations like Appleby et al. [4] and simultaneously optimize
the MAE loss of short-term outputs Ŷs

τ as well as long-term
results Ŷl

τ :

L =
1

N

∣∣∣Yτ − Ŷl
τ

∣∣∣+ 1

N

∣∣∣Yτ − Ŷs
τ

∣∣∣ . (14)

The training procedure of DualSTN can be summarized in Al-
gorithm 2. For each iteration, we randomly sample a subgraph
and its corresponding sensor readings to train the model. Note
that we adopt the same subgraph and node division for each
batch to simplify the implementation.

TABLE III
DATASET STATISTICS. #: THE NUMBER. TRAFFIC SPD: TRAFFIC SPEED.

RN-DIS/GEO-DIS: ROAD-NETWORK/GEOSPATIAL DISTANCE.

Dataset METR-LA PeMS-Bay NREL BJ-Air

Category Traffic Spd Traffic Spd Solar Energy Air Quality
Adjacency Matrix Rn-Dis Rn-Dis Geo-Dis Geo-Dis

# Sensors 207 325 137 35
# Time points 34,272 52,116 105,120 10,228

Frequency 5-min 5-min 5-min 1-hour
Mean 58.45 62.62 15.96 60.99

Standard Deviation 13.08 9.58 9.86 65.31

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We evaluate the performances of DualSTN
on four real-world spatiotemporal datasets in diverse appli-
cation scenarios: 1) METR-LA1 [37]: traffic speed dataset
collected from 207 sensors in the highway of Los Angeles
from 01/05/2012 to 30/06/2012. 2) PeMS-Bay2 [37]: a traffic
speed dataset collected by California Transportation Agencies
containing 325 sensors in the Bay Area from 01/01/2017
to 13/05/2017. 3) NREL3 [53]: energy datasets provided by
the National Renewable Energy Laboratory and we choose a
subset of Alabama Solar Power Data. The dataset contains
137 photovoltaic power plant readings collected in 2006. 4)
BJ-Air4: air quality index dataset from 35 air quality stations
in Beijing and we consider the PM2.5 observations.

We construct the pre-defined adjacency matrix A based
on either road network distance or geospatial distance
dist(vi, vj). The road network distance is available in the
dataset and we compute geospatial distance using Haversine
formula, given the longitude and latitude:

dist(vi, vj) = 2r arcsin

(
sin2

(
φj − φi

2

)
+

cos (φi) cos (φj) sin
2

(
λj − λi

2

)) 1
2

,

(15)

where r = 6371 is the radius of the earth, (φi, λi) means
the longitude and latitude of the sensor vi. Then the Gaussian
kernel method [54] is applied:

Ai,j = exp(−1

2

dist(vi, vj)
2

σ2
), (16)

where σ is the standard deviation. In the case of the directed
graph that contains bi-directional adjacency matrices Af and
Ab, we use the same network to model them which is
equivalent to A = (Af +Ab)/2. We summarize the statistics
of datasets in Table III.

2) Baseline Methods: We compare the performances of our
model with 7 baselines as follows:

• KNN: K-nearest neighbors interpolate readings of un-
known locations by averaging the k-nearest sensors in
the spatial dimension.

1https://github.com/liyaguang/DCRNN
2https://github.com/liyaguang/DCRNN
3https://www.nrel.gov/grid/solar-power-data.html
4https://www.biendata.xyz/competition/kdd 2018/

https://github.com/liyaguang/DCRNN
https://github.com/liyaguang/DCRNN
https://www.nrel.gov/grid/solar-power-data.html
https://www.biendata.xyz/competition/kdd_2018/
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• IDW: Inverse distance weighting utilizes distances be-
tween nodes to calculate a weighted average of available
nodes for each unknown location [2].

• OKriging: Ordinary kriging is a classic statistical inter-
polation method based on the geospatial locations of the
sensors and Gaussian processes [19]. We evaluate the
performance of OKriging using the package PyKrige5.
Note that OKriging is not applicable for road network
distance, so we just report the performances on NREL
and BJ-Air datasets.

