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Abstract The present paper is concerned with deriv-

ing simplified design equations and charts for modelling

in-plane expansion of fractured thermally pre-stressed

glass panes using the method of equivalent temperature

differences (ETD) together with a thermal expansion

analogy for strains. The starting point is a theoret-

ical method based on linear elastic fracture mechan-

ics merged with approaches from stochastic geometry

to predict the 2D-macro-scale fragmentation of glass.

The approach is based on two influencing parameters

of glass: (i) fragment particle size, δ, and (ii) fracture

particle intensity, λ, which are related to the pre-stress

induced strain energy density, UD, before fracture. Fur-

ther Finite Element (FE) analysis of single cylindrical

glass particles allow for establishing functional relations

of the glass fragment particle dimensions, the pre-stress

level and the resulting maximum in-plane deformation.

Combining the two parts of two-parameter fracture pat-

tern modelling and FE results on fragment expansion,

formulas and engineering design charts for quantifying

the in-plane expansion of thermally pre-stressed glass

panes due to fracturing via an ETD approach is derived

and provided within this paper. Two examples from

engineering practice serve as demonstrators on how to

use our ETD approach to compute the equivalent tem-

perature difference and resulting internal forces as well

as deformations. This approach serves furthermore as
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a basis to estimate secondary effects (such as fracture-

expansion-induced deformations or stresses) on support

structures or remaining parts of glass laminates in form

of handy ETD load cases within analytical as well as

FE analysis.

Keywords Fragmentation · Tempered glass · Frag-

ment size · Fracture intensity · Elastic strain energy ·
Fracture pattern · Equivalent Temperature Difference ·
Expansion · Laminated glass

1 Introduction and Motivation

The use of glass as a structural material in engineering

requires the analysis and prediction of its behaviour in

the intact state, during the fracture process and, after

the fracture process is completed, in the post-fracture

limit state. Thermally tempered glass is often used as a

structural material due to its superior strength prop-

erties compared to annealed glass. Due to the large

amount of residual stresses present, tempered glass typ-

ically fractures into small dices that are less harmful

than shards from broken annealed glass. It is therefore

also called safety glass if the number of fragments per

unit area is large enough. Contrary, if used for lam-

inated glass, the post-fracture behaviour of tempered

glass is often considered unfavourable due to the small

fragments that lead to a global membrane-like struc-

tural behaviour (where almost no bending stiffness is

left) of the laminated glass plates in case all glass plies

are fractured. Another interesting effect is the rapid in-

plane expansion of the tempered glass fragments dur-

ing the fracturing process. The fracture front travels at

about 1500 m/s [1] and a significant part of the strain

energy is released during this fracturing process. Within
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the process, each fragment expands, eventually result-

ing in a significant global expansion of the fractured

glass plate. This expansion can lead to (i) flying debris

in monolithic (single layer) glass plates, (ii) to global

bending in glass laminates, where only one or several

plies of a multi-laminate set-up fracture, and (iii) to

delamination of the interlayer or in-plane failure of the

broken glass if the expansion is strongly impeded by the

remaining plies. To account for this effect in engineering

glass design and to provide a handy, yet realistic, esti-

mation of this effect, a simplified model for computing

the increase in size of a glass pane made of thermally

pre-stressed glass after fracture was developed within

this paper. A clear analogy to thermal expansion of

continuum materials given an equivalent temperature

difference (ETD) is hereby followed.

2 Theoretical Background and State of the Art

This section lays the foundation for the deduction of our

engineering approximation model of in-plane expansion

of fractured pre-stressed glass panes.

2.1 Background on Thermally Pre-Stressed Glass

The strength of standard float glass is governed by its

tensile strength, which itself is significantly influenced

by small flaws in the surface, reducing the typical engi-

neering tensile strength of annealed float glass to some-

where in the interval 30 MPa to 100MPa, see e.g. [2].

Inducing a residual stress state by thermal tempering, a

greater resistance to external loads, together with a cer-

tain fracture pattern in case of failure can be obtained.

