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Abstract

Given an undirected n-vertex planar graph G = (V,E, ω) with non-negative edge weight
function ω : E → R and given an assigned label to each vertex, a vertex-labeled distance
oracle is a data structure which for any query consisting of a vertex u and a label λ reports
the shortest path distance from u to the nearest vertex with label λ. We show that if there
is a distance oracle for undirected n-vertex planar graphs with non-negative edge weights
using s(n) space and with query time q(n), then there is a vertex-labeled distance oracle
with Õ(s(n))1 space and Õ(q(n)) query time. Using the state-of-the-art distance oracle
of Long and Pettie [12], our construction produces a vertex-labeled distance oracle using
n1+o(1) space and query time Õ(1) at one extreme, Õ(n) space and no(1) query time at the
other extreme, as well as such oracles for the full tradeoff between space and query time
obtained in their paper. This is the first non-trivial exact vertex-labeled distance oracle for
planar graphs and, to our knowledge, for any interesting graph class other than trees.
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1We use Õ-notation to suppress poly(logn)-factors.
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1 Introduction

Efficiently answering shortest path distance queries between pairs of vertices in a graph is a fun-
damental algorithmic problem with a wide range of applications. An algorithm like Dijkstra’s
can answer such a query in near-linear time in the size of the graph. If we allow for precom-
putations, we can break this bound, for instance by simply storing the answers to all possible
queries in a look-up table. However, a fast query time should preferably not come at the cost
of a large space requirement. A distance oracle is a compact data structure that can answer a
shortest path distance query in constant or close to constant time.

A lot of research has focused on approximate distance oracles which allow for some approx-
imation in the distances output. This is reasonable since there are graphs for which the trivial
look-up table approach is the best possible for exact distances. However, for restricted classes
of graphs, it may be possible to obtain exact oracles with a much better tradeoff between space
and query time. Indeed, for any planar n-vertex digraph, there is an exact distance oracle with
space close to linear in n and query time close to constant [7, 2, 12].

A related problem is that of obtaining a vertex-labeled distance oracle. Here, we are given
a graph with each vertex assigned a label. A query consists of a pair (u, λ) of a vertex u and a
label λ and the output should be the distance from u to the nearest vertex with label λ. Each
vertex is given only one label but the same label may be assigned to multiple vertices. To give
some practical motivation, if the graph represents a road network, a label λ could represent
supermarkets and the output of query (u, λ) gives the distance to the nearest supermarket from
the location represented by u.

Note that this is a generalization of the distance oracle problem since vertex-to-vertex distance
queries can be answered by a vertex-labeled distance oracle if each vertex is given its own unique
label. If L is the set of labels, a trivial vertex-labeled distance oracle with constant query time
is a look-up table that simply stores the answers to all possible queries, requiring space O(n|L|).
This bound can be as high as quadratic in n.

Our main result, which we shall state formally later in this section, is that for undirected
edge-weighted planar graphs, the vertex-labeled distance oracle problem can be reduced to the
more restricted distance oracle problem in the sense that up to log n-factors, any space/query
time tradeoff for distance oracles also holds for vertex-labeled distance oracles. Hence, the
tradeoff from [12] translates to vertex-labeled distance oracles, assuming that the planar graph
is undirected. To the best of our knowledge, this is the first non-trivial upper bound for vertex-
labeled distance oracles in any interesting graph class other than trees [8, 15]. A strength of our
result is that any future progress on distance oracles in undirected planar graphs immediately
translates to vertex-labeled distance oracles.

1.1 Related work on vertex-labeled distance oracles

Vertex-labeled distance oracles have received considerably more attention in the approximate
setting. With (1 + ε) multiplicative approximation, it is known how to get Õ(n) space and Õ(1)
query time both for undirected [11] and directed planar graphs [13] and it has been shown how
oracles with such guarantees can be maintained dynamically under label changes to vertices
using Õ(1) time per vertex relabel.

For general graphs, vertex-labeled distance oracles with constant approximation have been
presented [9, 3, 14] with state of the art being an oracle with O(kn|L|1/k) space, 4k − 5 multi-
plicative approximation, and O(log k) query time, for any k ∈ N.

1.2 Our contributions

We now state our reduction and its corollary:

Theorem 1. If there is an exact distance oracle for n-vertex undirected edge-weighted pla-
nar graphs with s(n) space, q(n) query time, and t(n) preprocessing time, then there exists
an exact vertex-labeled distance oracle for such graphs with s(n) + O(n log2 n) space, and with
O(q(n) log n+ log3 n) query time, and t(n) + poly(n) preprocessing time.
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Plugging in the distance oracle of Long and Pettie et al. [12] gives the following corollary
which can be seen as a generalization of their result:

Corollary 1. For n-vertex undirected edge-weighted planar graphs, there exist exact vertex-
labeled distance oracles with the following tradeoffs between space and query time:

1. n1+o(1) space and Õ(1) query time,

2. Õ(n) space and no(1) query time.

