
Adwords with Unknown Budgets and Beyond

Rajan Udwani
University of California Berkeley, Industrial Engineering and Operations Research, rudwani@berkeley.edu

In the classic Adwords problem introduced by Mehta et al. (2007), we have a bipartite graph between

advertisers and queries. Each advertiser has a maximum budget that is known a priori. Queries are unknown

a priori and arrive sequentially. When a query arrives, advertisers make bids and we (immediately and

irrevocably) decide which (if any) Ad to display based on the bids and advertiser budgets. The winning

advertiser for each query pays their bid up to their remaining budget. Our goal is to maximize total budget

utilized without any foreknowledge of the arrival sequence (which could be adversarial). We consider the

setting where the online algorithm does not know the advertisers’ budgets a priori and the budget of an

advertiser is revealed to the algorithm only when it is exceeded. A näıve greedy algorithm is 0.5 competitive

for this setting and finding an algorithm with better performance remained an open problem. We show that

no deterministic algorithm has competitive ratio better than 0.5 and give the first (randomized) algorithm

with strictly better performance guarantee. We show that the competitive ratio of our algorithm is at least

0.522 but also strictly less than (1− 1/e). We present novel applications of budget oblivious algorithms in

search ads and beyond. In particular, we show that our algorithm achieves the best possible performance

guarantee for deterministic online matching in the presence of multi-channel traffic (Manshadi et al. (2022)).
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1. Introduction

Online advertising has emerged as the dominant marketing channel in many parts of the world.

According to some estimates, in the year 2019, more than 450 billion USD were spent on online ads,

which accounts for over 60% of overall expenditure on ads 1. Internet search is a prominent channel

for online advertisement2. In this medium, also called search ads, advertisements are displayed

alongside search results for key words relevant to the advertiser Given a search request, advertisers

make bids and then the platform decides which (if any) ads to show with the search results. The

following model captures key elements of this problem.

The Adwords problem (Mehta et al. 2007): At the beginning of the planning period (typically

a day), the platform has a set I of advertisers along with their budgets (Bi)i∈I . Queries arrive

sequentially on the platform and when a query t arrives, advertisers make bids (bi,t)i∈I . Given the

bids and advertiser budgets, the platform immediately picks at most one advertisers’ ad to display

1 Digital advertising spending worldwide from 2019 to 2024. https://www.statista.com/statistics/237974/online-
advertising-spending-worldwide/

2 In 2020 alone, Google made a revenue of over 104 billion USD from “search & other”, which accounts for 70% of
their total revenue from advertising and exceeds half the total revenue of parent company Alphabet (see Alphabet
Year in Review 2020. https://abc.xyz/investor/).
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alongside the search results for the query3. The chosen advertiser pays their bid but only up to

their remaining budget, i.e., at the end of the planning period, the total payment of an advertiser

does not exceed his/her budget. The objective of the platform is to maximize the total advertiser

budgets utilized without any foreknowledge of the arrival sequence (which could be adversarial). A

typical modeling assumption is that the maximum individual bid by any advertiser is much smaller

than the advertiser’s initial budget. This is called the small bids or large budgets assumption and

it is in line with the practice of search ads.

In the face of uncertain future queries, which (if any) ad should the platform show for a given

query? The greedy algorithm for this problem shows the ad with highest bid and (non-zero) avail-

able budget. In particular, if I(t) is the set of advertisers which have non-zero remaining budget

when query t arrives, the greedy algorithm shows ad,

argmax
i∈I(t)

bi,t.

This algorithm does not distinguish between two advertisers that make identical bids, even if the

budget of one advertiser is nearly used up and the other has plenty of budget remaining. Mehta

et al. (2007) gave the state-of-the-art bid pricing algorithm that carefully accounts for the fraction

of remaining budgets. Given remaining budget (Bi(t))i∈I on arrival of query t, the algorithm of

Mehta et al. (2007) computes bid prices

bi,t (1− e−Bi(t)/Bi) ∀i∈ I,

and shows the ad with the largest bid price. Given two advertisers with similar bids, this algorithm

may select the advertiser with smaller bid and higher fraction of remaining budget. The trade

off between bid and (fraction of) remaining budget is governed by the function (1 − e−x) that

arises quite naturally from the worst case performance analysis, a.k.a. competitive ratio analysis,

of this algorithm. The competitive ratio of an algorithm is the worst case relative performance gap

between the online algorithm and (optimal) offline algorithm, OPT, that knows all the queries and

advertiser bids. Let G denote an instance of the problem (advertisers, arrivals, bids and budgets)

and let G denote the set of all instances. Let ALG(G) denote the expected total budget utilized

by a (possibly) randomized online algorithm ALG on instance G. Similarly, let OPT(G) denote

the optimal offline value on instance G.

Competitive ratio of ALG: min
G∈G

ALG(G)

OPT(G)

3 For simplicity, the model considers at most one ad slot per search result. A generalization to multiple ad slots is
described in Section 6 of Mehta et al. (2007).
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The algorithm of Mehta et al. (2007) is (1−1/e) competitive. In comparison, the greedy algorithm

has a competitive ratio of 0.5. Remarkably, no (randomized) online algorithm has competitive ratio

better than (1−1/e) even for special cases of the Adwords problem (Kalyanasundaram and Pruhs

2000).

The knowledge of advertisers’ initial budgets is essential for defining the bid pricing algorithm

of Mehta et al. (2007). In fact, most (if not all) algorithms for Adwords in the literature (see

Devanur and Hayes (2009), Alaei et al. (2012), Mirrokni et al. (2012), Mehta et al. (2013), Devanur

et al. (2019), Balseiro et al. (2020)), rely critically on the knowledge of initial budgets for each

advertiser. The näıve greedy algorithm is the one exception to this. For each query, greedy shows

the ad with highest bid and (non-zero) available budget. Therefore, it is budget oblivious, i.e., does

not require any advance information about budgets except the knowledge of which advertisers are

still participating (have non-zero remaining budget). Clearly, a budget oblivious algorithm is more

robust since it requires even less knowledge of the instance. Motivated by this, we consider the

following question.

Is there a budget oblivious online algorithm for Adwords that outperforms greedy? What are the

advantages of budget obliviousness?

We are not the first to ask these questions. In fact, the problem of Adwords with unknown

budgets was first proposed by Mehta and Panigrahi (2012), who used a special case of the problem

to analyze a related setting called online matching with stochastic rewards (described in more detail

in Section 5.2). Prompted by this intriguing connection, Mehta et al. (2013) posed the question of

finding a budget oblivious algorithm that is better than greedy (or proving that no such algorithm

exists) as an open problem (see Open Question 20 in Mehta et al. (2013)). To the best of our

knowledge, this question remained open prior to our work.

1.1. Our Contributions

When budgets are unknown, we show that greedy is the best possible deterministic algorithm even

when the budgets are large, i.e., no deterministic algorithm has competitive ratio better than 0.5

when budgets large but unknown. In fact, we show that this is true even when every bid is either

0 or 1, in which case the problem reduces to online matching (with large budgets).

We show that one can do strictly better than greedy with randomized algorithms and give the

first budget oblivious algorithm with competitive ratio better than 0.5. Our algorithm samples

i.i.d. uniform random variables xi ∈ [0,1] ∀i∈ I, and computes random bid prices,

bi,t (1− e−β xi) ∀i∈ I,
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where β > 0 is a parameter that can be chosen by the platform. At each query, the algorithm

shows the ad with the largest (random) bid price from the set of advertisers with non-zero remain-

ing budget. The key difference from the algorithm of Mehta et al. (2007) is that bid prices are

independent of budgets; the budget dependent factor, (1− e−Bi(t)/Bi), in the algorithm of Mehta

et al. (2007), is replaced with the random factor (1− e−β xi). In the special case of Adwords where

bi,t ∈ {0,Bi} ∀i∈ I, t∈ T , our algorithm (with β = 1) reduces to the Perturbed Greedy algorithm of

Aggarwal et al. (2011). Due to this connection, we refer to our algorithm as Generalized Perturbed

Greedy or GPG.

Under the standard assumption of small bids, we show that for β = 1.15, GPG is at least 0.522

competitive against the optimal offline algorithm that knows all bids and budgets. For β = 1, we

show that the competitive ratio is least 0.508. Further, we prove that the competitive ratio of GPG

is strictly less than 0.624 (< (1− 1/e)), for all β ≥ 1. In fact, we numerically observe a stronger

upper bound of 0.604 for β = 14. To prove the competitive ratio lower bound we overcome a novel

obstacle that arises from combinatorial interactions between time varying bids and the randomness

inherent in the algorithm. In particular, a “dominance” property that is crucially used in most (if

not all) previous analysis of (special cases) of GPG (Aggarwal et al. 2011, Devanur et al. 2013,

Eden et al. 2021, Albers and Schubert 2021, Vazirani 2021), does not apply in the Adwords setting.

We address this challenge by finding new structural insights into the problem. We also show that

various parts of our analysis are individually tight but we believe that the overall analysis may not

be tight.

It is Adwords folklore that for small bids (large budgets) deterministic algorithms are as powerful

as randomized ones, i.e., if there is a randomized α competitive algorithm then there exists a

deterministic algorithm with competitive ratio at least α. Our results for unknown budgets imply

a perhaps surprising gap between the two classes of algorithms. At a high level, randomness allows

an online algorithm to (with some probability) conserve the budget of advertisers with low initial

budgets without actually knowing the budgets.

We demonstrate the usefulness of our budget oblivious algorithm in a variety of settings. First,

we consider the setting of online matching (special case of Adwords) and multi-channel traffic.

A stochastic generalization of this setting was introduced by Manshadi et al. (2022) to model

online recommendations on platforms such as VolunteerMatch. We show that our budget oblivious

algorithm achieves the best possible competitive ratio guarantee for this setting, closing the gap

between the lower and upper bound shown in Manshadi et al. (2022). Second, we consider a

previously well known application of budget oblivious algorithms in the setting of online matching

4 Very recently, Liang et al. (2023) showed that for any function f , the algorithm that matches greedily using bid
prices bi,tf(yi) is strictly less than (1− 1/e) competitive.
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with stochastic rewards (Mehta and Panigrahi 2012). Our result for Adwords with unknown budgets

gives a new and more unified algorithmic result for this setting. Finally, we discuss potential

applications of budget oblivious algorithms in auto-bidding and automated budget management,

where a budget oblivious allocation algorithm may allow the platform to improve total budget

utilization by re-optimizing advertisers’ budgets during the planning period.

1.2. Related Work

Karp et al. (1990) introduced the classic setting of online bipartite matching that corresponds to

Adwords with binary bids and unit budget for all advertisers. A bid of 1 denotes an edge in the

bipartite graph and bid of 0 denotes the absence of an edge. Every advertiser can be matched to at

most one neighboring query. Karp et al. (1990) showed (among other results) that randomly ranking

advertisers at the start and then matching every query to the best ranked unmatched advertiser is

a (1− 1/e) competitive algorithm for this setting. In fact, this algorithm, called Ranking, achieves

the best possible guarantee for the problem. The analysis of Ranking was clarified and considerably

simplified by Birnbaum and Mathieu (2008) and Goel and Mehta (2008). Aggarwal et al. (2011)

considered the more general vertex weighted version of this problem which corresponds to Adwords

with bids bi,t ∈ {0,Bi} ∀i ∈ I, t ∈ T . They gave the Perturbed Greedy algorithm (that we use in

this paper), and showed that the algorithm is (1− 1/e) competitive.

Kalyanasundaram and Pruhs (2000) considered the problem of online b−matching, which is

a special case of Adwords with binary bids and identical (large) budget b for every advertiser.

They showed that as b→∞, the natural (deterministic) algorithm that balances the budget usage

across advertisers is (1−1/e) competitive. Generalizing this setting, Mehta et al. (2007) introduced

the Adwords problem and gave the bid pricing based (1− 1/e) algorithm for Adwords under the

small bid assumption. Buchbinder et al. (2007) gave a primal-dual analysis for this algorithm.

Subsequently, Devanur et al. (2013) introduced the randomized primal-dual framework and used

it to show all of the results mentioned above in a unified way.

The Adwords setting without the small bids assumption, generalizes each of the settings discussed

above. The budget-aware greedy algorithm that matches each query t∈ T according to the following

rule,

argmaxi∈I (min{bi,t,Bi(t)}),

where Bi(t) is the remaining budget of i on arrival of query t, is 0.5 competitive for Adwords

without any assumption on the bids. Kapralov et al. (2013) showed that without the small bids

assumption, no online algorithm has competitive ratio better than 0.612 for Adwords5. Recently,

5 This applies when the competitive ratio is evaluated against an LP upper bound on the offline problem.
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Huang et al. (2020) gave the first algorithm with competitive ratio better than 0.5 for Adwords

without the small bids assumption.

Concurrent with this paper: Albers and Schubert (2021) and Vazirani (2021, 2023) indepen-

dently show that the Perturbed Greedy algorithm is (1−1/e) competitive for Adwords with binary

bids and arbitrary resource budgets. To the best of our knowledge, these approaches do not yield a

performance guarantee better than 0.5 for Generalized Perturbed Greedy (GPG) in the Adwords

setting and this is posed as an open problem in Vazirani (2023). Vazirani (2023) also identifies

a key structural property, called no surpassing, the absence of which prevents a generalization of

their result to the Adwords setting. Through various numerical experiments (based on synthetic

data), they demonstrate that the performance of GPG is at par with the algorithm of Mehta et al.

(2007). We include a more detailed comparison with these papers in Appendix A.

Very recently, Liang et al. (2023) showed that for any function f , the algorithm that matches

greedily using bid prices bi,tf(yi), is strictly less than (1− 1/e)− δ competitive for some constant

δ > 0.

While the body of work discussed above considers an adversarial arrival sequence, there is also a

long line of work on online matching and Adwords in stochastic and hybrid/mixed arrival models

(for example, Goel and Mehta (2008), Feldman et al. (2009), Devanur and Hayes (2009), Karande

et al. (2011), Manshadi et al. (2012), Alaei et al. (2012), Devanur et al. (2019), Mirrokni et al.

(2012)). For a comprehensive review of these settings we refer to Mehta et al. (2013).

Outline for rest of the paper: Section 2 discusses the assumption of small bids and presents

a resource allocation version of the Adwords setting that we use interchangeably with the orig-

inal formulation. In Section 3, we show that one cannot obtain a deterministic algorithm with

competitive ratio better than 0.5. In Section 4, we state and prove our main results for Adwords

with unknown budgets. In Section 5, we show new results for our budget oblivious algorithm in

settings beyond Adwords and discuss applications of budget obliviousness. Section 6 concludes our

discussion.

2. Preliminaries

The Adwords problem generalizes a variety of settings in the literature on online resource allocation.

We formalize this connection by discussing an online resource allocation problem that is known to

be equivalent to the Adwords problem. Terminology from this setting and the Adwords problem

will be used interchangeably throughout the paper.

Online Budgeted Allocation (OBA): Consider a complete bipartite graph G with vertex

set (I,T ). Vertices i ∈ I, called resources, have capacities (Bi)i∈I and per-unit rewards (ri)i∈I .
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Resources, their rewards, and capacities are known to us. Vertices t ∈ T , called arrivals, are

unknown a priori and arrive sequentially. We use T to denote the set of arrivals as well as the

total number of arrivals. When a vertex t ∈ T arrives, we see bids (bi,t)i∈I that indicate t is inter-

ested in up to bi,t amount of resource i∈ I. Given the bids for arrival t, we must immediately and

irrevocably match the arrival to at most one resource. If t is matched to i, bi,t amount of i are

consumed, subject to availability. If the remaining capacity of i is less than bi,t, then matching t

to i uses up all the remaining capacity. We receive a reward ri per-unit of i’s consumed capacity.

The total reward from matching i is capped at riBi. The goal is to decide the allocation/matching

for arrivals without any knowledge of future arrivals such that the total reward is maximized.

The Adwords problem is an instance of OBA where resources correspond to advertisers and

arrivals correspond to queries. The per-unit rewards ri are set to 1 in Adwords for every i ∈ I.

On the other hand, an instance of OBA with bids bi,t, capacities Bi, and per-unit rewards ri, is

equivalent to the Adwords setting with scaled bids ribi,t and budgets riBi. Due to this observation,

without loss of generality (w.l.o.g.), we let per-unit rewards

ri = 1 ∀i∈ I.

