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Abstract

In this paper, we perform Monte Carlo calculations to study the critical behavior of the spread of infectious diseases

through a novel approach to the SIR epidemiological model. A stochastic lattice gas version of the model was applied

on hybrid lattices which, in turn, are generated from typical square lattices when inserting a connection probability

p that a given lattice site has both first- and second-nearest neighbor interactions. By combining percolation theory

and finite-size scaling analysis, we estimate both the critical threshold and leading critical exponent ratios of the non-

absorbing SIR model in different cases of hybrid lattices. An analysis of the average size of the percolating cluster and

the size distribution of non-percolating clusters of recovered individuals was carried out to determine the universality

class of the model.
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1. Introduction

In the late 1920s, Kermack and McKendrick [1] pro-

posed a system of ordinary differential equations for de-

termining the temporal evolution of the population of in-

dividuals who interacted with each other when exposed

to an infectious disease. These individuals were initially

divided into three classes, namely, susceptible (S), in-

fected (I), and recovered (R) individuals. Taking the

acronym for the classes, the model became known as

the SIR model. Over the years, variations of this model

(e.g., SIRS, SIS, SEIR models) have been proposed con-

sidering the different classes of individuals that con-

stitute a given population. The relevance of these ap-

proximations cannot be underestimated because they

have been successful in modeling the most varied forms

of epidemics, including cholera [2, 3], measles[4, 5],

rubella [6, 7], hepatitis [8, 9], influenza [10], AIDS

[11, 12], COVID-19 [13–15], among many others. Epi-

demiological models encompass both features of col-

lective dynamics [16, 17] and complex systems [18];

hence, they are important tools for obtaining informa-

tion regarding the rate of disease spread and for testing

protocols adopted by public bodies to contain or miti-

gate such diseases.
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The SIR model is one of the simplest epidemiolog-

ical models, in which the infected individuals can be

removed from the dynamics either by permanent immu-

nity or death. This peculiarity makes the model suit-

able for simulating the epidemic outbreaks of influenza,

SARS, AIDS, etc. The SIR model is in the same uni-

versality class as that of dynamic percolation [19–23].

This study considers a stochastic lattice-gas version of

the SIR model with asynchronous site updates. Similar

models have been applied to other population dynam-

ics [24, 25]. For both synchronous and asynchronous

versions, a phase transition occurs when the model’s

control parameters are varied. This transition is found

to be of second order between two distinct regimes:

one, in which the population remains susceptible (in-

active or endemic regime), and other, in which the dis-

ease spreads throughout the network (active or epidemic

regime), where a significant portion of the population

becomes infected or eventually recovers (immune or

dead). At the transition point, the system becomes criti-

cal and corresponds to an epidemic outbreak threshold.

It is worth remarking that the connection between the

stochastic and deterministic descriptions (via coupled

differential equations) can be achieved through mean-

field approximation [26, 27], which results in the so-

called Langevin equations associated with the Fokker–

Planck equation that describes the temporal evolution of

the probability density of the system states.
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The lattice gas method [28] used herein has been

widely used to address problems involving fluid dynam-

ics [29, 30], general diffusion processes [31], damage

spreading [32, 33], and transport phenomena [34]. This

method basically consists of discretization both in time

and space, where sites in the network are considered as

the most likely particle locations. In molecular dynam-

ics, for example, we only have a temporal discretization

in the particle state description. The lattice gas method

is especially useful when the dynamics of a particle sys-

tem needs to be described without considering the de-

tailed microscopic aspects of that system. These aspects

are often irrelevant to the description of the general be-

havior of the system. In this study, we will employ this

method to describe the spread of the cloud of recovered

individuals over time as the epidemic evolves.

In particular, an analysis of the average size of the

percolating cluster and the size distribution of non-

percolating clusters of recovered individuals will be per-

formed using the Newman–Ziff algorithm [35] to deter-

mine the critical exponent ratios of the model. The SIR

stochastic lattice gas model is an absorbing-like model

because its active phase is characterized by an infinite

number of absorbing configurations, in which the fi-

nal system state only comprises recovered individuals.

