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Abstract

Filter pruning has been widely used for neural network compression because of
its enabled practical acceleration. To date, most of the existing filter pruning
works explore the importance of filters via using intra-channel information. In this
paper, starting from an inter-channel perspective, we propose to perform efficient
filter pruning using channel independence, a metric that measures the correlations
among different feature maps. The less independent feature map is interpreted as
containing less useful information/knowledge, and hence its corresponding filter
can be pruned without affecting model capacity. We systematically investigate the
quantification metric, measuring scheme and sensitiveness,/reliability of channel
independence in the context of filter pruning. Our evaluation results for different
models on various datasets show the superior performance of our approach. Notably,
on CIFAR-10 dataset our solution can bring 0.90% and 0.94% accuracy increase
over baseline ResNet-56 and ResNet-110 models, respectively, and meanwhile the
model size and FLOPs are reduced by 42.8% and 47.4% (for ResNet-56) and 48.3%
and 52.1% (for ResNet-110), respectively. On ImageNet dataset, our approach can
achieve 40.8% and 44.8% storage and computation reductions, respectively, with
0.15% accuracy increase over the baseline ResNet-50 model. The code is available
at https://github.com/Eclipsess/CHIP_Neur[PS2021,

1 Introduction

Convolutional neural networks (CNNs) have obtained widespread adoptions in numerous important
Al applications [17, 148\ 147, 12} [11} 44} 35]]. However, CNNs are inherently computation intensive
and storage intensive, thereby posing severe challenges for their efficient deployment on resource-
constrained embedded platforms. To address these challenges, model compression is widely used
to accelerate and compress CNN models on edge devices. To date, various types of compression
strategies, such as network pruning [15} 1164137, 160l 28} [14} 1} 149} 10,163, 1364 18} 13113} 12, 2511531150, 9}
391 133]], quantization [[15} 55} 43\ 18], low-rank approximation [56, 40, 58| 57]], knowledge distillation
[22] 141] and structured matrix-based construction [45} 29, 6], have been proposed and explored.
Among them, network pruning is the most popular and extensively studied model compression
technique in both academia and industry.

Based on their differences in pruning granularity, pruning approaches can be roughly categorized to
weight pruning [I16, [15]] and filter pruning [54} 127, 21} 138} 134]. Weight pruning focuses on the proper
selection of the to-be-pruned weights within the filters. Although enabling a high compression ratio,
this strategy meanwhile causes unstructured sparsity patterns, which are not well supported by the
general-purpose hardware in practice. On the other hand, filter pruning emphasizes the removal of
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(a) Feature information-based filter pruning from an intra-channel perspective.
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(b) Feature information-based filter pruning from an inter-channel perspective.

Figure 1: Intra-channel vs Inter-channel perspectives for filter pruning.

the entire selected filters. The resulting structured sparsity patterns can be then properly leveraged by
the off-the-shelf CPUs/GPUs to achieve acceleration in the real-world scenario.

Existing Filter Pruning Methods. Motivated by the potential practical speedup offered by filter
pruning, to date numerous research efforts have been conducted to study how to determine the
important filters — the key component of efficient filter pruning. A well-known strategy is to utilize
the norms of different filters to evaluate their importance. Such a "smaller-norm-less-important”
hypothesis is adopted in several pioneering filter pruning works [19]. Later, considering the
limitations of norm-based criterion in real scenarios, [20] proposes to utilize geometric median-
based criterion. More recently, first determining those important feature maps and then preserving
the corresponding filters, instead of directly selecting the filters, become a popular strategy for
filter pruning. As indicated in [31]], the features, by their natures, reflect and capture rich and
important information and characteristics of both input data and filters, and hence measuring the
importance of features can provide a better guideline to determine the important filters. Built on this
pruning philosophy, several feature-guided filter pruning approaches have been proposed
and developed, and the evaluation results show their superior performance over the state-of-the-art
filter-guided counterparts with respect to both task performance (e.g., accuracy) and compression
performance (e.g., model size and floating-point operations (FLOPs) reductions).

Determining Importance: Intra-channel & Inter-channel Perspectives. These recent advance-
ments on filter pruning indeed show the huge benefits of leveraging feature information to determine
the importance of filters. To date, some feature-guided approaches measure the importance from the
intra-channel perspective. In other words, no matter which importance metric is used, the importance
of one feature map (and its corresponding filter), is measured only upon the information of this
feature map in its own channel. On the other aspect, the inter-channel perspective, which essentially
determines the filter importance via using cross-channel information [20, [42}, 46 [52] 26], is still being
further explored. To be specific, and [42] adopt cross-channel geometric median and Hessian, re-
spectively, to measure the channel importance. However, such measurement is based on filter instead
of feature map information, and hence the rich and important feature characteristics are not properly
identified and extracted. also explore inter-channel-based filter pruning via introducing
budget constraints across channels. However, such exploration and utilization of the inter-channel
information are implicit and indirect, thereby limiting the practical pruning performance.



Benefits of Inter-channel Perspective. In principle, the feature information across multiple channels,
if being leveraged properly, can potentially provide richer knowledge for filter pruning than the intra-
channel information. Specifically, this is because: 1) the importance of one filter, if being solely
determined by its corresponding feature map, may be sensitive to input data; while the cross-channel
feature information can bring more stable and reliable measurement; and 2) consider the essential
mission of pruning is to remove the unnecessary redundancy, the inter-channel strategy can inherently
better identify and capture the potential unnecessary correlations among different feature maps (and
the corresponding filters), and thereby unlocking the new opportunity of achieving better task and
compression performance.