A standard assumption in the Adwords setting is the that the maximum bid-to-budget ratio,

γ := max
i∈I,t∈T

bi,t
Bi

.

is small, i.e., γ→ 0. This is also called the small bid or the large budget/capacity assumption. This

assumption is in line with the practice of search ads, where individual bids are typically much

smaller than the overall budget. Recall that the (1− 1/e) guarantee of Mehta et al. (2007) holds

only in the small bid regime. Even in this regime, no online algorithm has a competitive ratio

better than (1− 1/e).

OBA with Unknown Capacities: In the setting we are interested in, the online algorithm

has no prior knowledge of resource capacities. When the algorithm fully utilizes the capacity of a

resource, the event is immediately revealed to the algorithm, i.e., capacity of a resource is revealed

right after it is used up. We evaluate the competitive ratio of a capacity/budget oblivious online

algorithm against the optimal offline matching with complete knowledge of the instance.

3. Upper Bound for Deterministic Algorithms

The folklore for Adwords and many other online resource allocation problems says that given an

online randomized algorithm, one can construct an online deterministic algorithm that matches

arrivals fractionally and emulates the expected performance of the randomized algorithm at every

arrival. As we demonstrate below, this line of argument relies on prior knowledge of budgets.
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Example 3.1 Consider an instance of online matching with a big resource that has capacity 2

and a small resource that has capacity 1. The first two arrivals have an edge to both resources

(bids of 1). The Ranking algorithm starts with a random ranking of the two resources and matches

every arrival to an available resource with the best rank. The first arrival is matched uniformly

randomly. The second arrival is matched to the big resource with probability (w.p.) 1; either

Ranking matches both arrivals to the big resource (w.p. 0.5) or matches the second arrival to the

big resource after discovering (w.p. 0.5) that the budget of small resource has been used up. A

deterministic algorithm that tries to emulate Ranking will match equal fractions (0.5) of the first

arrival to both resources. Now, half of the small resource’s budget is available at the second arrival

and without knowing the budgets, the deterministic algorithm fails to distinguish between the two

resources. Given a third arrival that can only be matched to the small resource, Ranking matches it

w.p. 0.5 but the deterministic counterpart will fail to save the small resources’ budget and cannot

match any fraction of the final arrival.

Building on this example, we establish the following result.

Theorem 1. Every deterministic budget oblivious online algorithm for Adwords has competitive

ratio at most 0.5, even on instances with binary bids and large budgets.

Proof. Let ALG denote a deterministic budget oblivious online algorithm. For a deterministic

algorithm, we can construct a worst case arrival sequence and assign resource capacities based on

the decisions made by the algorithm. We construct an instance with n resources and binary bids.

The arrival sequence has two phases. Given an arrival and a resource, an edge between the two

corresponds to a bid of 1 and the absence of an edge corresponds to a bid of 0. Let B > 0 be an

arbitrary integer value. We assign capacity nB to one resource and capacity B to the other n− 1

resources.

Phase one arrivals occur first and this phase has nB arrivals that have an edge to every resource.

When ALG matches a resource B times, we reveal (to ALG) that the capacity of the resource is

B, i.e., the resource has been used up. We do this up to n− 1 times in total, i.e., when a resource

i is matched to B arrivals and i is not the sole resource with non-zero remaining capacity, we then

inform the algorithm GPG that the capacity of i has been exhausted. There is at least one resource

with non-zero reamining capacity at the end of phase one. Let j∗ denote one such resource. Phase

two has (n− 1)B arrivals that occur after phase one arrivals and have an edge to every resource

except j∗. Therefore, ALG can only match these arrivals to resources in [n]\{j∗} with available

capacity. The capacity of resource j∗ is nB and the capacity of all other resources is B.
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Note that, optimal offline (OPT) matches every arrival in phase one to resource j∗ and matches

phase two arrivals to the other resources, fully utilizing the total capacity.

OPT= (2n− 1)B.

At the end of both phases, ALG matches at most B arrivals to j∗ and therefore, at least (n− 1)B

of the total resource capacity is unused in ALG. For n→+∞, we have

ALG

OPT
≤ 1− lim

n→+∞

n− 1

2n− 1
= 0.5.

Since the value of B > 0 can be arbitrary, this upper bound also applies to instances with large

budgets.

□

4. Randomized Budget Oblivious Algorithm and Analysis

In this section, we state and prove our main results for the Adwords/OBA problem with unknown

budgets. Consider the following family of randomized algorithms with parameter β > 0.

ALGORITHM 1: Generalized Perturbed-Greedy (GPG)

Inputs: Set of advertisers I, parameter β;

Let g(x) = eβ(x−1);

For every i∈ I generate i.i.d. r.v. yi ∼U [0,1];

for every new arrival t do
Match t to i∗ = argmax

i∈I

bi,t(1− g(yi));

if i∗ is out of budget then update I = I\{i∗};

Observe that Algorithm 1 (GPG) is budget oblivious and matches every arrival t ∈ T greedily

based on randomized bid prices bi,t (1− g(yi)) ∀i∈ I. The uniform random variables (yi)i∈I , called

seeds, are sampled independently for each i ∈ I. On any given problem instance, ties between bid

prices of any two (different) resources occur with a probability of 0.

The choice of function g(·) is influenced by the competitive ratio analysis of the algorithm.

In particular, choosing g(x) = ex−1 gives the optimal algorithm for closely related settings such

as vertex weighted online matching (Aggarwal et al. 2011). Motivated by this, we will focus on

analyzing the competitive ratio of GPG for the family of exponential functions g(x) = eβ(x−1) for

β > 0. Note that in Section 1.1, we presented GPG with seed values xi = 1− yi. For consistency

with prior work (Aggarwal et al. 2011, Devanur et al. 2013), we use seeds yi in the subsequent

discussion. As we will discuss later, it is challenging to show a non-trivial guarantee for GPG

directly. We lower bound the competitive ratio of GPG by first analyzing Algorithm 2 (f-GPG),

which is a fractional relaxation of GPG. Clearly, f-GPG is not budget oblivious. However, this

is not of concern as the algorithm is only used as an intermediate step to analyze GPG. f-GPG
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ALGORITHM 2: Fractional GPG (f-GPG)

Inputs: Set of advertisers I, budgets (Bi)i∈I , parameter β;

Initialize I(0) = I, g(t) = eβ(t−1) and Bi(0) =Bi for every i∈ I;

Generate i.i.d. sample yi ∈U [0,1] for every i∈ I;

for every new arrival t do
Initialize total fractional of arrival matched δ= 0;

Initialize set of available advertisers I(t) = I(t− 1) and remaining budgets Bi(t) =Bi(t− 1) ∀i∈ I;

while δ < 1 and I(t)∩{i | bi,t > 0} ̸= ∅ do
Let i∗ = argmax

i∈I(t)

bi,tri(1− g(yi));

Let δi∗(t) =min
{
1 , Bi∗ (t−1)

bi∗,t

}
;

if δi∗(t)> 0 then update Bi∗(t) =Bi∗(t− 1)− bi∗,t δi∗(t) and δ= δ+ δi∗(t);

Update the set of available advertisers I(t) = {i |Bi(t)> 0};

is also a randomized algorithm where random seeds (yi)i∈I are chosen at the beginning. Similar

to GPG, ties between bid prices occur with a probability of 0 in f-GPG. The key difference in

f-GPG is that each arrival t ∈ T is matched fractionally to (possibly) multiple resources. For

t ∈ T and some fixed values of the seeds (yi)i∈I , let I(t) denote the set of resources with available

budget when t arrives and let Bi(t) denote the available budget of resource i right after arrival t

departs. In GPG, we simply match an arrival t to resource i∗ that has non-zero budget available

and has the highest randomized bid price, whereas, in f-GPG, if the remaining budget of i∗ is

less than the bid bi∗,t, i.e., Bi∗(t− 1)< bi∗,t, then we only match a fraction Bi∗ (t−1)

bi∗,t
of arrival t to

i∗. For example, if Bi∗(t− 1) = 0.5bi∗,t, then we match 0.5 fraction of t to i∗ and this uses up the

remaining budget of i∗. Then, from the remaining set of resources we again select a resource with

the highest (randomized) bid price and repeat the process, until t is fully (fractionally) matched or

no resource is available. The total amount of resource i’s budget allocated to arrival t is given by

Bi(t)−Bi(t− 1). Observe that an arrival is fractionally matched to at most |I| different resources

and at most |I| arrivals are matched fractionally in f-GPG. We show the following lower bound

on the competitive ratio of f-GPG against the optimal offline integral matching.

Theorem 2. With β = 1.15, f-GPG is at least 0.522 competitive against optimal (integer)

offline allocation. When β = 1, f-GPG is at least 0.508 competitive.

Given the similarities between f-GPG and GPG it might be tempting to conclude similar com-

petitive ratio results for GPG in the small bids regime. Perhaps surprisingly, it turns out that

for the same seed values, GPG and f-GPG can sometimes output very different matchings (see

Example C.1 in Appendix C). Nonetheless, we show that the objective value of the two algorithms

is always similar and using this we establish the following guarantee for GPG.
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Theorem 3. Given a competitive ratio guarantee η for f-GPG (for some parameter value β),

we have that GPG (with the same value of β) is 1
1+γ

η competitive.

Corollary 1. For β = 1.15, GPG is at least 1
1+γ

0.522 competitive. When β = 1, GPG is at

least 1
1+γ

0.508 competitive.

The corollary above follows by combining Theorems 2 and 3. These results hold for any instance

of OBA, i.e., for arbitrary value of γ. For small bids we have γ → 0 and the competitive ratio of

GPG is strictly better than 0.5. We also establish that the competitive ratio of GPG is strictly

less than (1− 1/e).

Theorem 4. For every bid-to-budget ratio γ ∈ (0,1] and β ≥ 1, the competitive ratio of GPG

is at most 0.624.

The proof of Theorem 4 is analytical but Monte Carlo simulations indicate that an even stronger

upper bound of 0.604 may hold for β = 1. For special cases of Adwords, our analysis yields a

stronger guarantee that surpasses these upper bounds, as described in the next lemma6.

Theorem 5. For β = 1, GPG is 1
1+γ

(1−1/e) competitive for OBA when the bids are decompos-

able, i.e., bi,t ∈ {0, bi× bt} ∀i∈ I, t∈ T . For the special case of OBA with integer starting capacities

and binary bids, GPG is (1− 1/e) competitive for arbitrary bid-to-budget ratio γ.

In the following sections, we focus on proving Theorem 2 (Sections 4.1 and 4.2) and Theorem 3

(Section 4.3). In the course of proving these results, we discuss the insights behind the improved

guarantees stated in Theorem 5 and defer a formal proof of Theorem 5 to Appendix G. We discuss

the main insights behind Theorem 4 in Section 4 and defer the formal proof of this result to

Appendix F.

4.1. Overview of the Analysis of f-GPG

We start with some notation. Let the number of resources |I|= n. Let OPT refer to the (integer)

optimal offline algorithm. Overloading notation, we also use OPT to denote the total reward of

the optimal offline algorithm. Since there are no unknowns in the offline problem, i.e., budgets and

bids are all known, the optimal offline solution is a deterministic matching. Let OPTi denote the

set of arrivals matched to i as well as the total fraction of i’s budget that is matched in OPT. Note

that OPT=
∑

i∈I OPTi.

Because the discussion prior to Section 4.1.1 applies to both GPG and f-GPG, we use ALG as

a unified reference in place of separate references to GPG and to f-GPG. Overloading notation,

6 The (1− 1/e) guarantee for OBA with integer starting capacities and binary bids was also shown concurrently in
Albers and Schubert (2021) and Vazirani (2023). Further, the “no-surpassing” condition of Vazirani (2023) generalizes
the notion of decomposable bids.
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we also use ALG to refer to the expected reward of the online algorithms. Let Y denote the vector

of seeds (yi)i∈I ∈ [0,1]n. For fixed seeds Y, ALG is deterministic, i.e., both GPG and f-GPG are

deterministic. For this reason, we also refer to the vector Y as a sample path of ALG. Let ALG(Y )

denote the (fractional) matching generated by ALG on sample path Y . Let ALGi(Y ) denote the

set of arrivals (fractionally) matched to i in the matching ALG(Y ). Overloading notation, we also

use ALG(Y ) to denote the total reward of ALG with seed Y and ALGi(Y ) to denote the total

budget of i used in ALG(Y ). Let ALGt(Y ) denote the set of resources (fractionally) matched to

t in ALG(Y ) and let δi,t(Y ) denote the fraction of t matched to i in ALG(Y ). Observe that in

GPG, the set GPGt(Y ) will never have more than one element.

The (randomized) primal-dual method of Devanur et al. (2013) is a standard technique for

analyzing online algorithms for bipartite matching. Unfortunately, it is not obvious to us if one

can use this method to obtain a non-trivial lower bound on the competitive ratio of ALG. We

illustrate this in more detail in Appendix B. To prove Theorem 2, we use the flexible LP free

analysis framework of Goyal et al. (2021). To prove a lower bound on the competitive ratio of

an online algorithm ALG in this framework, it suffices to find a feasible solution to the following

system of (linear) inequalities in variables λt and θi,∑
t∈T

λt +
∑
i∈I

θi ≤ (1+ ε)ALG (1)

θi +
∑

t∈OPTi

λt ≥ αOPTi ∀i∈ I, (2)

λt ≥ 0, θi ≥ 0 ∀t∈ T, i∈ I. (3)

Lemma 1. Given a solution to the system defined by (1)−(3), we have that ALG is α
1+ε

com-

petitive against OPT.

Proof. Summing up inequalities (2) over all i∈ I, we have

αOPT = α
∑
i∈I

OPTi ≤
∑
i∈I

∑
t∈OPTi

λt +
∑
i∈I

θi
(∗)
≤
∑
t∈T

λt +
∑
i∈I

θi ≤ (1+ ε)ALG,

here inequality (∗) follows from the fact that the optimal offline solution is integral, i.e., OPT

matches each arrival to at most one resource and OPTi∩OPTj = ∅ for any two (distinct) resources

i, j ∈ I. □

Due to Lemma 1, our main goal is to find a feasible solution to the system (1)−(3) with a

suitably large value of α
1+ε

. Recall that ALGt(Y ) is the set of resources matched to t in ALG(Y ).

To define the candidate solution, let

λt(Y ) =
∑

j∈ALGt(Y )

bj,t δj,t(Y )(1− g(yj)) ∀t∈ T, Y ∈ [0,1]n, (4)

θi(Y ) =
∑

t∈ALGi(Y )

bi,t δi,t(Y )g(yi) = ALGi(Y )g(yi) ∀i∈ I, Y ∈ [0,1]n. (5)
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Our candidate solution is,

λt =EY [λτ (Y )] ∀t∈ T and θi =EY [θi(Y )] ∀i∈ I, (6)

here EY [·] denotes expectation over the random seeds inALG. The main idea behind this candidate

solution is as follows. Matching a δi,t(Y ) fraction of t to i, generates reward bi,tδi,t(Y ). We split this

reward is into two parts; (1−g(yi)) fraction of the reward is added to λt(Y ) and the remaining g(yi)

fraction of the reward is added to θi(Y ). Then, we take expectation over the seeds Y . This reward

splitting is a natural generalization of the one used Devanur et al. (2013) for vertex weighted online

bipartite matching.

The main challenge is to prove that this candidate solution satisfies inequalities (2) for a large

enough value of α. At a high level, we follow the same strategy as Devanur et al. (2013). Since

it is challenging to analyze the expectation of multi-variate random variables such as λt(Y ) and

θi(Y ), we fix the seeds for all but one resource, say i ∈ I, and evaluate conditional expectations

with respect to (w.r.t.) randomness in yi. Let Y−i ∈ [0,1]n−1 denote the vector of seeds of all

resources except i. We fix Y−i and establish non-trivial lower bounds on the conditional expectations

Eyi [λt(yi, Y−i) | Y−i] and Eyi [θi(yi, Y−i) | Y−i]. Then, combining the lower bounds gives us (2).