However, in this work, the simulations are halted as long

as the existence of the percolating cluster (spanning

cluster) in the system is verified, thereby setting the non-

absorbing state of the model. This procedure speeds up

the analysis of the simulation data without compromis-

ing the guarantee of reaching the asymptotic limit of the

system. Only a single percolation cluster is generated in

the critical regime of the system. By exploiting the anal-

ysis of these clusters, we will determine the universality

class of the model. The network topology represents an

important feature of the system and directly affects the

dynamics of the involved processes[32, 33, 36]; hence,

we will study a hybrid network topology in this work.

Hybrid lattices are formed from regular square lat-

tices (N = L×L) by inserting a probability p that a given

site has both first- and second-nearest neighbor interac-

tions. Such networks would simulate a more realistic

population mainly formed by two types of individuals,

i.e., type I with low connectivity and type II with high

connectivity. The special cases with p = 0 and p = 1

are also treated here and correspond to pure lattices hav-

ing all nodes with the connectivity of first neighbors and

first and second neighbors, respectively.

This study mainly aims to understand how extended

connectivity effects can affect the critical behavior of the

non-absorbing SIR model. Since the connection prob-

ability p can be understood as a quenched topological

disorder, we want to determine if this kind of disor-

der is relevant to changing the universality class of the

model. There are some criteria devised to try to pre-

dict if the quenched disorder can change the critical ex-

ponents of a given model, such as the Harris criterion

[37] and its refinement, the Harris–Barghathi–Vojta cri-

terion (HBV) [38]. The Harris criterion states that a

second-order transition in a d-dimensional system, with

original correlation length exponent ν, is stable against

the quenched spatial disorder if ν > 2/d. Whereas the

HBV criterion states that quenched topological disorder

is irrelevant with respect to the phase transition stabil-

ity if the system satisfies ν > 1/a, where a is the dis-

order decay exponent that measures how fast coordina-

tion number fluctuations decay with increasing system

length scale. Nevertheless, such criteria are known to

fail [39].

The contents of the article are organized as follows.

In section 2, we outline the SIR stochastic lattice gas

model. In section 3, we describe details of the Monte

Carlo (MC) simulation background and lattice genera-

tion. In section 4, we present and discuss the results.

Finally, in section 5, we make the conclusions.

2. SIR stochastic lattice gas model

The SIR stochastic lattice gas model is defined on a

given lattice of N sites in which each site can be oc-

cupied by just one individual who can be either a sus-

ceptible (state S ), an infected (state I), or a recovered

(immunized/dead) individual (state R). The dynamics

consists of two subprocesses, namely, an auto-catalytic

one, I + S → I + I; and a spontaneous one, I → R. At

each time step a site is randomly chosen and then a set

of dynamic rules are taken in the following way:

i) If the site is in the state S and there is at least one

neighboring site in the sate I then the site becomes I

with probability proportional to a parameter µ and the

number z of neighboring sites, i.e., µm/z, where m is

the number of neighboring I sites.

ii) If the site is in state I it becomes R spontaneously

with probability λ.

iii) If the site is R it remains unchanged.

At each site i of a 2D lattice we assign a stochastic

variable σi that takes the values 0, 1 or 2, accord-

ing to whether the site is in the state S , I, or R, re-

spectively. Since the transitions between states in this

model are non-equilibrium ones, the allowed transi-

tions of the state i of a site are cyclic, this is, 0 →

1 → 2. The corresponding transition rate is repre-

sented by wi(σ) and describes the transition σ → σ′ in

which the whole microscopic configuration (microstate)

2



(a) Case p = 0 (b) Case p = 1/2

Figure 1: Typical spanning clusters along with few smaller clusters formed close to the epidemic threshold λc on a 100×100 lattice for two different

p cases. (a) Case p = 0 (at λ = 0.16) and (b) Case p = 1/2 (at λ = 0.21). Susceptible, infected, and recovered individuals are represented by blue,

red, and green vertexes, respectively.

σ′ ≡ (σ1, . . . , σ
′
i
, . . . , σN) differs from σ only by the

state of the i-th site. It is given by

wi(σ) =
µ

z
δ(σi, 0)

∑

j

δ(σ j, 1) + λδ(σi, 1), (1)

where the summation runs over the nearest neighbors

of site i and δ(x, y) denotes the Kronecker delta. The

parameters µ and λ are related to the subprocesses above

described, and are chosen such that µ + λ = 1.