Technical Preview and Contributions. Motivated by these promising potential benefits, in this
paper we propose to explore and leverage the cross-channel feature information for efficient filter
pruning. To be specific, we propose Channel Independence, a cross-channel correlation-based
metric to measure the importance of filters. Channel independence can be intuitively understood as
the measurement of "replaceability": when the feature map of one filter is measured as exhibiting
lower independence, it means this feature map tends to be more linearly dependent on other feature
maps of other channels. In such a scenario, the contained information of this low-independence
feature map is believed to have already been implicitly encoded in other feature maps — in other
words, it does not contain useful information or knowledge. Therefore the corresponding filter, which
outputs this low-independence feature map, is viewed as unimportant and can be safely removed
without affecting the model capacity. Overall, the contributions of this paper are summarized as:

* We propose channel independence, a metric that measures the correlation of multiple feature
maps, to determine the importance of filters. Built from an inter-channel perspective, channel
independence can identify and capture the filter importance in a more global and precise
way, thereby providing a better guideline for filter pruning.

* We systematically investigate and analyze the suitable quantification metric, the complexity
of the measuring scheme and the sensitiveness & reliability of channel independence, and
then we develop a low-cost fine-grained high-robustness channel independence calculation
scheme for efficient filter pruning.

* We empirically apply the channel independence-based importance determination in different
filter pruning tasks. The evaluation results show that our proposed approach brings very
high pruning performance with preserving high accuracy. Notably, on CIFAR-10 dataset
our solution can bring 0.90% and 0.94% accuracy increase over baseline ResNet-56 and
ResNet-110 models, respectively, and meanwhile the model size and FLOPs are reduced
by 42.8% and 47.4% (for ResNet-56) and 48.3% and 52.1% (for ResNet-110), respectively.
On ImageNet dataset, our approach can achieve 40.8% and 44.8% storage and computation
reductions, respectively, with 0.15% accuracy increase over the baseline ResNet-50 model.

2 Preliminaries

Filter Pruning. For a CNN model with L layers, its [-th convolutional layer wh =
{.’F'l17 .’FZQ, e ,.’F'lcl} contains ¢ filters F! € R K <K where ¢!, ¢! and k! denote the number
of output channels, the number of input channels and the kernel size, respectively. In general, network
pruning can be formulated as the following optimization problem:

oin LY f(X, W) st [[Wlo < &, (1)

where L(-, ) is the loss function, Y is the ground-truth labels, X is the input data, and f(-, ) is the
output function of CNN model {W'}% . Besides, || - ||o is the £o-norm that measures the number of
non-zero filters in the set, and ! is the number of filters to be preserved in the [-th layer.

Feature-guided Filter Pruning. Consider the feature maps, in principle, contain rich and important
information of both filters and input data, approaches using feature information have become popular
and achieved the state-of-the-art performance for filter pruning. To be specific, unlike the filter-guided



methods that directly minimize the loss function involved with filters (as Eq. [I), the objective of
feature-guided filter pruning is to minimize the following loss function:

. ! ! !
{j\r"n?zl LY,A), st ||Alo <k, )
where A" = {A}, AL, -+, A} e R¢ XhXw jg a set of feature maps output from the [-th layer, and

Al € R ig the feature map corresponds to the i-th channel. In general, after the ' important
feature maps are identified and selected, their corresponding &' filters are preserved after pruning.

3 The Proposed Method

3.1 Motivation

As formulated in Eq. 2] feature-guided filter pruning leverages the generated feature maps in each
layer to identify the important filters. To achieve that, various types of feature information, such as
the high ranks [31]] and the scaling factors [51], have been proposed and utilized to select the proper
feature maps and the corresponding filters. A common point for these state-of-the-art approaches
is that all of them focus on measuring the importance via using the information contained in each
feature map. On the other hand, the correlation among different feature maps, as another type of rich
information provided by the neural networks, is little exploited in the existing filter pruning works.

Why Inter-channel Perspective? We argue that the feature information across multiple channels
is of significant importance and richness, and it can be leveraged towards efficient filter pruning.
Such an inter-channel perspective is motivated by two promising benefits. First, filter pruning is
essentially a data-driven strategy. When the importance of one filter solely depends on the information
represented by its own generated feature map, the measurement of the importance may be unstable
and sensitive to the slight change of input data. On the other hand, determining the importance
built upon information contained in the multiple feature maps, if performed properly, can reduce
the potential disturbance incurred by the change of input data, and thereby making the importance
ranking more reliable and stable. Second, the inter-channel strategy, by its nature, can better model
and capture the cross-channel correlation. In the context of model compression, these identified
correlations can be interpreted as a type of architecture-level redundancy, which is exactly what filter
pruning aims to remove. Therefore, inter-channel strategy can enable more aggressive pruning while
still preserving high accuracy.

3.2 Channel Independence: A New Lens for Filter Importance

Key Idea. Motivated by these promising benefits, we propose to explore the filter importance from
the inter-channel perspective. Our key idea is to use channel independence to represent the impor-
tance of each feature map (and its corresponding filter). To be specific, when one feature map of
one channel is highly linearly dependent on other feature maps of other channels, it implies that
its contained information has already been largely encoded in other feature maps. Consequently,
even we remove the corresponding filter, the represented information and knowledge of its generated
low-independence feature map can still be largely preserved and approximately reconstructed by other
feature maps of other filters after the fine-tuning procedure. In other words, the filters that generate
low-independence feature maps tend to exhibit more "replaceability", which can be interpreted as
lower importance. Therefore, removing those filters with low channel-independence feature maps
will be safe while still preserving high model capacity.