All oracles have preprocessing time polynomial in n.

Up to logarithmic factors, the full tradeoff between space and query time in their paper
similarly extends to vertex-labeled distance oracles in undirected edge-weighted planar graphs.

The rest of the paper is organized as follows. In Section 2, we introduce basic definitions and
notation and present tools from the literature that we will need for our oracle. In Section 3 we
state the key lemmas but defer their proofs until later sections, and thus immediately present our
reduction by describing how to obtain a vertex-labeled distance oracle given a distance oracle
as a black box. In Section 4, we present a point location structure similar to [7] but with some
important modifications to improve space in our setting.

2 Preliminaries

Let G = (V,E, ω) be a graph with edge weight function ω : E → R ∪ {∞}. We denote by
V (G) = V and E(G) = E the vertex and edge-set of G, respectively, and by n = |V (G)| the
number of vertices of G. A graph G′ is said to be a subgraph of G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). We denote by u G v a shortest path from u to v in G, by dG(u, v) the weight
of u  G v, and write u  v = u  G v and d(u, v) = dG(u, v) when G is clear from context.
For a shortest path p = u v = (u = p1), p2, . . . , (pk = v) we define vertex pi to occur before pj
on p if i < j and similarly for edges pipi+1 and pjpj+1. Thus statements such as “the first/last
vertex/edge on p satisfying some property P” will always be made w.r.t. this ordering. We also
write p ◦ p′ to denote the concatenation of paths (or edges) p and p′, assuming the last vertex
of p equals the first vertex of p′. Given u, v, v′ ∈ V ; we say that v is closer than v′ to u in G if
dG(u, v) < dG(u, v′) or dG(u, v) = dG(u, v) and v < v′, assuming some lexicographic ordering
on vertices. We denote by V (p), respectively E(p), the set of vertices, respectively edges, on a
path p.

Assume in the following that G is undirected. G is said to be connected, respectively bi-
connected, if any pair of vertices are connected by at least one, respectively two, vertex-disjoint
paths. For a rooted spanning tree T in G and for any edge e = uv not in T , we define the
fundamental cycle of uv w.r.t. T as the cycle obtained as the concatenation of uv and the two
paths of T from the root to u and v, respectively.

2.1 Planar graphs and embeddings

An embedding of a planar graph G assigns to each vertex a point in the plane and to each edge
a simple arc such that its endpoints coincide with those of the points assigned to its vertices. A
planar embedding of G is an embedding such that no two vertices are assigned the same point
and such that no pair of arcs coincide in points other than those corresponding to vertices they
share. A graph is said to be planar if it admits a planar embedding. When we talk about a
planar graph we assume that it is planar embedded and hence some implicit, underlying planar
embedding of the graph. When it is clear from the context we shall refer interchangeably to
a planar graph and its embedding, its edges and arcs and its vertices and points. Thus the
term graph can refer to its embedding, an edge to its corresponding arc and a vertex to its
corresponding point in the embedding.
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Assumptions about the input Unless stated otherwise, we shall always assume that G
refers to a graph which is weighted, undirected and planar with some underlying embedding.
Furthermore, we shall make the structural assumption that G is triangulated. Triangulation can
be achieved by standard techniques, i.e. adding to each face f an artificial vertex and artificial
edges from the artificial vertex to each vertex of V (f) with infinite weight. This transformation
preserves planarity, shortest paths and ensures that the input graph consists only of simple faces.
We also assume that shortest paths in the input graph are unique; this can be ensured for any
input graph by either randomly perturbing edge weights or with e.g. the deterministic approach
in [6] which gives only an O(1)-factor overhead in running time. Finally, it will be useful to state
the following lemma when talking about separators in a graph with unique shortest paths:

Lemma 1. Let u, v, x, y ∈ V (G). Then u  v and x  y share at most one edge-maximal
subpath.

Proof. Assume that x  y intersects u  v and let a resp. b be the first resp. last intersection
along u v. Since G is undirected, uniqueness of shortest paths implies that a b is a subpath
of u v shared by x y.

Edge orderings, path turns and path intersections For an edge e = uv of a planar
embedded graph H, we let <He be the clockwise ordering of edges of H incident to v starting at
e (ignoring edge orientations). Hence <He is a strict total order of these edges and e is the first
edge in this order.

For vertices u, v ∈ V (H), x ∈ V (u v) \ {u, v} and y ∈ V (H) \ V (u v), let pq be the last
edge shared by u  v and x  y. Furthermore let qz resp. qz′ be the edge following pq in the
traversal of u v and x y, respectively. We say that x y emanates from the left of u v
if qz′ <Hpq qz, and otherwise it emanates from the right. We dually say that y  x intersects
u v from the left (right) if x y emanates from the left (right).