The system evolves in time according to a mas-

ter equation for the probability distribution P(σ, t) de-

scribed by

d

dt
P(σ, t) =

∑

i

{wi(σ̄)P(σ̄, t) − wi(σ)P(σ, t)}, (2)

where the microstate σ̄ is obtained from σ by an anti-

cyclic permutation of the state of the site i (2→ 1→ 0).

3. Monte Carlo Simulation and Lattice Generation

We can implement an asynchronous, non-absorbing

SIR model on computer by following the kinetic Monte

Carlo rules below:

1. First, we start with a single central infected site

(seed) and the remaining ones being all suscepti-

ble on a two-dimensional lattice in which each in-

dividual of the population is attached to its respec-

tive lattice site. In order to speed up the simulation

we create two lists that are updated at each algo-

rithm step: a list of infected individuals (infected

list) and a list of recovered individuals (recovered

list), which begins empty.

2. Next, we update the system state by randomly

choosing an available infected site from the in-

fected list and proceed as follows:

(a) Generate a random number x in the interval

(0, 1). If x ≤ λ, the infected site is removed

from the infected list and placed in the recov-

ered list;
(b) Otherwise (if x > λ), pick randomly one

nearest neighbor of the infected site and make

it also infected provided that it is susceptible,

adding it to infected list.

3. Repeat asynchronously the step (2) several times

until either there is no infected sites (endemic

phase) or there is a percolating cluster of recovered

sites (non-absorbing epidemic phase).

One could determine the MC time t by incrementing t

by δt = 1/nI, where nI is the current number of infected

sites, each time an infected site is pick from the list.

However, we do not keep track of time here since we are

more interested in static quantities such as the fraction

and the mean cluster size of R sites.

Remarkably, it was shown that the SIR model on

square lattices belongs to the same universality class

then dynamic percolation (DP). This allows us to in-

vestigate the phase transition which takes place in the

3



Table 1: Estimates of the epidemic threshold λc and critical exponents ratios for each p cases.

Lattice Epidemic threshold 1/ν β/ν γ/ν

Square with p = 0 λc = 0.176(6) 0.719 ± 0.011 0.109 ± 0.003 1.778 ± 0.005

Hybrid with p = 1/2 λc = 0.228(4) 0.728 ± 0.013 0.108 ± 0.003 1.790 ± 0.012

Square with p = 1 λc = 0.275(0) 0.716 ± 0.014 0.112 ± 0.003 1.776 ± 0.009

Exact values − 3/4 5/48 43/24

present non-absorbing SIR model by making use of the

percolation theory. Thus we can define the epidemic

phase of the model when it is formed a percolating clus-

ter of recovery sites in the system and the endemic phase

when it is not. Such a graphical analogy has been used

for other compartmental models as well. Following the

classical percolation theory it is important first to deter-

mine the cluster distribution of recovery sites, i.e., the

number of clusters with s recovery sites np(s). That

can be accomplished by using the Newmann–Ziff algo-

rithm, which possess also the built-in feature of identi-

fying whether a percolating cluster was formed or not,

depending on the considered λ value. Notice that for

systems with non-periodic boundaries like the ones con-

cerned here, the percolating cluster is actually a span-

ning cluster [35, 40].

From the cluster size distribution, we have the frac-

tion of recovery sites in the finite (non-percolating) clus-

ter with s size

Ps = s
np(s)

nR

, (3)

where nR is the total number of recovery sites and np(s)

is the number of clusters with s recovery sites. Further-

more, the fraction of recovery sites in the percolating

cluster P∞ can be obtained by

P∞ = 1 −
1

nR

∑

s

snp(s), (4)

such that the above summation excludes the percolation

cluster. Now we can define the order parameter from

Eq. (4) as

P =< P∞ >, (5)

where < x > means an average taken over different dy-

namic realizations. The epidemic phase of the model is

reached when P , 0, that is, when the percolating clus-

ter density is non-zero; while the endemic phase hap-

pens when P = 0. Other important quantities are the

mean cluster size

S =
1

nR

∑

s

s2 np(s), (6)

which plays the rule of the susceptibility in classical per-

colation theory [41–43] when taking the average over

different runs, i.e.,

χ =< S >, (7)

the overall mean cluster size

S ′ =
1

nR

∑′

s

s2 np(s), (8)

and the mean quadratic cluster size

M′ =
1

nR

∑′

s

s3 np(s), (9)

where the primed summations above also include the

percolating cluster. It is worth remarking that the last

two quantities S ′ and M′ only make sense for finite lat-

tice as in the asymptotic limit (N → ∞), the percolating

cluster size diverges.