How to Measure Channel Independence? Next we discuss how to properly measure the indepen-
dence of one feature map from others. To that end, four important questions need to be answered.

Question #1: Which mathematical metric should be adopted to quantify the independence of one
feature map from other feature maps?

Analysis. Considering the entire set of feature maps generated from one layer is a 3-D tensor, we
propose to extract the linear dependence information of each feature map within the framework of
linear algebra. To be specific, given output feature map set of the [-th layer A, we first matricize

T T T ! . .
Al to Al = [@}”,al - ,alcl T € Re > where a row vector al € R is the vectorized
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Figure 2: The change of (a) rank and (b) nuclear norm of the entire set of feature maps (A" when
one feature map (aé) is removed. The x-axis represents the index of the feature map that is removed.
The y-axis represents the corresponding rank/nuclear norm change of the entire set of feature maps.
The feature maps are output from one layer of the ResNet-50 model with input as ImageNet image.
It is seen that change of nuclear norm can better reveal the impact of the deleted feature map
on the entire set of feature maps.

AL In such a scenario, the linear independence of each vectorized feature map a', as a row of
the matricized entire set of feature maps A’, can be measured via the existing matrix analysis tool.
The most straightforward solution is to use rank to determine the independence of a!, since rank
mathematically represents the maximum number of linearly independent rows/columns of the matrix.
For instance, we can remove one row from the matrix, and calculate the rank change of the matrix,
and then identify the impact and the importance of the deleted row — the less rank change, the less
independence (and the importance) of the removed row.

Our Proposal. However, in the context of filter pruning, we believe, the change of nuclear norm of
the entire set of feature maps, is a better metric to quantify the independence of each feature map.
This is because, as the ¢1-norm of singular values of the matrix, the nuclear norm can reveal richer
"soft" information on the impact of the deleted row on the matrix; while the rank, as the ¢y-norm
of the singular values, is too "hard" to reflect such change. For instance, as shown in Fig. [2] when
we select aﬁ, as one row of Al to be removed, the rank change of A is almost the same regardless
of our selection of a!; while the corresponding changes of nuclear norm vary significantly when
different a! are deleted. Therefore, the change of nuclear norm can be viewed as a more precise
metric to measure the linear independence of one feature map in a more fine-grained way. In general,
the channel independence of one feature map is defined and calculated as below:

Definition 1 (Channel independence of single feature map) For the [-th layer with output feature
maps A' = {AL, AL .- Al} e Re XhXw the Channel Independence (CI) of one feature map
Al € R jp the i-th channel is defined and calculated as:

CI(A}) = |A']l. — (1M © A, 3)

X . - . .

where A! € R X" ig the matricized A’, Il - |« is the nuclear norm, ® is the Hadamard product, and
! . . . . .

M} € R¢ *h s the row mask matrix whose i-th row entries are zeros and other entries are ones.

Question #2: What is the proper scheme to quantify the independence of multiple feature maps?

Analysis. Eq. E] describes the measurement of channel independence for a single feature map.
However, in practice filter pruning typically aims to remove multiple filters, which means the
independence of the combination of multiple feature maps needs to be calculated. In the case of
pruning m filters, such scenario corresponds to checking the changes of nuclear norm of the original

cl-row A! after removing m rows (al). A straightforward solution is to just calculate Cf,i changes of
nuclear norms for all the possible m-row removal choices, and then select the one which corresponds
to the smallest change. However, this strategy is very computationally expensive, and sometimes
even intractable when ¢! is large. For instance, in order to identify the smallest nuclear norm change
for pruning 50% filters of a 256-output channel ResNet-50 layer, such brutal-force measurement
requires more than 5 x 107 times of nuclear norm calculation.

Our Proposal. To address this computational challenge, we propose to leverage the independence
of individual feature map to approximate the independence of their combination. To be specific, in
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Figure 3: Example of filter pruning process using the change of nuclear norm-based channel indepen-
dence (CI) criterion.

order to determine m least independent rows in the A!, we first iteratively remove one row (al) from
A! and calculate the corresponding nuclear norm change between the remaining (¢! — 1)-row matrix
and the original c!-row A'. Then, among the ¢! calculated changes, we identify the m smallest ones
and the corresponding removed al. Those selected m vectorized feature maps a! are interpreted
as the less independent from other feature maps, and hence their corresponding filters F i are less
important ones that should be pruned. In general, this individual independence-based measurement
can closely approximate the combined independence of multiple feature maps (see Definition 2).
Such approximation requires much less computational complexity (reduction from O(C(N, k)) to
O(N)); while still achieving superior filter pruning performance (see Section for evaluation results).

Definition 2 (Approximated channel independence of combined multiple feature maps) For the

l-th layer with output feature maps Al e Re xhxw , the channel independence of combined m feature
maps {Aéi Y™ ., where Aéi € R"X js in the b;-th channel, is defined and approximated as:

CI({A} L)) 2 A . = 1M, ., © Al = ) CI(A}), 4)
i=1
where M, ,ﬁl b is the multi-row mask matrix, in which the by, - - - , b,,,-th row entries are zeros and

all the other entries are ones.

Question #3: How is the sensitiveness of channel independence related to the distribution of input
data?