• GLTL:6 Greedy Low-rank Tensor Learning is a low-rank
tensor learning framework for spatiotemporal data co-
kriging and forecasting which handles various properties
in the data. Moreover, a fast greedy algorithm is proposed
to learn the tensor efficiently.

• KCN, KCN-SAGE7: Kriging Convolutional Network
first searches k-nearest neighbors for a target location.
Then, it constructs a graph structure for the K + 1 nodes
as inputs of GNNs to interpolate signals [4]. KCN-SAGE
is a variant based on graph sampling and aggregating [6].

• IGNNK8: Inductive Graph Neural Network Kriging is
a state-of-the-art model trained in an inductive ap-
proach [7]. It regards sequential reading as the feature
of a GNN to learn spatial and temporal relations.

• SATCN9: Spatial Aggregation and Temporal Convolution
Network contains a spat of spatial aggregators using
signals’ statistic features for spatial modeling. Mean-
while, TCNs are leveraged to capture temporal depen-
dencies [27].

3) Evaluation Metrics: We utilize three criteria to evaluate
models: the root mean square error (RMSE), the mean absolute
error (MAE), and the mean absolute percentage error (MAPE).
All of them are frequently used in regression problems:

RMSE =

√
1

N

∑
i∈N

(yi − ŷi)
2
, (17)

MAE =
1

N

∑
i∈N

∣∣yi − ŷi
∣∣ , (18)

MAPE =
1

N

∑
i∈N

∣∣yi − ŷi
∣∣

yi
, (19)

where yi is the ground truth signal of a sensor and ŷi denotes
inferred signals.

4) Implementation Details: Our DualSTN and other deep-
learning baselines are implemented with PyTorch 1.7 and
trained on a Quadro RTX 6000 GPU. We use a historical time
window T = 25 to infer the real-time readings in which the
time window for short-term learning is ts = 3. The skip step
of GRU tk equals 4, i.e., we feed readings of sensors into the
network every 4 steps. For the hyperparameters, we set decay
rates ρ and λ to 1, saturation rate α to 2, and impact factors

5https://geostat-framework.readthedocs.io/projects/pykrige/en/stable
6https://roseyu.com/code.html
7https://github.com/tufts-ml/KCN
8https://github.com/Kaimaoge/IGNNK
9https://github.com/Kaimaoge/SATCN

γ, µ to 0.1 and 0.9. The activation function ϕ is ReLU. The
number of layers for JST-GAT is 3 and the size of hidden states
for graph GRU is 16. All learnable parameters are initialized
with the Xavier [55]. The model is trained by the Adam [56]
optimizer and the learning rate of 10−3. Note that we keep
the same settings for all datasets, verifying the generalization
ability of our model. For the dataset division, we use the first
70% of the time frames to train models and validate or test
models using the following 20% and 10%, respectively. For
the sensor division, we manually leave 50% of the sensors out
for testing, dubbed testing sensors, and the remaining 50% as
training sensors. At each epoch, we randomly mask 50% of
the training sensors as unknown locations. When evaluating
models, we use all training sensors to interpolate all testing
sensors. To ensure a fair comparison, we use the same division
of training and testing sensors and train each deep learning
model five times independently to report the average results
and the standard deviations.