To lower bound the conditional expectations, we examine the changes in the matching generated

by ALG for different values of yi. In particular, we compare the matching for any given value

yi < 1, with the matching for yi = 1. The latter scenario serves as a base scenario where the bid

price of i is 0 everywhere (since 1− g(1) = 0). To lower bound Eyi [λt(yi, Y−i) | Y−i], we show that

λt(yi, Y−i) takes its minimum value in the base scenario, i.e., when yi = 1. This is similar to the

“monotonicity” property shown in Devanur et al. (2013). To obtain a sufficiently strong lower

bound on Eyi [θi(yi, Y−i) | Y−i], ideally, we hope that as yi decreases from 1 to 0, the amount of

i’s budget used (ALGi(yi, Y−i)) increases monotonically at a “fast enough” rate. This corresponds

to the “dominance” property in Devanur et al. (2013). All known analysis of (special cases) of

the Perturbed Greedy algorithm reply on establishing these two properties (Aggarwal et al. 2011,

Devanur et al. 2013, Goyal and Udwani 2023, Eden et al. 2021, Vazirani 2021, Albers and Schubert

2021, Delong et al. 2023).

4.1.1. Main Challenge. Unfortunately, as we illustrate in Example 4.1 below, the “domi-

nance” property does not hold for GPG. In fact, GPGi(yi, Y−i), which is the amount of i’s budget

used, may decrease sharply as yi decreases from 1 to 0. This issue is somewhat mitigated in f-GPG,

where f-GPGi(yi, Y−i) increases as yi decreases but the rate at which it increases may be quite

small in comparison to what the “dominance” property requires. We overcome this challenge by

finding new structural insights into the problem that we use to show a non-trivial lower bound on
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f-GPGi(yi, Y−i). To obtain this lower bound, our key new insight is to link f-GPGi(yi, Y−i) with

the total increase in bid prices from the base scenario i.e.,∑
t∈T

(λt(yi, Y−i)−λt(1, Y−i)).

In particular, we show that any overall gain in bid prices originates from the budget utilization of i

(Lemma 5). We also give an instance (Example 4.2) where only the budget utilization of i changes

with yi and this new lower bound on f-GPGi(yi, Y−i) is tight. Importantly, this result is only true

for f-GPG and it is not true for GPG. The absence of this structural result for GPG is the main

reason that we first analyze f-GPG in order to show a guarantee for GPG. For more details, see

Appendix E after reading Section 4.2.

In addition to the lower bound on f-GPGi(yi, Y−i), we show that if i’s budget is unused for

some yi < 1, then the bid prices have to increase by a certain amount (Lemma 6). By combining

these two properties, we establish (2) for f-GPG with a sufficiently large value of α.

Now, we demonstrate that GPGi(Y ) may decrease as yi decreases with a simple example where

individual bids are comparable to the overall budget. In Appendix C, we give a similar example

in the small bids regime (see Example C.1) and also an example to show that the “dominance”

property does not hold for f-GPG (see Example C.2 after reading Section 4.2).

Example 4.1 Consider an instance with two resources and starting budgets B1 = 2 and B2 = 1.

We have two arrivals, t and t+1. Arrival t has bids b1,t = b2,t = 1. Arrival t+1 has bids b1,t+1 = 2

and b2,t+1 = 4. Consider an execution of GPG with β = 1 and the random seed y2, for resource 2,

fixed at 0.5. Observe that,

(i) b1,t+1(1− g(0)))< b2,t+1(1− g(0.5)).

(ii) b1,t(1− g(0.5)) = b2,t(1− g(0.5)).

Consider the matching generated by GPG as we decrease y1 from 1 to 0. For y1 > 0.5, GPG

matches t to resource 2 and this uses up all of 2’s budget. Consequently, t+1 is matched to resource

1. For y1 < 0.5, t is matched to 1 and t+1 to 2. Thus, the amount of resource 1 matched in GPG

decreases from 2 to 1 as y1 decreases. This is somewhat surprising as the bid price of resource 1

increases when we decrease y1. At a high level, there are two main reasons behind this phenomenon.

The first (and main) reason is that bid prices vary with both time and seed values Y . In the

example above, for y1 < 0.5, the bid price of resource 1 exceeds that of resource 2 at arrival t but

the time variation in bids ensures that the bid price of resource 2 dominates that of resource 1 at

arrival t+1. A second reason is that due to unknown budgets, GPG may overestimate the available

budget of a resource. In the example above, recall that only 1 unit of resource 2 is available at
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t+1. For y1 < 0.5, we have b1t+1r1(1− g(0.5)))> r2(1− g(y2)), i.e., if we account for the remaining

budget of each resource, then resource 1 has a higher bid price at arrival t+ 1 than resource 2.

However, GPG, being ignorant of the budget, computes a higher bid price for resource 2 at t+1.

Observe that f-GPG is not budget oblivious and never overestimates the available budget of a

resource. However, even in f-GPG, for y1 < 0.5, the time variation in bids ensures that when t+1

arrives, the bid price of resource 2 is higher than that of resource 1 and a fraction of arrival t+1

is matched to resource 2.

4.2. Lower Bound on Competitive Ratio of f-GPG (Theorem 2)

Recall that, to lower bound the competitive ratio of f-GPG, it suffices find a feasible solution to

the system (1)−(3) with a suitably large value of α
1+ε

. Also recall the candidate solution (6) given

by λt =EY [λτ (Y )] and θi =EY [θi(Y )], where

λt(Y ) =
∑

j∈f-GPGt(Y )

bj,t δj,t(Y )(1− g(yj)) ∀t∈ T, Y ∈ [0,1]n,

θi(Y ) =
∑

t∈f-GPGi(Y )

bi,t δi,t(Y )g(yi) = f-GPGi(Y )g(yi) ∀i∈ I, Y ∈ [0,1]n.

Observe that on every sample path Y , λt(Y )> 0 ∀t∈ T and θi(Y )> 0 ∀i∈ I. Thus, constraints (3)

are satisfied.

Lemma 2. For the candidate solution given by (6), we have,

∑
i∈I

θi +
∑
t∈T

λt = f-GPG,

and constraint (1) is satisfied with ε= 0.

Proof. Fix an arbitrary seed Y and consider an arrival t ∈ T . The fraction of t matched to

resource i in f-GPG(Y ) is given by δi,t(Y ). This fractional match contributes a reward of bi,t δi,t(Y )

to f-GPG(Y ). By definition of θi(Y ) and λt(Y ), the reward (bi,t δi,t(Y )) is split into two parts

such that a fraction g(yi) of the reward goes to θi(Y ) and the remaining 1− g(yi) fraction goes to

λt(Y ). From this observation, it follows that,

∑
t∈T

λt(Y )+
∑
i∈I

θi(Y ) =
∑

i∈I,t∈T

bi,t δi,t(Y ) = f-GPG(Y ).

Taking expectation over Y on both sides completes the proof. □

It remains to show that inequalities (2) are satisfied. In fact, we show a stronger statement as

described in the following lemma.
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Lemma 3. Consider a resource i ∈ I and let seed Y−i = (yj)j∈I\{i} denote the random seed in

f-GPG for all resources except i∈ I. Suppose that for the candidate solution (6), we have,

Eyi

[
θi(Y )+

∑
t∈OPTi

λt(Y )
∣∣Y−i

]
≥ αOPTi ∀Y−i ∈ [0,1]n−1, (7)

for some value α> 0. Then, inequality (2) is satisfied for resource i with the same α.

Proof. The lemma follows by taking expectation over Y−i on both sides of (7).

□

4.2.1. Notation and Definitions. We fix an arbitrary resource i∈ I, seeds Y−i, and establish

(7) for a sufficiently large value α. For brevity, we suppress dependence on Y−i from notation

and highlight only the dependence on seed yi ∈ [0,1]. So λt(yi, Y−i) and θj(yi, Y−i) are denoted as

λt(yi) and θj(yi) respectively. Further, f-GPG(yi) is the matching generated by f-GPG when it

is executed with seed Y = (yi, Y−i). Similarly, f-GPGi(yi) denotes the total amount of i’s budget

allocated in f-GPG(yi). Let I(t, yi) denote the set of resources available in f-GPG(yi) when t

arrives. Let f-GPGt(yi) denote the set of resource that are fractionally matched to t in f-GPG(yi)

and let δi,t(yi) denote the fraction of t matched to i.

Overloading notation, we use T to also denote the total number of arrivals. For the analysis, it

will be useful to view f-GPG as a continuous process during the interval [1, T +1) where arrival t

is matched continuously over the interval [t, t+1). On arrival of t, we start with the set I(t, yi) of

resources and let I(τ, yi) denote the set of resources available at any moment τ ∈ [t, t+1). During

the interval [τ, τ + dτ) we match an infinitesimal fraction dτ of arrival t to resource,

jτ = argmax
j∈I(τ,yi)

bj,t (1− g(yj)),

consuming an infinitesimally small amount bjτ ,t dτ of the budget of resource jτ . When the budget of

resource jτ is used up, we remove it from the set of available resources and the process continues till

time t+1. Observe that this is an equivalent way to describe the fractional matching in f-GPG. In

the continuous viewpoint, we refine the definition of OPTi to be the set of all moments τ ∈ [t, t+1)

such that arrival t is matched to i in OPT. We similarly refine the definition of λt(·) and let

λτ (yi) = max
j∈I(τ,yi)

bj,t (1− g(yj)) ∀τ ∈ [t, t+1), t∈ T.

Observe that λt(yi) =
∫ t+1

τ=t
λτ (yi)dτ . To establish (7), we examine the changes in the matching

generated by f-GPG for different values of yi. In particular, we compare the matching for any

given value yi < 1, with the matching for yi = 1. The latter scenario serves as a base scenario where
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the bid price of i is 0 everywhere. To enable this comparison we define some new objects. For every

i∈ I, t∈ T , and τ ∈ [t, t+1), we define the critical threshold yc
i,τ ∈ [0,1] as the value for which,

Critical threshold yc
i,τ : bi,t (1− g(yc

i,τ )) = max
j∈I(τ,1)

bj,t (1− g(yj)).

Set yc
i,τ = 0 if no such value exists and yc

i,τ = 1 if the set I(τ,1) is empty. Due to the monotonicity

of g(x) = eβ(x−1), we have a unique value of yc
i,τ . Consider the set of distinct critical thresholds,

V :=
{
v | yc

i,τ = v for some τ ∈OPTi

}
.

Let

b(v) :=
∑

t∈OPTi

bi,t

∫ t+1

τ=t

1(yc
i,τ = v)dτ =

∑
t∈OPTi

bi,tδi,t(yi) ∀v ∈ V,

i.e., b(v) is the cumulative bid on i from all moments that are in OPTi and that have critical

threshold v. We also define

B(yi) =
∑

v≥yi;v∈V

b(v) ∀yi ∈ [0,1],

S(yi) =
{
τ | yi ≤ yc

i,τ and τ ∈OPTi

}
.

B(yi) is the cumulative bid on i from all moments in OPTi that have critical threshold at least

yi and S(yi) is the set of all moments in OPTi with critical threshold at least yi. Recall that we

use OPTi to also denote the total fraction of i’s budget that is matched in OPT. Observe that,

B(0) =
∑

v∈V b(v)OPTi and S(0) =OPTi.

4.2.2. Establishing (2) for the Candidate Solution. At a high level, our approach is to

separately lower bound λτ (yi) and θi(yi) and then combine the two lower bounds together. We

start with λτ (yi) and show that the maximum bid price at τ takes its minimum value in the base

scenario where yi = 1.

Lemma 4. Given i∈ I and seed Y−i, for every yi ∈ [0,1], t∈ T, and τ ∈ [t, t+1), we have

λτ (yi) ≥ λτ (1) ≥ bi,t(1− g(yc
i,τ )).

The proof is included in Appendix D. Next, to lower bound θi(yi), we establish a lower bound on

f-GPGi(yi). Recall that, f-GPGi(yi) is the set of arrivals matched to i in f-GPG(yi), as well

as, the total budget of i used in f-GPGi(yi). When bids bj,t ∈ {0, bj × bt} for every j ∈ I, t ∈ T ,

we show in Appendix G that f-GPGi(yi)≥B(yi), a lower bound that matches the “dominance”

property. In general, f-GPGi(yi) may be strictly smaller than B(yi) with non-zero probability (see

Example C.2). In fact, there are instances where f-GPG(yi)

B(yi)
→ 0 for some yi ∈ (0,1) (see Example

4.2). We give a novel lower bound on f-GPGi(Y ) by linking it with the increase in bid prices over

all arrivals. In particular, we show that any overall gain in bid prices originates from the budget

utilization of i.



18

Lemma 5. Consider a resource i ∈ I and seed vector (yi, Y−i) ∈ [0,1]n such that f-GPGi(yi)<

B(yi). Then, we have f-GPGi(yi)≥
∑

v∈V, v≥yi
b(v) g(v)−g(yi)

1−g(yi)
.

Proof. Given resource i and seed Y−i, for every yi ∈ [0,1], define

λnet(yi) =

∫ T+1

τ=1

λτ (yi)dτ =
∑
t∈T

λt(yi).

Using Lemma 4 we have, λnet(yi)≥ λnet(1) ∀yi ∈ [0,1]. Now, fix a seed yi such that f-GPGi(yi)<

B(yi). Observe that the main claim follows from the following upper and lower bounds on λnet(yi)−

λnet(1).

f-GPGi(yi) (1− g(yi)) ≥ λnet(yi)−λnet(1) ≥
∑

v∈V, v≥yi

b(v)(g(v)− g(yi)).

Proof of lower bound: Since f-GPGi(yi) < B(yi) ≤ Bi, we have that i is available at every

moment in f-GPG(yi) and at every τ ∈ S(yi)∩ [t, t+1), f-GPG selects a resource j ∈ I such that,

bj,t (1− g(yj))≥ bi,t (1− g(yi)).

From this, we have for every τ ∈ S(yi)∩ [t, t+1),

λτ (yi)−λτ (1)≥ bi,t (g(y
c
i,τ )− g(yi)),

where we used the following facts (i) For yc
i,τ > 0, we have λτ (1) = bi,t (1− g(yc

i,τ )) and (ii) For

yc
i,τ = 0 and τ ∈ S(yi)∩ [t, t+1), we have yi = 0 and therefore, g(yc

i,τ )− g(yi) = 0.

Integrating over all moments in S(yi), we get∫
τ∈S(yi)

(λτ (yi)−λτ (1)) dτ ≥
∑

v∈V, v≥yi

b(v) (g(v)− g(yi)) .

Finally, from Lemma 4 we have that λnet(yi)−λnet(1)≥
∫
τ∈S(yi)

(λt(yi)−λt(1)) dτ , completing the

proof of the lower bound.

Proof of upper bound: We start by observing that for every seed y ∈ [0,1] of resource i,

λnet(y) = f-GPGi(y) (1− g(y))+
∑

j∈I\{i}

f-GPGj(y) (1− g(yj)).

Therefore,

λnet(yi)−λnet(1) = f-GPGi(yi) (1− g(yi))+
∑

j∈I\{i}

[f-GPGj(yi)− f-GPGj(1)] (1− g(yj)),
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where we used the fact that g(1) = 1 for every value of β > 0. Now, the desired upper bound on

λnet(yi)−λnet(1) follows from the claim that,

f-GPGj(yi)≤ f-GPGj(1) ∀j ∈ I\{i}.

Since f-GPGj(yi)≤Bi, the claim is obviously true when f-GPGj(1) =Bj, so let f-GPGj(1)<Bj,

i.e., resource j is available at every moment in f-GPG(1). Therefore, in f-GPG(1), every moment

τ ∈ [t, t+ 1) that is not matched to j, must be matched to a resource with (strictly) higher bid

price (since ties between bid prices do not occur except on a probability 0 set of seed values), i.e.,

λτ (1)> bj,t (1− g(yj)).

Since λτ (yi) ≥ λτ (1) (from Lemma 4), we have that every moment that is not matched to j in

f-GPG(1), is not matched to j in f-GPG(yi) either. Therefore, f-GPGj(yi)≤ f-GPGj(1).

□

In Appendix E, we discuss why Lemma 5 does not hold for GPG when we consider the natural

candidate solution given by (4)—(6). For f-GPG, the lower bound in Lemma 5 is tight and we

give an example below.

Example 4.2 (Tightness of Lemma 5) Consider an instance with resources i∈ [n] and arrivals

t∈ [2n− 1]. Let

Bi = (1− ϵ)i−1 ∀i∈ [n− 1] and Bn =
1− (1− ϵ)n

ϵ
.