Given a face f of H, vertices u ∈ V (f), and v, v′ ∈ V , let H ′f be a copy of H with an artificial
vertex f∗ embedded in the interior of f along with an additional edge f∗u. Define the paths
pv = f∗u ◦ u  H′f

v and pv′ = f∗u ◦ u  H′f
v′ and assume that neither path is a prefix of

the other. By assumption and Lemma 1, pv and pv′ share exactly one edge-maximal subpath
f∗  x. We say that u  H v makes a left turn w.r.t u  H v′ from f if x  v emanates from
the left of pv, and otherwise it makes a right turn; we will omit mention of f when the context
is clear. Note that the notion of a turn is symmetric in the sense that u H v makes a left turn
w.r.t u H v′ iff u H v′ makes a right turn w.r.t u H v.

2.2 Voronoi Diagrams

The definitions in this subsection will largely be made in a manner identical to those of [7], but are
included as they are essential to a point location structure which will be presented in Section 4.
Given a planar graph G = (V,E, ω), S ⊆ V , the Voronoi diagram of S in G, denoted by VD(S)
in G is a partition of V into disjoint sets, Vor(u), referred to as Voronoi cells, with one such set
for each u ∈ S. The set Vor(u) is defined to be {v ∈ V | d(u, v) < d(u′, v) for all u′ ∈ S \ {u}},
that is the set of vertices that are closer to u than any other site in terms of d(·, ·). We shall
simply write VD when the context is clear.

It will also be useful to work with a dual representation of Voronoi diagrams. Let VD∗0 be the
subgraph of G∗ s.t. E(VD∗0) is the subset of edges of G∗ where uv∗ ∈ VD∗0 iff u and v belong to
different Voronoi cells in VD. Let VD∗1 be the graph obtained by repeatedly contracting edges of
VD∗0 incident to degree 2 vertices until no such vertex remains2. We refer to the vertices of VD∗1
as Voronoi vertices, and each face of the resulting graph VD∗1 can be thought of as corresponding
to some Voronoi cell in the sense that its edges enclose exactly the vertices of some Voronoi cell in
the embedding of the primal. We shall restrict ourself to the case in which all vertices of S lie on
a single face h. In particular, h∗ is a Voronoi vertex, since each site is a vertex on the boundary

2Formally, given a degree 2 vertex v with incident edges vw, vw′, we replace these edges by ww′, concatenate
their arcs and embed ww′ using this arc in the embedding.
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of h in the primal. Finally, let VD∗ be the graph obtained by replacing h∗ with multiple copies,
one for each edge. We note that since there are |S| Voronoi sites (and thus faces in VD∗), the
number of Voronoi vertices in VD∗ is O(|S|) due to Euler’s formula. Furthermore, [7] show that
when assuming unique shortest paths and a triangulated input graph, VD∗ is a ternary tree.
It follows that the primal face corresponding to a Voronoi vertex f∗ consists of exactly three
vertices, each belonging to different Voronoi cells. We refer to the number of sites in a Voronoi
diagram as its complexity.

Finally, they also note that a centroid decomposition, T ∗, can be computed from VD∗ s.t.
each node of T ∗ corresponds to a Voronoi vertex f∗ and the children of f∗ in T ∗ correspond to
the subtrees resulting from splitting the tree at f∗, and s.t. the number of vertices of each child
is at most a constant fraction of that of the parent. We remark that VD∗(S) can be computed
by connecting all sites to a super-source and running a single-source shortest paths algorithm,
and its centroid decomposition in time proportional to |V (VD∗(S))|.

2.3 Separators and decompositions

In the following, we will outline the graph decomposition framework used by our construction.
As part of the preprocessing step, we will recursively partition the input graph using balanced
fundamental cycle separators until the resulting graphs are of constant size. We shall associate
with the recursive decomposition of G a binary decomposition tree, T , which is a rooted tree
whose nodes correspond to the regions of the recursive decomposition of G. We will refer to
nodes and their corresponding regions interchangeably. The root node of T corresponds to all
of G. The following lemma states the invariants of the decomposition that will be used in our
construction:

Lemma 2. Let G = (V,E, ω) be an undirected, planar embedded, edge-weighted, triangulated
graph and let T be a spanning tree3 of G. Then there is an Õ(n) time algorithm that returns a
binary decomposition tree T of G s.t.

1. for any non-leaf node G′ ∈ T , its children G′l, respectively G′r corresponds to the non-strict
interior, respectively non-strict exterior of some fundamental cycle in G′ w.r.t. T ,

2. for any child node, it contains at most a constant fraction of the faces of its parent,

3. for any leaf node it contains a constant number of faces of G,

4. for all nodes at depth i, Ti,
∑
G′∈Ti |V (G′)| = O(n)

Properties 1-3 follow from recursively applying a classic linear time algorithm for finding
fundamental cycles. Property 4 follows from employing standard techniques that involve con-
tracting degree-two vertices of the separators found at each level of recursion and weighting the
resulting edges accordingly. This transformation results in a decomposition where the sum of
faces of all regions at any level is preserved. We stress that our construction does not rely on the
usual sparse simple cycle separators (of size O(

√
n)) but rather fundamental cycle separators of

size O(n).