B. Model Comparison

In this section, we compare the performances of our Dual-
STN with all baselines, and the results are summarized in
Table IV. We observe that statistical methods have worse
results than data-driven approaches. This is chiefly because
they are designed to capture linear or Gaussian relations, which
is suboptimal to measure complex dependencies. For deep
learning methods, as they could learn complicated non-linear
spatiotemporal dependencies from data, we find that even
the spatial method KCN outperforms GLTL which considers
both spatial and temporal dependencies. Meanwhile, IGNNK
outperforms KCN because IGNNK adopts n-hop GNNs and
learns from temporal information. For our model, we observe
that it outperforms all baselines on LETR-LA, PeMS-Bay, and
NREL and competitive results on the BJ-Air dataset. It results
from that DualSTN could learn spatiotemporal relationships
simultaneously and the decoupled design makes the model
easier to distinguish long- and short-term patterns. In addition,
DualSTN also has fewer parameters than other models, which
also demonstrates its learning ability. The reason might be
that our model uses a single module to learn spatial and
temporal relations. Thus, we do not need to stack many
layers to enlarge the receptive field, reaching nodes with
far distances. For the BJ-Air dataset, both our DualSTN
and SATCN achieved commensurate performance and surpass
other baselines. SATCN designs special aggregators like the
standard deviation aggregator, which might be beneficial for
this dataset with a large deviation. However, DualSTN has five
times fewer parameters than SATCN. Furthermore, we notice
that on the BJ-Air dataset, the results of the three deep learning
models have larger variations, which means that the training
process is not stable. We conjecture the limited number of
sensors and the large standard deviation of readings cause
difficulties in learning general spatiotemporal dependencies.

C. Ablation Study

Our model is largely built upon two motivations (i.e.,
decoupling long- short-term patterns and joint spatiotemporal

https://geostat-framework.readthedocs.io/projects/pykrige/en/stable
https://roseyu.com/code.html
https://github.com/tufts-ml/KCN
https://github.com/Kaimaoge/IGNNK
https://github.com/Kaimaoge/SATCN


9

TABLE IV
PERFORMANCE COMPARISON AND THE NUMBER OF LEARNABLE PARAMETERS FOR DIFFERENT METHODS ON FOUR DATASETS. K: THOUSAND.

Model METR-LA PeMS-Bay #Params
MAE RMSE MAPE MAE RMSE MAPE

KNN 7.65±0.00 11.20±0.00 0.183 6.45±0.00 12.16±0.00 0.112 –
IDW 7.78±0.00 11.53±0.00 0.188 6.38±0.00 11.78±0.00 0.103 –
OKriging – – – – – – –
GLTL 7.71±0.00 11.03±0.00 0.186 5.20±0.00 8.90±0.00 0.0983 –
KCN 7.19±0.04 10.55±0.07 0.183 4.70±0.07 8.12±0.06 0.095 18K
KCN-SAGE 7.06±0.04 10.05±0.07 0.179 4.38±0.06 7.50±0.07 0.092 15K
IGNNK 6.93±0.09 10.59±0.05 0.175 4.06±0.06 7.12±0.08 0.090 45K
SATCN 7.03±0.05 10.51±0.07 0.176 4.04±0.03 6.96±0.02 0.092 66K
DualSTN (ours) 6.73±0.03 9.93±0.02 0.171 3.95±0.06 6.68±0.04 0.088 12K

Model NREL BJ-Air #Params
MAE RMSE MAPE MAE RMSE MAPE

KNN 3.28±0.00 4.62±0.00 1.031 18.35±0.00 29.41±0.00 1.044 –
IDW 3.08±0.00 4.46±0.00 0.932 17.80±0.00 28.21±0.00 0.921 –
OKriging 2.81±0.00 4.23±0.00 0.855 17.98±0.00 28.62±0.00 0.954 –
GLTL 3.20±0.00 4.49±0.00 0.937 16.33±0.00 26.94±0.00 0.933 –
KCN 1.71±0.08 2.90±0.08 0.739 14.63±0.20 25.39±0.32 0.743 18K
KCN-SAGE 1.65±0.05 2.84±0.07 0.701 14.40±0.26 24.98±0.27 0.725 15K
IGNNK 1.53±0.06 2.75±0.08 0.682 13.79±0.22 24.95±0.29 0.651 45K
SATCN 1.69±0.05 2.90±0.02 0.735 12.93±0.11 23.39±0.22 0.560 66K
DualSTN (ours) 1.49±0.03 2.69±0.02 0.643 13.01±0.20 23.30±0.28 0.554 12K

learning). A natural question is whether they are effective. In
the section, we implement three variants of DualSTN to verify
the effectiveness of components described as follows:

• LongSTN: This variant removes the short-term learning
module and only contains the skip graph gated recurrent
unit. The inference results are outputs of the GRU’s last
recurrent step.