Observe that Bn =
∑

i∈[n−1]Bi. For i ∈ [n− 1], resource i has non-zero bids from arrivals i, i+ 1,

and n+ i such that,

bi,i = bi,i+1 = bi,n+i = (1− ϵ)i−1.

Resource n has non-zero bids from the first n arrivals,

bn,t = (1− ϵ)t−1 ∀t∈ [n].

OPT matches resource n to the first n arrivals and matches resource i to arrival n+ i, ∀i∈ [n−1].

This fully utilizes the initial budget of every resource. It is not hard to see that f-GPG outputs

an integral matching for all seeds Y . Consider f-GPG with seeds yi = 0.5 ∀i∈ [n−1]. Notice that,

yc
n,t = 0.5 ∀t ∈ [n]. Now, B(yn) = Bn for yn < 0.5 but for small enough δ > 0, when yn = 0.5− δ,

f-GPG matches arrival 1 to resource n and matches arrival t to resource t− 1 ∀t∈ [n]\{1}. Thus,
f-GPGn(0.5− δ) = ϵ

1−(1−ϵ)n
Bn. For ϵ=

βδ

e0.5β−1
, ϵ= 1√

n
, and n→+∞, we have

ϵ

1− (1− ϵ)n
Bn → ϵBn and

g(0.5)− g(0.5− δ)

1− g(0.5− δ)
Bn → ϵBn,

which shows that the lower bound in Lemma 5 is tight.
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We now combine Lemma 4 and Lemma 5 to give a lower bound on θi(Y )+
∑

t∈OPTi
λt(Y ).

Lemma 6. Given i ∈ I and seed Y−i, let 1(yi ≤ v) indicate the event yi ≤ v. Then, for every

yi ∈ [0,1], we have

θi(yi)+
∑

t∈OPTi

λt(yi)

≥
∑
v∈V

b(v)

[
1− g(v)+1(yi ≤ v)

(
min

{
g(yi),

g(v)− g(yi)

1− g(yi)

})]
.

Proof. Consider i∈ I and Y−i ∈ [0,1]n−1 and fix an arbitrary seed yi ∈ [0,1]. As discussed earlier,

f-GPGi(yi) may be much smaller than B(yi). Keeping this in mind, we consider two cases. In the

first case, all if i’s budget is used and f-GPGi(yi) is sufficiently large. In the second case, some

of i’s budget is unused and we show that the bid prices have to increase by a certain amount.

Combining the two cases will give us the desired.

Case I: f-GPGi(yi)≥B(yi). Thus,

θi(yi)≥B(yi)g(yi) =
∑
v∈V

1(yi ≤ v) b(v)g(yi).

Combining this with the lower bound from Lemma 4, we have

∑
t∈OPTi

λt(yi)+ θi(yi) ≥
∑

t∈OPTi

∫ t+1

τ=t

λτ (1)dτ + θi(yi) ≥
∑
v∈V

b(v) (1− g(v)+1(yi ≤ v)g(yi)).

Case II: f-GPGi(yi)<B(yi) (≤Bi,) i.e., resource i is available at every moment in f-GPG(yi).

First, we establish a refined lower bound on
∑

t∈OPTi
λt(yi), followed by a lower bound on θi(yi).

Since i is available at every moment in f-GPG(yi), we have,

λτ (yi)≥ bi,t (1− g(yi)) = bi,t
(
1− g(yc

i,τ )+ g(yc
i,τ )− g(yi)

)
∀t∈ T, τ ∈ S(yi)∩ [t, t+1).

Using this we have,

∑
t∈OPTi

λt(yi)≥
∑
v∈V

b(v) [1− g(v)+1(yi ≤ v) (g(v)− g(yi))] . (8)

Now, θi(yi) = f-GPGi(yi)g(yi). From Lemma 5,

f-GPGi(yi)g(yi) ≥
∑

v∈V ;v≥yi

b(v)
g(v)− g(yi)

1− g(yi)
g(yi). (9)
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Combining (8) and (9) we get,

θi(yi)+
∑

t∈OPTi

λt(yi)

≥
∑
v∈V

b(v)

[
1− g(v)+1(yi ≤ v)

(
g(v)− g(yi)+

g(v)− g(yi)

1− g(yi)
g(yi)

)]
≥
∑
v∈V

b(v)
[
1− g(v)+1(yi ≤ v)

g(v)− g(yi)

1− g(yi)

]
For any given yi, we could be in the worse of the two cases above, resulting in the following

combined lower bound,

θi(yi)+
∑

t∈OPTi

λt(yi)≥
∑
v∈V

b(v)
[
1− g(v)+1(yi ≤ v) min

{
g(yi),

g(v)− g(yi)

1− g(yi)

}]
.

□

Proof of Theorem 2. Let α = minv∈[0,1]

[
1− g(v)+

∫ v

0

(
min

{
g(y), g(v)−g(y)

1−g(y)

})
dy
]
. Taking

expectation over the randomness in seed yi on both sides of the inequality in Lemma 6, we have

Eyi

[
θi(yi)+

∑
t∈OPTi

λt(yi) | Y−i

]

≥
∑
v∈V

b(v)

[
1− g(v)+

∫ v

0

(
min

{
g(y),

g(v)− g(y)

1− g(y)

})
dy

]
,

≥ α
∑
v∈V

b(v) = αriOPTi.

It remains to lower bound α. We do this step numerically. For g(x) = ex−1, we obtain α > 0.508

(minimum at x= 0.586) and for g(x) = e1.15(x−1) we obtain α> 0.522 (minimum at x= 0.789, see

Figure 1).

□

Remark: As stated in Theorem 5, GPG with β = 1 is (1− 1/e) competitive for special cases of

Adwords. We present the proof in Appendix G.

4.3. From Fractional to Integral Algorithm (Theorem 3)

Since GPG is oblivious to budgets but f-GPG is not, there can be a substantial difference between

the output of these algorithm for the same seed Y (see Example C.1 in Appendix C). Therefore,

we compare GPG not with f-GPG on the same instance but with the performance of f-GPG on

a modified instance where the budgets of resources are increased as described next.

Budget augmentation: Consider an instance where the budget of every item is augmented as follows,

Ba
i =Bi +max

t∈T
bi,t ∀i∈ I.
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Figure 1 Plot of α(x) =
[
1− g(x)+

∫ x

0

(
min

{
g(y), g(x)−g(y)

1−g(y)

})
dy

]
for g(x) = e1.15(x−1).

For instances with bid-to-budget ratio γ, observe that,

Ba
i

Bi

≤ 1+ γ ∀i∈ I.

Proof of Theorem 3. Let OPTa denote the total reward of optimal offline on an instance with

augmented budgetsBa
i . Let f-GPGa denote the expected total reward of f-GPG on the augmented

instance. For any seed Y , let GPG(Y ) denote the total reward of GPG as well as the matching

output by GPG on the original instance with seed Y . Similarly, let f-GPGa(Y ) denote the total

reward of f-GPG as well as the matching output by f-GPG on the augmented instance with seed

Y . For any resource i∈ I, let f-GPGa
i (Y ) denote the total revenue from resource i in f-GPG on

the augmented instance with seed Y . Similarly, let GPGi(Y ) denote the total revenue from i in

GPG on the original instance with seed Y . Finally, let xa,f
j (t, Y ) denote the remaining budget of

resource j ∈ I when t arrives in f-GPGa(Y ). Similarly, let xj(t, Y ) denote the remaining budget

of j after arrival t− 1 in GPG(Y ).

Now, fix an arbitrary seed Y and a resource i∈ I. We claim that,

Ba
i

Bi

GPGi(Y )≥ f-GPGa
i (Y ). (10)

Before proving (10), we show that (10) suffices to prove the theorem. Taking expectation over seeds

Y and also a summation over i∈ I on both sides of (10) gives us,

GPG≥ 1

1+ γ
f-GPGa, (11)

here we use the fact that
Ba

i
Bi

≤ 1 + γ ∀i ∈ I. Since an allocation that is feasible in the original

instance is also feasible after augmenting the budgets, we have

OPTa ≥OPT.
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Given a lower bound of η on the competitive ratio guarantee of f-GPG we have,

f-GPGa ≥ ηOPTa ≥ ηOPT. (12)

Combining (11) and (12) proves the theorem. It remains to show (10) and we establish it in cases.

Case I: All Bi of i’s budget is allocated in GPG(Y ) i.e., GPGi(Y ) =Bi. Then, (10) follows by

observing that f-GPGa
i (Y )≤Ba

i = Ba
i

GPGi(Y )

Bi
.

Case II: Some of i’s budget is not allocated to any arrival in GPG(Y ). In this case, we show more

strongly that f-GPGa
i (Y )≤GPGi(Y ). Define

za,fj (t, Y ) = max{0,Bj −xa,f
j (t, Y )}= (Bj −xa,f

j (t, Y ))+ ∀j ∈ I,

zj(t, Y ) = (Bj −xj(t, Y ))+ ∀j ∈ I.

Notice that we use the original budget Bi for defining za,fj (·, ·) as well as zj(·, ·). As some of i’s

budget is unused in GPG(Y ) after the final arrival T , we have zi(T +1, Y )> 0.

To prove that f-GPGa
i (Y )≤GPGi(Y ), it suffices to show that za,fi (T +1, Y )≥ zi(T +1, Y ). In

fact, we show more strongly that

za,fj (t, Y )≥ zj(t, Y ) ∀j ∈ I, t∈ T. (13)

This is true at t= 1. Suppose this is true just prior to arrival of t. We will show that the inequality

also holds just prior to arrival of t+1. Then by induction we have the desired.

Given za,fj (t, Y )≥ zj(t, Y ), we have

{j | zj(t, Y )> 0} ⊆ {j | za,fj (t, Y )> 0}, (14)

where the LHS is the set of resources available in GPG(Y ) at t. Let e be the resource matched

to t in GPG(Y ). Recall that when f-GPG matches an arrival to multiple resources, it matches

fractions of the arrival to each resource in descending order of bid prices. Consider resources in

the set {j | zj(t, Y )> 0} and let w denote the first resource (if any) in this set that is fractionally

matched to t in f-GPGa(Y ). We consider two cases based on whether w exists.

Case II.A: Resource w does not exist, i.e., no resource in the set {j | zj(t, Y )> 0} is matched to

t in f-GPGa(Y ). Then,

za,fq (t+1, Y ) = za,fq (t, Y )≥ zq(t, Y )≥ zq(t+1, Y ) ∀q ∈ {j | zj(t, Y )> 0},

za,fq (t+1, Y ) ≥ 0 = zq(t, Y ) = zq(t+1, Y ) ∀q ∈ {j | zj(t, Y ) = 0}.
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Case II.B: Resource w exists. Since both GPG and f-GPG match greedily according to bid

prices, we have

bw,t (1− g(yw)) = max
{j|j∈zj(t,Y )>0}

bj,t(1− g(yj)) = be,t (1− g(ye)),

here the first equality follows from (14) and the fact that w is the first resource in {j | zj(t, Y )> 0}

that is matched to t in f-GPGa(Y ). The second equality follows by definition of e. Since the bid

prices of two different resources are unequal w.p. 1, we have that,

w= e.

Now, using za,fe (t, Y )≥ ze(t, Y ) and the fact that t is fractionally matched in f-GPG(Y ), we have,

za,fe (t+1, Y )≥ ze(t+1, Y ).

Further, since za,fe (t, Y )> 0, at least maxt∈T be,t of e’s augmented budget is available in f-GPGa(Y )

when t arrives. Hence, in f-GPGa(Y ), no resource from the set {j | j ̸= e, zj(t, Y )> 0} is matched

(fractionally) to t, i.e.,

za,fq (t+1, Y ) = za,fq (t, Y )≥ zq(t, Y ) = zq(t+1, Y ) ∀q ∈ {j | j ̸= e, zj(t, Y )> 0}.

Similar to Case II.A, we also have,

za,fq (t+1, Y )≥ 0 = zq(t, Y ) = zq(t+1, Y ) ∀q ∈ {j | zj(t, Y ) = 0}.

This completes the proof. □

Remark: When every bid is either 0 or 1 (b-matching case), it is easy to see that f-GPG and

GPG are identical on every sample path. Since b-matching is a special case of Adwords with

decomposable bids (bi,t ∈ {0, bi×bt} ∀i∈ I, t∈ T ), and f-GPG is (1−1/e) competitive for Adwords

with decomposable bids (Appendix G), we have that, GPG is (1−1/e) competitive for b-matching

(with arbitrary budgets).

4.4. Upper Bound on Competitive Ratio of GPG

The upper bound of (1−1/e) for online bipartite matching and its many generalizations (including

Adwords), follows from a family of instances where arrivals get pickier over time; the first arrival

has an edge to every resource and for every subsequent arrival, one edge is dropped uniformly

randomly, i.e., the t-th arrival has exactly n− t+1 edges and the t+1-th arrival has an edge to

all but one (randomly chosen) neighbor of arrival t (Karp et al. 1990). This family of instances

has identical bids and budgets; features that are also sufficient for a lower bound of (1− 1/e) on

the competitive ratio of GPG (Theorem 5). To obtain a tighter upper bound on GPG, we start
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by constructing an instance where bids are not decomposable and GPG is at most (1−1/e)OPT.

Then, by a suitable modification of this instance, we obtain a family of instances such that for

every β ≥ 1, there exists an instance in the family where GPG is strictly less than (1− 1/e)OPT.

To describe the main ideas we let β = 1 and allow arbitrary bid to budget ratio. Consider an

instance with n+1 resources and 2n arrivals. Each arrival bids 1 on every resource in {1,2, · · · , n}.

Arrival t∈ [n] bids

w(t) =
1− e

t
n+1−1

1− e−1
,

on resource n+1. Arrivals t≥ n+1 do not have an edge to resource n+1. Resources {1,2, · · · , n}

have unit budget and resource n+1 has a budget of
∑

t∈[n]w(t). The optimal matching allocates

resource n+1 to every t∈ [n] and matches arrival t to resource t−n for t≥ n+1. We have,

OPT= n+
∑
t∈[n]

w(t),

here limn→+∞
1
n

∑
t∈[n]w(t)→

1
e−1

. Therefore, limn→+∞
1
n
OPT→ e

e−1
.

Let yi denote the random seed of resource i ∈ [n+ 1] in GPG. For k ∈ [n], let zk denote the

k-th order statistic of the random variables {yi}i∈[n], i.e., the k-th smallest seed value. For k ∈ [n],

random variable zk has mean k
n+1

. Let I(t) denote the (random) set of resources available at t in

GPG. Resource n+1 is matched to arrival t∈ [m] if

w(t)(1− eyn+1−1)>max
i∈I(t)

(1− eyi−1)≥ (1− g(zt)),

here the last inequality follows from the fact that the t-th lowest seeded resource in [n] will not be

matched to any of the arrivals preceding t. For the sake of intuition, suppose that for n→+∞,

we have zt ≈ E[zt] =
t

n+1
∀t ∈ [n], with high probability (w.h.p.). Then, at a high level, we argue

as follows. Resource n+1 is matched to t only if yn+1 ≈ 0, which occurs with a vanishingly small

probability. By linearity of expectation, the expected total consumed capacity of resource n+1 is

≈ 0. Therefore, the expected value of 1
n
GPG is ≈ 1, and we have GPG

OPT
≈ (1− 1/e).

Now, consider a family of instances parameterized by ϵ ≥ 0. Every instance in the family is

similar to the instance above except that the bid from arrival t∈ [n] to resource n+1 is,

w(t, ϵ) =
1− e

t
n+1−1

1− e−1+ϵ
,

and the capacity of resource n+1 is
∑

t∈[n]w(t, ϵ). All other bids and parameters are left unchanged.

Observe that for a fixed t, w(t, ϵ) is a strictly increasing function of ϵ. For non-zero ϵ, the value of

offline (OPT) increases by∑
t∈[n]

(w(t, ϵ)−w(t,0)) =
∑
t∈[n]

w(t,0)
e−1(eϵ − 1)

1− e−1+ϵ
=O(ϵn).
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To obtain an upper bound that is strictly less than (1−1/e), we show that the expected total value

of GPG increases by an amount that is significantly lower than O(ϵn). The proof is presented in

Appendix F. We would like to note that for GPG with β = 1, performing Monte Carlo simulations

with n= 5000 indicates a stronger upper bound of 0.604 when bids from arrivals t∈ [n] to resource

n+1 are set as follows,

ŵ(t, ϵ) =
1− e

t
n+1−1−ϵ

1− e−1
,

with ϵ= 0.2.