3 The vertex labeled distance oracle

In this section we describe our reduction which shows our main result. The reduction can be
described assuming Lemma 2 and the existence of the point location structure which we will
state in the following lemma, the proof of which is deferred to Section 4:

Lemma 3. Let G = (V,E, ω) be an undirected, planar embedded, edge-weighted graph with
labeling l : V → L and let p be a shortest path in G. There is a data structure OG,p with
O(|V | log |V |) space which given u ∈ V and λ ∈ L returns a subset C ⊂ V of constant size, s.t.
if v is the vertex with label λ closest to u and v  u intersects p, then v ∈ C. Each such query
takes time at most O(log2 |V |).

3For our purposes, the spanning tree will be a shortest path tree.

5



3.1 Preprocessing

Given the input graph G = (V,E, ω), the preprocessing phase initially computes the decompo-
sition tree, T , of Lemma 2. Associated with each non-leaf node G′ ∈ T is a fundamental cycle
separator of ab ∈ E(G′) w.r.t. the shortest path tree T rooted at some c ∈ V (G′). For such
a G′ we shall refer to S1(G′) = c  G′ a and S2(G′) = c  G′ b. Thus the fundamental cycle
separator is given by S1(G′) ◦ ab ◦ S2(G′). The preprocessing phase proceeds as follows: For all
non-leaf nodes G′ ∈ T , compute and store data structures OG′,S1(G′) and OG′,S2(G′) of Lemma 3.
Finally, a distance oracle D with O(s(|V |)) space capable of reporting vertex-to-vertex shortest
path distances in time O(t(|V |)) is computed for G and stored alongside the decomposition tree
and the point location structures.

Space complexity The decomposition tree T can be represented with O(|V | log |V |) space
and D with O(s(n)) space. For each node G′ ∈ T , we store data structures S1(G′) and S2(G′),
so by Lemma 2 and 3, we get

∞∑
i=0

∑
G′∈Ti

|V (G′)| log |V (G′)| =
c logn∑
i=0

O(|V | log |V |) = O(|V | log2 |V |)

for a total space complexity of O(s(|V |) + |V | log2 |V |).

3.2 Query

Let G′ ∈ T and consider the query dG′(u, λ). If G′ is a leaf node, the query is resolved in time
O(t(n)) by querying D once for each vertex of G′. If G′ is a non-leaf node, the query is handled
as follows: First, data structures OG′,S1(G′) and OG′,S2(G′) are queried with u and λ, resulting in
two “candidate sets”, C1 and C2, one for each query. By Lemma 3, C1∪C2 contains the nearest
vertex with label λ for which u G′ v

′ intersects either S1 or S2 if such a vertex exists. Compute
dG′ = min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞} by querying D once for each vertex of C1 ∪ C2. The
query then recursively resolves dG′′ = dG′′(u, λ) where G′′ is a child of G′ in T containing u.
Finally, the query returns min {dG′ , dG′′}.

Algorithm 1 Query procedure for the distance oracle.

1: procedure Query(u, λ,G′)
2: if G′ is a leaf node in T then
3: return min {dG′(u, v) | v ∈ V (G′) and l(v) = λ}
4: else
5: C1 ← OG′,S1(G′)(u, λ); C2 ← OG′,S2(G′)(u, λ)
6: G′′ ← A child of G′ in T containing u
7: dG′ ← min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞}
8: dG′′ ← Query(u, λ,G′′)
9: return min {dG′ , dG′′}

Correctness Denote by v the vertex of G with label λ nearest to u in G′, and consider the
case in which u G′ v intersects S1(G′) or S2(G′). In this case, v ∈ C by Lemma 3 and C 6= ∅,
so

dG′ = min {dG(u, c) | c ∈ C} = dG(u, v) = dG′(u, v) = dG′(u, λ) ≤ dG′′

with the inequality following from definition of v. Note that in case u is a vertex of either S1

or S2, the correct estimate is returned at the current level, but for a simpler description, the
recursion proceeds anyways. Otherwise u ′G v intersects neither S1 and S2 in which case, the
path must be fully contained in the (unique) child node, G′′, of G′ containing u. In this case,
the query reports dG′′ = dG′′(u, λ) = dG′′(u, v) ≤ dG′ , showing the correctness.
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Time complexity At each level of the recursion, OG′,S1(G′) and OG′,S2(G′) are queried in

time O(log2 |V |). Furthermore, D is queried |C| = O(1) times in total time O(1) · O(t(|V |)) =
O(t(|V |)). By Lemma 2, the query is recursively resolved on a problem instance which is a
constant fraction smaller at each level of recursion, giving rise to the recurrence relation T (n) =
T (n/a) +O(t(n) + log2 n). When G′ is a leaf node, then by Lemma 2, G′ consists of a constant
number of faces, described by the base case T (n) = O(t(n)) when n ≤ b for sufficiently small b.
It is easily verified that a solution to the recurrence is bounded by O(log3 n + t(n) log n). This
shows the main theorem, and the rest of this paper is devoted to proving Lemma 3.