• ShortSTN: This variant removes the skip GRU and
remains the joint spatiotemporal attention graph network
which only takes short-term frames as the inputs to infer
unknown locations.

• DualTCN: Our model uses attention blocks to learn
temporal dependencies in the short-term module and
another intuitive opinion is leveraging TCNs. Thus, this

Fig. 5. Ablation studies. The DualSTN consistently achieves the best RMSE
and MAE results against other variants.

variant replaces the attention module with the temporal
convolution network (TCN) that follows the same struc-
ture as [17] and the long-term module remains the same.

We evaluate the performance of three variants on four
datasets and illustrate the results in Figure 5. We find that
ShortSTN performs better than LongSTN while both are much
worse compared to DualSTN. These observations demonstrate
the following conclusions. 1) Sensor readings are more rele-
vant to short-term patterns but still follow the trend of long-
term ones. 2) Decoupling long- and short-term learning im-
proves performance as they provide information from different
perspectives. For the TCN variant, we observe that DualSTN
has a better performance compared to DualTCN and argue that
this is because the joint attention module explicitly takes joint
spatiotemporal relations into consideration, which reduces the
challenge of modeling complex relations.

D. Hyperparameter Study

In this section, we study the performance of our DualSTN
under different hyperparameter settings and report MAPE
results. In each study, we modify the setting of corresponding
hyperparameters and keep others unchanged. All the experi-
ments are conducted on four datasets.

1) Effects of number of layers of JST-GAT: We adjust
the number of layers L in the joint spatiotemporal attention
module and report the results in Figure 6(a). The model
performances first become better and achieve best at 4 layers
for the BJ-Air dataset and 3 layers for the rest. Then, MAPE
results remain stable or start to increase slightly. According to
these observations, we uniformly keep the number of layers
as 3 to reduce the computational cost.

2) Effects of size of hidden states of SG-GRU: We change
the size of the graph GRU’s hidden states from 4 to 128.
As shown in Figure 6(b), we discover that the performances
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Fig. 6. Parameters study among different variants on METR-LA, PeMS-Bay, NREL, and BJ-Air datasets.

increase until reaching the size of 16 or 32 for four datasets.
Then they start to decrease, indicating that the model tends to
overfit. Accordingly, we set the size to 16.

3) Effects of time window T : We keep the skip step in the
graph GRU tk = 4 and adjust the input time window T to
evaluate GRU’s capability of learning long-term patterns. As
expected in Figure 6(c), a longer input sequence cannot guar-
antee better results. Instead, the model crashes over a long time
window because of its gradient vanishing problem of GRU
on long-term modeling. In this scenario, the encoded long
historical features become noises of hidden states, impeding
the model performance.

4) Effects of number of short-term frames ts: Next, we
modify the number of short-term frames ts. As illustrated in
Figure 6(d), as ts increases, the performance first increases fast
and then levels off. As a larger ts uses frames modeled by SG-
GRU, the delicate learning module JST-GAT is redundant to
capture them again. To this end, we set ts to 3 and leverage
the graph GRU for learning these patterns.

5) Effects of time skip tk: Finally, we keep ts = 3, T = 25
and adjust time skip tk to evaluate its influence. As shown in
Figure 6(e), the results consistently decrease and especially,
this decrease speeds up as tk increases. The reason is that as
the time span becomes too large, the temporal dependencies
between input frames become sparse that the model cannot
capture. Thus, we choose tk to 4 to ensure no frame overlap
between the short-term and long-term modules which also
saves running time.

From the study, we observe that DualSTN is able to
achieve satisfying performances over all datasets using the
same hyperparameter setting. This means that our model is
insensitive to different application domains, which relieves the
demand for hyperparameter searching and is beneficial to real-
world deployment. It could be caused by the fewer learnable
parameters and the learning effectiveness of the model.