5. Extensions and Applications

In this section, we demonstrate the flexibility and usefulness of budget oblivious algorithms through

different settings. Our first two results are in settings that are different from Adwords. Then, we

discuss potential applications of budget oblivious allocation in automated budget management for

Adwords.

5.1. Online Matching with Multi-channel Traffic

Inspired by applications in two-sided matching platforms such as VolunteerMatch – where volun-

teers are matched to nonprofits – Manshadi et al. (2022) introduce a setting where volunteer traffic

comes from two types of sources. Internal traffic consists of volunteers who arrive on the platform

with an interest in (possibly) many nonprofits and the platform selects a set of opportunities to

recommend. External traffic models volunteers who directly arrive at a nonprofit’s volunteering

page via an external link that bypasses the platform’s matching/recommendation system. Man-

shadi et al. (2022) model this as an instance of online matching where nonprofit opportunities with

a finite need for volunteers correspond to offline resources with finite capacity and each volunteer

corresponds to an online arrival. Up on arrival, a volunteer is probabilistically matched to at most

one opportunity. External arrivals have an edge to exactly one resource. They show that when

the number of external arrivals is a small fraction of the total capacity of all resources, a natural

generalization of the algorithm of Mehta et al. (2007), which is oblivious to the source of arrivals,

achieves the optimal competitive ratio for the problem. However, when external arrivals are a sig-

nificant fraction of the total capacity of all resources, one can achieve strictly better performance

with an algorithm that reacts to external and internal arrivals in different ways. For a determin-

istic version of their (stochastic) problem, we show that the budget (and arrival source) oblivious

GPG algorithm achieves the best possible guarantee for every possible composition of the arrival

sequence. This closes the (non-zero) gap between the best known guarantee and the best known

upper bound shown for the deterministic version of the setting in Manshadi et al. (2022).

Formally, we consider a setting with I resources that have arbitrary capacities (Bi)i∈I . Every

arrival t∈ T comes with a set of edges to resources (i, t)∈E. Matching an arrival to a resource uses
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one unit of the resource’s capacity and an arrival can only be matched to a neighboring resource

with available capacity. The goal is to match the maximum number of arrivals. Every arrival is

either internal or external. Let T In and T Ex denote the set of internal arrivals and external arrivals,

respectively. Let T Ex
i denote the set of external arrivals with an edge to resource i ∈ I. Manshadi

et al. (2022) define the fraction of external traffic (of a given instance) as the fraction of total

capacity that can be matched to external arrivals.

Effective Fraction of External Traffic : δ=

∑
i∈I min{|T Ex

i |, Bi}∑
i∈I Bi

.

For any given δ, this setting corresponds to OBA with binary bids and without the large capacity

assumption. Therefore, GPG with β = 1 is (1− 1/e) competitive for this setting (Theorem 5). We

analyze the competitive ratio of GPG with β = 1 as a function of δ. Since β = 1 leads to the

best possible guarantee, we hereby fix β at 1 and refer to GPG with β = 1 as simply GPG. Note

that, Manshadi et al. (2022) consider a model where matches can fail with some probability and

the starting capacities are large. We do not make the large capacity assumption but consider a

deterministic setting where every match succeeds with probability one.

Our main goal is to find how the performance of GPG changes with δ. While GPG is at least

(1− 1/e) competitive for every δ ∈ [0,1], at a high level, as δ → 1, the competitive ratio of GPG

approaches 1. To see this, consider an arbitrary resource i∈ I and sample path Y in GPG. On this

sample path, GPG matches every arrival in T Ex
i provided there is some budget remaining. Thus,

GPG uses at least min{|T Ex
i |,Bi} of resource i’s budget on every sample path. Now, by definition

of δ, the expected value of GPG is at least δ
∑

i∈I Bi ≥ δOPT. Overall, we have

GPG≥max{δ, (1− 1/e)}OPT.

The gives a lower bound on the competitive ratio that improves as δ increases but the dependence

on δ is not tight. For example, we show that GPG is 1+ (1−1/e) ln(1−1/e) (> 0.71) competitive

for δ= (1−1/e). From the upper bound shown in Manshadi et al. (2022), this is the best guarantee

achievable by any online algorithm.

Theorem 1 in Manshadi et al. (2022). For any value of δ ∈ [0,1] and any resource capaci-

ties, no (randomized) online algorithm can achieve a competitive ratio better than max{(1−1/e),1+

δ ln δ}.

We show that the competitive ratio of GPG matches this upper bound for all values of δ ∈ [0,1].

This improves the competitive ratio achieved by the novel Adaptive Capacity (AC) algorithm

proposed in Manshadi et al. (2022)7. It is perhaps surprising that, unlike the AC algorithm, GPG

7 Unfortunately, there is no closed form expression for the guarantee of AC. See Theorem 2 in Manshadi et al. (2022)
for the factor revealing LP that gives a lower bound on the competitive ratio of AC. Figure 2 in Manshadi et al.
(2022) illustrates that there is a non-zero gap between the known competitive ratio of AC and the upper bound.
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achieves the optimal guarantee without requiring any information about the channel that each

arrival belongs to. We would like to note that this result does not require the new structural

properties (such as Lemma 5) that we show for the Adwords problem.

5.1.1. Overview of Analysis. In the same vein as Manshadi et al. (2022), we lower bound

the competitive ratio by combining the LP free analysis technique with a factor revealing program

(FRP). At a high level, every possible instance of the problem can be projected to a feasible solution

for FRP with objective value equal to the ratio GPG
OPT

on that instance. Computing the optimal value

of the FRP gives a lower bound on the worst case ratio, i.e., the competitive ratio of GPG. In

general, such a program may be intractable to analyze but given the right set of constraints one

can find a strong lower bound on the optimal value of the program. We derive the constraints of

our FRP using the LP free framework and structural properties of GPG and OPT. We start with

some useful structural properties of worst case instances that simplify the analysis.

Lemma 7. For any given δ ∈ [0,1], to lower bound the competitive ratio of GPG it suffices to

consider instances where

(i) OPT matches every arrival.

(ii) Internal traffic arrives before external traffic, i.e., there is no internal traffic after the first

external arrival.

We present the proof in Appendix H.3. To state the FRP, let G(x) =
∫ x

0
g(u)du= ex−1 − e−1 and

notice that G(1) = (1− 1/e). The FRP has decision variables {oIni , oExi , xIn
i , xEx

i }∀i∈I and ζ.

FRP : inf
ζ,{oIni , oExi , xIni , xExi }i∈I

ζ

s.t. oIni + oExi ≤Bi ∀i∈ I, (15)

xEx
i ≤ oExi ∀i∈ I, (16)∑

i∈I

oExi = δ
∑
i∈I

Bi, (17)∑
i∈I

xEx
i ≥ (ζ − 1+ δ)

∑
i∈I

Bi, (18)

ζ
∑

i∈I(o
In
i + oExi ) ≥

∑
i∈I

G(1)oIni +xEx
i + oExi G

1−

∑
j∈I

xEx
i∑

j∈I

oExi


 . (19)

Theorem 6. For any given δ ∈ (0,1], the optimal value of FRP is a lower bound on the com-

petitive ratio of f-GPG. For δ≥ 1
e
, the optimal value of FRP is at least 1+ δ ln δ.

We give an overview of the first part of the Theorem 6 here and present the full proof of the

theorem in Appendix H. The first part states that the optimal value of FRP is a lower bound
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on the competitive ratio. The main idea is as follows. Given an instance with fraction of external

traffic δ, we show that there exists a feasible solution to FRP with objective value equal to the

performance ratio GPG
OPT

on that instance. Consider the following candidate solution for the FRP.

Candidate solution for FRP: For resource i ∈ I, let oExi be the total budget of i allocated to

external arrivals in OPT. Let xEx
i be the expected budget of i allocated to external arrivals in

f-GPG. Let oIni and xIn
i be the (expected) budget of i allocated to internal arrivals in OPT and

in f-GPG, respectively. Finally, let

ζ =

∑
i∈I(x

In
i +xEx

i )∑
i∈I(o

In
i + oExi )

.

Observe that ζ is equal to the performance ratio GPG
OPT

. We start by noting that for δ > 0, all

constraints (including (19)) are well defined. In particular, for δ > 0, using Lemma 7(i) we have∑
i∈I o

Ex
i > 0 on every non-trivial instance of the problem. By using the structure of the instance

and borrowing ideas from Manshadi et al. (2022), it can be shown that the candidate solution

satisfies constraints (15)–(18). The crux of our analysis is to show that inequality (19) is satisfied

and we give a detailed proof in Appendix H.1.

5.2. Online Matching with Stochastic Rewards

Introduced by Mehta and Panigrahi (2012), the problem of online matching with stochastic rewards

generalizes online bipartite matching by associating a probability of success pi,t with every pair i∈
I, t∈ T . When a match is made, i.e., edge is chosen, it succeeds independently with this probability.

If the match succeeds, the resource cannot be matched to any other arrival. If the match fails, the

arrival departs but the resource is available for future rematch. The edge probabilities are revealed

sequentially with each arrival. When edge probabilities are binary, i.e., pi,t ∈ {0,1} ∀i ∈ I, t ∈ T ,

this setting reduces to online bipartite matching. The natural greedy algorithm that matches each

arrival to an available resource with the highest success probability is 0.5 competitive for this

problem (Golrezaei et al. 2014). In general, this is the best known result but better algorithms

are known for several well studied special cases (Mehta and Panigrahi 2012, Mehta et al. 2015,

Goyal and Udwani 2023, Huang and Zhang 2020). We discuss the state-of-the-art below and refer

to Goyal and Udwani (2023) and Huang and Zhang (2020) for a more detailed review.

(i) Decomposable probabilties: Goyal and Udwani (2023) introduced the special case where

edge probabilities are decomposable i.e., pi,t ∈ {0, pi × pt} ∀i ∈ I, t ∈ T . They showed that

Algorithm 3 with β = 1 is is (1−1/e) competitive. Udwani (2024) recently gave a simpler and

more general proof of this result. Note that Algorithm 3 corresponds to the GPG algorithm

with bids replaced by edge probabilities. Since online bipartite matching is a special case of

the setting of decomposable probabilities, (1−1/e) is also the best possible competitive ratio

guarantee.
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(ii) Vanishing probabilities: Another well studied special case is when the edge probabilities

are vanishingly small, i.e., pi,t → 0 ∀i∈ I, t∈ T . Goyal and Udwani (2023) showed that a deter-

ministic algorithm, originally proposed by Mehta et al. (2015) and distinct from Perturbed

Greedy, has competitive ratio guarantee of at least 0.596 in this setting.

ALGORITHM 3: Generalized Perturbed-Greedy for Stochastic Rewards

Inputs: Set of resources I, parameter β;

Let g(x) = eβ(x−1);

For every i∈ I generate i.i.d. r.v. yi ∼U [0,1];

for every new arrival t do
Match t to i∗ = argmax

i∈I

pi,t(1− g(yi));

if match succeeds update I = I\{i∗};

Inspired by these positive results, a perhaps natural question is if the algorithms developed for

special cases point to a candidate algorithm that may outperform greedy for the general problem

setting. Since the setting of stochastic rewards includes online bipartite matching as a special

case, no deterministic algorithm can beat greedy in general (Karp et al. 1990). This rules out

all the algorithms that are known to beat greedy in the special case of vanishing probabilities.

That leaves Algorithm 3, which gives the optimal competitive ratio guarantee for decomposable

probabilities (for β = 1). Previously, it was not known if this algorithm outperforms greedy for

vanishing probabilities. Goyal and Udwani (2023) highlight some challenges with proving such a

result and leave the analysis of Algorithm 3 for vanishing probabilities as an open problem. We

show that Algorithm 3 with β = 1 is at least 0.508 for vanishing probabilities. While this does not

beat the best known competitive ratio result for vanishing probabilities, it gives a single algorithm

(namely Algorithm 3) that outperforms greedy in all previously studied special case of the problem.

Recently, Udwani (2024) showed that in general, the competitive ratio of Algorithm 3 is strictly

less than (1− 1/e).

Theorem 7. For online matching with stochastic rewards and vanishing probabilities, i.e.,

maxi∈I,t∈T pi,t → 0, Algorithm 3 is 0.522 competitive for β = 1.15 and 0.508 competitive for β = 1.

We present the proof in Appendix I. The result follows directly from an equivalence between the

setting of vanishing probabilities and Adwords with unknown (stochastic) budgets. This equivalence

was first observed by Mehta and Panigrahi (2012) and later generalized by Huang and Zhang (2020)

anc Goyal and Udwani (2023). The result states an instance of online matching with vanishing

probabilities is equivalent to an instance of Adwords with unknown budgets (on the same graph)

with bids equal to the edge probabilities, i.e., bi,t = pi,t ∀i∈ I, t∈ T, and unknown budgets sampled

independently for each resource from the exponential probability distribution with unit mean, i.e.,

Bi ∼Exp(1) ∀i∈ I.
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5.3. Advantage of Budget Obliviousness in Automated Budget Management

The high level goal for a typical advertiser is to target their customers through multiple ad cam-

paigns and marketing channels. Starting with an overall budget, an advertiser must determine a

good distribution of their budget to individual ad campaigns. For search ads, advertisers must also

determine the bids for relevant key words. While these decisions play a crucial role in the success of

their ad campaigns, determining a good distribution of budgets between diverse options and decid-

ing optimal bids for specific campaigns can be an incredibly challenging task for any advertiser.

As a result, many advertisers rely on automated bidding and budget management tools. The moti-

vation behind these tools is to improve performance for advertisers while simplifying the usage of

ad platforms (Aggarwal et al. 2019). Budget oblivious allocation algorithms, such as GPG, do not

require fixed initial budget as input. This increases the degrees of freedom available to automated

budget management tools and may allow significantly better outcomes for both the advertisers and

the platform. We illustrate via a stylized example in Appendix J.

6. Conclusion

We considered the classic Adwords setting with unknown budgets and showed that a natural gen-

eralization of Perturbed Greedy algorithm, that computes random bid prices for resources without

using budget information, is 0.522 competitive. This is the first result that improves on the guar-

antee of 0.5 obtained by the greedy algorithm. To show the result, first, we analyze the fractional

version of the algorithm using recent innovations in analysis of online matching algorithms, along-

side various novel structural insights. We also showed that no deterministic algorithm can do better

than greedy and also gave an upper bound of 0.624 on our randomized algorithm (and observed a

stronger upper bound 0f 0.604 in simulations). Finally, we demonstrated the usefulness of budget

oblivious algorithms for online resource allocation in a variety of applications. An immediate open

question from our work is to find out the best possible competitive ratio guarantee for the Adwords

problem with unknown budgets.
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Appendix A: Further Discussion of Concurrent Work

Albers and Schubert (2021) and Vazirani (2021, 2023) concurrently show that the Perturbed Greedy algo-

rithm is (1 − 1/e) competitive for Adwords with binary bids and arbitrary resource budgets, similar to

Theorem 5. The overall proof structure in these results is essentially the same; each proof is based on finding

a feasible solution to a linear system. Further, the candidate solutions proposed in the papers are also essen-

tially the same and the proof of feasibility relies on establishing “monotonicity” and “dominance” properties

similar to Devanur et al. (2013). The minor differences arise from the linear system used in each paper.

Albers and Schubert (2021) perform a primal-dual analysis based on a configuration linear program (LP)

introduced for a related problem by Huang and Zhang (2020). Vazirani (2023) generalize the ‘economic

viewpoint’ of Eden et al. (2021) to obtain a linear system that closely resembles that of Albers and Schubert

(2021) (which is stated below).∑
t∈T

λt +
∑
i∈I

θi ≤ GPG,∑
t∈∆

λt + θi ≥ α min{|∆|,Bi} ∀i∈ I,∆⊆ T,

λt, θi ≥ 0.

Comparing this with the constraints (1)—(3) that we introduce in Section 4.1, the main difference is that

we only impose the second constraint for a specific set OPTi, which is the set of arrivals matched to i in

the optimal offline solution. This difference does not play an important role here but can make a significant

difference in settings with stochastic elements (see, for example, (Goyal and Udwani 2023, Goyal et al. 2021)).

These approaches do not yield a performance guarantee better than 0.5 in the general Adwords setting.