At criticality, the cluster size distribution should obey

a power-law scaling [22, 42, 44] as

np(s) = s−τF[sα (λ − λc)], (10)

where λc is the epidemic threshold and F is a scaling

function. Similarly, the remaining quantities also obey

scaling relations in accordance to classical percolation

theory given by

P = L−β/ν P̃(L1/ν |λ − λc|), (11)

χ = Lγ/ν χ̃(L1/ν |λ − λc|), (12)

< S ′ > = Lγ/ν S̃ ′(L1/ν |λ − λc|), (13)

< M′ > = L(β+2γ)/ν M̃′(L1/ν |λ − λc|). (14)

The reciprocal correlation-length exponents 1/ν can be

obtained by calculating the modulus of the logarithmic

derivative of P at the critical threshold point λC

φ ≡

∣

∣

∣

∣

∣

d

dλ
ln(P)

∣

∣

∣

∣

∣

λ=λc

, (15)
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where the derivative of the function f ≡ ln(P) was eval-

uated numerically by using a finite central difference

scheme in the form

d f

dλ
≃

1

2h
( f (λ + h) − f (λ − h)) , (16)

which has an truncation error of the order of O(h)2. The

error function δ f ′ of d f /dλwas obtained via error prop-

agation from the uncertainties in the values of f (δ f ),

being expressed by

δ f ′ =
1

2h

√

(δ f (λ + h))2 + (δ f (λ − h))2. (17)

In our computations h was taken equal to 2.0 × 10−3.

Close to λc, the quantity φ obeys a power-law scaling as

φ = L1/νφ̃(L1/ν|λ − λc|)(1 + bL−ω), (18)

where φ̃ is a scaling function, b is correlation amplitude

and ω is the non-universal correction-to-scaling expo-

nent. We have inserted a correction-to-scaling term in

Eq. (18) to improve the fit quality of the data such that

the values of b and ω are chosen in order to minimize

the reduced chi-squared (χ2) of the fits. As we will

see, however, only for the case p = 1, the fit quality

is slightly improved by this correction term. The opti-

mal values of b and ω are given in the figure captions

for each p case.

In addition, we can define a universal quantity U in

which the scaling dependencies cancel out by combin-

ing Eqs. (11), (13), and (14) in the following way [22]

U = P
< M′ >

< S ′ >2
, (19)

being analogous to the Binder cumulant for ferromag-

netic spin model [45, 46], and obeying also a scaling

relation

U = Ũ (L1/ν |λ − λc|). (20)

The crossing point of the U curves for different lattice

sizes allow us to estimate the epidemic threshold λc,

whereas a finite-size scaling analysis of the observables

P, χ and φ by using Eqs. (11), (12) and (18) yields the

according critical exponent ratios β/ν, γ/ν and 1/ν. The

leading critical exponents β, γ and ν define the univer-

sality class of the system.

The hybrid lattices used in the present study were

constructed starting from regular square lattices with

free boundary conditions. First, we begin from a regu-

lar square lattice consisting of nodes linked to their four

first nearest neighbors by both outgoing and incoming

links. Then, with probability p, we connect a chosen

site also to their second nearest neighbors. After repeat-

ing this procedure for every site, a new lattice is con-

structed with a density p of nodes with both first- and

second-nearest neighbor connections. Such networks

would mimic a hypothetical population formed basi-

cally by two types of individuals: type I with low con-

nectivity, and type II with high connectivity. The special

cases with p = 0 and p = 1 correspond to pure lattices

with all nodes having the connectivity of first neighbors

and first and second neighbors, respectively. Figs. 1(a)

and 1(b) display typical spanning clusters along with

few smaller clusters formed close to λc for the cases

with p = 0 and p = 1/2, respectively. These clusters

arise from the SIR model dynamics. The spanning clus-

ter is formed when the cloud of recovered individuals

reaches any two opposing edges of the lattice, in other

words, when such a cloud spans the lattice from one side

to the other. We grew more than 105 spanning clusters

for every considered λ value to take reliable averages of

the above quantities. On average it took about 26 ms to

grow a single spanning cluster like those shown in Fig. 1

on an 3.70 GHz Intel Xeon workstation.

