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Abstract

We prove tight Hölderian error bounds for all p-cones. Surprisingly, the exponents differ

in several ways from those that have been previously conjectured; moreover, they illuminate

p-cones as a curious example of a class of objects that possess properties in 3 dimensions that

they do not in 4 or more. Using our error bounds, we analyse least squares problems with p-

norm regularization, where our results enable us to compute the corresponding KL exponents

for previously inaccessible values of p. Another application is a (relatively) simple proof that

most p-cones are neither self-dual nor homogeneous. Our error bounds are obtained under the

framework of facial residual functions, and we expand it by establishing for general cones an

optimality criterion under which the resulting error bound must be tight.

Keywords: error bounds, facial residual functions, Hölderian error bounds, p-cones

1 Introduction

Consider the following conic feasibility problem:

find x ∈ (L + a) ∩ K, (Feas)

where K is a closed convex cone contained in a finite dimensional Euclidean space E , L ⊆ E is a

subspace and a ∈ E . Here, we would like to tightly estimate the distance from x to (L + a) ∩ K
using the individual distances between x and L + a and between x and K. This is an error bound

question and is a classical topic in the optimization literature [12,17,26,29,38].

In this paper, we focus on the case where K = Kn+1
p , the p-cone for p ∈ (1,∞), which is defined

as

Kn+1
p := {x = (x0, x̄) ∈ Rn+1 | x0 ≥ ∥x̄∥p}, (1.1)

where ∥x̄∥p denotes the p-norm of x̄. The cases p = 1 or p = ∞ are well-understood since

they correspond to polyhedral cones and, therefore, Lipschitzian error bounds hold by Hoffman’s

lemma [12].
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The case p = 2 corresponds to the second-order cones and their error bounds are also well-

understood: Luo and Sturm proved that if K is a direct product of second order cones then (Feas)

satisfies a Hölderian error bound with exponent (1/2)α and α depends on the level of regularity of

the problem [25, Theorems 7.4.1 and 7.4.2] which, in this case, is upper bounded by the number

of cones. In particular, if K = Kn+1
2 then the exponent is 1/2.

The case p ∈ (1,∞), p ̸= 2 is quite peculiar. Although not as well-known as the 2-cones, it

has applications in facility location problems, regularization of least squares problems and others

[16, 32, 35, 38, 39]. The p-cone also appears in the recent push towards efficient algorithms and

solvers for nonsymmetric cones [6, 15,27,30,32].

There are significant differences between the cases p = 2 and p ̸= 2, however. The former

is a symmetric cone and, thus, enjoys a number of benefits that come with the Jordan algebraic

structure that can be attached to it [9,10] such as closed form expressions for projections. The other

p-cones are not symmetric and do not typically have closed form expressions for their projections.

See [13,14] for a discussion on the extent to which they fail to be symmetric.

Despite the differences between general p-cones and 2-cones, they still have quite a few simi-

larities, so one might be tempted to guess that if K = Kn+1
p then (Feas) satisfies a Hölderian error

bound with exponent 1/p as it was conjectured in [21, Section 5]. It turns out that this conjecture

is wrong, and the true answer is far more interesting.

In this paper, our main contribution is to show for the first time that explicit Hölderian error

bounds hold for all the p-cones and to determine the optimal exponents. As we will see in Theo-

rem 4.3, for a fixed p-cone, there are situations where the exponent is 1/2 and others where the

exponent becomes 1/p. It turns out that the correct exponent depends on the number of zeros that

a certain vector exposing the feasible region of (Feas) has. Furthermore, there is one special case

that only happens when p ∈ (1, 2). We also compute Hölderian error bounds for direct products

of p-cones in Theorem 4.4. As an application of our results, we compute the KL exponent of the

function associated to least squares problems with p-norm regularization; see section 5.1. Previ-

ously, an explicit exponent was only known when p ∈ [1, 2] ∪ {∞}; see [38, 39]. We also provide

new “easy” proofs of some results about self-duality and homogeneity of p-cones; see section 5.2.

An important feature of our main p-cones error bound result is that the bound is optimal in a

strong sense that implies, for example, that the exponents we found cannot be improved. It also

precludes the existence of better error bounds beyond Hölderian ones; see Theorem 4.3 for the

details.

Our results are obtained under the facial residual function (FRF) framework developed in [19,21]

which allows computation of error bounds for (Feas) without assuming constraint qualifications.

Another major contribution in this work is that we expand the general framework in [19] to allow

verification of the tightness of the error bound. In particular, when the facial residual function

satisfies a certain optimality criterion and the problem can be regularized in a single facial reduction

step, the obtained error bound must be optimal; see Theorem 3.2 and Corollary 3.1. We believe

this expansion, and the new associated criterion will be useful for analysing other cones. For

example, they easily verify the optimality of the FRFs constructed for the nontrivial exposed faces

of the exponential cone in [19], while requiring no additional effort beyond what the authors used

to merely show the FRFs were admissible; see Remark 3.2.

This paper is organized as follows. In section 2, we review preliminary materials including

some essential tools developed in [19] for computing FRFs. In section 3, we build the tightness

framework and establish the optimality criterion for certifying tight error bounds. In section 4,

we derive explicit error bounds for (Feas) with K = Kn+1
p and certify their tightness. Finally, we

discuss applications of our results in section 5.
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2 Preliminaries

In this paper, we will follow the notation and definitions used in [19], where we explained in

more details some of the background behind the techniques we used. Here we will be terser and

simply refer to the explanations contained in [19] as needed. We strongly recommend that a reader

unfamiliar with our techniques takes at least a quick look at the main results in [19].

As a reminder, we assume throughout this paper that E is a finite dimensional Euclidean space

E . The inner product of E will be denoted by ⟨·, ·⟩ and the induced norm by ∥ · ∥. With that, for

x ∈ E and a closed convex set C ⊆ E , we denote the distance between x and C by dist(x,C) :=

infy∈C ∥x−y∥. We denote the projection of x onto C by PC(x) so that PC(x) = arg miny∈C ∥x−y∥.

We will also write C⊥ for the orthogonal complement of C. We use R+ and R++ to denote the

set of nonnegative and positive real numbers, respectively. We also write B(η) := {x | ∥x∥ ≤ η}
for any η ≥ 0.

Next, let K be a closed convex cone contained in E . We denote the boundary, relative interior,

linear span, dual cone and dimension of K by ∂K, riK, spanK, K∗ and dimK, respectively. A cone

is said to be pointed if K ∩ −K = {0}. Related to that, we note the following well-known fact for

further reference

z ∈ riK∗ ⇒ K ∩ {z}⊥ = K ∩−K, (2.1)

see, for example, [23, items (i) and (iv) of Lemma 2.2] applied to the dual cone.

If F ⊆ K is a face of K we write F � K. We say that a face F is proper if F ̸= K and nontrivial

if F ≠ K ∩ −K and F ≠ K. If F = K ∩ {z}⊥ for some z ∈ K∗, then F is said to be exposed. A

face of dimension one is called an extreme ray. By convention, we only consider nonempty faces.

A finite collection of faces of K satisfying Fℓ ⊊ · · · ⊊ F1 is called a chain of faces and its length

is defined to be ℓ. Then, the distance to polyhedrality of K, denoted by ℓpoly(K), is the length

minus one of the longest chain of faces of K such that only the final face Fℓ is polyhedral.

Next, we recall some basic definitions and results related to error bounds.

Definition 2.1 (Lipschitzian and Hölderian error bounds). Let C1, C2 ⊆ E be closed convex sets

with C1 ∩ C2 ̸= ∅. We say that C1, C2 satisfy a uniform Hölderian error bound with exponent

γ ∈ (0, 1] if for every bounded set B ⊂ E there exists a constant κB > 0 such that

dist(x,C1 ∩ C2) ≤ κB max{dist(x,C1),dist(x,C2)}γ , ∀x ∈ B.

If γ = 1, then the error bound is said to be Lipschitzian.

In what follows we say that (Feas) satisfies the partial-polyhedral Slater (PPS) condition (see

[22]) if one of the following three conditions holds: (i) K is polyhedral; (ii) (L + a) ∩ (riK) ̸= ∅
(Slater’s condition holds); (iii) K can be written as K = K1 × K2 where K1 is polyhedral and

(L + a) ∩ (K1 × (riK2)) ̸= ∅.

From [2, Corollary 3] it follows that if (Feas) satisfies the PPS condition, then a Lipschitzian

error bound holds; see [19, Section 2.2] for details. We register this below.

Proposition 2.1 (Error bound under the PPS condition). If (Feas) satisfies the PPS condition,

then a Lipschitzian error bound holds.

Next, we will quickly review some ideas from facial reduction [5, 31, 34] and the FRA-poly

algorithm of [22]; see also [19, Section 3]. The next proposition follows from the correctness of the

FRA-Poly algorithm [22, Proposition 8] and ensures that it is always possible to find a face of K
that contains the feasible region of (Feas) and satisfies the PPS condition.
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Proposition 2.2 ([19, Proposition 3.2]). Let K = K1×· · ·×Ks, where each Kj is a closed convex

cone. Suppose (Feas) is feasible. Then there is a chain of faces

Fℓ ⊊ · · · ⊊ F1 = K (2.2)

of length ℓ and vectors {z1, . . . , zℓ−1} satisfying the following properties.

(i) ℓ− 1 ≤
∑s

j=1 ℓpoly(Kj) ≤ dimK.

(ii) For all i ∈ {1, . . . , ℓ− 1}, we have

zi ∈ F∗
i ∩ L⊥ ∩ {a}⊥ and Fi+1 = Fi ∩ {zi}⊥.

(iii) Fℓ ∩ (L + a) = K ∩ (L + a) and {Fℓ,L + a} satisfies the PPS condition.

If (Feas) is feasible, we define the distance to the PPS condition dPPS(K,L + a) as the length

minus one of the smallest chain of faces satisfying Proposition 2.2. We discuss briefly how to

upper bound dPPS(K,L + a). First, we observe that if zi belongs to the span of the {z1, . . . , zi−1}
we would have Fi+1 = Fi. So in order for the containments in (2.2) to be strict, the vectors in

{z1, . . . , zℓ−1} must be linearly independent. From this observation and item (i) of Proposition 2.2,

we obtain

dPPS(K,L + a) ≤ min
{∑s

j=1 ℓpoly(Kj),dim(L⊥ ∩ {a}⊥)
}
. (2.3)

Furthermore, from the correctness of the FRA-Poly algorithm in [22], it follows that there exists

at least one chain of faces as in Proposition 2.2, see [22, Proposition 8, item (i)].

Before we proceed, let us briefly recall the intuition behind the strategy in [19], which is based

on the following points.

• We would like to obtain error bounds between K and L + a as in (Feas). If it were the case

that the system in (Feas) satisfied some constraint qualification (e.g., Slater’s condition),

then a Lipschitzian error bound would hold by Proposition 2.1.

• Unfortunately, in general, (Feas) does not satisfy a constraint qualification. However, through

facial reduction, one may find a chain of faces as in (2.2) starting at K and ending at a face

Fℓ that does satisfy a constraint qualification, see item (iii) in Proposition 2.2.

• Therefore, by Proposition 2.1, a Lipschitzian error bound holds between L + a and Fℓ. In

order to get an error bound between L + a and K (which is what we actually want), we

need to estimate the distance to Fℓ using other available information. This is accomplished

through facial residual functions, as described in the Section 2.1. They help to keep track of

the distance to the faces Fi in the chain as we do facial reduction.

• Once the facial residual functions are computed, the error bounds can be obtained by com-

posing them in a special manner, as described in Theorem 2.1.

2.1 Facial residual functions and error bounds

We recall the definition of one-step facial residual function (1-FRF) [19, Definition 3.4].

Definition 2.2 (One-step facial residual function (1-FRF)). Let K be a closed convex cone and

z ∈ K∗. A function ψK,z : R+ × R+ → R+ is called a one-step facial residual function (1-FRF)

for K and z if it satisfies the following properties:

(i) ψK,z is nonnegative, nondecreasing in each argument and ψK,z(0, t) = 0 for every t ∈ R+.
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(ii) The following implication holds for every x ∈ spanK and every ϵ ≥ 0:

dist(x,K) ≤ ϵ, ⟨x, z⟩ ≤ ϵ ⇒ dist(x,K ∩ {z}⊥) ≤ ψK,z(ϵ, ∥x∥).

1-FRFs are a less general version of the notion of facial residual functions developed in [21]

but they are still enough for error bound purposes.

Next, we state the error bound based on 1-FRFs proved in [19]. In what follows, for functions

f : R+ × R+ → R+ and g : R+ × R+ → R+, we define the diamond composition f♢g to be the

function satisfying

(f♢g)(a, b) = f(a+ g(a, b), b), ∀a, b ∈ R+. (2.4)

The diamond composition makes it possible to relate the distance functions dist(·,K), dist(·,L+a)

to the distance functions to the faces Fi that appear during facial reduction, see, for example, [19,

Lemma 3.7]. The intuitive idea is that we estimate the distances to the faces F2,F3, . . . ,Fℓ

recursively and, for a given x, we use dist(x,Fi−1) to estimate dist(x,Fi), which requires some

sort of function composition of the 1-FRFs. The diamond composition was designed in such a way

as to make this strategy succeed and to allow the (upper) estimation of the distance to the final

face Fℓ appearing in Proposition 2.2.

Also if ψ is a facial residual function, we say that ψ̂ is a positively rescaled shift of ψ if there

are positive constants M1,M2,M3 and a nonnegative constant M4 such that

ψ̂(ϵ, t) = M3ψF,z(M1ϵ,M2t) +M4ϵ. (2.5)

If M4 = 0 in (2.5), we say that ψ̂ is a positive rescaling of ψ.

Theorem 2.1 ([19, Theorem 3.8]). Suppose (Feas) is feasible and let

Fℓ ⊊ · · · ⊊ F1 = K

be a chain of faces of K together with zi ∈ F∗
i ∩L⊥ ∩ {a}⊥ such that {Fℓ,L+ a} satisfies the PPS

condition and Fi+1 = Fi ∩ {zi}⊥ for every i. For i = 1, . . . , ℓ − 1, let ψi be a 1-FRF for Fi and

zi.
1

Then, there is a suitable positively rescaled shift of the ψi (still denoted as ψi by an abuse of

notation) such that for any bounded set B there is a positive constant κB (depending on B,L, a,Fℓ)

such that

x ∈ B, dist(x,K) ≤ ϵ, dist(x,L + a) ≤ ϵ ⇒ dist (x, (L + a) ∩ K) ≤ κB(ϵ+ φ(ϵ,M)),

where M = supx∈B ∥x∥, φ = ψℓ−1♢ · · ·♢ψ1, if ℓ ≥ 2. If ℓ = 1, we let φ be a function satisfying

φ(ϵ,M) = ϵ for all ϵ ≥ 0.