Our Observation. Consider our proposed channel independence-based filter pruning is a data-driven
approach, its reliability with different distributions of input data should be carefully ensured and
examined. To that end, we perform empirical evaluations on channel independence with respect to
multiple input images. We observe that the average channel independence of each feature map is
very stable at the batch level. In other words, we can simply input small batches of image samples,
and calculate the average channel independence, and then such averaged channel independence with
a small number of input data can be used to estimate the channel independence with all the input
data. As illustrated in Fig. ] for the same feature map, the average channel independence in different
batches remains very similar, thereby indicating that our channel independence-based approach is
robust against different input data.

Question #4: Is this one-shot importance determination scheme good enough? Do we need to further
learn and adjust the pruning mask from the data?

Our Observation. As described above, our proposed scheme calculates the channel independence to
identify the filter importance. Considering our approach is built on one-shot calculation, a natural
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Figure 4: The channel independence of feature maps for one layer in ResNet-50. Here the channel
independence is averaged for one batch of input images. The x-axis is the index of the feature
map. The y-axis is the index of batches of input images. Here the batch size is 128. Different
colors denote the different values of channel independence. It is seen that the average channel
independence is very stable regardless of different input data batches.

extension is to further adjust the importance ranking via additional learning. To be specific, if we
interpret the filter pruning is a channel-wise masking operation over the entire weight tensor, the
selection of channel mask can be learned from data, and such learning process can use the pruning
mask determined by our approach as the initialization. Though in principle this learning-based
strategy is expected to enable additional performance improvement, our empirical evaluations show
that the consecutive learning procedure does not easily bring further accuracy increase (with the target
compression ratio) or compression ratio increase (with the target accuracy) — more experimental
details are reported in Supplementary Material. We hypothesize the reason for such phenomenon is
that, our proposed nuclear norm change-based channel independence, though only requires one-time
calculation, already identifies and captures the importance of feature maps (and its corresponding
filters) with high quality, and hence further learning-based adjustment of pruning mask does not
easily provide additional improvement.

The Overall Algorithm. After addressing the above four problems, we can then integrate our
proposals and observations to develop the entire filter pruning procedure from the inter-channel
perspective. Algorithm I]describes and summarizes the overall scheme for our proposed CHannel
Independence-based filter Pruning (CHIP) algorithm.

4 Experiments

4.1 Experimental Settings

Baselines Models and Datasets. To demonstrate the effectiveness and generality of our proposed
channel independence-based approach, we evaluate its pruning performance for various baseline
models on different image classification datasets. To be specific, we conduct experiments for three
CNN models (ResNet-56, ResNet-110 and VGG-16) on CIFAR-10 dataset [24]]. Also, we further
evaluate our approach and compare its performance with other state-of-the-art pruning methods for
ResNet-50 model on large-scale ImageNet dataset [3]].

Pruning and Fine-tuning Configurations. We conduct our empirical evaluations on Nvidia Tesla
V100 GPUs with PyTorch 1.7 framework. To determine the importance of each filter, we randomly
sample 5 batches (640 input images) to calculate the average channel independence of each feature
map in all the experiments. After performing the channel independence-based filter pruning, we then



Algorithm 1 CHannel Independence-based Pruning (CHIP) procedure for the [-th layer

Input: Pre-trained weight tensor W', N sets of feature maps A’ = {A}, AL, -- - Al} e R¢' xhxw
from N input samples, and the desired number of filters to be preserved &'

Output: Pruned weight tensor Wimme.
1: for each input sample do
2 Flatten feature maps: A' := reshape(A', [¢}, hw]);
3 fori=1toc do
4: CI calculation: Calculate CT(Al) via Equation
5: end for
6: end for

7: Averaging: Average C'I(A!) under all N input samples;

8: Sorting: Sort {CI(A!) flzl in ascending order;

9: Pruning: Prune ¢! — ! filters in W' corresponding to the ¢! — x! smallest C'T(AL);

10: Fine-tuning: Obtain final Wimme via fine-tuning W' with removing the pruned filter channels.

perform fine-tuning on the pruned models with Stochastic Gradient Descent (SGD) as the optimizer.
To be specific, we perform the fine-tuning for 300 epochs on CIFAR-10 datasets with the batch size,
momentum, weight decay and initial learning rate as 128, 0.9, 0.05 and 0.01, respectively. On the
ImageNet dataset, fine-tuning is performed for 180 epochs with the batch size, momentum, weight
decay and initial learning rate as 256, 0.99, 0.0001 and 0.1, respectively.

Table 1: Experimental results on CIFAR-10 dataset.
Top-1 Accuracy (%)