4 The point location data structure

Our point-location data-structure uses techniques similar to those of [7] for point location in
additively weighted Voronoi diagrams, but with some crucial differences in order to save space.

Both structures rely on being able to determine left/right turns of shortest paths in shortest
path trees rooted at sites in G, but to facilitate this, the data structure of [7] explicitly stores
an (augmented) shortest path tree rooted at each site as well as a data structure for answering
least common ancestor (LCA) queries. The point location structure thus requires Θ(|S|n) space
where S is the number of sites, and since S may be large as Θ(

√
n) (corresponding to the size of a

sparse balanced separator in a planar graph), this translates to Θ(n3/2) space for their problem.
This will not work in our case since the number of sites can in fact be as high as Θ(n), leading
to a quadratic space bound.

The second issue with applying the techniques from [7] directly to our setting, is that it
requires us to store a Voronoi diagram for each label, for each shortest path. Each vertex of
the path separator would then be a site in the stored Voronoi diagram but as each separator
may be large, i.e. Θ(n), we may use as much as Θ(n|L|) space over all labels of L for a single
separator. What we need is for the number of sites involved for a label λ to be proportional to
the number of vertices with label λ; this would give a near-linear bound on the number of sites
when summing over all λ ∈ L across all levels of the recursive decomposition. We address these
issues in the following sections.

4.1 MSSP structure

To compactly represent shortest path trees, our point location structure uses an augmented
version of the multiple-source shortest-path (MSSP) data structure of Klein [10]. It cleverly
uses the persistence techniques of [5] in conjunction with top trees [1] to obtain an implicit
representation of shortest path trees rooted at each site. Top-trees allow for shortest path
distance queries and least-common ancestor (LCA) queries in time O(log n) per query while
using O(n log n) space, and can easily be augmented to support turn queries, as we shall see
shortly. To be used as a black box, the MSSP structure relies on being initialized from a face
of G. In our construction, we wish to use it for querying left/right turns of paths and distances
from vertices residing on shortest paths of fundamental cycle separators, and thus some further
preprocessing is required. The guarantees of the augmented MSSP structure used for the point
location structure are summarized in the following lemma:

Lemma 4. Let G = (V,E, ω) be an edge-weighted planar graph, f be a face of G and let Tu
denote the shortest path tree rooted at u. Then there exists a data structure MSSP(G, f) with
O(n log n) space which given u ∈ V (f) and c, v ∈ V supports queries

1. Dist(u, v): report dG(u, v),

2. LCA(u, c, v): report the least common ancestor of v, c in Tu,

3. Turn(u, c, v): report whether u Tu c makes a left or right turn w.r.t. u Tu v or if one
is a prefix of the other.

in time O(log n) per query. The data structure can be preprocessed in O(n log n) time.
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(a) Vertex v not contained in C.
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(b) Vertex v contained in C.

Figure 1: Illustration of the proof of Lemma 6. The concatenation of u  vi1 , vi1  vi3 , and
the reverse of u vi3 forms a cycle C and v  vi2 intersects u vi3 in x. Note that w.l.o.g. C
is not necessarily simple, that v  vi2 may intersect the cycle more than once and that v may
be a vertex of C.

Descriptions of Dist and LCA are available in [10] and [1], and a description of how to
implement Turn is provided in Appendix 5 in terms of the vocabulary and interface specified
in [1] for completeness. A top-tree representing any shortest path tree rooted at a vertex on f
can be accessed in time O(log n) by using persistence in the MSSP structure. Lemma 4 then
readily follows from applying the bound of Lemma 8 in Appendix 5.

4.2 Label sequences

To address the second issue, we first need to make the following definition and state some of its
properties when applied in the context of planar graphs:

Definition 1. Let G = (V,E) be a graph, p = p1, . . . , pk a sequence of vertices and S ⊆ V . The
label-sequence of p w.r.t. S is a sequence MG,S,p ∈ Sk satisfying MG,S,p(i) = arg mins∈S distG(s, pi).

The alternation number on p w.r.t. S in G is defined as |MG,S,p| =
∑k−1
i=1 [MG,S,p(i) 6= MG,S,p(i+

1)].

When G, S and p are clear from the context, we shall simply write M , and also note that the
sequence is well-defined due the tie-breaking scheme chosen in the preliminaries. The alternation
number can be thought of as the number of times consecutive vertices on p change which vertex
they are closest to among S when “moving along” p.