Theorem 2.1 is a more general version of an analogous result for the so-called amenable cones,

see [21, Theorem 23] and [24].

To finish this subsection, we prove an auxiliary lemma that will be helpful to analyze Hölderian

error bounds.

Lemma 2.1. let K, L, a and ψi be as in Theorem 2.1. Consider the following additional assump-

tion on the ψi:

(i) there exist αi ∈ (0, 1] and nonnegative, nondecreasing functions ρi, ρ̂i such that ψi(ϵ, η) =

ρi(η)ϵ+ ρ̂i(η)ϵαi for every ϵ ≥ 0 and η ≥ 0.

1By convention, when ℓ = 1, no ψi will be defined.
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Then K and L + a satisfy a uniform Hölderian error bound with exponent
∏ℓ−1

i=1 αi if ℓ ≥ 2 or

exponent 1 if ℓ = 1.

Proof. If ℓ = 1, then Theorem 2.1 implies that a Lipschitzian error bound holds, so the result is

true. So suppose that ℓ ≥ 2, let B ⊆ E be an arbitrary bounded set and define d as the function

satisfying d(x) := max{dist(x,K),dist(x,L + a)}. Theorem 2.1 implies that there exists κB > 0

such that

dist (x, (L + a) ∩ K) ≤ κB(d(x) + φ(d(x), η)), ∀x ∈ B, (2.6)

where η = supx∈B ∥x∥, φ = (ψℓ−1♢(· · · ♢(ψ2♢ψ1))) and the ψi might have been positively rescaled

with shifts. Note however, that if ψi is positively rescaled and shifted, then, adjusting ρ̂i and ρi if

necessary, ψi(ϵ, η) = ρi(η)ϵ+ ρ̂i(η)ϵαi still holds with the same αi.

In what follows we make extensive use of the following principle: if β1 ≤ β2, then, for a fixed

bounded set B, we can find a constant κ such that d(x)β2 ≤ κd(x)β1 for all x ∈ B. Indeed,

d(x)β2 = d(x)β2−β1d(x)β1 ≤
(

sup
y∈B

d(y)β2−β1

)
d(x)β1 , ∀x ∈ B, (2.7)

where the sup is finite because the closure of B is a compact set contained in the domain of the

continuous function d(·) and β2 − β1 ≥ 0.

First, we will prove by induction that there exists κℓ−1 > 0 such that

φ(d(x), η) ≤ κℓ−1d(x)α̃ℓ−1 , ∀x ∈ B, (2.8)

where α̃ℓ−1 :=
∏ℓ−1

i=1 αi. If ℓ = 2, then φ = ψ1. From (2.7) and the assumption on the format of

ψ1 we can find a constant κ > 0 so that

ρ1(η)d(x) + ρ̂1(η)d(x)α1 ≤ (κρ1(η) + ρ̂1(η))d(x)α1 , ∀x ∈ B.

This implies that (2.8) holds when ℓ = 2. Suppose that (2.8) holds for some ℓ̂ ≥ 2, and we

will show that it holds for ℓ̂ + 1 (when a chain of faces of length ℓ̂ + 1 exists). In this case, we

have φ = ψℓ̂♢φℓ̂−1, where φℓ̂−1 = ψℓ̂−1♢(· · · ♢(ψ2♢ψ1)). Now, the induction hypothesis (applied

to φℓ̂−1), the monotonicity of FRFs, and the observation in (2.7) together imply that for some

constants κℓ̂−1, κ̂ℓ̂−1 we have for all x ∈ B,

φ(d(x), η) = ψℓ̂(d(x) + φℓ̂−1(d(x), η), η) ≤ ψℓ̂(d(x) + κℓ̂−1d(x)α̃ℓ̂−1 , η)

≤ ψℓ̂(κ̂ℓ̂−1d(x)α̃ℓ̂−1 , η). (2.9)

Because of the assumption on the format of ψℓ̂, we have that ψℓ̂(κ̂ℓ̂−1d(x)α̃ℓ̂−1 , η) can be written as

a1d(x)α̃ℓ̂−1 +a2d(x)αℓ̂α̃ℓ̂−1 , for some constants a1, a2 which do not depend on d(x). Since αℓ̂ ∈ (0, 1],

we have α̃ℓ̂ = αℓ̂α̃ℓ̂−1 ≤ α̃ℓ̂−1. Therefore, the observation in (2.7) together with (2.9) imply the

existence of κℓ̂ > 0 such that

φ(d(x), η) ≤ ψℓ̂(κ̂ℓ̂−1d(x)α̃ℓ̂−1 , η) ≤ κℓ̂d(x)α̃ℓ̂ , ∀x ∈ B, (2.10)

which concludes the induction proof. We have thus established that (2.8) holds. Plugging (2.8)

into (2.6) and applying the observation (2.7) yet again, we conclude that there exists a constant

κ > 0 such that

dist (x, (L + a) ∩ K) ≤ κd(x)α̃ℓ−1 , ∀x ∈ B.
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v = PKq

w = P{z}⊥vu = PFw

Figure 1: The framework of Lemma 2.3, Theorem 2.2, and Lemma 2.4 is illustrated. The right

image shows a 2D slice of the left image, where the slice is in the plane given by span{v, w, u}.

2.2 Computing 1-FRFs

It is clear from Theorem 2.1 that the key to obtaining error bounds for (Feas) is the computation

of 1-FRFs, so in this final subsection we recall a few tools that will be helpful in this task.

First, we take care of the case when z ∈ riK∗. In this case, if K is pointed, then K∩{z}⊥ = {0}
by (2.1).

Lemma 2.2 (1-FRF for the zero face). Suppose K is a pointed closed convex cone and let z ∈ riK∗.

Then, there exists κ > 0 such that ψK,z defined by ψK,z(ϵ, t) := κϵ is a 1-FRF for K and z.

Proof. Because z ∈ riK∗ and K is pointed, there exists κ > 0 such that y ∈ K implies that ∥y∥ ≤
κ⟨y, z⟩; see for example [21, Lemma 26]. Next, suppose that x ∈ spanK satisfies dist(x,K) ≤ ϵ

and ⟨x, z⟩ ≤ ϵ. Then, there exists h satisfying ∥h∥ ≤ ϵ such that x + h ∈ K. From (2.1) and the

pointedness of K, we have

dist(x,K ∩ {z}⊥) = ∥x∥ ≤ ∥x+ h∥ + ∥h∥ ≤ κ⟨x+ h, z⟩ + ϵ ≤ κϵ+ κϵ∥z∥ + ϵ.

Therefore, ψK,z(ϵ, t) := (κ+ κ∥z∥ + 1)ϵ is a 1-FRF for K and z.

The next several results are based on the idea of establishing local error bounds for K and {z}⊥
and using them to recover the corresponding 1-FRF for K and z. This will be the main approach

we will use for computing the 1-FRFs of Kn+1
p and its faces. We first provide some of the intuition

in Remark 2.1 and illustrate in Figure 1. See [19, Section 3.1] for more detailed explanations.

Remark 2.1 (Geometric intuition for finding suitable 1-FRF). We will next introduce the frame-

work we use to find facial residual functions and then use those facial residual functions to recover

error bounds. Let us first explain geometrically what the following results allow us to do. See

Figure 1 for an intuitive illustration of the relative positions of the points that arise.

1. First, Lemma 2.3 will show that we may replace the problem of computing 1-FRFs with a

simpler error bound problem that only considers points q that are constrained to the exposing

hyperplane {z}⊥.

2. Second, Theorem 2.2 will show that we can replace the problem involving q with an equivalent

problem involving v ∈ K and w = P{z}⊥v and u = PFw. At this point the need to have an

explicit projection onto K vanish, because the error bound problem is cast in terms of points

v that move along the boundary of K.
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3. Third, Lemma 2.4 provides us a path to solve the problem of v, w, u. Critically, as we shall

see in Section 4, when applied to Kn+1
p , the projections involved in solving this problem

(P{z}⊥ and PF ) are piecewise-linear maps that can be described explicitly.

This reformulation is an improvement over the original problems involving p or q, because those

problems would seem to require an explicit form of the projection PK, while only an implicit form

is available.

The next lemma shows how to recover from such an error bound the facial residual function

for K and z.

Lemma 2.3 ([19, Lemma 3.9]). Suppose that K is a closed convex cone and let z ∈ K∗ be such

that F = {z}⊥ ∩ K is a proper face of K. Let g : R+ → R+ be nondecreasing with g(0) = 0, and

let κz,s be a finite nondecreasing nonnegative function in s ∈ R+ such that

dist(q,F) ≤ κz,∥q∥g(dist(q,K)) whenever q ∈ {z}⊥. (2.11)

Define the function ψK,z : R+ × R+ → R+ by

ψK,z(s, t) := max {s, s/∥z∥} + κz,tg (s+ max {s, s/∥z∥}) .

Then we have

dist(p,F) ≤ ψK,z(ϵ, ∥p∥) whenever dist(p,K) ≤ ϵ and ⟨p, z⟩ ≤ ϵ. (2.12)

Moreover, ψK,z is a 1-FRF for K and z.

Next, we recall a result on how to compute error bounds suitable to be used in conjunction

with Lemma 2.3.

Theorem 2.2 ([19, Theorem 3.10]). Suppose that K is a closed convex cone and let z ∈ K∗ be such

that F = {z}⊥ ∩K is a nontrivial exposed face of K. Let η ≥ 0, α ∈ (0, 1] and let g : R+ → R+ be

nondecreasing with g(0) = 0 and g ≥ | · |α. Define

γz,η :=inf
v

{
g(∥w − v∥)

∥w − u∥

∣∣∣∣ v ∈ ∂K ∩B(η)\F , w = P{z}⊥v, u = PFw, w ̸= u

}
. (2.13)

(i) If γz,η ∈ (0,∞], then it holds that

dist(q,F) ≤ κz,ηg(dist(q,K)) whenever q ∈ {z}⊥ ∩B(η), (2.14)

where κz,η := max
{

2η1−α, 2γ−1
z,η

}
<∞.

(ii) On the other hand, if there exists κB ∈ (0,∞) so that

dist(q,F) ≤ κBg(dist(q,K)) whenever q ∈ {z}⊥ ∩B(η),

then γz,η ∈ (0,∞].

Note that γz,0 = ∞. Given K, z and F as in Theorem 2.2 and η > 0, we typically prove that

γz,η in (2.13) is nonzero by contradiction. The next lemma aids in this task.

Lemma 2.4 ([19, Lemma 3.12]). Suppose that K is a closed convex cone and let z ∈ K∗ be such

that F = {z}⊥ ∩K is a nontrivial exposed face of K. Let η > 0, α ∈ (0, 1] and let g : R+ → R+ be

nondecreasing with g(0) = 0 and g ≥ | · |α. Let γz,η be defined as in (2.13). If γz,η = 0, then there

exist v̂ ∈ F and a sequence {vk} ⊂ ∂K ∩B(η)\F such that

lim
k→∞

vk = lim
k→∞

wk = v̂ and lim
k→∞

g(∥wk − vk∥)

∥wk − uk∥
= 0,

where wk = P{z}⊥vk, uk = PFw
k and wk ̸= uk.
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The next result will be helpful in the analysis of one-dimensional faces (i.e., extreme rays).

Lemma 2.5. Let K be a pointed closed convex cone and let z ∈ ∂K∗\{0} be such that F := {z}⊥∩K
is a one-dimensional proper face of K. Let f ∈ K \ {0} be such that

F = {tf | t ≥ 0}.

Let η > 0 and v ∈ ∂K ∩ B(η)\F , w = P{z}⊥v and u = PFw with u ̸= w. Then it holds that

⟨f, z⟩ = 0 and we have

∥v − w∥ =
|⟨z, v⟩|
∥z∥

, ∥u− w∥ =


∥∥∥v − ⟨z,v⟩

∥z∥2 z − ⟨f,v⟩
∥f∥2 f

∥∥∥ if ⟨f, v⟩ ≥ 0,∥∥∥v − ⟨z,v⟩
∥z∥2 z

∥∥∥ otherwise.

Moreover, when ⟨f, v⟩ ≥ 0 (or, equivalently, ⟨f, w⟩ ≥ 0), we have u = PspanFw. On the other

hand, if ⟨f, v⟩ < 0, we have u = 0.

Proof. The fact that ⟨f, z⟩ = 0 follows from f ∈ F ⊆ {z}⊥. The formula for ∥v − w∥ holds

because the projection of v onto {z}⊥ is w = v − ⟨z,v⟩
∥z∥2 z. Finally, notice that u is obtained as t∗f ,

where t∗ = arg mint≥0 {∥w − tf∥} . Then t∗ is given by ⟨w,f⟩
∥f∥2 if ⟨w, f⟩ ≥ 0 (in this case, we have

u = PspanFw), and is zero otherwise. The desired formulas now follow immediately by noting that

⟨w, f⟩ = ⟨v − ⟨z,v⟩
∥z∥2 z, f⟩ = ⟨v, f⟩.

We conclude this subsection with a result on the direct product of cones. In essence, 1-FRFs

of direct products are positively rescaling of sums of the 1-FRFs for each individual block.

Proposition 2.3 ( [19, Proposition 3.13]). Let Ki ⊆ E i be closed convex cones for every i ∈
{1, . . . ,m} and let K = K1 × · · · × Km. Let F � K, z ∈ F∗ and suppose that F = F1 × · · · × Fm

with F i � Ki for every i ∈ {1, . . . ,m}. Write z = (z1, . . . , zm) with zi ∈ (F i)∗.

For every i, let ψFi,zi be a 1-FRF for F i and zi. Then, there exists a κ > 0 such that the

function ψF,z satisfying

ψF,z(ϵ, t) =

m∑
i=1

ψFi,zi(κϵ, t)

is a 1-FRF for F and z.

We end this section with a remark on the definition of 1-FRF.