This leads to a desired level of safety with respect to

human injuries due to the smaller fragments. For these

reasons, thermally pre-stressed glass is also known as

tempered safety glass. The residual stress obtained dur-

ing the tempering process is characterised by its ap-

proximately parabolic distribution through the thick-

ness, where compressive stresses reside on the outer sur-

faces, which is balanced by internal tensile stresses in

the mid-plane, cf. Figure 1. This parabolic stress dis-

tribution, σ(z), can be written in terms of the surface

stress, σs, and glass thickness, h, as:

σ(z) =
1

2
σs(1− 3ζ2), ζ =

2z

h
(1)

using symbols defined in Figure 1. The parabolic

stress distribution is in equilibrium and symmetric about

the mid-plane. The magnitude of the surface stress is

approximately twice the tensile stress, (2σm = −σs).
The zero stress level is at a depth of approximately
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Fig. 1 Stress distribution in the far field area of a tempered
glass plate and a sketch showing a contour line at zero stress
(dotted line)

Fig. 2 Fragmentation of glass plates with the same thickness
of 12 mm for (left) low stored strain energy (U = 78.1 J/m2),
(right) high stored strain energy (U = 354.7 J/m2), from [9]

21% of the thickness, h, from the surface, known as

the compressive zone depth [3]. The surface flaws then

are in a permanent state of compression by the com-

pressive residual stress at the surface, which has to be

exceeded by externally imposed stresses due to loadings

before failure and fracture of the glass pane can occur

[2, 4]. The magnitude of residual stresses depends on

processing- and material parameters and is not within
the scope of this paper. For a deeper insight on this, the

reader is referred to other literature such as [2, 5–8].

2.2 Fracture of Thermally Pre-Stressed Glasses and

Glass Fracture Pattern Modelling

For the case of fracture, thermally pre-stressed glass

panes fragmentize completely into many pieces, if the

equilibrated residual stress state within the glass plate

is disturbed sufficiently and it holds an elastic strain en-

ergy large enough. A commonly used example demon-

strating this are the so-called ”Prince Rupert’s drops”,

possessing bulbous heads and thin tails. These glass

drops can withstand high impact or pressure applied

to the head, but ”explode” immediately into small par-

ticles if the tail is broken, see e.g. [10–12]. The frag-

mentation is the direct consequence of the release of

elastic strain energy stored inside the material due to

the residual stress state. The fragment size depends on
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Fig. 3 Hexagonal close packing (HCP) distribution of points
and resulting honeycomb pattern due to the Voronoi tessel-
lation of HCP distributed seed points, from [9]

the amount of the released energy. Small fragments are

caused by a high energy release such as the high resid-

ual stress state found in tempered glass originating from

the quenching process. Lower residual stress states re-

sult in larger fragments due to lower stored strain en-

ergy (cf. Figure 2). Thus, not only the stress but also the

thickness of the glass plate plays a role in determining

the strain energy. The strain energy density, UD, which

is the strain energy, U , normalised with the thickness.

The strain energy density then becomes a thickness in-

dependent quantity for characterising the energy state

of a thermally pre-stressed glass pane, and can then be

derived to yield [9]:

UD =
U

h
=

1

5

(1− ν)

E
σ2
s =

4

5

(1− ν)

E
σ2
m (2)

where UD is the amount of elastic strain energy stored

in the system per unit volume and thus only depends

on the residual stress and the material properties. The

above equation is fully in line with other derivations of

the strain energy in tempered glass as provided by e.g.

[13–17].