In particular, Vazirani (2023) identifies a key structural property, called no surpassing, the absence of which

prevents a generalization of their result to the Adwords setting. For the general setting, we replace the

“dominance” with a new lower bound (shown in Lemma 5) and analyze a fractional algorithm (f-GPG) in

order to analyze GPG.

Appendix B: Obstacles with Using Classic Primal-Dual Analysis

The primal-dual framework of Buchbinder et al. (2007) and Devanur et al. (2013) is a general technique

for proving guarantees for online matching and related problems. To describe the framework, consider the

following primal and dual problems that upper bound the optimal offline solution for the Adwords problem.

Primal: min
∑

i∈I,t∈T

bi,t xit

s.t.
∑
t∈T

bi,txit ≤Bi ∀i∈ I,∑
i∈I

xit ≤ 1 ∀t∈ T,

xit ≥ 0 ∀i∈ I, t∈ T.

Dual: min
∑
t∈T

λt +
∑
i∈I

Bi θi

s.t. λt + bi,tθi ≥ bi,t ∀i∈ I, t∈ T

λt, θi ≥ 0 ∀t∈ T, i∈ I.

Primal-dual certificate Devanur et al. (2013): To prove α competitiveness for GPG, it suffices to find

a set of non-negative values λt, θi such that,

(i) λt + bi,tθi ≥ αbi,t ∀i∈ I, t∈ T,
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(ii) εGPG≥
∑

t∈T
λt +

∑
i∈I

Bi θi,

To understand the obstacles in using this framework to analyze GPG for OBA, we start by defining a

natural candidate solution for the system based on the decisions of GPG. Let GPG denote Algorithm 1 as

well as its expected reward. In GPG, let g(t) = et−1, i.e., β = 1. Given that we have external randomness in

GPG through Y = (yi)i∈I , we shall define variables λ
Y
t , θ

Y
i and subsequently set λt =EY [λ

Y
t ] and θi =EY [θ

Y
i ].

Inspired by Devanur et al. (2013), we set λY
t and θYi as follows. Initialize all dual variables to 0. Conditioned

on Y , for any match (i, t) in GPG set,

λY
t = bi,t(1− g(yi)) and increment θYi by

bi,t
Bi

g(yi). (20)

Clearly, λY
t is set uniquely since GPG offers at most one resource i to arrival t, and θYi takes a non-zero

value only if it is also accepted by some t, and if this occurs θYi is never re-set. The following lemma (stated

without proof) declares that this candidate solution satisfies constraint (ii) with ε close to 1 in the small bid

regime.

Lemma 8. For the candidate solution given by (20), constraint (ii) in the primal-dual certificate is satisfied

with ε= 1+ γ.

Unfortunately, there exist instances such that constraints (i) do not hold for any value of α > 0.5. For

example, suppose that the first arrival has a non-zero bid exclusively from resource i. In fact, let bi,1 = 1.

Consequently, the first arrival is always matched to i and we have, λY
1 = (1− g(yi)) ∀Y ∈ [0,1]n. Subsequent

arrivals have higher bids from many resources other than i such that they are matched to i with very small

probability. Thus, θi ≈ 1
Bi

∫ 1

0
g(x)dx, and for Bi →+∞, we have

EY [λ
Y
1 ] + θi ≈

(∫ 1

0

(1− g(x))dx+
1

Bi

∫ 1

0

g(x)dx

)
→
∫ 1

0

(1− g(x))dx.

Notice that when g(x) = ex−1, we have
∫ 1

0
(1− g(x))dx= g(0) = 1/e < 0.5.

Now, let OPT denote the offline solution and let OPTi denote the set of arrivals matched to i in OPT.

In contrast to the primal-dual scheme, the LP free scheme imposes the following linear combination of the

LP constraints, ∑
t∈OPTi

λt +Bi θi ≥ αOPTi,

where we summed constraints (i) over all arrivals in OPTi and scaled θi in accordance with the LP free

system (the counterpart of constraint (ii) in the LP free system replaces Biθi with θi). Since i is never

matched to any arrival after the first one, we have that, λt ≥ bi,t (1− g(0)) ∀t≥ 2. Thus,

∑
t∈OPTi

λt + θi ≥ (1− 1/e)

( ∑
t∈OPTi, t≥2

bi,t

)
+

∫ 1

0

g(x)dx ≥ (1− 1/e)OPTi.

Appendix C: Additional Examples to Demonstrate Main Analytical Challenge

The first example shows that for GPG, even in the small bids regime, the total used budget of a resource i

can decrease as yi decreases and the bid prices of resource i increase. The example also demonstrates that

GPG and f-GPG can output a very different matching on the same instance.
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Example C.1 Consider an instance with n resources {1, · · · , n}, with budget n − 1 for resources j ∈

[n− 1] and budget (n− 1)1.98 for resource n. We focus on a snippet of this instance by considering arrivals

{t+1, · · · , t+2n− 2} ⊂ T . We execute Algorithm 1 (with β = 1) on this instance with seed Y-n for resources

j ∈ [n− 1] fixed, and observe the change in output as seed yn varies. Suppose that exactly 1 unit of budget

is available at arrival t+1 for every resource j ∈ [n− 1] and every value of yn ∈ [0,1]. Further, ∀yn ∈ [0,1],

suppose that all of resource n’s budget is available at t+1. The bids are as follows.

(i) Arrival τ ∈ {t+1, · · · , t+ n− 1} bids 1 for resource j = τ − t, bids 2 for resource n, and bids 0 for all

other resources.

(ii) Arrival τ ∈ {t+ n, · · · , t+ 2n− 2} bids (n− 1)0.99 for resource j = τ − (t+ n− 1), bids (n− 1)0.98 for

resource n, and bids 0 for all other resources.

Let n→+∞ so that we are in the small bid regime. Now, observe that there exists some c∈ (0,1) such that

when yn ∈ (c,1], GPG matches resource n to the last n− 1 arrivals and all of n’s budget is utilized. On

the other hand, for yn ∈ (0, c), GPG matches resource n only to the first n arrivals and almost none of n’s

budget is used. Thus, as yn decreases from 1 to 0 and the bid price of resource n increases, less of n’s budget

is used in GPG. This is despite the fact that GPG makes allocation greedily w.r.t. the bid prices.

f-GPG, which is not budget oblivious, does not exhibit the above behavior when started at arrival t+ 1

with the same initial conditions. Since at t+1 only 1 unit of budget is available for resources j ∈ [n− 1], for

all values of yn, f-GPG will match at most a tiny fraction of the last n arrivals to resources j ∈ [n− 1]. In

other words, for all values of yn, f-GPG (fractionally) matches resource n to the last n arrivals and uses

up almost the entire budget of n. Thus, the matchings output by the two algorithms differ substantially for

yn ∈ (0, c).

Next, we consider an example that illustrates the challenge with analyzing f-GPG. As we discussed in

Section 4.1.1, the main difficulty stems from the fact that the “dominance” property does not hold. Consider

a resource i and fix all seed values except yi. To define the example we use the notion of critical thresholds

and the quantity B(yi) defined in Section 4.2.1. Recall that B(yi) is the cumulative bid on i from all arrivals

matched to i in OPT that have critical threshold at least yi. The “dominance” property states that the

amount of i’s budget used is always at least B(yi).

Example C.2 Consider a snippet of an instance with 3 resources {1, · · · ,3}, budget n for resources 1 and

2 and 1.5n for resource 3. Consider a sequence of [2n] arrivals. For every arrival t ∈ [2n], we have bi,t = 1

from i ∈ {1,2}. Bids from resource 3 are as follows, b3t = 1 for t ∈ [n] and b3t = 0.5 otherwise. Notice that

matching all 2n arrivals to resource 3 exaclty utilizes the budget of the resource.

Let n→+∞. We execute f-GPG with β = 1 on this instance with seeds (y1, y2) for resources {1,2} fixed,

and observe the change in output as seed y3 varies. In particular, let y1 ∈ (1/8,1/4) and y2 ∈ (3/4,1).

(i) For y3 = 1, the first n arrivals are matched to resource 1 and the next n to resource 2.

(ii) For y3 ∈ (1/4,0.4), on the last n arrivals, the bid price of resource 3 is higher than the bid price of

resource 2. Therefore, the first n arrivals are matched to resource 1 and the next n to resource 3.
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(iii) For y3 ≤ 1/8, the first n arrivals are matched to resource 3. However, the last n arrivals are now matched

to resource 1.

Notice that the critical threshold of every arrival w.r.t. resource 3 is at least 1/8. Thus,

B(y3) = 1.5n ∀y3 < 1/8.

Despite this, only the first n arrivals are matched to resource 3 when y3 ≤ 1/8 and the total budget of

resource 3 used in f-GPG does not exceed n for y3 < 1/8.

Appendix D: Proof of Lemma 4

Lemma 4. Given i∈ I and seed Y−i, for every yi ∈ [0,1], t∈ T, and τ ∈ [t, t+1), we have

λτ (yi) ≥ λτ (1) ≥ bi,t(1− g(yc
i,τ )).

Proof. Given i and Y−i, consider an arbitrary seed yi ∈ [0,1] and arrival t ∈ T . By definition of yc
i,τ , we

have λτ (1)≥ bi,t (1− g(yc
i,τ )). It remains to show that λτ (yi)≥ λτ (1). We claim that this follows from,

I(τ,1)\{i} ⊆ I(τ, yi).

To see this, observe that given the above nesting of sets, we have

λτ (yi) = max
j∈I(τ,yi)

bj,t(1− g(yj)) ≥ max
j∈I(τ,1)\{i}

bj,t(1− g(yj)) = max
j∈I(τ,1)

bj,t(1− g(yj)) = λτ (1).

We prove that I(τ,1)\{i} ⊆ I(τ, yi) by contradiction. Let yi be such that I(τ,1)\{i} ̸⊂ I(τ, yi). Let τ1 ≤ τ be

the earliest moment such that there exists a resource i1 ∈ I(τ1,1)\(I(τ1, yi)∪ {i}), i.e., i1 ( ̸= i) is available

at τ1 in f-GPG(1) but unavailable at τ1 in f-GPG(yi). This occurs only if i1 is matched at some moment

τ0 < τ1 in f-GPG(yi) but not matched at τ0 in f-GPG(1). Now, the following statements are true.

(i) I(τ0,1)\{i} ⊆ I(τ0, yi). This follows from the definition of τ1 and the fact that τ0 < τ1.

(ii) i1 ∈ I(τ0,1)\{i}. Follows from i1 ∈ I(τ1,1)\{i} and the fact that I(τ1,1)⊆ I(τ0,1).

Overall, we have i1 ∈ I(τ0,1)\{i} ⊆ I(τ0, yi). At every arrival, f-GPG picks an available resource with highest

bid price. So if τ0 is matched to i1 in f-GPG(yi), then from (i) and (ii) it must also be matched to i1 in

f-GPG(1) (the bid price of i1 at τ0 does not change). This contradicts the definition of τ0. □

Appendix E: Obstacle to Analyzing GPG Directly

Let I(t, Y ) denote the set of resources available at t in GPG. Consider the candidate solution,

λt =EY [λτ (Y )] ∀t∈ T and θi =EY [θi(Y )] ∀i∈ I, (21)

where,

λt(Y ) = max
j∈I(t,Y )

bj,t(1− g(yj)) ∀t∈ T, Y ∈ [0,1]n, (22)

θi(Y ) =GPGi(Y )g(yi) ∀i∈ I, Y ∈ [0,1]n. (23)

This definition is a natural generalization of the candidate solution used by Devanur et al. (2013) to analyze

GPG for vertex weighted online bipartite matching.

On every sample path Y , λt(Y )> 0 ∀t ∈ T and θi(Y )> 0 ∀i ∈ I. Thus, constraints (3) are satisfied. We

claim (without proof) that Lemmas 2 and 4 from the analysis of f-GPG, can be generalized for GPG as

stated below.
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Lemma 9. For the candidate solution given by (6), we have,∑
i∈I

θi +
∑
t∈T

λt ≤
∑
i∈I

(
1+max

t∈T

bi,t
Bi

)
GPGi,

and constraint (1) is satisfied with ε= 1+ γ.

Lemma 10. Given i∈ I and seed Y−i, for every yi ∈ [0,1], t∈ T , we have

λt(yi) ≥ λt(1) ≥ bi,t(1− g(yc
i (t))).

Unfortunately, Lemma 5 need not hold for GPG and this is the main reason that we first analyze f-GPG

and then link the performance of GPG with f-GPG. In the proof of Lemma 5, the main step that fails

is the one that links θi(yi) to the difference λnet(yi)− λnet(1). In GPG, we have that for every seed value

y ∈ [0,1] of resource i,

λnet(y)≥GPGi(y) (1− g(y))+
∑

j∈I\{i}

GPGj(y) (1− g(yj)).

Notice that this is an inequality whereas in case of f-GPG the left hand side equals the right hand side. In

GPG, the value of λnet(y) may be strictly larger than the right hand side because GPG may overestimate

the remaining budget of resources. In particular, when i is matched to arrival t, the remaining budget of i

may be smaller than the bid bi,t. However, we set λt(y) = bi,t(1−g(y)), which may be larger than the reward

from matching i to t. Now, consider the difference

λnet(yi)−λnet(1) = (1− g(yi))
∑

t∈f-GPGi(yi)

bi,t +
∑

j∈I\{i}

 ∑
t∈f-GPGj(yi)

bj,t −
∑

t∈f-GPGj(1)

bj,t

 (1− g(yj)),

where we used the fact that g(1) = 1 for every value of β > 0. In the analysis of f-GPG, we show that the

second term is non-positive. However, in GPG the second term may be strictly positive. In particular, it is

possible that for j ∈ I\{i},
GPGj(1) =

∑
t∈f-GPGj(1)

bj,t =Bj

but ∑
t∈f-GPGj(yi)

bj,t >Bj .

In general, the increase in λnet(yi)− λnet(1) is not due to GPGi(yi) alone and Lemma 5 does not hold for

GPG.

Appendix F: Proof of Theorem 4

Theorem 4. For every bid-to-budget ratio γ ∈ (0,1] and β ≥ 1, the competitive ratio of GPG is at most

0.624.

Proof. Consider a family of instances parameterized by ϵ≥ 0, integer budget to bid ratio m= 1
γ
≥ 1, and

β ≥ 1. Each instance in the family has n+1 resources. There are 2mn arrivals and each arrival bids 1
m

on

every resource in {1,2, · · · , n}. Arrival t∈ [mn] bids

w(t, ϵ) =
1− eβ(

t
n+1

−1)

m(1− e−β(1−ϵ))
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on resource n+ 1. Arrivals t≥mn+ 1 do not have an edge to resource n+ 1. Resources {1,2, · · · , n} have

unit budget and resource n+ 1 has a budget of
∑

t∈[mn]w(t, ϵ). The optimal matching allocates resource

n+1 to every t∈ [mn] and matches arrival t to resource ⌈ t
m
⌉−n for t≥mn+1. We have,

OPT= n+
∑

t∈[mn]

w(t, ϵ),

here limn→+∞
1
n

∑
t∈[mn]w(t,0) → eβ(1−β−1)+β−1

eβ−1
. Therefore, for ϵ = 0, we have, limn→+∞

1
n
OPT →

eβ(2−β−1)−1+β−1

eβ−1
. Let

H(β) =
eβ(2−β−1)− 1+β−1

eβ − 1
.

Observe that H(1) = e
e−1

and H(β)> e
e−1

for β ≥ 1.

To understand the high level idea, consider ϵ= 0 and β = 1. Let yi denote the random seed of resource

i ∈ [n+1] in GPG. For k ∈ [n], let zk denote the k-th order statistic of the random variables {yi}i∈[n], i.e.,

the k-th smallest seed value. For k ∈ [n], random variable zk has mean k
n+1

. Let I(t) denote the (random)

set of resources available at t in GPG. Resource n+1 is matched to arrival t∈ [nm] if

w(t,0)(1− eyn+1−1)> max
i∈I(t)

1

m
(1− eyi−1)≥ 1

m
(1− g(zt)),

here the last inequality follows from the fact that the t-th lowest seeded resource in [n] will not be matched to

any of the arrivals preceding t. For the sake of intuition, suppose that for n→+∞, we have z⌈ t
m

⌉ ≈E[z⌈ t
m

⌉] =
⌈ t
m

⌉
n+1

∀t ∈ [mn], with high probability (w.h.p.). Then, resource n+1 is matched to t only if yn+1 ≈ 0, which

occurs with a vanishingly small probability. By linearity of expectation, the expected total consumed capacity

of resource n+1 is ≈ 0. Therefore, the expected value of 1
n
GPG is ≈ 1, and we have GPG

OPT
≈ (1− 1/e).