Remark 2.2. As suggested by one of the referees, it is possible to consider facial residual functions

that are valid over the unit ball and use them to construct 1-FRF as in Definition 2.2. For example,

suppose that ψ̄ : R+ → R+ is a nondecreasing function satisfying ψ̄K,z(0) = 0 and such that the

following implication holds for every x ∈ spanK with ∥x∥ = 1 and every ϵ ≥ 0:

dist(x,K) ≤ ϵ, ⟨x, z⟩ ≤ ϵ ⇒ dist(x,K ∩ {z}⊥) ≤ ψ̄K,z(ϵ). (2.15)

Since dist(αx,K) = α dist(x,K) for α ≥ 0, we obtain the following implication for every x ∈
spanK \ {0} and ϵ ≥ 0:

dist(x,K) ≤ ϵ, ⟨x, z⟩ ≤ ϵ ⇒ dist(x/∥x∥,K) ≤ ϵ/∥x∥, ⟨x/∥x∥, z⟩ ≤ ϵ/∥x∥,

which, in view of (2.15), implies dist(x,K∩{z}⊥) ≤ ∥x∥ψ̄K,z(ϵ/∥x∥). Let ψK,z : R+×R+ → R+ be

such that ψK,z(a, b) := bψ̄K,z(a/b) (if b > 0) and ψK,z(a, b) := 0 (otherwise). In this way, if ψK,z(a, ·)
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happens to be monotone2 for every a > 0, then ψK,z would be a 1-FRF as in Definition 2.2.

Conversely, if ψK,z is as in Definition 2.2, we can specialize it to the unit ball by fixing the second

argument to 1.

Because of these relations, it is plausible that one could rebuild the abstract theory of error

bounds (or at least part of it) described in [19, 21] using only 1-FRFs that are restricted to the

unit ball. By doing so, one would hope that some expressions could get simpler. However, it is

not clear to us what the concrete mathematical benefit in following this path would be. Even from

a purely notational point of view, keeping track of the norm term (i.e., the second argument in

1-FRFs) has advantages, since for the final error bound in Theorem 2.1 we cannot freely rescale

elements in the underlying affine space L + a. To be fair, in the end, it could be just a matter of

taste.

We remark that the core difficulty in this and in our previous works is the actual computation

of 1-FRFs for a given K. This is where the inevitable particularities and complexities of each

cone come into play. Whether this is done over the unit ball or over a ball of radius η (as in

Theorem 4.1), our assessment is that the difficulty is essentially the same.

3 Best error bounds

In this section, we will present some results that will help us identify when certain error bounds are

the “best” possible. The error bounds discussed in this paper come from Theorem 2.1, which uses

1-FRFs. The 1-FRFs themselves are constructed from Lemma 2.3, and most of the properties are

inherited from the function g appearing in (2.11). We will show in this section that, under some

assumptions, the criterion described in Definition 3.1 below will be enough to show optimality of

the underlying error bound induced by g. In order to keep the notation compact, we will use wϵ

instead of w(ϵ).

Remark 3.1 (Geometric intuition for optimality). Let us preface Definition 3.1 and the next few

results with an informal discussion of the geometric intuition that motivates them. Let v : (0, 1] →
∂K\F be a continuous function such that wϵ := P{z}⊥(vϵ) and uϵ := PF (wϵ) satisfy wϵ ̸= uϵ,

following the illustrations of v, w and u in Figure 1. As vϵ approaches some v̄ ∈ F as ϵ ↓ 0, we

have wϵ → v̄ = P{z}⊥(v̄) and uϵ → v̄ as well, since F = K ∩ {z}⊥. Nevertheless, the distances

∥vϵ − wϵ∥ and ∥wϵ − uϵ∥ are not necessarily of the same order asymptotically.

(i) By Theorem 2.2, a suitable g—“suitable” in the sense that γz,η is greater than zero—ensures

that g(∥wϵ − vϵ∥) does not go to zero with a faster rate than ∥wϵ − uϵ∥ for any choice of v;

(ii) A suitable g being optimal in the sense of Definition 3.1 would satisfy that g(dist(wϵ,K))

and ∥wϵ − uϵ∥ are asymptotically of the same order as ϵ ↓ 0 for some choice of w in the

following sense:

0 < lim inf
ϵ↓0

g(dist(wϵ,K))

∥wϵ − uϵ∥
and lim sup

ϵ↓0

g(dist(wϵ,K))

∥wϵ − uϵ∥
<∞,

where the first inequality comes from Theorem 2.2 since ∥wϵ − uϵ∥ = dist(wϵ,F).

(iii) Under this setting, we have wϵ → v̄ ∈ F as ϵ ↓ 0, so dist(wϵ,K) → 0 and dist(wϵ,F) → 0.

Naturally, if we were to take this same choice of wϵ and choose any better ĝ(t)—better

2Note that this is not true for a general function f : R+ → R+. The function f(a) := a + a2 is monotone

nondecreasing for a ≥ 0, but bf(1/b) is not monotone nondecreasing for b > 0. If, however, f is of the form

f(a) = κa + κaα (as in the case associated to Hölderian error bounds) for some α ∈ (0, 1] and a constant κ > 0,

then bf(a/b) is monotone nondecreasing as a function of b for fixed a.
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meaning that limt↓0 ĝ(t)/g(t) = 0—then we would have that:

lim inf
ϵ↓0

ĝ(dist(wϵ,K))

dist(wϵ,F)
= lim inf

ϵ↓0

ĝ(dist(wϵ,K))

g(dist(wϵ,K))︸ ︷︷ ︸
→0 as ϵ↓0

g(dist(wϵ,K))

dist(wϵ,F)︸ ︷︷ ︸
bounded

= 0.

Since w is continuous, wϵ ∈ {z}⊥ ∩ B(η) holds for sufficiently small ϵ and sufficiently large

η. Therefore, for such η, no κB > 0 will satisfy

dist(q,F) ≤ κB ĝ(dist(q,K)) whenever q ∈ {z}⊥ ∩B(η).

In view of Theorem 2.2(i) & (ii), the non-existence of such a κB for ĝ is equivalent to γz,η = 0

for ĝ, which means that ĝ is not suitable.

(iv) Finally, we prove in Theorem 3.1 below, that up to a multiplicative constant and some

technicalities related to the parameters, any valid 1-FRF is lower bounded by a 1-FRF built

from an optimal g. In particular, this implies that, when the second-parameter is fixed, no

valid 1-FRF can go to zero at a faster rate than a 1-FRF built from an optimal g.

Definition 3.1 (An optimality criterion for g). Let g : R+ → R+ be nondecreasing with g(0) = 0.

Let K be a closed convex cone and z ∈ K∗ be such that F = {z}⊥ ∩ K is a proper face of K. If

there exist v ∈ F \ {0} and a continuous function w : (0, 1] → {z}⊥ ∩ spanK \ F satisfying

lim
ϵ↓0

wϵ = v and lim sup
ϵ↓0

g(dist(wϵ,K))

dist(wϵ,F)
=: Lg <∞, (G1)

then we say that g satisfies the asymptotic optimality criterion for K and z.3

We will next show that any 1-FRFs built from a concave g satisfying (G1) is optimal in the

sense that, up to a constant, it must be better than any other possible 1-FRFs for the same sets.

First, we need some preliminary lemmas.

Lemma 3.1. Let g : R+ → R+ be concave with g(0) = 0. Then g((1 + λ)s) ≤ (1 + λ)g(s) for all

positive numbers λ and s.

Proof. Note that

s =
1

1 + λ
(1 + λ)s+

λ

1 + λ
0.

Hence, g(s) ≥ g((1 + λ)s)/(1 + λ) + (λ/(1 + λ))g(0) = g((1 + λ)s)/(1 + λ).

In the following, wϵ may be intuitively thought of as the usual w in Figure 1. In Theorem 3.1,

we will find it useful to “pin” the norm of this wϵ term by replacing it with τϵwϵ where τϵ is a

scalar chosen to force ∥τϵwϵ∥ to be constant for all ϵ. We will need the following lemma.

Lemma 3.2. Let g : R+ → R+ be nondecreasing with g(0) = 0. Let K be a closed convex cone

and z ∈ K∗ be such that F = {z}⊥ ∩ K is a proper face of K. Suppose that (G1) holds and

let τ : (0, 1] → R++ satisfy limϵ↓0 τϵ = τ ∈ R++. Suppose further that the following partial

sub-homogeneity holds:4

∃S > 0 such that s ∈ [0, S] and τ̂ ≥ 1 together imply g(τ̂ s) ≤ τ̂g(s). (SH)

Then

lim sup
ϵ↓0

g(dist(τϵwϵ,K))

dist(τϵwϵ,F)
≤ max

{
Lg

τ
, Lg

}
. (3.1)

3With an abuse of terminology, we will simply say “(G1) holds” when this happens.
4In view of Lemma 3.1, (SH) automatically holds for any S > 0 when g is concave.
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Proof. Since wϵ → v ∈ F as ϵ goes to 0, for all sufficiently small ϵ, we have dist(wϵ,K) ≤ S. For

those ϵ, if τϵ ≥ 1, we have

g(dist(τϵwϵ,K))

dist(τϵwϵ,F)

(a)

≤ τϵg(dist(wϵ,K))

τϵ dist(wϵ,F)
=

g(dist(wϵ,K))

dist(wϵ,F)
,

where (a) follows by (SH) and the fact that dist(awϵ,K) = adist(wϵ,K) holds for every convex

cone K and nonnegative scalar a. If τϵ < 1, we have

g(dist(τϵwϵ,K))

dist(τϵwϵ,F)

(a)

≤ g(dist(wϵ,K))

τϵ dist(wϵ,F)
,

where (a) follows from the monotonicity of g. Overall, we conclude that for sufficiently small ϵ, we

have
g(dist(τϵwϵ,K))

dist(τϵwϵ,F)
≤ max

{
g(dist(wϵ,K))

dist(wϵ,F)
,
g(dist(wϵ,K))

τϵ dist(wϵ,F)

}
.

The desired conclusion now follows immediately upon invoking (G1).

Theorem 3.1 (Optimality of 1-FRFs satisfying (G1)). Let K be a closed convex cone, z ∈ K∗

with ∥z∥ = 1 and let F := K ∩ {z}⊥ be a nontrivial exposed face of K. Let g, γz,η and κz,η be as

in Theorem 2.2 such that γz,η ∈ (0,∞] for every η > 0. Let

ψK,z(s, t) := s+ κz,tg(2s), (3.2)

so that ψK,z(s, t) is a 1-FRF for K and z (see Lemma 2.3). Suppose further that (SH) and (G1)

hold.

Consider any η̄ > 0 and define M : R+ → R+ as follows:

M(t) :=
1

2

[
1 + κz,η̄ ·

(
max

{
1,

∥v∥
t

}
Lg

)]−1

, (3.3)

where v and Lg are as in (G1). Let ψ⋆
K,z be an arbitrary 1-FRF for K and z. Then, for any

η̄0 ∈ (0, η̄], there exists s0 > 0 such that

M(η̄0)ψK,z(s, b) ≤ ψ⋆
K,z(s, η̄0), ∀(s, b) ∈ [0, s0] × [0, η̄] . (3.4)

Proof. Let wϵ and v be as in (G1). Let τ be the function defined as follows:

τϵ :=

{
η̄0

∥wϵ∥ if ϵ ∈ (0, 1],
η̄0

∥v∥ if ϵ = 0.
(3.5)

As a reminder, we are using τϵ as a shorthand for τ(ϵ).

Note that dist(τϵwϵ,F) ̸= 0 because wϵ ̸∈ F by assumption. Using this and the definition of

ψK,z in (3.2), we have for all ϵ ∈ (0, 1] that

ψK,z(dist(τϵwϵ,K), η̄)

dist(τϵwϵ,F)
=

dist(τϵwϵ,K)

dist(τϵwϵ,F)
+
κz,η̄g (2 dist(τϵwϵ,K))

dist(τϵwϵ,F)

≤ 1 +
κz,η̄g (2 dist(τϵwϵ,K))

dist(τϵwϵ,F)
,

(3.6)

where the inequality holds because F ⊆ K, which implies that dist(τϵwϵ,K) ≤ dist(τϵwϵ,F) for all

ϵ ∈ (0, 1].
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Next, notice that limϵ↓0 dist(τϵwϵ,K) = 0. Using this and (SH), we see that for all sufficiently

small ϵ,
κz,η̄g (2 dist(τϵwϵ,K))

dist(τϵwϵ,F)
≤ κz,η̄2g (dist(τϵwϵ,K))

dist(τϵwϵ,F)
. (3.7)

Combining (3.7) with Lemma 3.2 and recalling again that (G1) and (SH) hold, we deduce further

that

lim sup
ϵ↓0

κz,η̄g (2 dist(τϵwϵ,K))

dist(τϵwϵ,F)
≤ κz,η̄ · 2

(
max

{
1,

1

τ0

}
Lg

)
<∞. (3.8)

Now, combining (3.6) and (3.8), we have that

lim sup
ϵ↓0

ψK,z(dist(τϵwϵ,K), η̄)

dist(τϵwϵ,F)
≤ 1 + κz,η̄ · 2

(
max

{
1,

1

τ0

}
Lg

)
<∞. (3.9)

Consequently, there must exist ϵ̂ ∈ (0, 1] such that

ψK,z(dist(τϵwϵ,K), η̄)

dist(τϵwϵ,F)
≤ 2 + κz,η̄ · 2

(
max

{
1,

1

τ0

}
Lg

)
=

1

M(η̄0)
, ∀ϵ ∈ (0, ϵ̂]. (3.10)

On the other hand, since ψ⋆
K,z is a 1-FRF and wϵ ∈ spanK∩{z}⊥\F , we have from [19, Remark 3.5]

that for all ϵ ∈ (0, 1],

1 ≤
ψ⋆
K,z(dist(τϵwϵ,K), ∥τϵwϵ∥)

dist(τϵwϵ,F)
. (3.11)

Combining (3.10) with (3.11), we deduce that for all ϵ ∈ (0, ϵ̂],

M(η̄0)ψK,z(dist(τϵwϵ,K), η̄) ≤ ψ⋆
K,z(dist(τϵwϵ,K), ∥τϵwϵ∥). (3.12)

Since ψK,z is monotone, we further obtain that for all ϵ ∈ (0, ϵ̂] and b ∈ [0, η̄],

M(η̄0)ψK,z(dist(τϵwϵ,K), b) ≤M(η̄0)ψK,z(dist(τϵwϵ,K), η̄)

≤ ψ⋆
K,z(dist(τϵwϵ,K), ∥τϵwϵ∥) = ψ⋆

K,z(dist(τϵwϵ,K), η̄0).
(3.13)

Since ϵ 7→ dist(τϵwϵ,K) is continuous with limϵ↓0 dist(τϵwϵ,K) = 0 but is positive on (0, ϵ̂] (since

wϵ ∈ {z}⊥ \ F , hence wϵ ̸∈ K), its image contains some interval of the form (0, s0], where s0 :=

dist(τϵ̂wϵ̂,K). Therefore, (3.13) shows that for every s ∈ (0, s0] and for every b ∈ [0, η̄] we have

M(η̄0)ψK,z(s, b) ≤ ψ⋆
K,z(s, η̄0).