The papers [9, 18–21] discuss the properties of frag-

ment size, δ, fragmentation intensity, λ, and the tessel-

lation pattern that result from the fragmentation pro-

cess, where especially in [21, 22] a statistical evalua-

tion and Bayesian treatment of the fracture pattern

model is presented. The fracture pattern model com-

bines an energy criterion of linear elastic fracture me-

chanics and tessellations induced by random point pat-

terns. Statistical analysis of the glass fracture patterns

of a comprehensive experimental programme, consist-

ing of thermally pre-stressed glass panes with differ-

ent thicknesses and levels of thermal pre-stress, allowed
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Fig. 4 Plot of the intensity log10(λ) - strain energy density
log10(UD) relation, marking two scales for the fracture pat-
tern

for a sound and exhaustive investigation the fracture

pattern of tempered glass in order to determine char-

acteristics of the fragmentation pattern (e.g fragment

size, δ, fracture intensity, λ, etc.). The basic modelling

approach consists of the idea, that the final fracture

pattern is a Voronoi tessellation induced by a stochas-

tic point process, whose parameters can be inferred

by statistical evaluation of pictures of several fractured

glass specimen. By calibration of a stochastic point pro-

cess and consecutive tessellation of the region of in-

terest, statistically identically distributed realisations

of fracture patterns of a glass pane can be generated.
The evaluations there quintessentially show, that the

size, shape and number of fragments strongly and non-

linearly depend on the strain energy density, UD, (cf.

Figure 4) and the fracture pattern may be approxi-

mated by a Voronoi-tessellation induced by a Matérn-

Hardcore-Point-Process. The literature, [19, 22] show,

that the fracture pattern is on average a Hexagonal

Close Packing (HCP) with the uniform distance δHCP

between any two adjacent nuclei. This is caused by the

dynamic fracture properties as derived by [23] and ex-

perimentally verified for tempered glass in [1]. Thus the

mean fracture pattern of thermally pre-stressed glass

panes is a regular honeycomb with hexagonal cells, cf.

Figure 3.

The spread in fragment sizes is often found to follow

the power law size distributions [12, 24], having only di-

mensionless fit parameters and contain no characteristic

length scale, i.e. they are scale invariant. However, [12]

can show, that unstressed glass plates follow a hierar-

chical breakup process with power law size distribution



4 Jens H. Nielsen et al.

while stressed glass plates follow a random (Poisson)

process with fragments showing an exponential size dis-

tribution with a natural characteristic length as a fit

parameter linked to the residual stress. Kooij et al. [12]

found, that the characteristic length scale of the expo-

nential size distribution is approximately the thickness

of the plate, h, which is in agreement with the findings

of [22].

In cf. Figure 4 the variables of the experiments from

[18] ”pre-stress” and ”thickness” are graphically en-

coded by colour and symbols respectively. Our analysis

delivers two patterns for the relationship between en-

ergy density UD and the fragment intensity λ (both in

log10-scale). It is especially interesting, that the pat-

terns are associated with two scales:

log10(UD) =

{
0.381 · log10(λ) + 4.78 if λ ∈ 10[−3;−2]

0.643 · log10(λ) + 5.30 if λ ∈ 10[−2;−1]

(3)

Despite that novel finding of two separated func-

tions for relating fracture pattern parameters and strain

energy density, UD, the expansion model derived in Sec-

tion 3 will be based on the more simple relation re-

ported in [9] for the relation between the fragment size

parameter δ = 2r0 and the strain energy density UD is

used:

UD =
122.1 J m−2

δ
⇔ r0 =

61.05 J m−2

UD
. (4)

Thermally pre-stressed glasses used for building ap-

plications reside only in the scale from -2 to -1 for

log10(λ) in Figure 4, which correspond to a range of

3 to 12 mm for δ in Figure 5. Statistical evaluation of

that relation yields R2 = 0.93 given the data in [9] and

hence delivers a suitable and simple model for further

analysis within the context of this paper.

Having established relations between the per-stress

level of the glass pane and the characteristic size of the

mean glass fracture particle, the next section is con-

cerned with the computation of the expansion of ther-

mally pre-stressed glass fragments.