Method Bascline Pruncd A # Params. (J%)  FLOPs (%)
ResNet-56
¢1-norm (2016) [27] 93.04 93.06 +0.02 0.73M(13.7) 90.90M(27.6)
NISP (2018) [59] 93.04 93.01 -0.03 0.49M(42.4) 81.00M(35.5)
GAL (2019) [32] 93.26 93.38 +0.12 0.75M(11.8) 78.30M(37.6)
HRank (2020) [31]] 93.26 93.52 +0.26 0.71M(16.8) 88.72M(29.3)
CHIP (Ours) 93.26 94.16 +0.90  0.48M(42.8) 65.94M(47.4)
- GAL (2019)[32] 9326  91.58  -1.68  029M(65.9)  49.99M(60.2)
LASSO (2017) [21]] 92.80 91.80 -1.00 N/A 62.00M(50.6)
HRank (2020) [31] 93.26 90.72 -2.54 0.27M(68.1) 32.52M(74.1)
CHIP (Ours) 93.26 92.05 -1.21 0.24M(71.8) 34.79M(72.3)
ResNet-110
¢1-norm (2016) [27] 93.53 93.30 -0.23 1.16M(32.4) 155.00M(38.7)
HRank (2020) [31] 93.50 94.23 +0.73 1.04M(39.4) 148.70M(41.2)
CHIP (Ours) 93.50 94.44 +0.94  0.89M(48.3) 121.09M(52.1)
- GAL (2019 [32] 9350 9274  -076  0.95M(44.8)  130.20M(48.5)
HRank (2020) [31]] 93.50 92.65 -0.85 0.53M(68.7) 79.30M(68.6)
CHIP (Ours) 93.50 93.63 +0.13 0.54M(68.3) 71.69M(71.6)
VGG-16
SSS (2018) [23]] 93.96 93.02 -0.94 3.93M(73.8) 183.13M(41.6)
GAL (2019) [32] 93.96 93.77 -0.19 3.36M(77.6) 189.49M(39.6)
HRank (2020) [31] 93.96 93.43 -0.53 2.51M(82.9) 145.61M(53.5)
CHIP (Ours) 93.96 93.86 -0.10 2.76M(81.6) 131.17M(58.1)
- GAL (2019)[32] 9396 9342  -054 2.67M(82.2) 171.89M(45.2)
HRank (2020) [31]] 93.96 92.34 -1.62 2.64M(82.1) 108.61M(65.3)
CHIP (Ours) 93.96 93.72 -0.24 2.50M(83.3) 104.78M(66.6)

~ HRank (2020) [31] ~ 9396 9123 273  1.78M(92.0)  73.70M(76.5)
CHIP (Ours) 93.96 93.18 -0.78 1.90M(87.3) 66.95M(78.6)




4.2 Evaluation and Comparison on CIFAR-10 Dataset

Table E] shows the evaluation results of the pruned ResNet-56, ResNet-110 and VGG-16 models on
CIFAR-10 dataset. To be consistent with prior works, we evaluate the performance for two scenarios:
targeting high accuracy and targeting high model size and FLOPs reductions.

ResNet-56. For ResNet-56 model, our channel independence-based approach can bring 0.90%
accuracy increase over the baseline model with 42.8% and 47.4% model size and FLOPs reductions,
respectively. When we adopt aggressive compression with 71.8% and 72.3% model size and FLOPs
reductions, we can still achieve high performance — our solution enables 1.33% higher accuracy than
HRank [31]] with the similar model size and computational costs.

ResNet-110. For ResNet-110 model, our approach can bring 0.94% accuracy increase over the
baseline model with 48.3% and 52.1% model size and FLOPs reductions, respectively. When we
perform aggressive pruning with 68.3% and 71.6% model size and FLOPs reductions, our pruned
model can still achieve 0.13% higher accuracy over the baseline model.

VGG-16. For VGG-16 model, our approach can bring 81.6% and 58.1% model size and FLOPs
reductions, respectively, with only 0.1% accuracy drop. Moreover, with 83.3% and 66.6% storage
and computational cost reductions, our pruned model can achieve 1.38% higher accuracy than the
model using other pruning approaches under a similar compression ratio. For even higher FLOPs
reduction (78.6%), our method can bring nearly 2% accuracy increase over the prior works.

4.3 Evaluation and Comparison on ImageNet Dataset

Table 2] summarizes the pruning performance of our approach for ResNet-50 on ImageNet dataset.
It is seen that when targeting a moderate compression ratio, our approach can achieve 40.8% and
44.8% storage and computation reductions, respectively, with 0.15% accuracy increase over the
baseline model. When we further increase the compression ratio, our approach still achieves superior
performance than state-of-the-art works. For instance, compared with SCOP [51]], our approach
shows higher accuracy (0.12%) in moderate compression region and the same accuracy in high
compress region; while meanwhile enjoying a much smaller model size and fewer FLOPs.

Table 2: Experimental results on ImageNet dataset.

Top-1 Accuracy (%) Top-5 Accuracy (%) Params. FLOPs

Baseline Pruned A Baseline Pruned A  [(%) L(%)

ResNet-50
ThiNet (2017) [37]] 72.88  72.04 -0.84 91.14 90.67 -0.47 337 36.8
SFP (2018)[19] 76.15 7461 -1.54 9287 92.06 -0.81 N/A 418
Autopruner (2020) [36] 76.15 7476 -1.39 9287 92.15 -0.72 N/A 48.7
FPGM (2019) [20] 76.15 7559 -0.56 9287 9263 -024 375 422
Taylor (2019) [38] 76.18 7450 -1.68 N/A N/A N/A 445 449
C-SGD (2019) [7] 7533 7493 -0.40 9256 9227 -0.29 N/A 462
GAL (2019) [132] 76.15 7195 -420 9287 9094 -193 169 43

RRBP (2019) [61]] 76.10 73.00 -3.10 9290 91.00 -1.90 N/A 545
PFP (2020) [130] 76.13 7591 -0.22 9287 92.81 -0.06 18.1 10.8
HRank (2020) [31]] 76.15 7498 -1.17 9287 9233 -0.54 36.6 43.7
SCOP (2020) [51] 76.15 7595 -0.20 92.87 9279 -0.08 428 453
CHIP (Ours) 76.15 7630 +0.15 92.87 93.02 +0.15 40.8 44.8
CHIP (Ours) 76.15 76.15 0.00 9287 9291 +0.04 44.2 48.7

~ PFP(2020) [30] ~ 76.13 7521 -092 9287 9243 -044 30.1 44
SCOP (2020) [51]] 76.15 7526 -0.89 9287 9253 -034 518 54.6
CHIP (Ours) 76.15 7526 -0.89 9287 92,53 -0.34 56.7 62.8