When G is an undirected planar graph and p is a shortest path in G, it can be observed4 that
M is essentially a Davenport-Schinzel sequence of order 2, and it immediately follows that the
alternation number is “small” in the sense it is proportional to S while being agnostic towards
the length of p altogether.

Definition 2 (Davenport-Schinzel [4]). A sequence u1, u2, . . . , uk over an alphabet Σ on n sym-
bols is said to be a (n, s)-Davenport-Schinzel sequence if

1. ui 6= ui+1 for all 1 ≤ i < k and

2. There do not exist s+ 2 indices 1 ≤ i1 < i2 < . . . < is+2 ≤ k for which ui1 = ui3 = . . . =
uis+1

= u and ui2 = ui4 = . . . = uis+2
= v for u 6= v ∈ Σ.

Lemma 5 (Davenport-Schinzel [4]). Let U be a (n, 2)-Davenport-Schinzel sequence of length m.
Then |U | ≤ 2n− 1.

For a sequence of S = u1, u2, . . . , uk over an alphabet Σ, the contraction of S is the sub-
sequence obtained from S by replacing every maximal substring s, s, . . . , s of S consisting of
identical symbols s by a single occurence of s. As an example with Σ = {0, 1, 2}, the contraction
of 0, 0, 1, 2, 2, 1, 1, 0, 1, 0, 0, 2 is 0, 1, 2, 1, 0, 1, 0, 2.

4We thank the anonymous reviewer for this observation which saved a tedious proof.
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Lemma 6. Let G be an undirected, weighted planar graph, let S ⊆ V , and let p be a shortest
path of G contained in (the boundary of) a face of G. Then the contraction of M is a (|S|, 2)-
Davenport-Schinzel sequence.

Proof. Define v1, . . . , vk = p and assume for the sake of contradiction that for some 1 ≤ i1 < i2 <
i3 < i4 ≤ k and u, v ∈ S with u 6= v, it holds that u = M(i1) = M(i3) and v = M(i2) = M(i4).
Then the concatenation of u  vi1 , vi1  vi3 , and the reverse of u  vi3 forms a cycle. Thus,
either v  vi2 intersects u vi1 ∪u vi3 or v  vi4 intersects u vi1 ∪u vi3 ; see Figure 1a
and 1b. By symmetry, we only need to consider the former case. If v  vi2 intersects u  vi3
in some vertex x then v  x has the same weight as u  x. By the “closer than”-relation,
u = M(i3) = M(i2) = v, contradicting our assumption that u 6= v. A similar contradiction is
obtained if v  vi2 intersects u vi1 .

Corollary 2. Let G, S and p be as in Lemma 6. Then |MG,S,p| = O(|S|).

We remark that M can be readily computed in polynomial time by adding a super-source
connected to each vertex of S and running an SSSP algorithm. Furthermore M can be repre-
sented with O(S) space, by storing only the indices for which M(i) 6= M(i + 1) and M(i) for
each such index.

We will now describe how to achieve O(n) space for storing Voronoi diagrams for all labels
λ ∈ L at any level of the recursive decomposition. We do so by modifying the preprocessing
steps and query scheme of [7] in a manner suitable for application of Lemma 6 and Corollary 2.

4.3 Preprocessing

Let us briefly recall the statement of Lemma 3; that is, we let G be an undirected, edge-weighted,
planar embedded graph with associated labeling l : V → L and let p = p1  pk be a shortest
path in G. Given a query (u, λ) ∈ V ×L, we want to identify a small “candidate” set of vertices
C ⊆ V such that if v is the vertex with label λ closest to u and u v intersects p, then v ∈ C.

Here, we first describe how to compute a data structure which provides the guarantees of
Lemma 3, but restricts itself to the case only where u  v intersects p from the left. The
description of the data structure for handling paths that intersect p from the right is symmetric
(e.g. by swapping the endpoints of p). Lemma 3 thus readily follows from the existence of such
structures.

First, a copy, Gp, of G is stored and an incision is added along p in Gp. This results in a
planar embedded graph Gp, which has exactly one more face than G. Define by p′ = p′1, . . . , p

′
l

and p′′ = p′′1 , . . . , p
′′
l the resulting paths along the incision, where p′1 = p′′1 and p′l = p′′l . We

denote by fp the face whose boundary vertices are V (p′) ∪ V (p′′). An illustration of this is
provided in Figure 2a and 2b.

Next, the MSSP data structure of Lemma 4, MSSP(Gp, fp), is computed and stored as part
of the point-location data structure. This structure will be used for the point location query.