4. Results and Discussion

In this section, we show our numerical results of the

non-absorbing SIR model coupled to hybrid lattices. In

order to determine both the critical region and the order

of the phase transition in this model on hybrid lattices,

we calculated the order parameter P, Binder cumulant

U, and susceptibility χ for each p case in a wide range

of the parameter λ. These quantities were averaged over

at least 105 different dynamic realizations of the SIR

model. Furthermore, for the case p = 1/2 we consider

also different lattice configurations upon taking the av-

erages. We deal with several lattice sizes, ranging from

N = 400 up to N = 48400. Let us first discuss the case

p = 0.

4.1. Case p = 0

In Figs. 2(a), 2(b) and 2(c) are shown the order pa-

rameter, Binder cumulant, and susceptibility as a func-

tion of the recovery rate λ for the case p = 0, respec-

tively. As one can see from Fig. 2(a), a typical second-

order phase transition takes place for the case p = 0. As

we shall see, the same conclusion can be drawn for the

remaining cases, where a typical sigmoid-shaped curve

also occurs. From Binder cumulant crossings, we can

estimate the corresponding epidemic thresholds for each

case. In the inset of Fig. 2(b) is shown a refinement of

the calculations for U inside the critical region. The

5



(a) (b)

(c) (d)

(e) (f)

Figure 2: Static quantities for the non-absorbing SIR stochastic lattice gas model on square lattices with first-neighbor interactions (case p = 0).

Panels (a), (b), and (c) display the order parameter P, Binder cumulant U , and susceptibility χ as a function of the recovery rate λ, respectively.

From the Binder cumulant crossing, we can estimate the epidemic threshold at λc = 0.176(6). The inset in panel (b) is a refinement of the

calculations for U inside the critical region. Panels (d), (e), and (f) display the log-log plot of the quantities φ (b = 0), P, and χ calculated at λc as

a function of the linear size of the system L, respectively. Red straight lines are the best linear fit to the corresponding data.

critical thresholds were estimated with five significant

figures. For the case p = 0, we obtained λc = 0.176(6).

As expected, it is approximately equal to that observed

in the absorbing version of the SIR model. By taking

the slope of the log-log plot of the quantity φ versus the

linear size of the system L, we can get an estimate for

1/ν. Fig. 2(d) shows the best linear fit to Eq. (18) for

the case p = 0. We obtained 1/ν = 0.719 ± 0.011. Er-

6



(a) (b)

(c) (d)

(e) (f)

Figure 3: Static quantities for the non-absorbing SIR stochastic lattice gas model on hybrid lattices (case p = 1/2). Panels (a), (b), and (c) display

the order parameter P, Binder cumulant U , and susceptibility χ as a function of the recovery rate λ, respectively. From the Binder cumulant

crossing, we can estimate the epidemic threshold at λc = 0.228(4). The inset in panel (b) is a refinement of the calculations for U inside the critical

region. Panels (d), (e), and (f) display the log-log plot of the quantities φ (b = 0), P, and χ calculated at λc as a function of the linear size of the

system L, respectively. Red straight lines are the best linear fit to the corresponding data.

ror bars were estimated by using Eq. (17). The least

reduced χ2 was equal to 1.34, with a goodness-of-fit

probability Q of 19,7%. This value of 1/ν is within

few standard deviations from the exact critical expo-

nent ratio 1/ν = 3/4 of 2D dynamical percolation and

it deviates only 4% from this exact value. Similarly, a

finite-size scaling analysis of the magnitudes of the or-

der parameter P and the susceptibility χ at λc by using

7



(a) (b)

(c) (d)

(e) (f)

Figure 4: Static quantities for the non-absorbing SIR stochastic lattice gas model on square lattices with first- and second-neighbor interactions

(case p = 1). Panels (a), (b), and (c) display the order parameter P, Binder cumulant U , and susceptibility χ as a function of the recovery rate λ,

respectively. From the Binder cumulant crossing, we can estimate the epidemic threshold at λc = 0.275(0). The inset in panel (b) is a refinement

of the calculations for U inside the critical region. Panels (d), (e), and (f) show the log-log plot of the quantities φ (b = 1.0, ω = 1.6), P, and χ

calculated at λc as a function of the linear size of the system L, respectively. Red straight lines are the best linear fit to the corresponding data.