The proof is now complete upon noting that the above relation holds trivially when s = 0 because

both sides of the inequality become zero when s = 0, according to the definition of facial residual

function.

We now move on to an application of Theorem 3.1. The next result says that if (Feas) only

requires a single facial reduction step and the 1-FRF is as in Theorem 3.1, then the obtained

error bound must be optimal. This will be discussed in the framework of consistent error bound

functions developed in [20], which we now recall.

Definition 3.2 (Consistent error bound functions). Let C1, . . . , Cm ⊆ E be closed convex sets

with C :=
⋂m

i=1 Ci ̸= ∅. A function Φ : R+ × R+ → R+ is said to be a consistent error bound

function for C1, . . . , Cm if:

(i) the following error bound condition is satisfied:

dist(x, C) ≤ Φ

(
max

1≤i≤m
dist(x,Ci), ∥x∥

)
, ∀ x ∈ E ; (3.14)
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(ii) for any fixed b ≥ 0, the function Φ(·, b) is nondecreasing on R+, right-continuous at 0 and

satisfies Φ(0, b) = 0;

(iii) for any fixed a ≥ 0, the function Φ(a, ·) is nondecreasing on R+.

We say that (3.14) is the consistent error bound associated to Φ.

Consistent error bound functions were defined in such a way as to provide a broad framework

for the study of general error bounds and facilitate the study of convergence properties of certain

algorithms. Hölderian error bounds, the error bounds developed under the theory of amenable

cones and the error bounds found in the study of the exponential cone can all be expressed through

the framework of consistent error bound functions; see [20]. Furthermore, they are “universal”

in the sense that whenever finitely many closed convex sets intersect, there is always a least

one consistent error bound function describing the error bound associated to their intersection,

see [20, Proposition 3.3]. For applications to convergence analysis, see [20, Sections 4, 5 and 6].

With that, we can now state the main result of this section.

Theorem 3.2 (Best error bounds). Suppose (Feas) is feasible and consider the following three

assumptions.

(i) There exist z ∈ K∗ ∩ L⊥ ∩ {a}⊥ and F := K ∩ {z}⊥ such that F is a nontrivial exposed face

and {F ,L + a} satisfies the PPS condition.

(ii) The function ψ is a 1-FRF for K and z as in Lemma 2.3, for some g and κz,η as in

Theorem 2.2 so that the γz,η in (2.13) satisfies γz,η ∈ (0,∞] for every η > 0.

(iii) The function g from (ii) also satisfies (SH) and (G1) holds.

Then, the following hold.

(a) There is a positively rescaled shift of the ψ denoted by ψ̂ such that for any bounded set B,

there is a positive constant κB (depending on B,L, a,F) such that for every x ∈ B and ϵ ≥ 0

we have the following implication

dist(x,K) ≤ ϵ and dist(x,L + a) ≤ ϵ =⇒ dist (x, (L + a) ∩ K) ≤ κB(ϵ+ ψ̂(ϵ, η̃)),

(3.15)

where η̃ = supx∈B ∥x∥.

(b) The error bound in (3.15) is optimal in the following sense. Suppose we also assume that

∥z∥ = 1, L = {z}⊥, and a = 0. (iv)

Then for any consistent error bound function Φ for K,L and any η̂ > 0, there are constants

κ̂ > 0 and s0 > 0 such that

s+ ψ̂(s, η̂) ≤ κ̂Φ(κ̂s, η̂), ∀s ∈ [0, s0].

Proof. Item (a) follows directly from Theorem 2.1 with ℓ = 2.

We move on to item (b). Suppose that Φ is a consistent error bound function for L̂ = {z}⊥
and K. First, we will show that Φ is a 1-FRF for K and z. Let

d(x) := max{dist(x,K),dist(x, {z}⊥)},

so that

dist(x,K ∩ {z}⊥) = dist(x,F) ≤ Φ(d(x), ∥x∥), ∀x ∈ E . (3.16)
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Suppose that x is such that dist(x,K) ≤ ϵ, ⟨x, z⟩ ≤ ϵ. Then, there exists u with ∥u∥ ≤ ϵ such that

x+ u ∈ K, Therefore

0 ≤ ⟨x+ u, z⟩ and hence − ϵ ≤ ⟨−u, z⟩ ≤ ⟨(x+ u) − u, z⟩ = ⟨x, z⟩ ≤ ϵ.

That is |⟨x, z⟩| = dist(x, {z}⊥) ≤ ϵ and thus d(x) ≤ ϵ. Then, (3.16) implies that Φ is a 1-FRF for

K and z.

By assumption, the conditions of Theorem 3.1 are satisfied. Hence, for any η̂ > 0, there exists

s0 > 0 such that

M(η̂)ψ(s, b) ≤ Φ(s, η̂), ∀(s, b) ∈ [0, s0] × [0, η̂] , (3.17)

where M is as in (3.3). In addition, by the definition of positive rescaling with a shift, there are pos-

itive constants M1,M2,M3 and a nonnegative constant M4 such that ψ̂(s, t) = M1ψ(M2s,M3t) +

M4s. We have:

s+ ψ̂(s, η̂) = (1 +M4)s+M1ψ(M2s,M3η̂)

= (1 +M4)s+M1(M2s+ κz,M3η̂g(2M2s))

= s(M1M2 +M4 + 1) +M1κz,M3η̂g(2M2s)

≤ κs+ κg(2κs),

where κ := max{M1M2 + M4 + 1,M1κz,M3η̂,M2} and the last inequality holds because of the

monotonicity and nonnegativity of g. Continuing, note that since η̂ > 0, we have γz,η̂ ∈ (0,∞] and

hence κz,η̂ = max{2η̂1−α, 2γ−1
z,η̂} > 0. Thus,

s+ ψ̂(s, η̂) ≤ κs+ κg(2κs) = κs+ κ
κz,η̂
κz,η̂

g(2κs)

≤ max

{
1,

κ

κz,η̂

}
(κs+ κz,η̂g(2κs)) = max

{
1,

κ

κz,η̂

}
ψ(κs, η̂).

Therefore, if s ∈ [0, s0/κ], we have from (3.17) and the above display that

s+ ψ̂(s, η̂) ≤ max

{
1,

κ

κz,η̂

}
M(η̂)−1Φ(κs, η̂) ≤ κ̂Φ(κ̂s, η̂)

where κ̂ := max
{
κ,max

{
1, κ

κz,η̂

}
M(η̂)−1

}
and the second inequality follows from the monotonic-

ity of Φ in the first entry. This completes the proof.

Corollary 3.1 (Best Hölderian bounds). Suppose (Feas) is feasible and suppose items (i), (ii)

and (iii) in Theorem 3.2 hold for some g = | · |α with α ∈ (0, 1). Then, the following items hold.

(a) K and L + a satisfy a uniform Hölderian error bound with exponent α.

(b) Suppose the display relation (iv) in Theorem 3.2 also holds. Then for any consistent error

bound function Φ for K, L and any η̂ > 0, there are constants κ̂ > 0 and s0 > 0 such that

sα ≤ κ̂Φ(κ̂s, η̂), ∀s ∈ [0, s0].

In particular, K and L do not satisfy a uniform Hölderian error bound with exponent α̂ where

α < α̂ ≤ 1.

Proof. First, we prove item (a). Noting that z/∥z∥ ∈ K∗ ∩ L⊥ ∩ {a}⊥ and {z/∥z∥}⊥ = {z}⊥, we

assume (without loss of generality) that ∥z∥ = 1. By assumption, we have g = | · |α, so that the

facial residual function ψ from Lemma 2.3 satisfies

ψ(s, t) = s+ κz,t(2s)
α, (3.18)
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where κz,t is as in Theorem 2.2 and is nonnegative nondecreasing in t. Applying Lemma 2.1 with

ℓ = 2 gives a uniform Hölderian error bound with exponent α.

Next, we move on to item (b). By item (b) of Theorem 3.2, for any η̂ > 0, there are constants

κ̂ > 0 and s0 > 0 such that for every s ∈ [0, s0] we have

s+ ψ̂(s, η̂) ≤ κ̂Φ(κ̂s, η̂), (3.19)

where ψ̂ is a positively rescaled shift of ψ in (3.18). The left-hand-side of (3.19), as a function

of s, now has the form a1s + a2s
α for some constants a1 > 0, a2 > 0. Therefore, adjusting κ̂ if

necessary, we have

sα ≤ κ̂Φ(κ̂s, η̂), ∀s ∈ [0, s0]. (3.20)

For the sake of obtaining a contradiction, suppose that a uniform Hölderian error bound holds for

K and L with exponent α̂ for some α̂ ∈ (α, 1]. Then, there exists a nonnegative nondecreasing

function ρ̂ such that Φ given by Φ(s, t) = ρ̂(t)sα̂ is a consistent error bound function for K and L;

see [20] or this footnote5.

By what have been shown so far and in view of (3.20), there are constants κ̂ > 0 and s0 > 0

such that for every s ∈ [0, s0] we have

sα ≤ κ̂ρ̂(η̂)(κ̂s)α̂. (3.21)

Dividing both sides by sα̂ and letting s ↓ 0, we get a contradiction: the left-hand-side blows up to

infinity, while the right-hand-side is constant.

Remark 3.2 (On the exponential cone). The exponential cone in R3 is

Kexp :=
{

(x, y, z) | y > 0, z ≥ yex/y
}
∪ F−∞, F−∞ := {(x, 0, z) | x ≤ 0, z ≥ 0} .

Its nontrivial exposed faces are the 2-D face F−∞, infinitely many 1-D faces of form

Fβ = {
(
y − βy, y, e1−βy

)
| y ≥ 0}

for β ∈ R, and the exceptional 1-D face

F∞ := {(x, 0, 0) | x ≤ 0};

see [19, Section 4.1]. For t sufficiently near 0, the g corresponding to their (worst case) 1-FRFs

simplify to g−∞(t) = −t ln(t), gβ(t) =
√
t and g∞(t) = −1/ ln(t), respectively; see Corollaries 4.4,

4.7 and 4.11 in [19].

Once admissibility of these g is established, the condition (G1) may be verified by letting

wϵ = (−1, ϵ, 0) for F∞, wϵ = (−ϵ ln(ϵ), 0, 1) for F−∞, and wϵ = P{z}⊥(1 − β + ϵ, 1, e1−β+ϵ) for Fβ

when β ∈ R: Indeed, the arguments in [19, Remark 4.14] demonstrate that Lg∞ ≤ 1, Lg−∞ ≤ 1

and Lgβ
∈ (0,∞) (note that Lgβ

is what the authors labeled as Lβ in [19]). Thus, our framework

can be used to show that the error bounds for the exponential cone are also tight in the sense of

item (b) of Theorem 3.2.

5For any positive integer r, there is a constant κr > 0 such that Definition 2.1 holds for B equal to the ball

centered at the origin with radius r. Adjusting the constants if necessary, we have κr ≤ κr′ if r ≤ r′, so we can let

ρ̂(b) be the κr such that r is the smallest integer larger than b.
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4 Error bounds for p-cones

In this section, we will compute the facial residual functions for the p-cones, obtain error bounds

and prove their optimality. First, we recall that for p ∈ (1,∞), x̄ ∈ Rn, n ≥ 2, the p-norm of x̄

and the p-cone are given by

∥x̄∥p := p
√
|x̄1|p + · · · + |x̄n|p, Kn+1

p := {x = (x0, x̄) ∈ Rn+1 | x0 ≥ ∥x̄∥p}; (4.1)

here, given a vector x ∈ Rn+1, we use x0 to denote its first (0th) entry and x̄ to denote the

subvector obtained from x by deleting x0. Here, we fix ⟨·, ·⟩ the usual Euclidean inner product so

that the dual cone of Kn+1
p is the q-cone, where 1

p + 1
q = 1:

Kn+1
q := {z = (z0, z̄) ∈ Rn+1 | z0 ≥ ∥z̄∥q}.

We recall that Kn+1
p is a pointed full-dimensional cone. In what follows, we will be chiefly concerned

with the case p ∈ (1,∞) and n ≥ 2. We will also make extensive use of the following lemma.

Lemma 4.1. Let p, q ∈ (1,∞) be such that 1
p + 1

q = 1 and let ζ ∈ Rn (n ≥ 1) satisfy ∥ζ∥q = 1.

Define

ζ := −sgn(ζ) ◦ |ζ|q−1,

where ◦ is the Hadamard product, and sgn, absolute value and the q − 1 power are taken compo-

nentwise. Then ∥ζ∥p = 1. Moreover, there exist C > 0 and ϵ > 0 so that

1 + ⟨ζ, ω⟩ ≥ C
∑
i∈I

|ωi − ζi|2 +
1

p

∑
i/∈I

|ωi|p whenever ∥ω − ζ∥ ≤ ϵ and ∥ω∥p = 1, (4.2)

where I = {i : ζi ̸= 0}. Furthermore, for any ω satisfying ∥ω∥p ≤ 1, it holds that ⟨ζ, ω⟩ ≥ −1,

with the equality holding if and only if ω = ζ.

Proof. It is easy to check that ∥ζ∥p = 1. Next, for each i ∈ I, by considering the Taylor series at

ζi of the function t 7→ |t|p, we see that

|ωi|p = |ζi|p + p sgn(ζi)|ζi|p−1(ωi − ζi) + p(p−1)
2 |ζi|p−2(ωi − ζi)

2 +O(|ωi − ζi|3) as ωi → ζi.