Centroid decompositions of Voronoi diagrams The following preprocessing is now done
for each label λ ∈ L: First a copy, Gλp , of Gp is made. Next, MGp,Sλ,p′ is computed for
Sλ = {v ∈ V | l(v) = λ}. For convenience we assume that M(0) = nil. The preprocessing phase
now consists of modifying Gλp before computing the Voronoi diagram and the associated centroid
decomposition associated with λ as follows: For i← 1, . . . , l, whenever M(i) 6= M(i− 1), a new
vertex is added to Gλp and embedded in fp along the curve formed by the deleted arc of the
embedding of p. Denoting by ri the most recently added vertex after iteration i, edge p′iri with
ω(p′iri) = dG(M(i), p′i) is added to Gλp and embedded for all i. Once again, it is fairly easy to see

that Gλp is planar embedded. See Figure 2c for an illustration of this. Denote by ai and bi the
endpoints of the first and last edges added incident to ri (w.r.t. the order in which they were
added). Denote by f ′p that has {ri, ai, bi | 1 ≤ i ≤ l} ∪ V (p′′) as its boundary vertices. Now the
Voronoi diagram, its dual and subsequently its corresponding centroid decomposition, T ∗p,λ, is

computed in (the now modified) Gλp using R = {ri | 1 ≤ i ≤ l} as Voronoi sites, see Figure 2d.
The intuition is that each site in R corresponds to a contiguous subsequence M(k), . . . ,M(l)
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p1 pl

(a) G before incision. Here p as indicated by the
dashed line.

p1 plfp?

(b) The resulting graph Gp after the incision; p is
replaced by two paths p′ and p′′ that enclose the
face fp.

r1 r2 r3
a1 b1/a2

b2/a3
b3

f ′
p?

(c) The face f ′
p resulting from adding edges to ri.

Here b1 = a2 and b2 = a3

r1 r2 r3f ′
p?

(d) The Voronoi diagram is represented by a col-
ored shortest-path tree for each site ri.

Figure 2: Preprocessing steps for the point-location structure.

of M for which M(j) = M(j + 1) = v where v is the vertex with label λ closest to p′j for
k ≤ j < l. This implies that the number of sites is proportional to the number of vertices with
label λ instead of the length of the original separator p: By Lemma 2, |M | = O(|Sλ|) and since
|R| = |M | it follows that |R| = O(|Sλ|) bounds the complexity of T ∗p,λ, which is stored as part of
the data structure. As aforementioned, each centroid c ∈ T ∗p,λ corresponds to some degree three
Voronoi vertex, f∗c , with vertices, {x1, x2, x3} in the corresponding primal face fc s.t. each xj
belongs to a different Voronoi site rij for j ∈ {1, 2, 3}. For each such j, the centroid c stores
a pointer to its corresponding face fc, the first vertex pkj of p′ on rij  G′p

xj and the weight
ω(pkjrij ).

Space complexity The space used for storing the MSSP structure is O(|V | log |V |) by Lemma
4. For each centroid, we store a constant amount of data, so the space required for storing the
centroid decompositions is ∑

λ∈L

O(1) · |T ∗p′,λ| =
∑
λ∈L

O(|Sλ|) = O(V )

since Sλ ∩ Sλ′ = ∅ for λ 6= λ′ ∈ L as each vertex has exactly one label. The total space used is
thus O(|V | log |V |).

4.4 Handling a point location query

We now show how to handle a point location query. Note that in the following, we can assume
that the vertices of p′ appear in increasing order of their indices when traversing the boundary
of fp in a clockwise direction. Recall that given u ∈ V and λ ∈ L, we wish to find a subset
C ⊂ V of constant size, s.t. if v is the closest vertex with label λ where u v intersects p from
the left, then v ∈ C. The query works by identifying a subset P ⊆ V (p′) s.t. for some p′k ∈ P it
holds that MGp,Sλ,p′(k) = v. We first show how to identify the subset by recursively querying
the centroid decomposition T ∗p,λ according to the following lemma, which we note is modified
version of the query in [7]:

Lemma 7. Given a query (u, λ) ∈ V ×L, consider the centroid decomposition tree T ∗p,λ computed

from Gλp in the preprocessing. Let c be a centroid c ∈ T ∗p,λ corresponding to some Voronoi vertex,
f∗c , with associated primal triangle containing vertices {x0, x1, x2} = V (fc) where xj belongs
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x0

x2

x1

ri0 ri1

ri2

pk1

pk2

e∗0

e∗1

e∗2

u

pk0

R+, P+R−, P−

p′

T ∗1

Figure 3: Illustration of Lemma 7. The dashed green lines represent Voronoi edges in the centroid
decomposition and the red lines the primal shortest paths to the primal vertices of the centroid.
In this case, j∗ = 1, so u is contained in primal faces spanned by the subtree T ∗1 contained in
the region highlighted in yellow.