For the rest of this proof, we are interested in the asymptotic case where n→+∞. We use O(·) notation

to hide constants independent of n. Now, observe that for a fixed t, w(t, ϵ) is a strictly increasing function

of ϵ. When we increase ϵ from 0, the value of offline (OPT) increases by∑
t∈[mn]

(w(t, ϵ)−w(t,0)) =
∑

t∈[mn]

w(t,0)
e−β(eϵβ − 1)

1− eβ(−1+ϵ)
= n(H(β)− 1)

e−β(eϵβ − 1)

1− eβ(−1+ϵ)
=O(ϵn). (24)

We show that the expected total value of GPG increases by an amount that is significantly lower than

O(ϵn). Let z0 = 0 and zn+1 = 1. The minimum of all ranks (first order statistic), z1, is a random variable

with mean 1
n+1

and variance n
(n+1)2(n+2)

= O(1)

n2 (Arnold et al. 2008). Using Chebyshev’s inequality,

P
(∣∣∣z1 − z0 −

1

n+1

∣∣∣≥ 1

n4/3

)
≤ O(1)

n4/3
.

In general, for every k ∈ {0,1, · · · , n}, the random variable zk+1−zk has mean 1
n+1

and variance n
(n+1)2(n+2)

=
O(1)

n2 (Arnold et al. 2008). Again, using Chebyshev’s inequality,

P
(∣∣∣zk+1 − zk −

1

n+1

∣∣∣≥ 1

n4/3

)
≤ O(1)

n4/3
∀k ∈ [n]∪{0}.

Applying the union bound, we have,

P

 ⋃
k∈[n]∪{0}

{∣∣∣zk+1 − zk −
1

n+1

∣∣∣≥ 1

n4/3

}≤ O(1)

n1/3
.
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We have that for large n, the following event occurs w.h.p.,∣∣∣zk+1 − zk −
1

n+1

∣∣∣< 1

n4/3
∀k ∈ [n]∪{0}. (25)

In the rest of this proof, we condition on this high probability event. Consequently, we have∣∣∣z⌈ t
m

⌉ −
⌈ t
m
⌉

n+1

∣∣∣≤ ⌈ t
m
⌉

n4/3
∀t∈ [mn].

We will show that in expectation, GPG uses a very small fraction of the budget of resource n+1. For any

given t≤mn−mn3/4, resource n+1 is matched to arrival t if,

mw(t, ϵ)(1− g(yn+1)) > 1− g(z⌈ t
m

⌉),

1− e
β

(
⌈ t
m

⌉
n+1

−1

)
1− eβ(−1+ϵ)

(1− eβ(yn+1−1)) > 1− e
β

(
⌈ t
m

⌉
n+1

+ t

n4/3
−1

)
,

⇒ yn+1 < ϵ+
O(1)

n1/3
.

For large enough n, resource n + 1 is not matched to any arrival in GPG when yn+1 > ϵ + 1
n1/4 . In the

following discussion, we condition on the event,

yn+1 ≤ ϵ+
1

n1/4
, (26)

which occurs w.p. ϵ+ 1
n1/4 (independent of event (25)). Finally, we claim that resource n+1 is matched to

at most ϵm(n+1)+mn3/4, i.e., O(ϵmn), of the first mn arrivals. To prove this, it suffices to show that for

every t ≥m(1 + ϵ(n+ 1) + n3/4), resource τ(t) = ⌈ t
m
⌉ − n3/4 − ϵ(n+ 1) is matched to one of the first mn

arrivals w.p. 1. Consider an arbitrary t≥m(1+ ϵ(n+1)+n3/4). Resource τ(t) is not matched to any arrival

prior to t if,

1− e
β

(
⌈ t
m

⌉
n+1

−1

)
1− eβ(−1+ϵ)

(1− eβ(yn+1−1)) > 1− e
β

(
τ(t)
n+1

+
⌈ t
m

⌉

n4/3
−1

)
,

> 1− e
β

(
⌈ t
m

⌉
n+1

−1−ϵ

)
,

which does not occur for any value of yn+1. Overall, conditioned on events (25) and (26), the best that GPG

can do is to match the first O(ϵmn) arrivals to resource n+1, using up O(ϵn) of the resource’s budget. More

precisely, w.p. 1, GPG uses at most,

n

∫ ϵ

0
(1− eβ(u−1))du

1− eβ(−1+ϵ)
+ o(n),

of resource n+ 1’s budget. Unconditioning on events (25) and (26), the expected budget of resource n+ 1

used in GPG is O(ϵ2n). Thus,
GPG

n
≤ 1+O(ϵ2)+ o(1).

From (24), we have
OPT

n
≥H(β)+O(ϵ)+ o(1).
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Combining these inequalities, for n→+∞, we have GPG
OPT

≤ 1
H(β)

< (1− 1/e) for some ϵ > 0 and any β ≥ 1.

As m is arbitrary, the upper bound holds for small bids as well. We can obtain a stronger upper bound by

considering a value of ϵ that minimizes the ratio in the limit n→+∞, i.e.,

min
ϵ≥0

lim
n→+∞

GPG

OPT
≤min

ϵ≥0

1+ ϵ
∫ ϵ
0
(1−eβ(u−1))du

1−eβ(−1+ϵ)

H(β)+ (H(β)− 1) e−β(eϵβ−1)

(1−eβ(−1+ϵ))

< 0.624 ∀β ≥ 1,

where the final inequality follows by setting ϵ≈ 0.1336.

□

Appendix G: Proof of Theorem 5

To prove Theorem 5, we first need the following intermediate result for f-GPG.

Lemma 11. Given i∈ I, seed Y−i in f-GPG, and decomposable bids bi,t ∈ {0, bibt} ∀i∈ I, t∈ T , we have,

Eyi [min{θi(yi), g(yi)OPTi} | Y−i] +
∑

t∈OPTi

Eyi [λt(yi) | Y−i] ≥
∑
v∈V

b(v)

[
1− g(v)+

∫ v

0

g(x)dx

]
.

Proof. It suffices to show that,

θi(yi)≥B(yi)g(yi) ∀yi ∈ [0,1). (27)

Given this inequality, using the fact that OPTi ≥B(yi) ∀yi ∈ [0,1] and taking expectation over yi ∼U [0,1],

we have,

Eyi [min{θi(yi), g(yi)OPTi} | Y−i]≥
∑
v∈V

(
b(v)

∫ v

0

g(x)dx

)
.

Combining the inequality above with the lower bound in Lemma 4 gives us the desired.

Notice that, if bi = 0, then (27) is trivially true. Further, all arrivals t ∈ T where bt = 0 can be ignored.

W.l.o.g., let bi > 0 and bt > 0 ∀t∈ T . Now, it suffices to show that

f-GPGi(yi)≥B(yi) ∀yi ∈ [0,1).

Given these inequalities, (27) follows by definition of θi(yi) (see (5)). For the sake of contradiction, consider

a value yi = y0 ∈ [0,1) such that f-GPGi(y0) < B(y0) ≤ Bi. Then, there exists an arrival τ ∈OPTi such

that, yc
i (τ)≥ y0, but τ is not matched to i in f-GPG(y0). Since, f-GPG(y0)<Bi, resource i is available at

τ . Therefore, in f-GPG(yo), τ is matched to a resource i1 such that,

bi1,τ (1− g(yi1)) ≥ bi,τ (1− g(y0)) ≥ bi,τ (1− g(yc
i (τ))),

here the first inequality is strict w.p. 1 (ties occur w.p. 0). Using the decomposability of bids, we have (w.p.

1),

bi1(1− g(yi1))> bi(1− g(y0)).

Therefore, i1 is preferred over i at all arrivals. We say that i1 is better than i, or i1 ≻ i (in f-GPG(y0)). Now,

notice that i1 must be unavailable at τ in f-GPG(1). Therefore, there exists an arrival τi1 prior to τ such

that, τi1 is matched to i1 in f-GPG(1) but in f-GPG(y0), τi1 it is matched to a resource i2 that is better

than i1. Repeating this argument a number of times, we get a sequence of arrivals τ > τi1 > · · · > τik and

resources i≺ i1 ≺ · · · ≺ ik. The number of resources is finite, so the sequence must terminate and, w.l.o.g.,

ik = iℓ for some ℓ < k≤ n, contradiction.

□
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Theorem 5. GPG with β = 1 is 1
1+γ

(1− 1/e) competitive for OBA when the bids are decomposable, i.e.,

bi,t ∈ {0, bi × bt} ∀i ∈ I, t ∈ T . For the special case of OBA with integer starting capacities and binary bids,

GPG is (1− 1/e) competitive for arbitrary bid-to-budget ratio γ.

Proof. For f-GPG, when g(x) = ex−1 we have ∀i∈ I, Y−i ∈ [0,1]n−1,∑
t∈OPTi

Eyi [λt(yi) | Y−i] +Eyi [θi(yi) | Y−i] ≥
∑
v∈V

b(v)
(
1− e−v + e−v − e−1

)
,

= (1− e−1)
∑
v∈V

b(v),

= (1− e−1)OPTi.

Now, combining this with Lemma 2 we have that f-GPG with β = 1 is (1−1/e) competitive for decomposable

bids. Using Theorem 2, we have that GPG is 1
1+γ

(1− 1/e) competitive for decomposable bids. The case of

binary bids is a special case of decomposable bids where GPG and f-GPG are identical. Thus, GPG with

β = 1 is unconditionally (1− 1/e) competitive for binary bids.

□

Appendix H: Missing Proofs for Online Matching with Multi-Channel Traffic

Candidate solution for FRP: Recall the candidate solution for FRP. For resource i ∈ I, let oExi be the

total budget of i allocated to external arrivals in OPT. Let xEx
i be the expected budget of i allocated to

external arrivals in f-GPG. Let oIni and xIn
i be the (expected) budget of i allocated to internal arrivals in

OPT and in f-GPG, respectively. Finally, let

ζ =

∑
i∈I

(xIn
i +xEx

i )∑
i∈I

(oIni + oExi )
.

Observe that ζ is equal to the performance ratio GPG
OPT

. We start by noting that for δ > 0, all constraints

(including (19)) are well defined. In particular, for δ > 0, using Lemma 7(i) we have
∑

i∈I
oExi > 0 on every non-

trivial instance of the problem. By using the structure of the instance and borrowing ideas from Manshadi

et al. (2022), it can be shown that the candidate solution satisfies constraints (15)–(18). The crux of our

analysis is to show that inequality (19) is satisfied and we show this in the next section. The rest of the proof

of Theorem 6 is included in Appendix H.2.

H.1. Proof of Inequality (19)

We start with some notation. Recall that T In and T Ex denote the set of internal arrivals and external arrivals,

respectively. On sample path Y in f-GPG, let xEx
i (Y ) and xIn

i (Y ) denote the budget of i allocated to external

and internal arrivals, respectively. Also, on sample path Y in GPG, let I(t, Y ) denote the set of neighboring

resources available at t. GPG may match more than oIni internal arrivals to i on some sample paths. To

capture these “excess” matches we define,

xsi(Y ) =max{xIn
i (Y )− oIni , 0} ∀i∈ I.

Excess matches play a crucial role in proving (19). In fact, using the LP free framework, we first establish

a lower bound on ζ
∑

i∈I
(oIni + oExi ) in terms of the expectation EY [

∑
i∈I

xsi(Y )g(yi)]. Given a candidate
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solution to the FRP, the random variables {xsi(Y )}i∈I and their expected values are not uniquely defined. We

address this by selecting the “worst” possible way to define these random variables for any given candidate

solution. To obtain a lower bound on EY [
∑

i∈I
xsi(Y )g(yi)] we now state two useful lemmas. The first lemma

gives a lower bound on xsi(Y ) in terms of xEx
i (Y ), which also a random variable that is not uniquely defined

(given a candidate solution). The second lemma gives a result for real valued functions that is reminiscent

of the calculus of variations.

Lemma 12. On every sample path Y, xsi(Y )≥ oExi −xEx
i (Y ) ∀i∈ I.

Proof. Suppose that every external arrival with an edge to i is matched in f-GPG(Y ), then from Lemma

7(i) we have, xEx
i (Y ) = oExi , and the claim follows. If an external arrival with edge to i is unmatched in

f-GPG(Y ), then all of i’s budget is consumed in f-GPG(Y ), i.e., xIn
i (Y )+xEx

i (Y ) =Bi. Using Bi ≥ oIni +oExi

and the fact that xsi(Y )≥ xIn
i (Y )− oIni , completes the proof. □

Lemma 13. Given g(x) = ex−1, G(x) =
∫ x

0
g(u)du, real values h0,H0 > 0 and an integrable function h :

[0,1]→ [0,H0] with
∫ 1

0
h(u)du= h0, we have∫ 1

0

h(u)g(u)du ≤ H0

(
G(1)−G

(
1− h0

H0

))
.

Proof. Consider the function

f(u) =

{
0 u∈ [0,1− h0

H0
),

H0 u∈ [1− h0

H0
,1].

Observe that
∫ 1

0
f(u)du = h0 and

∫ 1

0
f(u)g(u)du = H0

(
G(1)−G(1− h0

H0
)
)
. It suffices to show that,∫ 1

0
h(u)g(u)du ≤

∫ 1

0
f(u)g(u)du. Let H denote the set of all integrable functions h : [0,1] → [0,H0] with∫ 1

0
h(u)du= h0. Let

h∗ = sup
h∈H

∫ 1

0

h(u)g(u)du.

Now, if
∫ 1

0
f(u)g(u)du <

∫ 1

0
h∗(u)g(u)du, then there exists a closed interval I1 ⊆ [0,1− h0

H0
) with non-zero

measure and a closed interval I2 ⊆ [1− h0

H0
,1] with non-zero measure such that,

h∗(u)> 0 ∀u∈ I1 and h∗(u)<H0 ∀u∈ I2.

Let ϵ=min{minu∈Ii h
∗(u),minu∈I2 H0 −h∗(u)}. Let |I| denote the length/measure of an interval I. Consider

function h′ such that h′(u) = h∗(u)− ϵ|I1|−1 ∀u∈ I1, h
′(u) = h∗(u)+ ϵ|I2|−1 ∀u∈ I2 and h′(u) = h∗(u) for all

other values of u∈ [0,1]. We have,
∫ 1

0
h′(u)du= h0 and

∫ 1

0
h′(u)g(u)du>

∫ 1

0
h∗(u)g(u)du, contradiction. □

Next, we state two intermediate inequalities that we use to establish inequality (19).

Lemma 14. On every problem instance under consideration, the candidate solution to FRP satisfies,

(i) ζ
∑

i∈I
(oIni + oExi )≥

∑
i∈I

(G(1)oIni +xEx
i +EY [xsi(Y )g(yi)]) .

(ii)
∑

i∈I EY [xsi(Y )g(yi)] ≥
∑

i∈I o
Ex
i G

(
1−

∑
j∈I

xEx
i∑

j∈I
oEx
i

)
.

Before we prove Lemma 14, observe that a straightforward combination of inequalities (i) and (ii) in the

lemma proves that the candidate solution satisfies (19).
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Proof of Lemma 14. The proof of part (i) is based on the LP free framework. In particular, we find a

feasible solution to the following system of inequalities,∑
t∈T

λt +
∑
i∈I

θi ≤ ζ
∑
i∈I

(oIni + oExi ) (28)

θi +
∑

t∈OPTi

λt ≥ G(1)oIni +xEx
i +EY [xsi(Y )g(yi)] ∀i∈ I, (29)

λt ≥ 0, θi ≥ 0 ∀t∈ T, i∈ I. (30)

Given a feasible solution the system, summing up inequalities (29) over all i ∈ I gives us the desired. Our

candidate feasible solution is based on the random variables,

θIni (Y ) = xIn
i (Y )g(yi) ∀i∈ I, (31)

θExi (Y ) = xEx
i (Y ) ∀i∈ I, (32)

λt(Y ) =

{
maxj∈I(t,Y )(1− g(yj)) t∈ T In,

0 t∈ T Ex.
(33)

We note that random variables {λt(Y )}t∈T In and {θIni (Y )}i∈I are the same as their counterparts ((4) and (5))

in Section 4.2. For external arrivals, the fact that there is exactly one edge incident on each arrival eliminates

the need to set a non-zero value for λt and we set λt(Y ) = 0 ∀ ∈ T Ex. Consider the (non-negative) candidate

solution,

λt =EY [λt(Y )] ∀t∈ T, θi =EY [θ
In
i (Y )+ θExi (Y )] ∀i∈ I.