~ HRank (2020) [31]  76.15 7198 -4.17 9287 91.01 -1.86 460 62.1
HRank (2020) [31]] 76.15  69.10 -7.05 92.87 89.58 -3.29 67.5 76.0
CHIP (Ours) 76.15 7330 -2.85 9287 9148 -1.39 68.6 76.7

Method




5 Conclusion

In this paper, we propose to use channel independence, an inter-channel perspective-motivated
metric, to evaluate the importance of filters for network pruning. By systematically exploring the
quantification metric, measuring scheme, and sensitiveness and reliability of channel independence,
we develop CHIP, a CHannel Independence-based filter pruning for neural network compression.
Extensive evaluation results on different datasets show our proposed approach brings significant
storage and computational cost reductions while still preserving high model accuracy.

Broader Impact

As technology advances, cell phones, laptops, wearable gadgets and intelligent connected vehicles
with specific chips are required to handle more complicated tasks by deploying neural networks.
However, more powerful networks will cost more memory size and running time. Network pruning
is the main strategy to reduce the memory size and accelerate the run-time during the inference stage.
Benefiting from pruning techniques and specific designs for hardware [62, 4], IoT (Internet of Things)
devices are able to execute complex projects based on small and efficient models.
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Supplementary Material

6 Additional Studies

Besides the evaluation of various models on different datasets, we also perform additional studies to
obtain deep understandings of our proposed channel independence-based filter pruning approach.

6.1 Relationship between Channel Independence and Importance of Feature Map

We use a numerical example to demonstrate the relationship between Channel Independence (CI)
and importance of feature maps. Here for the following example 3 x4 matrix, each of its rows
denotes one vectorized feature map of one channel. Our goal is to identify the least important row
that can be represented by other rows. Intuitively, Row-1 or Row-2 should be removed due to their
linear dependence. Furthermore, because the lo-norm of Row-2 is less than that of Row-1, Row-2 is
expected to be the least important one.

09 08 11 1.2
< 0.81 0.72 0.99 1.08 ) (5)
08 09 12 11

Now according to Equation 3, we can obtain the CI of each row as shown in Table 3}

Table 3: CI of each row.

CI of Row-1 0.696
CI of Row-2 0.549
CI of Row-3  0.827

And it is seen that Row-2 is assigned as the smallest CI, which is consistent with our expectation.

6.2 Balance between Pruning and Task Performance

In the context of model compression, high pruning rate and high accuracy cannot be always achieved at
the same time — an efficient compression approach should provide good balance between compression
performance and task performance. Fig. [5]shows the change of accuracy of the pruned ResNet-50
on ImageNet dataset via using our approach with respect to different pruning ratios. It can be seen
that our approach can effectively reduce the number of model parameters and FLOPs with good
performance on test accuracy.

6.3 Accuracy-Pruning Rate Trade-off Curves of Different Pruning Methods

We study the accuracy-pruning rate trade-off curves of different pruning methods (CHIP, SCOP,
HRank) for ResNet-50 on ImageNet. The results are shown in Fig. [6}

6.4 Quantified Sensitiveness of Channel Independence to Input Data

To analyze the potential sensitiveness of channel independence to input data (as indicated in Question
#3), Fig. 4 in the main paper visualizes the average channel independence with different batches of
input images to show that the channel independence is not sensitive to the change of inputs. In this
supplementary material, we further quantify the sensitiveness. To be specific, for each batch of input
data (batch size = 128), we form a length-64 vector consisting of the average channel independence
for all the 64 feature maps of one layer (ResNet-56_55) in ResNet-56 model on CIFAR-10 dataset,
and then we calculate the Pearson correlation coefficient among different channel independence
vectors that correspond to different batches. As shown in Table 4] those vectors are highly correlated
with each other though they are generated from different input batches, thereby demonstrating the
low sensitiveness of channel independence metric to the input data.
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Figure 5: The accuracies and computational costs of our pruned ResNet-50 model with respect to
different pruning ratios (on ImageNet dataset).
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Figure 6: The accuracies of ResNet-50 model from different methods (CHIP, SCOP, HRank) with
respect to different pruning ratios (on ImageNet dataset).

6.5 Is Additional Adjustment of Importance Ranking Needed?

As analyzed in Question #4, a potential extension of our approach is to introduce an additional
phase to further adjust the importance ranking from the training data, once our one-shot channel
independence-based pruning is finished. To be specific, an even better channel-wise pruning mask
strategy could be further learned built upon the mask determined by our approach as the initialization.
Intuitively, this data-driven strategy might potentially provide an extra performance improvement.

To explore this potential opportunity, we conduct experiments for different models on different
datasets. Our empirical observation is that an additional learning phase for the pruning mask does
not bring an extra accuracy increase. Fig. [/] visualizes the same part of filters in Convl layer of
VGG-16 without and with additional pruning mask training. It is seen that there is nothing change for
the selected filters to be pruned before and after using the trained mask. Our experiments for other
models on other datasets also show the same phenomenon. Therefore we conclude that additional
adjustment on the pruning mask is not required in the context of our channel independence-based
filter pruning.
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Table 4: Pearson correlation coefficient among 5 length-64 different channel independence vectors of
ResNet-56_55 layer (containing 64 output feature maps) with 5 different input batches (CIFAR-10
dataset).