In particular, there exist ci > 0 and ϵi > 0 so that

|ωi|p ≥ |ζi|p + p sgn(ζi)|ζi|p−1(ωi − ζi) + ci(ωi − ζi)
2 whenever |ωi − ζi| ≤ ϵi. (4.3)

Let ϵ := mini∈I ϵi. Then for any ω ∈ Rn satisfying ∥ω − ζ∥ ≤ ϵ and ∥ω∥p = 1, we have

1 = ∥ω∥pp =
∑
i/∈I

|ωi|p +
∑
i∈I

|ωi|p

(a)

≥
∑
i/∈I

|ωi|p +
∑
i∈I

[
|ζi|p + p sgn(ζi)|ζi|p−1(ωi − ζi) + ci(ωi − ζi)

2
]

=
∑
i/∈I

|ωi|p +
∑
i∈I

[
|ζi|p + p sgn(ζi)|ζi|p−1ωi − p|ζi|p + ci(ωi − ζi)

2
]

(b)
=
∑
i/∈I

|ωi|p +
∑
i∈I

[
|ζi|p − pζiωi − p|ζi|p + ci(ωi − ζi)

2
]

(c)
=
∑
i/∈I

|ωi|p + 1 − p⟨ζ, ω⟩ − p+
∑
i∈I

ci(ωi − ζi)
2,
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where (a) follows from (4.3), (b) holds since sgn(ζi)|ζi|p−1 = −sgn(ζi)|ζi|(q−1)(p−1) = −sgn(ζi)|ζi| =

−ζi, (c) holds because
∑

i∈I |ζi|p = ∥ζ∥pp = 1. Rearranging terms in the above display, we see that

(4.2) holds with C = 1
p mini∈I ci.

Finally, we see from the Hölder inequality and the fact ∥ζ∥q = 1 that ⟨ζ, ω⟩ ≥ −1 whenever

∥ω∥p ≤ 1. We now discuss the equality case. It is clear that if ω = ζ, then ⟨ζ, ω⟩ = −1. Conversely,

suppose that ⟨ζ, ω⟩ = −1 and ∥ω∥p ≤ 1. Then we have

1 = |⟨ζ, ω⟩| ≤ ∥ζ∥q∥ω∥p = ∥ω∥p ≤ 1.

Thus, the Hölder’s inequality holds as an equality and we have ∥ω∥p = 1. This means that there

exists c > 0 so that |ωi|p = c|ζi|q for all i. Summing both sides of this equality for all i and invoking

∥ω∥p = ∥ζ∥q = 1, we see immediately that c = 1 and hence |ωi|p = |ζi|q for all i. Consequently,

ωi = sgn(ωi)|ζi|
q
p = sgn(wi)|ζi|q−1. (4.4)

Plugging the above relation into ⟨ζ, ω⟩ = −1 yields

−1 =

n∑
i=1

ζiωi =

n∑
i=1

sgn(ωi)ζi |ζi|q−1 ≥ −
n∑

i=1

|ζi|q = −1.

Thus, we must indeed have sgn(ωi) = −sgn(ζi) whenever ζi ̸= 0.6 Combining this with (4.4), we

conclude that ω = ζ. This completes the proof.

4.1 Facial structure of Kn+1
p for n ≥ 2 and p ∈ (1,∞)

The p-cones Kn+1
p for p ∈ (1,∞) are strictly convex, i.e., all faces are either {0}, Kn+1

p or extreme

rays (one-dimensional faces). In this subsection, we characterize all the faces of Kn+1
p in terms of

the corresponding exposing hyperplanes.

Let z ∈ Kn+1
q , so Kn+1

p ∩{z}⊥ is a face of Kn+1
p and, because Kn+1

p is facially exposed, all faces

arise in this fashion. If z ∈ riKn+1
q or z = 0 we have that Kn+1

p ∩ {z}⊥ is {0} (see (2.1)) or Kn+1
p ,

respectively.

Next, suppose that z ∈ ∂Kn+1
q \{0}. Then z = (z0, z̄) with z0 = ∥z̄∥q > 0. Now, x ∈ {z}⊥ if

and only if

x0z0 + ⟨z̄, x̄⟩ = 0.

Suppose also that x ∈ Kn+1
p \{0}. Then x0 > 0 and the above display is equivalent to

1 +
〈
z−1
0 z̄, x−1

0 x̄
〉

= 0.

Notice that
∥∥z−1

0 z̄
∥∥
q

= 1 and
∥∥x−1

0 x̄
∥∥
p
≤ 1. An application of Lemma 4.1 with ζ = z−1

0 z̄ then

shows that

x−1
0 x̄ = −sgn

(
z−1
0 z̄

)
◦
∣∣z−1

0 z̄
∣∣q−1

= −sgn (z̄) ◦ |z−1
0 z̄|q−1,

where the last equality holds as z0 > 0. Thus, it follows from the above displays that

Fz := {z}⊥ ∩ Kn+1
p = {tf | t ≥ 0} , where f :=

[
1

−sgn (z̄) ◦ |z−1
0 z̄|q−1

]
. (4.5)

6Since |ζi| = |ωi| for all i, ζi ̸= 0 is the same as ωi ̸= 0.
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4.2 One-step facial residual functions for the faces of Kn+1
p when n ≥ 2

and p ∈ (1,∞)

We recall that our goal is to compute error bounds through Theorem 2.1. In order to do so, we

need to compute the 1-FRFs for the faces of Kn+1
p . Let F � Kn+1

p be a face and z ∈ F∗. First,

we take care of some trivial cases.

• If F = {0}, then, from Definition 2.2, ψF,z(ϵ, t) := ϵ is a 1-FRF for F and z.

• If F is an extreme ray, then F ∩ {z}⊥ is either F or {0}. The latter happens if and only if

z ∈ riF∗ (see (2.1)), so that Lemma 2.2 is applicable to F and z. Therefore, in both cases

there exists κ > 0 such that ψF,z(ϵ, t) := κϵ is a 1-FRF for F and z.

• If F = Kn+1
p and z ∈ riKn+1

q , then we also have κϵ as a 1-FRF, by Lemma 2.2.

This section is focused on the remaining nontrivial case where F = K and K ∩ {z}⊥ is an

extreme ray, which happens if and only if z ∈ ∂Kn+1
q \{0}. With that in mind, we define

Jz := {i | z̄i ̸= 0} and αz :=


1
2 if |Jz| = n,
1
p if |Jz| = 1 and p < 2,

min
{

1
2 ,

1
p

}
otherwise,

(4.6)

where |Jz| is the number of elements of Jz. Then we have the following result.

Theorem 4.1. Let n ≥ 2 and p, q ∈ (1,∞) be such that 1
p + 1

q = 1. Let z ∈ ∂Kn+1
q \{0} and let

Fz := {z}⊥ ∩ Kn+1
p . Let η > 0, αz be as in (4.6), and define

γz,η :=inf
v

{
∥v − w∥αz

∥u− w∥

∣∣∣∣ v ∈ ∂Kn+1
p ∩B(η)\Fz, w=P{z}⊥v, u=PFzw, u ̸=w

}
. (4.7)

Then it holds that γz,η ∈ (0,∞] and that

dist(x,Fz) ≤ max{2η1−αz , 2γ−1
z,η} · dist(x,Kn+1

p )αz whenever x ∈ {z}⊥ ∩B(η).

Proof. If γz,η = 0, in view of Lemma 2.4, there exist v̂ ∈ Fz and a sequence {vk} ⊂ ∂Kn+1
p ∩

B(η)\Fz such that

lim
k→∞

vk = lim
k→∞

wk = v̂ and lim
k→∞

∥wk − vk∥αz

∥wk − uk∥
= 0, (4.8)

where wk = P{z}⊥vk, uk = PFz
wk and uk ̸= wk. Since vk /∈ Fz and vk ∈ ∂Kn+1

p , we must have

vk0 = ∥v̄k∥p > 0. By passing to a further subsequence if necessary, we may then assume that

(vk0 )−1v̄k → ξ (4.9)

for some ξ satisfying ∥ξ∥p = 1. Next, applying Lemma 4.1 with ζ := z−1
0 z̄, we have

ζ := −sgn
(
z−1
0 z̄

)
◦ |z−1

0 z̄|q−1 = −sgn (z̄) ◦ |z−1
0 z̄|q−1, ∥ζ∥p = 1,

and there exist C > 0 and ϵ > 0 so that (4.2) holds. Moreover, one can see that the Jz in (4.6)

equals the I in Lemma 4.1. We consider two cases.

(I) ξ = ζ;

(II) ξ ̸= ζ.
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(I): Suppose that ξ = ζ. Then lim
k→∞

⟨(vk0 )−1v̄k, ζ⟩ = ∥ζ∥2 > 0. Thus, for all sufficiently large k,

we have, upon using the definition of f in (4.5), that

(vk0 )−1⟨vk, f⟩ =

〈[
1

(vk0 )−1v̄k

]
,

[
1

−sgn (z̄) ◦ |z−1
0 z̄|q−1

]〉
= 1 + ⟨(vk0 )−1v̄k, ζ⟩≥ 1 +

∥ζ∥2

2
.

Consequently, we have ⟨vk, f⟩ > 0 for sufficiently large k. Thus, if we let

Q := I − zzT

∥z∥2
− ffT

∥f∥2
,

then using Lemma 2.5 (with f as in (4.5)), we deduce that for all sufficiently large k,

∥uk − wk∥ = ∥Qvk∥ = vk0

∥∥∥∥Q [ 1

(vk0 )−1v̄k

]∥∥∥∥ (a)
= vk0

∥∥∥∥Q [ 1

(vk0 )−1v̄k

]
−Q

[
1

ζ

]∥∥∥∥
≤ vk0∥(vk0 )−1v̄k − ζ∥,

(4.10)

where (a) holds because f =
[
1 ζ

T
]T

and Qf = 0. Moreover, if it happens that |Jz| = 1, say,

Jz = {i0}, then z0 = |z̄i0 | ̸= 0 and f0 = |f̄i0 | ≠ 0, and we have z̄i = f̄i = 0 for all i ̸= i0 and

z̄i0 = −f̄i0 . Then a direct computation shows that Q is diagonal with Q00 = Qi0i0 = 0, and

Qii = 1 otherwise. Thus, we have the following refined estimate on ∥uk − wk∥ for all sufficiently

large k when |Jz| = 1:

∥uk − wk∥ = ∥Qvk∥ = vk0

∥∥∥∥Q [ 1

(vk0 )−1v̄k

]∥∥∥∥ = vk0

√∑
i/∈Jz

|(vk0 )−1v̄ki |2. (4.11)

Next, in view of (4.2) and (4.9) and recalling that ∥(vk0 )−1v̄k∥p = 1, we have for all sufficiently

large k that

1 + ⟨ζ, (vk0 )−1v̄k⟩ ≥ C
∑
i∈I

|(vk0 )−1v̄ki − ζi|2 +
1

p

∑
i/∈I

|(vk0 )−1v̄ki |p. (4.12)

If |Jz| ≠ 1 or p ≥ 2, then we see from (4.9) and (4.12) that for all sufficiently large k

1 + ⟨ζ, (vk0 )−1v̄k⟩
(a)

≥ min

{
C,

1

p

}(∑
i∈I

|(vk0 )−1v̄ki − ζi|1/αz +
∑
i/∈I

|(vk0 )−1v̄ki |1/αz

)

= min

{
C,

1

p

}
∥(vk0 )−1v̄k − ζ∥1/αz

1/αz
≥ C1∥(vk0 )−1v̄k − ζ∥1/αz ,

(4.13)

where (a) follows from the definition of αz and the observation that Jz = I, and the last inequality

follows from the equivalence of norms in finite-dimensional Euclidean spaces, and C1 is a constant

that depends only on C, p, αz and the dimension n. Thus, combining (4.13) with Lemma 2.5 and

recalling that ζ = z−1
0 z̄, we see that for all sufficiently large k,

∥vk − wk∥ =
|z0vk0 + ⟨z̄, v̄k⟩|

∥z∥
=
z0v

k
0 |1 + ⟨ζ, (vk0 )−1v̄k⟩|

∥z∥

≥ C1z0v
k
0

∥z∥
∥(vk0 )−1v̄k − ζ∥1/αz ≥ C1z0(vk0 )1−1/αz

∥z∥
∥uk − wk∥1/αz ,

(4.14)

where the last inequality follows from (4.10).
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On the other hand, if |Jz| = 1 and p < 2, we have αz = 1/p. We can deduce from (4.12) and

Lemma 2.5 that for all sufficiently large k,

∥vk − wk∥ =
z0v

k
0 |1 + ⟨ζ, (vk0 )−1v̄k⟩|

∥z∥
≥ z0v

k
0

p∥z∥
∑
i/∈I

|(vk0 )−1v̄ki |p

(a)

≥ z0v
k
0

p∥z∥

√∑
i/∈I

|(vk0 )−1v̄ki |2

p

=
z0(vk0 )1−1/αz

p∥z∥
∥uk − wk∥1/αz ,

(4.15)

where (a) holds because p < 2 so that p-norm majorizes 2-norm, and we used (4.11) and the fact

that αz = 1/p for the last equality.

Combining (4.14) and (4.15), we see that there exists C2 > 0 such that for all sufficiently large

k,

∥uk − wk∥ ≤ C2 · (vk0 )1−αz∥vk − wk∥αz ≤ C2η
1−αz∥vk − wk∥αz ,

where the last inequality holds because vk ∈ B(η). This contradicts (4.8) and hence case (I) cannot

happen.

(II): In this case, ξ ̸= ζ. Since ∥ξ∥p = 1, we see from Lemma 4.1 that 1 + ⟨ζ, ξ⟩ > 0. Thus, in

view of (4.9), there exists ℓ > 0 such that

1 + ⟨ζ, (vk0 )−1v̄k⟩ ≥ ℓ > 0 for all large k.

Using this together with Lemma 2.5 and the fact that ζ = z−1
0 z̄, we deduce that for these k,

∥vk − wk∥ =
|z0vk0 + ⟨z̄, v̄k⟩|

∥z∥
=
z0v

k
0 |1 + ⟨ζ, (vk0 )−1v̄k⟩|

∥z∥

≥ ℓz0v
k
0

∥z∥
=
ℓz0∥v̄k∥p

∥z∥
(a)

≥ ℓz0∥vk∥p
2∥z∥

(b)

≥ C3ℓz0∥vk∥
2∥z∥

(c)

≥ C3ℓz0
2∥z∥

∥uk − wk∥,

where (a) follows from the triangle inequality and the fact that vk0 = ∥v̄k∥p, (b) holds for some

constant C3 > 0 that only depends on n and p, (c) follows from the fact that ∥uk − wk∥ =

dist(wk,Fz) ≤ ∥wk∥ ≤ ∥vk∥ (which holds because of the properties of projections). The above

display contradicts (4.8) and hence case (II) also cannot happen.