E. Case Study

1) Long- and short-term patterns inconsistency: To study
how our DualSTN captures the long- and short-term patterns,
we visualize the short-term results Ŷs and the final results
Ŷl that integrates information of both terms. Figure 7 shows
results and ground truth of META-LA from 16:30, 23/06/2023,
and the BJ-Air dataset from 14/01/2018, in which we have
three observations. 1) In the red boxes, the truth signals fluc-
tuate while having a flat trend. The short-term inferred signals,
aligning with the ground truth, also oscillate as the JST-GAT
only focuses on short-term patterns. Then by involving trends
from long-term patterns, the final outputs become stable. 2) In
the blue boxes, signals follow an upward or downward trend.
The long-term outputs are accurate compared to the short-
term results. This suggests the tendency is important in this
scenario and SG-GRU could capture it precisely. 3) In the
gray boxes where a sudden change in readings happens, the
short-term outputs outperform the long-term results. This is
because the historical tendency in SG-GRU does not tally with
this sudden change. These discoveries mean that our model
handles short- and long-term patterns, and JST-GAT and SG-
GRU can contribute to the final results in different aspects.

2) Joint spatiotemporal Dependencies: The attention block
in our model provides interpretability by indicating the de-
pendencies between two nodes. As the motivation here is to
capture joint spatiotemporal relations, we conduct a case study
using the BJ-Air dataset from 0:00 to 12:00 on 03/09/2017 and
visualize the attention weights of an inferred location to inves-
tigate this ability. For succinctness, we use a center station S21

as the target location and compute attention weights between
its signals and those of equably sampled 13 sensors at different
times. Figure 8(a) illustrates their locations and Figure 8(b)
shows the attention scores of 12 consecutive time steps, where
stations are drawn according to their relative orientations to
S21. Given the southeastern condition, we have the following
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Fig. 7. Visualizations of short-term and final long-term inference results
compared to the ground truth on METR-LA and BJ-Air datasets. The time
starts from 16:30, 23/06/2023, and 0:00, 14/01/2018, respectively.

conclusions. 1) Stations S8, S13, and S17 have larger weights,
meaning that these stations contribute more to the inference
of S21. 2) The pre-defined adjacency matrix could reflect
the spatial relations regarding geographical information, as
near stations have a large influence (e.g., S29 and S31 to
S21). 3) However, it cannot guarantee genuine spatiotemporal
dependencies. For instance, S13 is excessively far away from
S21 compared to S18 but has an even larger impact. In this
situation, the dynamic dependencies become dominant. 4)
The weights of S8 increase over time, mightily due to the
change of wind speed. This means that joint spatiotemporal
attention is capable of capturing relations across time and
space. These observations verify that our model captures both
static spatial relations, dynamic implicit dependencies, and
joint spatiotemporal relations simultaneously even without
knowing possible external factors. This compelling learning
ability also provides the possibility of applying the module to
other tasks that require delicate spatial and temporal modeling,
such as video object segmentation [57], [58].

Wind
Information

N

(a) Air quality stations in Beijing. (b) Attention weights of 𝑆!".

Fig. 8. (a) Locations of stations, where only the discussed sensors are shown.
S21 is the target sensor to compute attention weights. Note that stations S13,
S31 are extremely far from S21. (b) Attention scores of station S21.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a novel DualSTN model for
spatiotemporal inference. To better learn the short- and long-
term patterns, we decouple the model into two components:
JST-GAT and SG-GRU. The first aims to capture delicate
short-term joint spatiotemporal correlations while the second
network focuses on long-term patterns by a time skip strategy.
Extensive experiments on four real-world applications suggest
that our DualSTN offers state-of-the-art performances against
previous baselines. Further evaluations also justify the effec-
tiveness of the modules as well as the interpretation ability
brought by attention mechanisms.

In the future, we can explore ways to speed up the infer-
ence without losing performance, as we find that SG-GRU
consumes a long inference time due to its recurrent structure.
Then, the idea of joint attention can be transferred to the
forecasting task for better capturing spatiotemporal relations.
In addition, more complex models can be proposed to integrate
forecasting and inference as a unified task.
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