- Vector-1  Vector-2  Vector-3  Vector-4  Vector-5

Vector-1 1 0.907 0.850 0911 0.821
Vector-2  0.907 1 0.880 0.899 0.901
Vector-3  0.850 0.880 1 0.913 0.913
Vector-4  0.911 0.899 0913 1 0.881

Vector-5  0.821 0.901 0.913 0.881 1
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(a) Visualization of filters without further pruning (b) Visualization of filters with further pruning
mask adjustment. mask adjustment.

Figure 7: Visualization of filters in Conv1 layer of VGG-16 model on CIFAR-10 dataset. Here we
only show the first 16 out of 64 filters of this layer due to the space limitation. Left: the pruned filters
using our approach. Right: the pruned filters after further pruning mask adjustment with the mask
determined by our approach as initialization. x-axis represents different filters and y-axis represents
different input channels. The kernel size is 3 x 3. Black kernels are the pruned ones.

How to find the best combination of the largest C'1 ({Aél ™ ,)? Given one image randomly sampled
from total images, metricized feature maps {Aéi o, of [-th layer are generated after the inference.
Firstly, we calculate the C'I upon our Algorithm 1. Then, we initial the score of M, lfl b, based
on the normalized C'I. That is, if we are not going to train the lel b, 1O change by, - , by, the
nuclear norm and index of pruned filters from {Aéi } | equals to the result from our Algorithm
1. Therefore, this initialization can be viewed as a baseline for C'I (Aé) Secondly, we train the
M él - by, using the MSE loss functions to minimize the gap between the Upper Bound and current
nuclear norm under sparsity 83.3% from VGG-16. With optimizer of ADAM and SGD, the learning
rate is set from 0.1 to 0.001 and the weight decay is set from 0.05 to 5. Among each possible pair of
above hyperparameters, we get the pruned filters of maximal CT({ Aéi ™ ) from what we desire.

To sum up, although there has not been proven theoretically, we find that index of pruned filter
generated from our method almost equals to index of pruned filters from global optimal methods in
experiments.

7 Detailed Setting of x' and Pruning Ratios

In this section, we provide the details of ' (number of preserved filters) and pruning ratios of all
layers. On CIFAR-10, we report the x! and pruning ratios for ResNet-56, ResNet-110 and VGG-16.
On ImageNet, ' and pruning ratios are reported for ResNet-50.

7.1 ' (Number of Preserved Filters of All Layers)

7.1.1 ResNet-56
For overall sparsity 42.8 %, layer-wise ktare: [16,9,13,9,13,9,13,9,13,9,13,9,13,9, 13,

9,13,9,13,19,27,19,27,19,27,19,27,19, 27,19, 27, 19, 27, 19, 27, 19, 27, 38, 64, 38, 64, 38, 64,
38, 64, 38, 64, 38, 64, 38, 64, 38, 64, 38, 64]
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For overall sparsity 71.8 %, layer-wise k' are: [16,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,
12,19, 12, 19, 12, 19, 12, 19, 12, 19, 12, 19, 12, 19, 12, 19, 12, 19, 19, 64, 19, 64, 19, 64, 19, 64, 19,
64, 19, 64, 19, 64, 19, 64, 19, 64]

7.1.2 ResNet-110

For overall sparsity 48.3%, layer-wise klare: [16, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12,
10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 10, 12, 17, 24, 17,
24,17,24, 17,24, 17,24, 17,24, 17, 24, 17, 24, 17, 24, 17, 24, 17, 24, 17, 24, 17, 24, 17, 24, 17, 24,
17,24, 17,24, 17, 24, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35,
64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64, 35, 64]

For overall sparsity 68.3%, layer-wise k'are: [16,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,
8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11,
19,11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 11, 19, 22, 64, 22, 64, 22, 64,
22,64,22, 64,22, 64,22, 64,22, 64,22, 64,22,64,22, 64,22, 64,22, 64,22, 64,22, 64,22, 64, 22,
64,22, 64]

7.1.3 VGG-16

For overall sparsity 81.6 %, layer-wise kb are: [50, 50,101, 101, 202, 202, 202, 128, 128, 128,
128, 128, 512]

For overall sparsity 83.3%, layer-wise ' are : [44, 44, 89, 89, 179, 179, 179, 128, 128, 128, 128,
128, 512]

l

For overall sparsity 87.3%, layer-wise x" are : [35, 35, 70, 70, 140, 140, 140, 112, 112, 112, 112,

112, 512]

7.1.4 ResNet-50

For overall sparsity 40.8 %, layer-wise kb are: [64,41,41, 230,41, 41,230, 41, 41, 230, 83, 83,
460, 83, 83, 460,83, 83, 460,83, 83, 460, 166, 166, 912, 166, 166, 912, 166, 166, 912, 166, 166, 912,
166, 166, 912, 166, 166, 912, 332, 332, 2048, 332, 332, 2048, 332, 332, 2048, 332, 332, 2048]

For overall sparsity 44.2%, layer-wise ' are : [64, 39, 39, 225, 39, 39, 225, 39, 39, 225, 79, 79,
450, 79, 79, 450, 79, 79, 450, 79, 79, 450, 158, 158, 901, 158, 158, 901, 158, 158, 901, 158, 158, 901,
158, 158, 901, 158, 158, 901, 317, 317, 2048, 317, 317, 2048, 317, 317, 2048]

For overall sparsity 56.7 %, layer-wise kb are: [64,32,32,192,32,32,192,32, 32, 192, 64, 64,
384, 64, 64, 384, 64, 64, 384, 64, 64, 384, 128, 128, 768, 128, 128, 768, 128, 128, 768, 128, 128, 768,
128, 128, 768, 128, 128, 768, 256, 256, 2048, 256, 256, 2048, 256, 256, 2048]