2.3 Expansion of thermally Pre-Stressed Glass

Fragments

The release of residual stresses in tempered glass leads

to an overall in-plane expansion of a glass plate due to

straining of the individual fragments. In [13] it is shown

how a single fragment is deforming when the pre-stress

is released.

y = 122100 x-1

R² = 0.93
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8 mm + 54 MPa

12 mm + 27 MPa

12 mm + 30 MPa

12 mm + 31,5 MPa

12 mm + 38 MPa

12 mm + 47 MPa

12 mm + 55,5 MPa

analytical

Fig. 5 Elastic strain energy density, UD, versus Fragment
size parameter, δ. Adapted and enhanced using data from
[9].

The expansion of a tempered glass plate due to frag-

mentation is investigated by searching for the deforma-

tions of an average fragment and then integrate the

contributions over a specific glass plate to obtain the

total expansion as indicated in Figure 7.

An efficient (in terms of computational costs) axi-

symmetric FE model as described in [13] is applied.

This indicates that each fragment is, initially, consid-

ered as a cylinder with height equal to the glass thick-

ness, h, and radius, r, representing the in-plane size of

the fragment Figure 6.

Initially the cylinder is considered stress free, how-

ever, in the second step a parabolic stress distribution

(over the height) is applied by means of a prescribed

temperature field. In the third step boundary condi-

tions representing the neighbouring glass are removed

which will represent the fragmentation of the glass.

However, due to linearity (linear elastic material, small

displacements and deformations) we can skip some of

the intermediate steps and apply the stress state di-

rectly on the cylinder without boundary conditions (ex-

cept for those needed to prevent rigid body motions).

Furthermore, symmetry can be utilised in order to re-

duce the computational costs even further and only 1/4

of the cylindrical cross-section was meshed as indicated

in Figure 6. Due to the high stress variation in the

fragment, a dense finite element mesh is required. For

these calculations second order displacement elements
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were used with at least1 100 elements through the (full

height) of the fragment. This model is extremely effi-

cient and for the results presented in this paper more

than 20000 computations with varying parameters were

carried out. The principles of the FE-model was exper-

imentally validated in the paper [25]. The output from

a single simulation, as shown in Figure 6, provides both

stresses and deformations of a fragment.

The primary result of interest for this study was

the in-plane expansion of the fragments due to their

horizontal deformation at the top and the bottom of

each fragment. For this, it is assumed, that the stress

distribution is homogeneous throughout the glass plate,

which is a fairly good approximation from a distance of

already two times the thickness from the edges. As glass

plates are typically very thin compared to their width

and length, the influence of the stress distribution at

the edges is neglected.

When a pre-stressed glass plate fractures, the neigh-

bouring fragments will ”push” each other, resulting in

a net expansion of the plate, as sketched in Figure 7,

which is used for calculating the total free expansion.

From the FEM-model, as shown in Figure 6, a rela-

tive maximum in-plane expansion of a fragment can be

found by simply dividing the maximum in-plane dis-

placement of the fragment, ur, by the size of the (un-

deformed) fragment, r0:

εr =
ur
r0
. (5)

This quantity is comparable to a strain and is denoted,

εr, and referred to as the maximum radial strain.

By assuming that all fragments in a glass plate can

be represented (on average) by the fragment used in

the model, it is then possible to estimate the total

free in-plane expansion of a thermally tempered glass

plate. However, since we assume all fragments to ex-

pand equally, the total free expansion in any in-plane

direction, ∆ui, can be calculated by simply multiply-

ing the given plate dimension with the maximum radial

strain for a representative fragment:

∆ui = `i · εr (6)

where subscript i indicates a direction and `i is the in-

plane dimension in the i’th direction.

From the parametric study ur is recalculated to εr
using Eq. (6). A plot showing this strain as a function of

the surface residual stress, σs, for different thicknesses

can be seen in Figure 8.

1 In the FE analysis, several different models were used as
the geometry (fragments size) was one of the key parameters
investigated.