Thus, we have γz,η ∈ (0,∞]; the desired error bound follows from Theorem 2.2.

Using Theorem 4.1 together with Lemma 2.3 and recalling that an upper bound to a 1-FRF is

also a 1-FRF, we obtain the following facial residual function for Kn+1
p .

Corollary 4.1. Let n ≥ 2 and p, q ∈ (1,∞) be such that 1
p + 1

q = 1. Let z ∈ ∂Kn+1
q \{0} and let

Fz := {z}⊥ ∩ Kn+1
p . Let αz be as in (4.6) and let γz,t be as in (4.7).7 Let κ = max{1, 1/∥z∥}.

Then the function ψK,z : R+ × R+ → R+ given by

ψK,z(ϵ, t) := κϵ+ max{2t1−αz , 2γ−1
z,t }(κ+ 1)αzϵαz

is a 1-FRF residual function for Kn+1
p and z.

Next, we will prove that the optimality criterion (G1) is satisfied for p-cones when g = | · |αz ,

with αz as in (4.6). For that, we need two lemmas that assert the existence of functions ϵ 7→ wϵ

having certain desirable properties.

7We set γz,0 = ∞.
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Lemma 4.2 (A wϵ of order 1
p when |Jz| < n). Let n ≥ 2 and p, q ∈ (1,∞) be such that 1

p + 1
q = 1.

Let z ∈ ∂Kn+1
q \{0} be such that Jz ̸= {1, 2, . . . , n}, where Jz is as in (4.6). Let Fz := {z}⊥∩Kn+1

p

and f ∈ Fz \ {0} be defined as in (4.5). Then there exists a continuous function w : (0, 1] →
{z}⊥\Fz such that

lim
ϵ↓0

wϵ = f and lim sup
ϵ↓0

dist(wϵ,Kn+1
p )

1
p

dist(wϵ,Fz)
<∞.

Proof. Fix any j ∈ {1, 2, . . . , n}\Jz and define

ζ := −sgn(z̄) ◦ |z−1
0 z̄|q−1.

Then ∥ζ∥p = 1 and ζi ̸= 0 if and only if i ∈ Jz. Moreover, we have f =
[
1 ζ

T
]T

. Define the

(bounded) continuous function w : (0, 1] → Rn+1 by

(wϵ)i =

{
fi if i ̸= j

ϵ if i = j
.

Then ⟨z, wϵ⟩ = 0 for every ϵ ∈ (0, 1] and wϵ → f ∈ Fz\{0}. Now, observe from ∥ζ∥p = 1 that the

image of the function y : (0, 1] → Rn+1 defined by

(yϵ)0 = (1 + ϵp)
1
p , ȳϵ = w̄ϵ.

is entirely contained in Kn+1
p . Hence, we have

dist(wϵ,Kn+1
p ) ≤ ∥wϵ − yϵ∥ = (1 + ϵp)

1
p − 1 ≤ 1

p
ϵp,

where the last inequality follows from the concavity of t 7→ t
1
p and the supgradient inequality. In

addition, we can also deduce from (4.5) and the definition of ζ that dist(wϵ,Fz) = ϵ > 0. Thus

lim sup
ϵ↓0

dist(wϵ,Kn+1
p )

1
p

dist(wϵ,Fz)
≤
(

1
p

) 1
p

.

Lemma 4.3 (A wϵ of order 1
2 when |Jz| ≥ 2). Let n ≥ 2 and p, q ∈ (1,∞) be such that 1

p + 1
q = 1.

Let z ∈ ∂Kn+1
q \{0} be such that |Jz| ≥ 2, where Jz is as in (4.6). Let Fz := {z}⊥ ∩ Kn+1

p and

f ∈ Fz \ {0} be defined as in (4.5). Then there exists a continuous function w : (0, 1] → {z}⊥\Fz

such that

lim
ϵ↓0

wϵ = f and lim sup
ϵ↓0

dist(wϵ,Kn+1
p )

1
2

dist(wϵ,Fz)
<∞.

Proof. Without loss of generality, we assume that n ∈ Jz so that z̄n ̸= 0; by symmetry, we will

assume that z̄n < 0. Define

ζ := −sgn(z̄) ◦ |z−1
0 z̄|q−1.

Then ∥ζ∥p = 1, ζn > 0 and f =
[
1 ζ

T
]T

. Define the (bounded) continuous function w :

(0,min{|z̄n| · ζn, z0}) → Rn+1 by

(wϵ)i =


1 − ϵz−1

0 if i = 0

ζn + ϵz̄−1
n if i = n

ζi otherwise.
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Then ⟨z, wϵ⟩ = 0 and wϵ → f ∈ Fz\{0}. Now, observe that the image of the function y :

(0,min{|z̄n| · ζn, z0}) → Rn+1 defined by

(yϵ)0 =

[
n−1∑
i=1

|ζi|p + (ζn + ϵz̄−1
n )p

] 1
p

, ȳϵ = w̄ϵ

is contained in Kn+1
p . Hence, we have

dist(wϵ,Kn+1
p ) ≤ ∥wϵ − yϵ∥ =

∣∣∣∣∣∣
[
n−1∑
i=1

|ζi|p + (ζn + ϵz̄−1
n )p

] 1
p

− 1 + ϵz−1
0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[
n−1∑
i=1

|ζi|p + ζ
p

n + pϵζ
p−1

n z̄−1
n +O(ϵ2)

] 1
p

− 1 + ϵz−1
0

∣∣∣∣∣∣
(a)
=

∣∣∣∣[1 + pϵζ
p−1

n z̄−1
n +O(ϵ2)

] 1
p − 1 + ϵz−1

0

∣∣∣∣
=
∣∣∣1 + ϵζ

p−1

n z̄−1
n − 1 + ϵz−1

0 +O(ϵ2)
∣∣∣ = O(ϵ2) as ϵ ↓ 0, (4.16)

where (a) holds because ∥ζ∥p = 1, and the last equality holds because

ζ
p−1

n = |z−1
0 z̄n|(q−1)(p−1) = |z−1

0 z̄n| = −z−1
0 z̄n

as ζn > 0 and z̄n < 0. We next estimate dist(wϵ,Fz). Since wϵ → f , we must have ⟨wϵ, f⟩ > 0 for

all sufficiently small ϵ. Thus, from the definition of Fz and Lemma 2.5, we see that for these ϵ,

dist(wϵ,Fz)2 =

∥∥∥∥wϵ −
⟨wϵ, f⟩
∥f∥2

f

∥∥∥∥2 = ∥wϵ∥2 −
(⟨wϵ, f⟩)2

∥f∥2
.

Now, a direct computation shows that

∥wϵ∥2 = (1 − ϵz−1
0 )2 +

n−1∑
i=1

|ζi|2 + (ζn + ϵz̄−1
n )2

= 1 +

n−1∑
i=1

|ζi|2 + ζ
2

n + 2ϵ(z̄−1
n ζn − z−1

0 ) + ϵ2z̄−2
n + ϵ2z−2

0

= ∥f∥2 + 2ϵ(z̄−1
n ζn − z−1

0 ) + ϵ2z̄−2
n + ϵ2z−2

0 ,

where the last equality follows from the definition of f in (4.5). In addition, we have

(⟨wϵ, f⟩)2 =

(
1 − ϵz−1

0 +

n−1∑
i=1

|ζi|2 + ζ
2

n + ϵz̄−1
n ζn

)2

=
[
∥f∥2 + ϵ(z̄−1

n ζn − z−1
0 )
]2

= ∥f∥4 + 2ϵ∥f∥2(z̄−1
n ζn − z−1

0 ) + ϵ2(z̄−1
n ζn − z−1

0 )2.

Thus, it holds that for all sufficiently small ϵ,

dist(wϵ,Fz)2 = ϵ2
(
z̄−2
n + z−2

0 − (z̄−1
n ζn − z−1

0 )2

∥f∥2

)
≥ ϵ2

(
z̄−2
n + z−2

0 − (−z̄−1
n ζn + z−1

0 )2

1 + ζ
2

n

)
. (4.17)
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Since |Jz| ≥ 2 and ∥ζ∥p = 1, we must have ζn < 1. Then the Cauchy-Schwarz inequality gives

[z̄−2
n + z−2

0 ] · [ζ
2

n + 1] > (−z̄−1
n ζn + z−1

0 )2,

and the inequality is strict because

ζn
−z̄−1

n

· z−1
0 =

|z−1
0 z̄n|q−1

|z̄−1
n z0|

= |z−1
0 z̄n|q = |ζn|

q
q−1 < 1.

Consequently, we see from (4.17) that there exists c > 0 such that dist(wϵ,Fz) ≥ cϵ for all

sufficiently small ϵ. Combining this with (4.16), we have lim sup
ϵ↓0

dist(wϵ,Kn+1
p )

1
2

dist(wϵ,Fz)
<∞. To conclude,

we observe that we can perform a change of variable ϵ̂ = aϵ for some a > 0 so that wϵ̂ is defined

for ϵ̂ ∈ (0, 1] with wϵ̂ /∈ Fz for all ϵ̂ ∈ (0, 1].

We now have all the tools to prove the following theorem.

Theorem 4.2 (The optimality criterion (G1) is satisfied for p-cones). Suppose that n ≥ 2 and

p, q ∈ (1,∞) are such that 1
p + 1

q = 1. Let z ∈ ∂Kn+1
q \{0} and let Fz := {z}⊥ ∩ Kn+1

p . Let αz

be as in (4.6). Then the function g = | · |αz satisfies the asymptotic optimality criterion (G1) for

Kn+1
p and z.

Proof. Let Jz be as in (4.6). We split the proof in a few cases:

(I) Jz = {1, 2, . . . , n}. In this case αz = 1/2. Since n ≥ 2, we have |Jz| ≥ 2 so we can invoke

Lemma 4.3, which gives the required function w satisfying (G1) with v = f in (4.5).

(II) |Jz| = 1 and p < 2. In this case, αz = 1/p. Since n ≥ 2, we have Jz ̸= {1, . . . , n}, so that

we can invoke Lemma 4.2, which gives the required function w satisfying (G1) with v = f in

(4.5).

(III) |Jz| = 1 and p ≥ 2. In this case, αz = 1/p. Similarly to the previous item, it follows from

Lemma 4.2.

(IV) 2 ≤ |Jz| < n. In this case, αz = min{1/2, 1/p}. Similarly to the previous items, it follows

from either Lemma 4.2 or Lemma 4.3.

Theorem 4.2 shows an interesting property of p-cones: namely, in 3 dimensions, n = 2, so that

the cases |Jz| = n and |Jz| ̸= 1 exactly coincide, thereby eliminating the min{ 1
2 ,

1
p} case in the

definition of αz when p < 2. Thus, p-cones of dimension 4 and higher exhibit a greater complexity

in their optimal 1-FRFs than those in R3. This difference will be discussed in the next subsection.

4.2.1 How p-cones of dimension 3 differ from those of dimension 4

The following Examples 4.1 and 4.2 will, taken together, illustrate how p-cones of dimension 3

differ from those of dimension 4 geometrically. Examples 4.1 also shows another curiosity: that

faces defined very similarly can have different error bounds, depending on the dimension. As the

main goal of this subsection is to provide geometric intuition and we will not prove new results,

the style here will be more informal. Although we hope this will be offset by a gain in intuition.
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Example 4.1 (p = 3 cones in 3 and 4 dimensions). We consider the example in Figure 2. In order

to visualize the 4-dimensional cone K3+1
3 , we will depict 3-dimensional slices of it (in columns

2 and 3). Those slices are obtained by intersecting the cone with hyperplanes and plotting the

intersection of the cone with those hyperplanes. To aid the reader when interpreting this method of

visualization, we also depict (in column 1) the 3-dimensional cone K2+1
3 using the same approach:

we intersect the cone with hyperplanes and plot the intersection of the cone with those hyperplanes.

In addition, we uniquely color8 each of the hyperplanes, so that the reader can also see how the

various slices mutually intersect one another.

For the 3-dimensional cone K2+1
3 , we consider the face given by F ′ = K2+1

3 ∩ {x1 ≥ 0} ∩
{x | x1 = x2}, and for the 4-dimensional cone K3+1

3 , we consider the face defined very similarly by

F = K3+1
3 ∩ {x1 ≥ 0} ∩ {x | x1 = x2} ∩ {x | x3 = 0}.

When F is viewed from the perspective of the 3-dimensional slice K3+1
3 ∩ {x | x3 = 0}, the

situation seems quite analogous to the face of the 3-dimensional cone K2+1
3 given by F ′ = K2+1

3 ∩
{x | x1 ≥ 0} ∩ {x | x1 = x2}. Indeed, the geometry depicted in these two images is identical,

because the natural embedding ι of K2+1
3 into R4 yields ι : K2+1

3 → K3+1
3 ∩ {x | x3 = 0} and

ι : F ′ → F . However, the appearances are deceptive. For F ′ = {z′}⊥ ∩ K2+1
3 , it holds that the

best possible exponent is α′
z = 1

2 . However, in contradistinction, for F = {z}⊥ ∩ K3+1
3 , the best

possible exponent is αz = 1
3 . The need for this smaller exponent is more apparent when we view F

from the perspective of the 3-dimensional slice K3+1
3 ∩{x | x1 = x2}. Viewed from this perspective,

the cone appears to have less curvature—or “more flatness”—at the site of the face, which would

indicate that K3+1
3 intersects with the exposing hyperplane {z}⊥ “more sharply” than it would

appear to when viewed from the perspective of the slice K3+1
3 ∩ {x | x3 = 0}.

What we have observed here is that the slice in which we view the face can change what exponent

appears to be suitable, because it changes how curved the cone K3+1
3 appears to be locally at the

face F . We can better understand the reason for this if we consider the slice K3+1
3 ∩{x | x0 = 1}.

If we further intersect K3+1
3 ∩{x | x0 = 1} with the hyperplane {x | x3 = 0}, then {z}⊥ appears

to intersect K3+1
3 with the more rounded local curvature of the top image in column 3. However,

if we instead intersect K3+1
3 ∩ {x | x0 = 1} with the hyperplane {x | x1 = x2}, then {z}⊥ appears

to intersect K3+1
3 with the flatter local curvature of the middle image in column 3.