For overall sparsity 68.6 %, layer-wise kb are: [64,25,25, 128, 25,25, 128, 25, 25, 128, 51, 51,
256, 51, 51, 256, 51, 51, 256, 51, 51, 256, 102, 102, 512, 102, 102, 512, 102, 102, 512, 102, 102, 512,
102, 102, 512, 102, 102, 512, 204, 204, 2048, 204, 204, 2048, 204, 204, 2048]

7.2 Pruning Ratios (Sparsity) of All Layers

7.2.1 ResNet-56

For overall sparsity 42.8 %, layer-wise pruning ratios are : [0.0, 0.4, 0.15, 0.4, 0.15, 0.4, 0.15,
0.4,0.15,0.4,0.15,0.4, 0.15, 0.4, 0.15, 0.4, 0.15, 0.4, 0.15, 0.4, 0.15, 0.4, 0.15, 0.4, 0.15, 0.4, 0.15,
0.4,0.15,04,0.15,0.4,0.15,0.4,0.15, 0.4, 0.15,0.4, 0.0, 0.4, 0.0, 0.4, 0.0, 0.4, 0.0, 0.4, 0.0, 0.4, 0.0,
0.4,0.0,0.4, 0.0, 0.4, 0.0]

For overall sparsity 71.8 %, layer-wise pruning ratios are : [0.0, 0.5, 0.4, 0.5, 0.4, 0.5, 0.4, 0.5,
0.4,0.5,04,0.5,0.4,0.5,04,0.5,04,0.5,04,0.6,0.4,0.6,0.4,0.6,0.4,0.6,0.4, 0.6,0.4, 0.6, 0.4,
0.6,0.4,0.6,04,0.6,0.4,0.7,0.0,0.7,0.0,0.7, 0.0, 0.7, 0.0, 0.7, 0.0, 0.7, 0.0, 0.7, 0.0, 0.7, 0.0, 0.7,
0.0]
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7.2.2 ResNet-110

For overall sparsity 48.3 %, layer-wise pruning ratios are : [0.0, 0.35, 0.22, 0.35, 0.22, 0.35,
0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35,
0.22,0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.35, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45,
0.22,0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45,
0.22, 0.45,0.22,0.45,0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.22, 0.45, 0.0, 0.45, 0.0, 0.45,
0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45,
0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.0, 0.45, 0.00]

For overall sparsity 68.3 %, layer-wise pruning ratios are : [0.0, 0.5, 0.4, 0.5, 0.4, 0.5,0.4, 0.5,
04,0.5,04,0.5,04,0.5,04,0.5,04,0.5,04,0.5,04,0.5,0.4, 0.5,0.4, 0.5, 0.4, 0.5, 0.4, 0.5, 0.4,
0.5,0.4,0.5,0.4,0.5, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65,
0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65, 0.4, 0.65,
0.4, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65,
0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0, 0.65, 0.0]

7.2.3 VGG-16

For overall sparsity 81.6 %, layer-wise pruning ratios are : [0.21, 0.21, 0.21, 0.21, 0.21, 0.21,
0.21,0.75,0.75,0.75, 0.75, 0.75, 0]

For overall sparsity 83.3%, layer-wise pruning ratios are : [0.3,0.3,0.3,0.3,0.3,0.3, 0.3, 0.75,
0.75, 0.75,0.75, 0.75, 0]

For overall sparsity 87.3%, layer-wise pruning ratios are : [0.45, 0.45, 0.45, 0.45, 0.45, 0.45,
0.45,0.78, 0.78, 0.78, 0.78, 0.78, 0]

7.2.4 ResNet-50

For overall sparsity 40.8 %, layer-wise pruning ratios are : [0.0, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1,
0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35,
0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.1, 0.35, 0.35, 0.0, 0.35, 0.35,
0.0, 0.35, 0.35, 0.0]

For overall sparsity 44.2%, layer-wise pruning ratios are : [0.0, 0.38, 0.38, 0.12, 0.38, 0.38,
0.12,0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38,
0.12,0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38, 0.12, 0.38, 0.38,
0.0, 0.38, 0.38,0.0, 0.38, 0.38, 0.0]

For overall sparsity 56.7 %, layer-wise pruning ratios are : [0.0, 0.5, 0.5, 0.25, 0.5, 0.5, 0.25,
0.5,0.5,0.25,0.5,0.5,0.25,0.5, 0.5, 0.25, 0.5, 0.5, 0.25, 0.5, 0.5, 0.25, 0.5, 0.5, 0.25, 0.5, 0.5, 0.25,
0.5,0.5,0.25,0.5,0.5,0.25, 0.5, 0.5, 0.25, 0.5, 0.5, 0.25, 0.5, 0.5,0.0, 0.5, 0.5,0.0, 0.5, 0.5, 0.0]

For overall sparsity 68.6 %, layer-wise pruning ratios are : [0.0, 0.6, 0.6, 0.5, 0.6, 0.6, 0.5, 0.6,
0.6,0.5,0.6,0.6,0.5,0.6,0.6, 0.5, 0.6, 0.6, 0.5, 0.6, 0.6, 0.5, 0.6, 0.6, 0.5, 0.6, 0.6, 0.5, 0.6, 0.6, 0.5,
0.6, 0.6, 0.5, 0.6, 0.6, 0.5, 0.6, 0.6, 0.5, 0.6, 0.6, 0.0, 0.6, 0.6, 0.0, 0.6, 0.6, 0.0]
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