Initial fragment size

(a)

(b)

(c)

z

r
θ

r0

t
2

Fig. 6 Deformations in a fragment (σs = −75MPa, h =
8mm, r0 = 5mm, E = 70GPa and ν = 0 23). (a) Deformed
cylindrical fragment. (b) Radial displacements, ur, and a typ-
ical mesh. (c) Magnitude of the displacements. Arrows indi-
cates direction and magnitude. The red square indicates the
initial shape. All plots are shown with displacements magni-
fied 100 times.
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2ur

2r0

h

undeformed fragment

Fig. 7 Expansion of a glass plate due to deformations in
neighbouring fragments. The red lines indicates the unde-
formed fragment geometry.
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Fig. 8 Radial strain of a fragment as function of the residual
surface stress for different thicknesses of the glass and a fixed
fragment size (r0 = 5 mm)

From the Figure it is seen that the response is linear

and it is therefore reasonable to normalise the strain

with σs. Doing this allows us to plot the variations with

the fragment size, r0. This is shown in Figure 9.

From the Figure 9 it can be noticed that all curves

seems to have the same overall shape and normalis-

ing the horizontal axis with the thickness, h, yields all

curves to coincide. This is shown in Figure 10.

3 Equivalent Temperature Difference (ETD)

Model for in-plane Expansion of Fractured

Thermally Pre-stressed Glass Panes

Modelling concrete shrinkage effects and primary as

well as secondary effects on the composite structure via

equivalent temperature differences (ETD) and induced

linear expansion and / or curvature is well known and

established for steel-concrete composite structures in

both academia and engineering practice [26, 27]. This
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h=12.0
h=15.0
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Fig. 9 Nomalised radial strain versus fragment size for dif-
ferent thicknesses.
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h
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−0.8

−0.6

−0.4

−0.2

0.0

ε r σ
s

[M
P

a
−

1
]

×10−5

Fig. 10 Normalised radial strain versus normalised fragment
size.

paper takes the foundations laid so far to elaborate a

equivalent temperature differences (ETD) model upon

a thermal expansion analogy for strains to provide a

handy method of estimating the average amount of in-

plane expansion of thermally pre-stressed glass panes.
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3.1 Deriving the ETD model for the free expansion of

tempered glass at failure

In analogy to the definition of thermal strains via a

thermal expansion coefficient, αth, and a governing tem-

perature difference, ∆T ,

εth = αth∆T (7)

a fracture expansion coefficient, αfr can be defined in

order to establish a relation between the free expansion

strain caused by fragmentation of the tempered glass,

εfr, and the residual stress state, quantified by σs < 0;

εfr = αfr
ν − 1

E
σs. (8)

The term, (ν−1)/E, is governing the in-plane behaviour

of a plate and, E, and, ν, represents Young’s modu-

lus and Poisson’s ratio respectively. The free expansion

strain caused by the fracture, εfr, can be interpreted as

the total strain of a given tempered glass plate upon

fragmentation.

Enforcing compatibility of the ”strain from frac-

ture”, εfr, with the maximum radial strain, εr, delivers:

εr = εfr. (9)

The fracture expansion coefficient, αfr, from Eq. (8)

can be determined through the FE-analysis on the ra-

dial strain, εr, as carried out above and summarised in

the plot shown in Figure 10. Multiplying the curve in

Figure 10 with E/(ν − 1) as indicated in Eq. (8) the

fracture expansion coefficient, αfr, can be found as a

function of the fragment size relative to the glass thick-

ness, r0/h, as shown in Figure 11. The upper limit for

the fracture expansion coefficient is αfr = 1, which cor-

responds to a zero fragment size. The physical interpre-

tation of this is that if the glass is completely pulverised,

all residual stresses are released and are all converted

linear elastically into the fracture expansion strain. For

(unrealistically) large fragment sizes the curve tends to-

wards zero indicating that the relative amount of resid-

ual stresses converted into fracture expansion strain ap-

proaches zero.