to the Voronoi cell of rij for j ∈ {0, 1, 2} and i0 < i1 < i2. Furthermore let e∗j be the dual
edge incident to f∗c , s.t. ej = xjx(j+1) mod 3, let pkj be the successor of rij on rij  Gλp

xj, let

Pj = pkj  Gp u, and let T ∗j be the subtree of T ∗p,λ attached to c by e∗j for j ∈ {0, 1, 2}. Finally,
let j∗ = arg minj∈{0,1,2}{dGp(pkj , u) + ω(rijpkj )} = arg minj∈{0,1,2}{dGλp (rij , u)}. Then

1. If pkj∗  Gp u emanates from the left of Pj∗ or u ∈ Pj∗ , then the site closest to u in

Gλp belongs to R− = {r(i(j∗−1) mod 3
, . . . , rij∗} and the second vertex on the shortest path

from that site to u in Gλp belongs to P− = {p(i(j∗−1) mod 3
, . . . , pij∗ }; furthermore, T ∗j∗ is

the centroid decomposition tree for Gλp when restricted to shortest paths from sites in R−

through successors in P−.

2. otherwise, the site closest to u in Gλp belongs to R+ = {rij∗ , . . . , ri(j∗+1) mod 3
} and the sec-

ond vertex on the shortest path from that site to u belongs to P+ = {pij∗ , . . . , pi(j∗+1) mod 3
};

furthermore, T ∗(j∗+1) mod 3 is the centroid decomposition tree for Gλp when restricted to

shortest paths from sites in R+ through successors in P+.

Proof. By symmetry, we only consider the first case since the second case occurs when pkj∗  Gp

u emanates from the right of Pj∗ and the first case also includes the case where u ∈ Pj∗ .
By the choice of j∗, pkj∗  Gp u cannot intersect any of the paths Pj′ with j′ ∈ {(j∗ − 1)

mod 3, (j∗+1) mod 3} since these two paths are subpaths of shortest paths from sites rij′ 6= rij∗
in Gλp and we assume unique shortest paths. Let x be the first vertex of pkj∗  Gp u such
that either x = u or the path emanates from the left of Pj∗ at x. The rest of pkj∗  Gp u
following x will not intersect Pj∗ again due to uniqueness of shortest paths. Thus u belongs
to the region of the plane enclosed by paths P(j∗−1) mod 3, Pj∗ , edge e(j∗−1) mod 3, and path
pk(j∗−1) mod 3

, . . . , pkj∗ . Note that T ∗j∗ is the subtree of T ∗p′,λ spanning the primal faces contained

in this region. Hence, T ∗j∗ is the centroid decomposition tree for Gλp when restricted to shortest
paths from sites in R− through successors in P−.

For an illustration of Lemma 7, see Figure 3. The Lemma implies a fast recursive point
location scheme. On query (u, λ), obtain centroid c from T ∗p′,λ. Since weights of edges from
sites have been precomputed, MSSP(Gp, fp) is applied to find j∗. MSSP(Gp, fp) is also used to
determine if pkj∗  Gp u emanates from the left of Pj∗ and hence whether the first or second
case of the lemma applies. The point location structure now recurses on a subset of sites and
vertices of p′ and on a subtree of T ∗p′,λ, depending on which case applies.
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The recursion stops when reaching a subtree corresponding to a bisector for two sites. The
vertices of V with label λ corresponding to these two sites are reported as the set C, yielding
the desired bound.

Time complexity The O(log2 |V |) query time bound of Lemma 3 follows since there are
O(log |V |) recursion levels and in each step, a constant number of queries to MSSP(Gp, fp) are
executed, each taking O(log |V |) time.
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Appendix A

A description of how to implement Turn in Lemma 4 is provided here in terms of the terminology
and the interface specified in [1]. Readers that are not familiar with the terminology and interface
pertaining to top-trees are referred to [1].

Lemma 8. Let G = (V,E, ω) be a weighted planar graph, and let T be the root-cluster of a
top-tree corresponding to some tree T in G. Then in addition to Dist and LCA, we can support
Turn queries: For u, c, v ∈ V , report whether u  c makes a left or right turn w.r.t. u  T v,
or if one is a prefix of the other in time O(log n) per query.

Proof. A description of how to perform LCA queries is found in [1]. Assume that u, c, v ∈ T
and w.l.o.g. that u is strictly more rootward in T than v. First use T to determine the LCA c′

of (v, c). If c′ is on both u  c and u  v one path is a prefix of the other. Otherwise invoke
expose(u, c′) and traverse T until a leaf of T corresponding to the edge, ev ∈ E(T ) is reached,
which connects c′ to the subtree containing v in T . This can be done in time O(log n). The same
is done for (u, c′) and (c, c′), exposing edges eu, ec ∈ T . Now, if ec = ev or ec = eu, c must be on
u T v. Otherwise it is easily checked, by maintaining a cyclic order of edges in the adjacency
list of c′, in constant time, whether ec emanates to the left or right of the subpath euev and
hence u T v. The total time spent is O(log n).
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