Eqs. (11) and (12) yield, respectively, the critical expo-

nent ratios β/ν and γ/ν. Figs. 2(e) and 2(e) show the

log-log plot of P and χ (both calculated at λc) against L,

respectively. The red straight lines in those figures are

the best linear fit to Eqs. (11) and (12), respectively. We

obtained β/ν = 0.109± 0.003 and γ/ν = 1.778± 0.005.

These values are also in very good agreement with the

exact critical exponent ratios of 2D dynamical percola-

8



tion, namely, β/ν = 5/48 and γ/ν = 43/24. These esti-

mates of the critical exponents ratios and critical thresh-

old λc for case p = 0 are summarized and compared

with the corresponding exact values form 2D dynamics

percolation in Table 1.

4.2. Cases p , 0

An analogous analysis can be done for the cases

p = 1/2 and p = 1.0. Figs. 3(a) and 3(a) display the

order parameter P as a function of the recovery rate λ

for the cases p = 1/2 and p = 1, respectively. As al-

ready remarked, both systems undergo also a second-

order transition with their respective P curves exhibit-

ing a typical sigmoidal shape. While Figs. 3(a) and 3(a)

show the Binder cumulant for p = 1/2 and p = 1, re-

spectively. From these figures, one see that the crossing

points are located at λc = 0.228(4) for p = 1/2 and

λc = 0.275(0) for p = 1. Likewise, we took the slope

of the log-log of φ defined by Eq. (15) versus L to es-

timate the exponent ratio 1/ν for p = 1/2 and p = 1

cases. Figs. 3(d) and 4(d) display the linear curve fitting

to Eq. (18) for p = 1/2 and p = 1 cases, respectively.

Error bars were calculated by using Eq. (17). We got

1/ν = 0.728 ± 0.013 for p = 1/2 (with a least reduced

χ2 = 1.14 and a goodness-of-fit probability Q = 32.2%)

and 1/ν = 0.716 ± 0.014 for p = 1 (with a least

reduced χ2 = 0.68 and a goodness-of-fit probability

Q = 75.5%). These estimates deviate, respectively, only

3% and 4.5% from the exact value of 1/ν. Such results

strongly suggest that both cases are in the same univer-

sality class of 2D dynamic percolation. Moreover, these

results are fairly close to each other, as one falls within

only one standard deviation from the other. Similarly,

we took the slopes of the log-log plots of P and χ versus

L for both cases. Again, the red straight lines are linear

regressions to the corresponding data. From Figs. 3(e)

and 4(e), we obtained β/ν = 0.108 ± 0.003 for p = 1/2

and β/ν = 0.112 ± 0.003 for p = 1, respectively. While

from Figs. 3(f) and 4(f), we got γ/ν = 1.79 ± 0.01 for

p = 1/2 and γ/ν = 1.776 ± 0.009 for p = 1, respec-

tively. As can be seen, these estimates are rather close

to each other. These results clearly suggest that the non-

absorbing SIR model on both hybrid lattices (p = 1/2)

and square lattices with first- and second-nearest neigh-

bor interactions (case p = 1) belong also to the same

universality class as that of 2D dynamic percolation.

Nevertheless, the critical threshold in the non-absorbing

SIR model increases with increasing p-connection dis-

order. The estimates of the critical exponent ratios and

the critical threshold λc for all treated p cases are sum-

marized in Table 1.

5. Conclusions

We performed Monte Carlo simulations of the non-

absorbing SIR stochastic lattice gas model on hybrid

lattices to study the critical behavior presented by these

systems. Both the critical threshold and leading criti-

cal exponent ratios were estimated for different cases.

Our numerical analysis has revealed that the quenched

p-connection disorder is irrelevant to changing the crit-

ical exponents of the model, irrespective of the consid-

ered p value, strongly suggesting that the present model

belongs to the same universality class as that of two-

dimensional dynamical percolation. However, it was

found that the critical threshold in the non-absorbing

SIR model increases with increasing p-connection dis-

order.

This study has wide applications to many issues, in-

cluding not only the spread of infectious diseases, but

also in general diffusion processes, damage propagation

in random networks, and performance optimization in

multi-core architectures. Finally, we expect that the re-

sults presented in this paper can be helpful to understand

how topological disorders can affect the critical proper-

ties of other related complex systems.
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