In Figure 11, the first and, from a practical point of

view, most relevant part of the curve is fitted using a

hyperbolic secant function, sechx = 1
cosh x , as this func-

tion have the right properties with horizontal asymp-

totes for x = 0 and x → ∞. A function on the form:

αfr

(r0
h

)
= a1 sech

(
b1
r0
h

)
+ (1− a1) (10)

was therefore fitted to the plot for r0
h ≤ 3.7 with rela-

tively good agreement as shown in Figure 11. This value

corresponds roughly to σs = −50 MPa for a 3 mm glass

which we will consider maximum fragment size for a

standard thickness thermally pre-stressed glass.

Within this paper in the sense of a statistical first

order expectation approximation it is assumed, that the

radial strain shown in Figure 6 is fully contributing to

the plate’s expansion after fracture. Hence, this paper

specifies the nomenclature ”〈·〉” to formally emphasise,

that the derived quantity is to be interpreted as a sta-

tistical first-order approximation of the expected value

of the respective quantity, so that Eq. 7 and 8 yield:

〈εth〉 = 〈εfr〉 ⇐⇒ αth 〈∆T 〉 = αfr
ν − 1

E
σs (11)

which after rearranging yields:

〈∆T 〉 =
αfr

αth

ν − 1

E
σs (12)

Using the proposed ETD method allows the use of

both analytical and commercial software to compute

an estimate of the effects of the stress state in adjacent

structural elements, see e.g. the examples in Section 4.2

.

4 Summary and Application Examples

In the previous section a model relating the free expan-

sion of a tempered glass plate with the residual surface

stresses, σs, was derived. In this section we will sum-

marise and provide some examples of usage, repeating

some of the key equations in the model for the conve-

nience of the reader.

The fracture expansion strain can be calculated from

Eq. (8):

εfr = αfr
ν − 1

E
σs ⇔ αfr =

εfr
σs

E

ν − 1
(13)

In this equation Young’s modulus, E, and Poisson’s ra-

tio, ν, for glass can be found in Table 1. The fracture

expansion coefficient, αfr, can be estimated from the

FEM study reported in Figure 11 in which the most

relevant part for tempered glass is fitted by an expres-

sion in form of:

αfr

(r0
h

)
= a1 sech

(
b1
r0
h

)
+ (1− a1) (14)

where the constants a1 and b1 can be found in Table 1.

The thickness of the glass, h, is assumed known.

The mean fragment size, r0, can be estimated from

[9] (cf. Eq. (4)) and the relation δ = 2r0 as:

r0 =
a2
UD

(15)
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R2 = 0.99781

y =0.862·sech(1.686x) + (1− 0.862)

FEM data
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Fig. 11 Relation between αfr and the ratio between the fragment size (radius) and the glass thickness, r/h. Notice the zoom
providing results for more typical values of r/h.

where, a2, can be found in Table 1 and, UD, is

the strain energy density for tempered glass given by

Eq. (2):

UD =
1− ν
5E

σ2
s (16)

Table 1 Parameters to be used for the ETD model.

Parameter Reference
E=70 GPa
ν=0.23

αth = 9.1 × 10−6 K−1

a1=0.862
Figure 11

b1 = 1.686
a2 = 61.05 J m−2 Eq. (4)

Combining Eqs. (13),(14), (15) and Eq. (16) we ob-

tain:

εfr =
ν − 1

E

(
a1 sech

(
5Ea2b1

hσ2
s (1− ν)

)
+ 1− a1

)
σs

(17)

Inserting all constants from Table 1 and rearrang-

ing, the expression can be written as:

εfr =
−σs

658.8× 103 MPa

[
1

+6.246 sech

(
4.679× 1016 m MPa2

hσ2
s

)]

(18)

From Eq. (18) a plot showing the fracture strain,

εfr, as a function of the residual surface stress, σs, for

different glass thicknesses, h, is generated and shown in

Figure 12:

4.1 Example 1: ETD Model Prediction for the

expansion due to fracture of a mono tempered glass

pane

In this example we will consider a `x×`y = 2.5 m× 1 m,

10 mm thick monolithic tempered glass pane. The resid-

ual surface stress is measured to σs = −85 MPa. The

total free expansion in case of failure can now be esti-

mated using Eq. (6) and Eq. (18) or Figure 12.