Let us describe what we have just observed in a slightly different way. If we take a continuous

function w : (0, 1] → {x | x3 = 0} ∩ {z}⊥ ∩ {x | x0 = 1}\F with limϵ↓0 wϵ = f , then we will not

obtain a counterexample to the claim that

0 < lim inf
ϵ↓0

√
dist(wϵ,K)

dist(wϵ,F)
.

On the other hand, if we take a properly constructed continuous function w : (0, 1] → {x | x1 =

x2} ∩ {z}⊥ ∩ {x | x0 = 1}\F with limϵ↓0 wϵ = f , then we will obtain such a counterexample.

Using the slice K3+1
3 ∩ {x | x0 = 1}, we can see that the (exposed) 1-dimensional faces that

require exponent αz = 1
3 are exactly those that are contained in any of the slices K3+1

3 ∩{x | x1 = 0}
or K3+1

3 ∩{x | x2 = 0} or K3+1
3 ∩{x | x3 = 0}. For all other (exposed) 1-dimensional faces, we will

have that αz = 1
2 will be a suitable exponent. This is consistent with what we know from (4.6),

because such faces will have exposing vectors z that satisfy |Jz| = n.

By comparing and contrasting the case p = 3 from Example 4.1 with the case p = 3/2 from the

following Example 4.2, we will see how the complexity of the error bounds changes as dimension

increases from n < 3 to n ≥ 3.

8with apologies to color-blind readers, who may instead make use of the axis labels.
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Example 4.2 (p = 3/2 cones in 3 and 4 dimensions). We next consider the case of K3+1
3/2 . This

example is illustrated in Figure 3. Most faces have best exponent αz = 1
2 . On the set K3+1

3/2 ∩
{x | x0 = 1} the 6 “corners”—i.e. the 6 points on the visible surface with exactly 1 nonzero

coordinate (other than the 0th coordinate)—belong to the 6 exceptional faces that satisfy |Jz| =

1. For these exceptional faces, αz = 2
3 . This is in contradistinction with the example p = 3

that we considered in Example 4.1. In that example, most faces of the 4D cone K3+1
3 still have

αz = 1
2 . However, the exceptional faces, those that have αz = 1

3 , are the faces that intersect

K3+1
3 ∩ {x | x0 = 1} in the set {x | x1 = 0} ∪ {x | x2 = 0} ∪ {x | x3 = 0}. Notice that there

are infinitely many of them. For K3+1
3 , all of the additional exceptional faces (those not shared

in common with K3+1
3/2 ) have exponents that fall under the “otherwise” case in (4.6). For n < 3,

it can never hold that 1 < |Jz| < n, and so an analogous difference in the number of exceptional

faces does not occur in the lower dimensional n = 2 cases. For both cones K2+1
3 and K2+1

3/2 , the

exceptional faces—those without αz = 1
2—are exactly the 4 faces where the cones intersect with

{x | x1 = 0} or {x | x2 = 0}.

Now we turn our attention to the face F similarly defined as K3+1
3/2 ∩ {x | x1 = x2}. Another

difference between the p = 3 case and p = 3/2 case is as follows. For the case p = 3/2, the need

for the smaller exponent (now αz = 1
2 ) is more apparent when we view F from the perspective of

the 3-dimensional slice K3+1
3/2 ∩ {x | x3 = 0}. Viewed from this perspective, the cone appears to

have less curvature—or “more flatness”—at the site of the face, which would indicate that K3+1
3/2

intersects with the exposing hyperplane {z}⊥ “more sharply” than it would appear to when viewed

from the perspective of the slice K3+1
3/2 ∩ {x | x1 = x2}. In the case p = 3, the role of the slices

K3+1
3 ∩ {x | x3 = 0} and K3+1

3 ∩ {x | x1 = x2} was exactly the reverse of this, in the sense that the

former deceptively suggested more curvature at the face and the latter revealed the true situation.

This role reversal for p = 3/2 is similarly apparent in the slices {x | x3 = 0} ∩ {z}⊥ ∩ {x | x0 = 1}
and {x | x1 = x2}∩{z}⊥∩{x | x0 = 1}, where the need for the smaller exponent (now 1/2 instead

of 2/3) is now apparent in the former instead of the latter.

4.3 Error bounds

In this subsection, we gather all the results we have proved so far and prove a tight error bound

for problems involving a single p-cone.

Theorem 4.3 (Error bounds for the p-cone and their optimality). Let n ≥ 2 and p ∈ (1,∞). Let

L ⊆ Rn+1 be a subspace and a ∈ Rn+1 such that (L + a) ∩ Kn+1
p ̸= ∅. Then the following items

hold.

(i) If (L+a)∩Kn+1
p = {0} or (L+a)∩(riKn+1

p ) ̸= ∅, then Kn+1
p and L+a satisfy a Lipschitzian

error bound.

(ii) Otherwise, Kn+1
p and L + a satisfy a uniform Hölderian error bound with exponent αz ≥

min{ 1
2 ,

1
p}, where αz is as in (4.6) and z ∈ ∂Kn+1

q ∩L⊥∩{a}⊥ with z ̸= 0 and 1/q+1/p = 1.

Furthermore, the error bound in (ii) is optimal in the following sense. If L = {z}⊥, a = 0, then

for any consistent error bound function Φ for Kn+1
p and {z}⊥ and any η̂ > 0, there are constants

κ̂ > 0 and s0 > 0 such that

sαz ≤ κ̂Φ(κ̂s, η̂), ∀s ∈ [0, s0].

In particular, Kn+1
p and {z}⊥ do not satisfy a uniform Hölderian error bound with exponent α̂

satisfying αz < α̂ ≤ 1.
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Figure 2: Example 4.1 is illustrated.
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Figure 3: Example 4.2 is illustrated.
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Proof. If (L+a)∩(riKn+1
p ) ̸= ∅ then Proposition 2.1 implies that a Lipschitzian error bound holds.

If we have Kn+1
p ∩ (L + a) = {0}, a Lipschitzian error bound holds by [21, Proposition 27]. This

concludes the proof of item (i).

Next, we move on to item (ii). In this case we have (L+a)∩(riKn+1
p ) = ∅ and Kn+1

p ∩(L+a) ̸=
{0}. The p-cone for p ∈ (1,∞) only has faces of dimension 0, 1 or n+ 1. As such, its distance to

polyhedrality ℓpoly(Kn+1
p ) = 1 (see Section 2).

By (2.3), we have dPPS(Kn+1
p ,L+a) ≤ 1. Since (L+a)∩(riKn+1

p ) = ∅, we have dPPS(Kn+1
p ,L+

a) = 1. Therefore, there exists a chain of faces F2 ⊆ Kn+1
p satisfying items (ii) and (iii) of

Proposition 2.2 together with z ∈ Kn+1
q ∩L⊥∩{a}⊥ with 1/q+1/p = 1, such that F2 = Kn+1

p ∩{z}⊥.

Since (L+a)∩(riKn+1
p ) = ∅, we have z ̸= 0. Since Kn+1

p ∩(L+a) ̸= {0}, we have F2 ̸= {0} (recall

that F2 contains Kn+1
p ∩ (L + a)) so that z ̸∈ riKn+1

q by (2.1). We conclude that z ∈ ∂Kn+1
q \ {0}

and

F2 = Fz,

where Fz is as in (4.5). Let g = | · |αz and let ψ be the 1-FRF given by Corollary 4.1. By

Theorem 4.1, we have γz,η ∈ (0,∞] for every η > 0, so that g satisfies Theorem 2.2. Furthermore, by

Theorem 4.2, g satisfies the asymptotic optimality criterion (G1) for Kn+1
p and z besides satisfying

(SH) (since g is concave, see Lemma 3.1).

Now, all assumptions of Theorem 3.2 are satisfied. In particular, Corollary 3.1 (a) tells us that

K and L + a satisfy a uniform Hölderian error bound with exponent αz as in (4.6). By definition,

αz ≥ min{ 1
2 ,

1
p} which concludes the proof of item (ii).

The optimality statement follows directly from item (b) of Corollary 3.1 by noting that z can

be scaled so that ∥z∥ = 1.

The optimal error bound in Theorem 4.3 inherits its properties, in essence, from those of the

optimal 1-FRFs from Theorem 4.2. This highlights the importance of the framework we built in

Section 3. Worthy of additional note is that the optimal error bounds also differ dramatically from

the hypothesized form in [21, Section 5].

We conclude this subsection with a result on the direct product of nonpolyhedral p-cones.

Theorem 4.4 (Direct products of p-cones). Let K = Kn1+1
p1

× · · · × Kns+1
ps

, where ni ≥ 2 and

pi ∈ (1,∞) for i = 1, . . . , s.

Let L be a subspace and a be such that (L + a) ∩ K ̸= ∅. Then the following hold.

(i) dPPS(K,L + a) ≤ min
{
s,dim(L⊥ ∩ {a}⊥)

}
.

(ii) Let α = min{ 1
2 ,

1
p1
, . . . , 1

ps
} and d = dPPS(K,L + a). Then, K and L + a satisfy a uniform

Hölderian error bound with exponent αd.

Proof. Each Kni+1
pi

has only three types of faces: {0}, Kni+1
pi

and extreme rays as in (4.5). There-

fore, the distance to polyhedrality satisfies ℓpoly(Kni+1
pi

) = 1 for every i. With that, (i) follows

from (2.3).

We move on to item (ii). We invoke Theorem 2.1 and let Fℓ ⊊ · · · ⊊ F1 = K be a chain of

faces of K with ℓ = dPPS(K,L+ a) + 1. At least one such chain exists; see Proposition 2.2 and the

subsequent discussion.

First, we need to determine the 1-FRFs for the faces of K. Let F � K, then

F = F1 × · · · × Fs

and each F i is a face of Kni+1
pi

. Also, let z ∈ F∗, so that z = (z1, . . . , zs) where zi ∈ (F i)∗ for

every i. By Proposition 2.3, 1-FRFs for F and z can be obtained by positively rescaling the sum

ψF1,z1 + · · ·+ψFs,zs , where each ψFi,zi is a 1-FRF for F i and zi. By the discussion in Section 4.2,
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these 1-FRFs are of the form ρi(t)ϵ+ ρ̂i(t)ϵ
αi where ρi, ρ̂i are nonnegative nondecreasing functions

and αi is either 1 (see the beginning of Section 4.2) or αzi as in Corollary 4.1. Since α ≤ αi,

adjusting ρi and ρ̂i if necessary, ρi(t)ϵ + ρ̂i(t)ϵ
α is also a one-step facial residual function for F i

and zi.
9 Finally, summing s functions of the form ρi(t)ϵ + ρ̂i(t)ϵ

α and positively rescaled shifts

still lead to a function of the same form ρi(t)ϵ+ ρ̂i(t)ϵ
α.

We conclude that all the 1-FRFs for K and its faces can be taken to be of the form ρ(t)ϵ+ρ̂(t)ϵα

for some nonnegative nondecreasing functions ρ and ρ̂. The result then follows from Lemma 2.1.

5 Applications

Using our framework for certifying optimal 1-FRFs, we have built optimal error bounds for the

p-cones. In this final section, we showcase two applications of these results.

5.1 Least squares with p-norm regularization

In this subsection we consider the following least squares problem with (sum of) p-norm regular-

ization:

θ = minx∈Rn g(x) := 1
2∥Ax− b∥2 +

∑s
i=1 λi∥xi∥p, (5.1)

where A is an m × n matrix, b ∈ Rm, λi > 0 for each i, and x is partitioned in s blocks so

that x = (x1, . . . , xs) with xi ∈ Rni for some ni ≥ 2, i = 1, . . . , s. When p = 2, problem (5.1)

corresponds to the group LASSO model in statistics for inducing group sparsity [37]. The same

model can also be used in compressed sensing when the original signal is known to belong to a

union of subspaces; see [8].

Instances of (5.1) are usually presented in large scale and are solved via various first-order

methods such as the proximal gradient algorithm. Here, we are interested in local convergence

properties of these methods. Nowadays, it is known that local convergence properties of first-order

methods are closely related to the Kurdyka- Lojasiewicz (KL) property (see [1, Definition 3.1]) and

the associated exponents (see [18, Definition 2.3]) of the underlying optimization models; see, for

example, [1, 3, 18]. Specifically, if g in (5.1) is a KL function with exponent 1
2 , then the sequence

generated by the proximal gradient algorithm converges locally linearly to a global minimizer; on

the other hand, a KL exponent greater than 1
2 can only guarantee a sublinear convergence rate.

For the convenience of the readers, we recall the definitions of KL functions and exponents

below. We start by introducing some necessary notations. We say that an extended real valued

function h : Rn → [−∞,∞] is proper if domh := {x | h(x) < ∞} ̸= ∅ and h(x) > −∞ for

all x ∈ Rn, and such a function is said to be closed if it is lower semi-continuous. For a proper

convex function h, its set of subdifferential at x ∈ Rn is defined as ∂h(x) := {u | h(y) − h(x) ≥
⟨u, y − x⟩ ∀y ∈ Rn}, and we define dom ∂h := {x | ∂h(x) ̸= ∅}. We are now ready to present the

definitions of KL functions and exponents as follows.

Definition 5.1 ( [36, Definition 2.1]). We say that a proper closed convex function h : Rn →
[−∞,∞] satisfies the KL property at an x̄ ∈ dom ∂h if there exist a ∈ (0,∞], ϵ > 0 and a

continuous concave function ψ : [0, a) → [0,∞) such that

(i) ψ(0) = 0 and ψ is continuously differentiable on (0, a) with positive derivatives;

9Specifically, if ρi(t)ϵ+ ρ̂i(t)ϵ
αi is an FRF of Fi, zi with respect to Kni+1

pi , since α ≤ αi ≤ 1, we have

ρi(t)ϵ+ ρ̂i(t)ϵ
αi ≤

{
ρi(t)ϵ+ ρ̂i(t)ϵ

α if ϵ ∈ [0, 1],

ρi(t)ϵ+ ρ̂i(t)ϵ if ϵ > 1.

Then (ρi(t) + ρ̂i(t))ϵ+ ρ̂i(t)ϵ
α is also an FRF.
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(ii) It holds that

ψ′(h(x) − h(x̄)) dist(0, ∂h(x)) ≥ 1 (5.2)

whenever h(x̄) < h(x) < h(x̄) + a and ∥x− x̄∥ ≤ ϵ.

If h satisfies the KL property at x̄ ∈ dom ∂h and the ψ(t) in (5.2) can be chosen as ct1−α for some

c > 0 and α ∈ [0, 1), then h is said to satisfy the KL property at x̄ with exponent α.