Observe that,

EY

[∑
i∈I

(θIni (Y )+ θExi (Y ))+
∑
t∈T

λt(Y )

]
=
∑
i∈I

(xIn
i +xEx

i ),

Thus, our candidate solution satisfies inequality (28). It remains to show that inequality (29) holds for all

i∈ I. We prove this via the same high level approach as the analysis of f-GPG in Section 4. Fix an arbitrary

resource i∈ I and seeds Y−i for all resources except i. To prove (29), it suffices to show that,

Eyi

[
θIni (Y )+ θExi (Y )+

∑
t∈OPTi

λt(Y ) | Y−i

]
≥ G(1)oIni +xEx

i +Eyi [xsi(Y )g(yi) | Y−i]. (34)

To show inequality (34), we first consider a “truncated” instance of the problem without the external arrivals,

i.e., the arrival sequence is T In and all budgets and bids are unchanged. Let OPTIn denote the optimal offline

solution of the truncated instance. W.l.o.g., OPTIn is identical to the internal traffic portion of OPT. This

follows from the fact that OPT matches every arrival in the original instance (Lemma 7(i)) and OPTIn can

do no better than match all arrivals. For every i∈ I, exactly oIni of resource i’s budget is used in OPTIn and

the set of arrivals matched to i is given by OPTIn
i = T In ∩OPTi. Now, using Lemma 11 for decomposable

bids (see Appendix G), we have

Eyi

min{xIn
i (Y ), oIni }g(yi)+

∑
t∈OPTIn

i

λt(Y ) | Y−i

 ≥ G(1)oIni , (35)
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where, xIn
i (Y )g(yi) = θIni (Y ), by definition (see (31)). Now, we claim that,

θIni (yi)+ θExi (yi) = (min{xIn
i (yi), o

In
i }+xsi(yi))g(yi)+xEx

i (yi) ∀yi ∈ [0,1].

Combining this equality with (35) gives us (34) and completes the proof of part (i) of the lemma. To show

the equality above, fix an arbitrary yi ∈ [0,1] and consider the following cases.

Case I: xIn
i (yi)≥ oIni . We have, oIni +xsi(yi) = xIn

i (yi). From (31) and (32),

θIni (yi)+ θExi (yi) = (oIni +xsi(yi))g(yi)+xEx
i (yi),

as desired.

Case II: xIn
i (yi)< oIni (≤Bi), i.e., resource i is available at every internal arrival in f-GPG(yi). In this case,

xsi(yi) = 0 and

θIni (yi)+ θExi (yi) = (xIn
i (yi)+xsi(yi))g(yi)+xEx

i (yi),

as desired.

Part (ii) of the lemma gives a lower bound on
∑

i∈I E[g(yi)xsi(yi)] in terms of xEx
i and oExi . Since xsi(yi)<

oExi , we can ignore any resource i ∈ I for which oExi = 0 (for this part). Let oExi > 0 ∀i ∈ I and recall that

G(x) =
∫ x

0
g(u)du= ex−1 − e−1. Now, to prove (ii) we claim that it suffices to show,

Eyi [xsi(yi)g(yi)] ≥ G

(
1− xEx

i

oExi

)
oExi ∀i∈ I,Y−i ∈ [0,1]n−1. (36)

First, let us show why (36) is sufficient.

∑
i∈I

G

(
1− xEx

i

oExi

)
oExi =

(∑
i∈I

oExi

)[∑
i∈I

G

(
1− xEx

i

oExi

)
oExi∑
j∈I o

Ex
i

]
,

≥

(∑
i∈I

oExi

)[
G

(
1−

∑
j∈I

xEx
i∑

j∈I
oExi

)]
, (37)

here inequality (37) follows by using the fact that G(x) is a convex function of x and applying Jensen’s

inequality. It remains to show (36). First, by a direct application of Lemma 12,

Eyi [xsi(yi)g(yi)]≥Eyi [(o
Ex
i −xEx

i (yi))g(yi)] = G(1)oExi −
∫ 1

0

xEx
i (u)g(u)du.

Using the fact that there are exactly oExi external arrivals with an edge to i (Lemma 7(i)), we have, xEx
i (yi)≤

oExi . Further, x
Ex
i (u) is an integrable function of u with

∫ 1

0
xEx
i (u)du= xEx

i . Applying Lemma 13 with h(u) =

xEx
i (u), h0 = xEx

i , and H0 = oExi , we have,∫ 1

0

xEx
i (u)g(u)du ≤ oExi

(
G(1)−G

(
1− xEx

i

oExi

))
Therefore,

Eyi [xsi(yi)g(yi)]≥ G(1)oExi − oExi

(
G(1)−G

(
1− xEx

i

oExi

))
≥ G

(
1− xEx

i

oExi

)
oExi .

□
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H.2. Proof of Theorem 6

Theorem 6. For any given δ ∈ (0,1], the optimal value of FRP is a lower bound on the competitive ratio

of f-GPG. For δ≥ 1
e
, the optimal value of FRP is at least 1+ δ ln δ.

Proof. Given an instance with fraction of external traffic δ, we show that there exists a feasible solution

to FRP with objective value equal to the performance ratio GPG
OPT

on that instance. Consider the following

candidate solution for the FRP. For resource i ∈ I, let oExi be the total budget of i allocated to external

arrivals in OPT. Let xEx
i be the expected budget of i allocated to external arrivals in f-GPG. Let oIni and

xIn
i be the (expected) budget of i allocated to internal arrivals in OPT and in f-GPG, respectively. Finally,

let

ζ =

∑
i∈I

(xIn
i +xEx

i )∑
i∈I

(oIni + oExi )
.

Observe that ζ is equal to the performance ratio GPG
OPT

. We start by noting that for δ > 0, all constraints

(including (19)) are well defined. In particular, for δ > 0, using Lemma 7(i) we have
∑

i∈I o
Ex
i > 0 on every

non-trivial instance of the problem. Now, constraints (15) follow from the fact that OPT cannot match a

resource more times than the resource’s initial budget. Since OPT matches every arrival (Lemma 7(i)), no

algorithm can match more than oExi external arrivals to resource i∈ I. Thus, the candidate solution satisfies

(16). Constraint (17) follows directly from the definition of δ. Constraint (18) is inspired by a constraint in

the factor revealing program of Manshadi et al. (2022). To show that the candidate solution satisfies (18),

we start by giving a lower bound on the expected number of internal arrivals matched by GPG. Using the

fact that OPT matches all arrivals we have,∑
i∈I

xIn
i ≤

∑
i∈I

oIni ≤ (1− δ)
∑
i∈I

Bi.

Applying the inequalities above in the definition of ζ, we get,∑
i∈I

xEx
i = ζ

∑
i

(oIni + oExi )−
∑
i∈I

xIn
i ,

≥ ζ δ
∑
i∈I

Bi − (1− ζ)
∑
i∈I

oIni ,

≥ (ζ δ− (1− ζ)(1− δ))
∑
i∈I

Bi,

= (ζ − 1+ δ)
∑
i∈I

Bi.

Recall that we showed constraint (19) is satisfied by the candidate solution in Section H.1. It remains to

show that the optimal value of FRP is at least 1+ δ ln δ for δ≥ 1/e.

Let W Ex =
∑

i∈I
oExi and XEx =

∑
i∈I

xEx
i . From (18), we have,

XEx ≥ (ζ − 1+ δ)

(∑
i∈I

Bi

)
≥ 0, (38)

here the non-negativity of the expression follows from the fact that ζ ≥ (1−1/e)≥ 1− δ. From (19), we have

ζ
∑
i∈I

(oIni + oExi ) ≥ η
∑
i∈I

oIni +W Ex

(
XEx

W Ex
+G

(
1− XEx

W Ex

))
,
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ζ
∑
i∈I

oIni + ζ δ
∑
i∈I

Bi

(a)

≥ η
∑
i∈I

oIni + δ

(∑
i∈I

Bi

)(
ζ − 1+ δ

δ
+G

(
1− ζ − 1+ δ

δ

))
,

(ζ − η)

∑
i∈I

oIni∑
i∈I

Bi

+ ζ δ ≥ δ

(
ζ − 1+ δ

δ
+G

(
1− ζ

δ

))
,

(ζ − η)(1− δ)+ ζ δ
(b)

≥ ζ − 1+ δ+ δG

(
1− ζ

δ

)
,

(1− η)
1− δ

δ

(c)

≥ e
1−ζ−δ

δ − e−1,

ζ ≥ 1− δ

(
1+ ln

(
1

eδ

))
,

= 1+ δ ln δ.

Inequality (a) follows from (17), (38), and the fact that J(u) = u+G(1− u) is an increasing function for

u ≥ 0. Inequality (b) follows from the upper bound
∑

i∈I
oIni ≤ (1− δ)

∑
i∈I

Bi that is implied by (15) and

(17). Finally, inequality (c) follows by plugging in G(u) = eu−1 − e−1. □

H.3. Other Missing Proofs for Multi-Channel Traffic

Lemma 7. For any given δ ∈ [0,1], to lower bound the competitive ratio of GPG it suffices to consider

instances where

(i) OPT matches every arrival.

(ii) Internal traffic arrives before external traffic, i.e., there is no internal traffic after the first external

arrival.

Proof. To prove part (i), it suffices to show that for any graph G and capacities (Bi)i∈I , removing

unmatched arrivals from G does not decrease the ratio GPG
OPT

. Clearly, removing arrivals that are not matched

in OPT has no effect on OPT. It suffices to show that on every sample path Y, GPG(Y ) does not increase if

we remove an arrival t∈ T . Consider two cases based on the type of resource matched to t in GPG(Y ). First,

suppose that t is either unmatched or matched to a resource with non-zero remaining budget at the end of

the arrival sequence. Then, removing t does not change the matching. Second, suppose that t is matched to

resource i such that GPGi(Y ) =Bi. Removing t may change the matching but does not increase the total

budget consumption of any resource.

Consider an external arrival t∈ T in an arbitrary arrival sequence. First, notice that changing the sequence

of arrivals does not change OPT. To prove part (ii), it suffices to show that moving arrival t to the end of

the arrival sequence (keeping all other arrivals fixed) can not increase GPG. Consider an arbitrary sample

path Y in GPG. If t is unmatched in GPG(Y ), moving t to the end of the sequence does not change the

matching. However, if t is matched in GPG(Y ) then moving t to the end of the arrival sequence does not

increase the total budget consumption of any resource. □

Appendix I: Missing Proofs for Online Matching with Stochastic Rewards

One common way to state asymptotic competitive ratio results for vanishing probabilities is as follows,

ALG≥ αOPT− o(1), (39)
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where α is the competitive ratio and o(1) is a term that goes to 0 as maxi∈I,t∈T pi,t → 0. This is the form

used (explicitly) in Huang and Zhang (2020) and (implicitly) in Mehta et al. (2015). An alternative approach

is to define an entirely multiplicative ratio as follows,

ALG≥ (1− o(1))αOPT,

where o(1) is a term that goes to zero as maxi∈I,t∈T pi,t → 0. Guarantees of this form were shown in Mehta

and Panigrahi (2012) and Goyal and Udwani (2023). For simplicity, we state and prove our result in the

sense of (39).

From stochastic rewards to Adwords: Given an instance of online matching with stochastic rewards

where the edge probabilities are given by pi,t and p=maxi∈I,t∈T pi,t, consider the Adwords instance on the

same graph with bids

bi,t = pi,t ∀i∈ I, t∈ T.

and unknown stochastic budgets,

Bi ∼Exp(1) ∀i∈ I,

here Exp(1) is the exponential distribution with mean 1. Taking expectation over the budgets, we have the

following performance guarantee for this stochastic instance of Adwords.

Lemma 15. For the stochastic instance of Adwords described above, GPG is at least 0.522− o(1) compet-

itive for β = 1.15 and at least 0.508−o(1) competitive for β = 1 (in expectation over the random budgets and

seed values).

Proof. Given starting budgets B= {Bi}i∈I , let

γi(Bi) =max
t∈T

bi,t
Bi

≤ p

Bi

∀i∈ I.

Let OPT(B) and GPG(B) denote the (expected) total reward in OPT and GPG respectively. For any fixed

value of β, let α denote the asymptotic performance guarantee of GPG in the limit γ →+∞. We have,

α(B) = GPG(B)
OPT(B)

≥ 1

1+maxi∈I γi(Bi)
α≥ mini∈I Bi

mini∈I Bi + p
α.

Thus, EB[α(B)]≥EB[
mini∈I Bi

mini∈I Bi+p
]α. Using the inequality 1

1+x
≥ 1−x, we have,

EB

[
mini∈I Bi

mini∈I Bi + p

]
≥ 1−EB

[
p

mini∈I Bi

]
.

For any finite set I, let E denote the event that mini∈I Bi ≥
√
p. Notice that the probability that E occurs

equals 1 in the limit of p→ 0. Thus, α>EB[α(B)]≥ α− o(1), as desired. □

Lemma 3. Lemma 14 in Huang and Zhang (2020). An online algorithm that is α−o(1) competitive for the

stochastic instances of Adwords defined above, is also α−o(1) competitive for online matching with stochastic

rewards.

Proof of Theorem 7. Using Lemma 14 in Huang and Zhang (2020) (stated above) and Lemma 15, gives

us the desired. □
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Appendix J: Potential Application in Automated Budget Management

In using a automated tools to manage their portfolio, the advertiser decides the overall budget, creates a

portfolio of ad campaigns, and specifies a high level performance goal for the portfolio. Using these specifi-

cations, the tool aims to automatically determine (over time) a good budget distribution for the portfolio,

as well as, daily budgets and bids for key words in each campaign. As the example below illustrates, fixing

a (daily) budget at the start of the day may be highly sub-optimal.

Example J.1 Consider an advertiser with a portfolio composed of two search ad campaigns labeled {1,2}.

In the absence of a budget constraint, let the total expenditure (per day) in campaign 1 be a Bernoulli

random variable X1 ∈ {0,1}. Similarly, let X2 ∈ {0,1} represent the expenditure (per day) in campaign 2.

We know that X1 and X2 are identically distributed with mean 0.5 and X1 = 1−X2, i.e., the campaign

expenditures are in perfect negative correlation. Now, suppose we have a total daily budget of 1 that needs

to be distributed between the two campaigns at the start of each day. If we distribute the overall budget

evenly i.e., allocate a daily budget of 0.5 to each campaign, then the total budget utilization in campaign

i ∈ {1,2} is at most E[min{0.5,Xi}] = 0.25, i.e., only 50% of the total budget is used. Splitting the budget

across the campaigns in a different proportion does not improve the total utilization.

Now, suppose that instead of fixing the daily budget for each campaign at the beginning, we start by

giving a budget of 0.5 to each campaign and use live cross-campaign data to adjust the distribution during

the day. Since the campaigns are negatively correlated, exactly one of the two campaigns will have a non-zero

expenditure on each day. Let i∗ denote this campaign on a given day. Before the initial budget of i∗ runs

out, we can redirect the rest of the budget to i∗ and achieve a budget utilization of 100%.

Platforms with in-house tools for automated budget optimization (such as Search Ads 360 by Google) may,

in fact, have the cross-campaign data necessary to perform adjustments to budget distribution in real-time.

At a conceptual level, armed with a budget oblivious allocation algorithm and live cross-campaign data, such

a platform can start the day with some distribution of budget to each campaign and adjust the distribution

during the day to improve overall utilization. When a campaign is about to run out of its tentatively assigned

budget, the platform can either transfer unused budget from another active campaign to this one, or, let

the campaign expire for the day. In this way, campaigns that do particularly well during the day would

receive more budget and this improves the overall utilization of budget for the portfolio. A budget oblivious

allocation algorithm is agnostic to such adjustments and only needs to be notified when the budget of a

campaign expires for the day.
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