According to Eq. (18), the fracture strain in the

glass pane is εfr = 791× 10−6. The total expansion in

the x and y directions, then becomes:

ux = εfr · `x = 791× 10−6 · 2500 mm = 1.98 mm

uy = εfr · `x = 791× 10−6 · 1000 mm = 0.791 mm
(19)

The equivalent temperature for use inside a Finite

Element software can be computed using Eq. 12, which

for this example yields:

〈∆T 〉 = 88K (20)

assuming αth = 9.1× 10−6 K−1 which is commonly

used for glass.
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Fig. 12 The fracture strain as a function of the residual surface compression for different glass thicknesses.

4.2 Example 2: ETD model prediction for partly

fractured laminated glass

The model can also be used for estimating the extra

load on intact panes in (partly) fractured laminated

glass.

Considering a two ply laminated glass as shown in

Figure 13a. In the initial configuration, no external stresses

are present and the two plies have the thickness h1 and

h2.

In the intermediate pseudo configuration, see Fig-

ure 13b, the fractured tempered glass (ply 1) is shown

with its free expansion and the intact glass (ply 2) is not

affected by this. Obviously, the expansion will be trans-

ferred through the interlayer and a first approximation

to the final state can be found by assuming a stiff inter-

layer and no rotations (bending), see Figure 13c. Now

we can find the forces in the final configuration by first

equal length for the two plies:

L(1 + εfr) + L(1 + εfr) · ε1 = L+ L · ε2 ⇔
εfr + (1 + εfr) · ε1 = ε2

(21)

Now applying Hookes law and requiring equilibrium,

F1 = −F2 = F we find:

εfr + (1 + εfr) ·
−F
E1h1

− F

E2h2
= 0 (22)

Intact

Interlayer

Failed (free exp.)

a) Initial configuration

b) Intermediate pseudo configuration

c) Final configuration

Failed (free exp.)

Intact

Interlayer

Intact

Interlayer

Intact

h1 = hfr

h2

εfr

ply 1

ply 2

ply 1

ply 2

ply 1

ply 2

L

L(1 + εfr)

F1

F2

Fig. 13 Laminated glass, ply 1 is tempered glass. a) shows
the initial configuration, b) shows the free expansion of the
tempered glass and c) shows the total elongation of the lam-
inated glass.

from which the force, F , and the stress in the intact

ply can be found as:

F = h2σ2 =
h1E1h2E2εfr

h1E1 + (1 + εfr)h2E2
. (23)

As an example, one could consider the 10 mm glass

with a surface residual stress, σs = −85 MPa from Sec-

tion 4.1 for both layers in a two-ply laminated glass
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plate. If the one layer fails, the stresses in the intact

layer can be estimated from Eq. (23). Assuming same

stiffness for both plies, h1 = h2 = 10 mm and E1 =

E2 = 70 GPa we find, in this case, the stress in the

intact pane to be σ = 28 MPa.

An unknown in the model is the compressive stiff-

ness for fractured tempered glass. However, to the best

knowledge of the authors, such investigations have not

yet been published. It is expected that the stiffness of

the broken glass is lower compared to the intact glass

and is likely to be strain dependent.

The plot in Figure 14 shows an example of the ten-

sile stress in the intact layer, σ2, as a function of the

compressive stiffness of the broken layer, E1, for vary-

ing thicknesses of the intact layer, h2. From the results

in the figure, it is seen that combining a 15 mm fully

tempered glass with e.g. a 6 mm thick annealed glass

may cause problems in case of failure of the tempered

glass as the peak stress in the annealed glass may reach

up to 65 MPa.