A proper closed convex function h is said to be a KL function if it satisfies the KL property at

every x ∈ dom ∂h, and is said to be a KL function with exponent α ∈ [0, 1) if it satisfies the KL

property with exponent α at every x ∈ dom ∂h.

When p ∈ [1, 2] or p = ∞ in (5.1), it has been shown in [38, 39] that a certain first-order

error bound condition holds for the g in (5.1). This first-order error bound condition for g turns

out to be equivalent to the fact that g is a KL function with exponent 1
2 ; see [7, Corollary 3.6]

and [4, Theorem 5]. Consequently, we know that the g in (5.1) is a KL function with exponent 1
2

when p ∈ [1, 2] ∪ {∞}.

On the other hand, in view of [39, Example 4], it is known that the g in (5.1) is in general not

a KL function with exponent 1
2 when p ∈ (2,∞). Indeed, it is not even clear whether g is a KL

function, not to mention whether it has a KL exponent. Here, leveraging our error bound results

in Section 4.3 on direct products of p-cones, we will compute explicitly a KL exponent for g in

(5.1) when p ∈ (2,∞). The KL exponent can then be used to estimate the convergence rate of the

sequence generated when, for example, proximal gradient algorithm is applied to (5.1) with these

p values.

Our analysis starts by observing that (5.1), for any p ∈ (1,∞), can be equivalently reformulated

as a conic linear program. For that, it will be convenient to consider the rotated second order cone

which is defined as

Qm+2
r = {(t, u, x) ∈ R× R× Rm | tu ≥ ∥x∥2, t ≥ 0, u ≥ 0}.

Let T : Rm+2 → Rm+2 be the bijective linear map such that T (t, u, x) = (t + u, t− u, 2x). Then,

TQm+2
r = Km+2

2 , i.e., Qm+2
r and Km+2

2 are linearly isomorphic cones. By [21, Proposition 17],

linearly isomorphic cones have the same facial residual functions up to positive rescaling. This

implies that Theorem 4.4 is still valid if a cone Kni+1
pi

with pi = 2 is replaced by Qni+1
r .

With that, we can write (5.1) as

min
t,u,w,y,x

0.5t+
∑s

i=1 λiyi

s.t. Ax− w = b, u = 1,

(t, u, w) ∈ Qm+2
r , (yi, xi) ∈ Kni+1

p , i = 1, . . . , s.

(5.3)

The optimal values of (5.1) and (5.3) are the same (i.e., both are θ) and an optimal solution to

the former can be readily used to construct an optimal solution to the latter and vice-versa. For

notational convenience, in what follows we write

v = (t, u, w, (y1, x1), . . . , (ys, xs)). (5.4)

Then, the optimal set of (5.3) can be written as the intersection of the affine space

V = {v | 0.5t+
∑s

i=1 λiyi = θ, u = 1, Ax− w = b} (5.5)

with the cone

K = Qm+2
r ×Kn1+1

p × · · · × Kns+1
p . (5.6)
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The feasible region of (5.3) will be denoted by D, so that

D = {v | u = 1, Ax− w = b,v ∈ K}.

We can then apply Theorem 4.4, since, as remarked previously, Qm+2
r and Km+2

2 are linearly

isomorphic. Therefore, there exists α ∈ (0, 1] such that for every bounded set B there exists

κB > 0 such that

dist(v,K ∩ V) ≤ κB max(dist(v,K),dist(v,V))α, ∀v ∈ B, (5.7)

and we will discuss the value of α later. Because V is an affine set, it follows from Hoffman’s

lemma [12] that there exists a constant κV > 0 such that if v (as in (5.4)) satisfies u = 1 and

Ax− w = b, we have

dist(v,V) ≤ κV |0.5t+
∑s

i=1 λiyi − θ| .
Plugging this in (5.7), we obtain

dist(v,K ∩ V) ≤ κ |0.5t+
∑s

i=1 λiyi − θ|α , ∀v ∈ B ∩ D, (5.8)

for some constant κ > 0. Next, denoting by δD the indicator function of D, we define

G(v) := 0.5t+
∑s

i=1 λiyi − θ + δD(v),

so that G is a proper convex lower semicontinuous function satisfying infvG(v) = 0. Then (5.8)

implies the following error bound condition: if v∗ ∈ arg minG and B is any ball centered at v∗,

then there exists κ > 0 such that

dist(v, arg minG) ≤ κG(v)α, ∀v ∈ B ∩ D. (5.9)

By [4, Theorem 5], this means that G satisfies the KL property at v∗ with exponent 1 − α. Now,

recalling the definition of v in (5.4) and writing x = (x1, . . . , xs) and z = (t, u, w, y1, . . . , ys), we

can see that

g(x) − θ = inf
z
G(v),

where g is defined in (5.1). Let Z(x) := arg minzG(v). Then, Z(x) is nonempty and if z ∈ Z(x),

it must be the case that z = (t, u, w, y1, . . . , ys) satisfies t = ∥Ax − b∥2, u = 1, t ≥ ∥w∥2 and

yi = ∥xi∥p. This shows that Z(x) is compact.

We have thus fulfilled all the conditions necessary to invoke [36, Corollary 3.3] which says that

the KL exponent of G gets transferred to g. Therefore, if x∗ is an optimal solution to (5.1), then

g satisfies the KL property with exponent 1 − α at x∗.

The final piece we need is a discussion on the value of α. By Theorem 4.4, α can be chosen as

min{0.5, 1/p}d, where d = dPPS(K,V) and d ≤ s + 1. So let us take a look at a situation under

which we have d ≤ 1. By selecting b, c and A appropriately, we can write (5.1) and its dual as

min
v

{⟨c,v⟩ | Av = b,v ∈ K}, max
y

{⟨b,y⟩ | c−ATy ∈ K∗}. (5.10)

Because of the format of (5.3), Slater’s condition is satisfied, since one can take yi and t large

enough so that v is feasible and v ∈ riK. Therefore, the corresponding dual problem has an

optimal solution y∗ attaining the same optimal value θ. Let s∗ = c−ATy∗, so that s∗ ∈ K∗ ∩ V⊥

holds because y∗ is dual optimal. Then ⟨v∗, s∗⟩ = ⟨c,v∗⟩− ⟨Av∗,y∗⟩ = 0 whenever v∗ is a primal

optimal solution. Thus, F := K∩ {s∗}⊥ defines a face of K containing the optimal set of (5.3). In

particular, if the following strict complementarity-like condition holds for some optimal solution

v∗,

v∗ ∈ ri (K ∩ {s∗}⊥), (5.11)

then V ∩ F = V ∩ K and V ∩ (riF) ̸= ∅ holds, so that dPPS(K,V) ≤ 1. We have thus proved the

following result.
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Theorem 5.1. Let x∗ be an optimal solution to (5.1). Then g satisfies the KL property at x∗

with exponent 1 − α, where α = min{0.5, 1/p}d and d = dPPS(K,V), with V and K given in (5.5)

and (5.6) respectively. Furthermore, d ≤ s + 1, and if (5.3) satisfies strict complementarity (see

(5.11)), then d ≤ 1.

5.2 Self-duality and homogeneity of p-cones

The second-order cone Kn+1
2 is quite special since it is symmetric, that is self-dual and ho-

mogeneous. Self-duality means that (Kn+1
2 )∗ = Kn+1

2 and homogeneity means that for every

x, y ∈ riKn+1
2 , there exists a linear map A such that Ax = y and AKn+1

2 = Kn+1
2 . Symmetric

cones have many nice properties coming from the theory of Jordan algebras [9, 10].

A basic question then is the following: are all p-cones symmetric? At first glance, the answer

might seem obviously no; however, this is a subtle question, and the path to its solution is rife with

tempting pitfalls. For example, a common source of confusion is as follows: in order to disprove

that a cone is symmetric, it is not enough to show that K∗ ̸= K. The reason is that the self-

duality requirement, in the Jordan algebra context, can be met by arbitrary inner products, and

K∗ changes if ⟨·, ·⟩ varies. An interesting discussion on symmetrizing a cone by changing the inner

product can be seen in [28]. In fact, the existence of an inner product making a cone K self-dual

is equivalent to the existence of a positive definite symmetric matrix Q such that QK = K∗, where

K∗ is the dual cone obtained under the usual Euclidean inner product.

In what follows, we let p ∈ (1,∞), p ̸= 2, n ≥ 2 and q be such that 1/p+ 1/q = 1. In order to

prove that a p-cone is not a symmetric cone via the self-duality route, what is actually required is

to show that QKn+1
p = Kn+1

q never holds for any positive definite symmetric matrix Q. It might

be fair to say that this is harder than merely showing that Kn+1
p ̸= Kn+1

q . One might then try

to focus on the homogeneity requirement instead, but this is also a nontrivial task. In fact, the

homogeneity of general p-cones was one of the open questions mentioned by Gowda and Trott

in [11].

These issues were later settled in [13, 14] using techniques such as T-algebras [33] and tools

borrowed from differential geometry. In this final subsection, we show “easy” proofs for the ques-

tions above based on our error bound results. The only preliminary fact we need is that if A is a

matrix, then AKn+1
1 = Kn+1

1 if and only if

A = α

[
1 0

0 D

]
, (5.12)

for some α > 0 and generalized permutation matrix D (i.e., ±1 are allowed in the entries of D);

see [11, Theorem 7]. Here, Kn+1
1 := {(x0, x̄) ∈ Rn+1 | x0 ≥ ∥x̄∥1}.

Theorem 5.2 ([14, Theorem 11, Corollaries 13 and 14]). Suppose that p ∈ (1,∞) and n ≥ 2.

Then, the following items hold.

(i) If p̂ > p, then there is no matrix A such that AKn+1
p = Kn+1

p̂ .

(ii) If p ̸= 2 and AKn+1
p = Kn+1

p holds for some matrix A, then AKn+1
1 = Kn+1

1 ; in particular,

the matrix A must be as in (5.12).

(iii) If p ̸= 2, then Kn+1
p is neither self-dual nor homogeneous.

Proof. Before we proceed we make some general observations. Suppose that p̂ ≥ p. and there is

a matrix A such that AKn+1
p = Kn+1

p̂ . Let z ∈ (Kn+1
p )∗ be such that F1 := Kn+1

p ∩ {z}⊥ is an

arbitrary extreme ray. Since A is invertible, AF1 must be an an extreme ray of Kn+1
p̂ satisfying

AF1 = Kn+1
p̂ ∩ {ẑ}⊥,
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where ẑ := A−T (z). Therefore, if ψ is a 1-FRF for Kn+1
p and z, then A must map F1 onto a

face AF1 � Kn+1
p̂ such that a positive rescaling of ψ is a 1-FRF for Kn+1

p̂ and ẑ = A−T (z);

see [21, Proposition 17]. Conversely, since A−1Kn+1
p̂ = Kn+1

p , if ψ is a one-step facial residual

function for Kn+1
p̂ and A−T (z), then a positive rescaling of ψ is a 1-FRF for Kn+1

p and z.

The 1-FRFs for Kn+1
p and z we constructed are built from functions that satisfy the optimality

criterion (G1); see Theorem 4.2. This means the exponents appearing in Corollary 4.1 are the

largest possible, which follows from Theorem 3.1 and an argument similar to the proof of item (b)

of Corollary 3.1. So, in what follows, we will refer to those exponents appearing in a 1-FRF for

Kn+1
p and z constructed from Corollary 4.1 as the best exponent of F1.

Since positive rescaling does not alter the exponents, the argument we just outlined implies

that A must map an extreme ray of Kn+1
p with best exponent α to an extreme ray of Kn+1

p̂ having

the same best exponent.

With that in mind, first, we prove item (i). As discussed above, the only possibility of having

AKn+1
p = Kn+1

p̂ is if Kn+1
p and Kn+1

p̂ have extreme rays with the same best exponents.

By assumption, we have p̂ > p. If p = 2, then all the extreme rays of Kn+1
2 have best exponent

1/2. Since this is not true for Kn+1
p̂ , this case cannot happen. The case p ∈ (1, 2) is also impossible

because the largest best exponent appearing in an extreme ray of Kn+1
p̂ is max{1/2, 1/p̂} and

1/p > max{1/2, 1/p̂}.

Finally, suppose that p > 2. Then, there is an extreme ray F1 � Kn+1
p with best exponent 1/p.

However, the best exponents for the extreme rays of Kn+1
p̂ are 1/p̂ and 1/2, so this case cannot

happen. This concludes the proof of item (i).

Next, we move on to item (ii). Suppose first that p ∈ (1, 2). Let ēi denote the i-th unit vector

in Rn. Then, the two half-lines generated by the vectors (1, ēi) and (1,−ēi) are extreme rays of

Kn+1
p with best exponent 1/p, by Corollary 4.1. Observing (4.6), we see that those are the only

extreme rays of Kn+1
p having best exponent 1/p, and there are 2n of them. Since AKn+1

p = Kn+1
p

and A must map a face to another face having an identical best exponent, we conclude that A

permutes this set of 2n extreme rays. However, they are also all the extreme rays of the 1-cone

Kn+1
1 , so AKn+1

1 = Kn+1
1 . In view of the discussion around (5.12), there exists positive α > 0 and

a generalized permutation matrix D such that

A = α

[
1 0

0 D

]
.

This concludes the case p ∈ (1, 2). Next, suppose that p ∈ (2,∞), then taking duals we have

A−TKn+1
q = Kn+1

q , where 1/q + 1/p = 1, so that q ∈ (1, 2). Applying what we have shown in the

first part for q ∈ (1, 2), we know that A−T must be a matrix as in (5.12). Then, A is another

matrix having the same format and AKn+1
1 = Kn+1

1 . This completes the proof of item (ii).

Let p ̸= 2. As discussed previously, self-duality implies the existence of a positive definite

symmetric matrix Q such that QKn+1
p = Kn+1

q , which is impossible by item (i). Next, we disprove

homogeneity. Notice that riKn+1
1 is properly contained in riKn+1

p , but they do not coincide since

Kn+1
1 ̸= Kn+1

p . So let x := (1, 0, . . . , 0) and y be a point in (riKn+1
p ) \ Kn+1

1 . If AKn+1
p = Kn+1

p

then AKn+1
1 = Kn+1

1 by item (ii). Since x ∈ riKn+1
1 , we have Ax ̸= y for all A satisfying

AKn+1
p = Kn+1

p . This shows that Kn+1
p is not homogeneous.
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