0 20 40 60

E1 [GPa]
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20

30

40

50

60

70

80

σ
2

[M
P
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2
3
4
5
6

8
10
12
15

19

25

Fig. 14 Peak stress in intact ply, σ2, as a function of the
stiffness in the broken ply, E1, for different thicknesses of the
intact ply, h2 (in mm). The broken ply is having a thickness
of h = 15 mm and a residual surface stress of σs = −120 MPa.

The proposed model does not take into account the

stiffness of the inter-layer and bending of the plies due

to asymmetric failure. However, the fracture velocity

of tempered glass has been measured using high-speed

cameras to be approximately 1466 m s−1 [1], indicating

a very high loading rate of the inter-layer and thereby

a dynamic problem. It is well known, that common in-

terlayers, such as Poly Vinyl Butyral (PVB), Ethylene

Vinyl Acetate (EVA) and ionomers e.g. SentryGlas®,

shows an increase in stiffness with the loading rate.

This supports the assumption of a full shear transfer

between the plies, however, it also indicates that some

of the load might actually be carried by the interlayer,

which is not accounted for in the current model. Due

to the dynamic nature of the problem, the strength of

the intact glass may also be higher than what is often

assumed for quasi static problems, see e.g. [28] where

a review on available strength data for soda-lime-silica

glass is given.

5 Summary and Conclusion

This paper first presented experimental and theoretical

background on the glass fracture process for thermally

pre-stressed glasses. The 2D-macro-scale fragmentation

of glass can be basically described by the fragment par-

ticle size, δ, and the fracture particle intensity, λ, which

both are related to the pre-stress induced strain en-

ergy density, UD, before fracture. Then further details

on Finite Element (FE) simulations of single cylindri-

cal glass particles are reported, which allowed to estab-

lish functional relations of the glass fragment particle

dimensions, the pre-stress level and the resulting maxi-

mum in-plane deformation. These results are then com-

bined with the two-parameter fracture pattern mod-

elling to furnish an equivalent temperature differences

(ETD) for describing the in-plane expansion of ther-

mally pre-stressed glass panes due to fracturing. Fi-

nally, two examples from engineering practice demon-

strated the application of the developed graphs and for-

mulas for further use in analytical as well as FE analysis

of fractured glass laminates.

Further analysis of the fracture particle statistics vs.

strain energy density proved existence of two glass frac-

ture statistic regions. Despite that novel finding within

Section 2.2, for engineering practice it is sufficient to

only concentrate on one of the two fracture domains

(3 mm to 12 mm fragment particle size). The idea of

ETD then was applicable straight forward for relating

FE analysis results of the deformations of a single frag-

ment upon failure of the glass with the total free expan-

sion of a piece of tempered glass from its initial dimen-

sions and residual surface compressive stress by using a

thermal strain analogy. Here, the derived ETD model

provides a tool for estimating the free (unconstrained)

expansion of tempered glass at failure, which is not pos-

sible at all at the moment. To that end, our approach

in form of handy ETD load cases within both, analyt-

ical as well as FE analysis, allows for the estimation

of (i) secondary effects in the fractured laminate such
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as fracture-expansion-induced deformations or stresses,

and (ii) effects due to second order influences on resid-

ual load bearing capacity of the fractured glass laminate

as well as of support structures or remaining parts of

glass laminates. Furthermore, a simple analytical model

for estimating the peak stress in the intact ply in a

partly broken laminated glass plate is provided. From

the model it is found that the peak stress must be con-

sidered relevant and the model also suggest that care

should be taken if laminating glass plies with too differ-

ent thicknesses or mixing both tempered and annealed

glass. Future research needs to address experimental

validation of this ETD model on various glass lami-

nates, where level of pre-stress as well as laminate size

and glass thicknesses are varied. Furthermore, this ETD

model needs to be enhances for the influence of different

interlayer types as these possess pronounced differences

in stiffness and hence shear coupling of the glass panes

during fracture and speed of redistribution of internal

forces in the post-fractured state.
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