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Abstract. Let Nn(a, b) denote the number of real zeros of Gaussian elliptic polyno-
mials of degree n on the interval (a, b), where a and b may vary with n. We obtain
a precise formula for the variance of Nn(a, b) and utilize this expression to derive an
asymptotic expansion for large values of n. Furthermore, we provide sharp estimates for
the cumulants and central moments of Nn(a, b). These estimates are instrumental in es-
tablishing sufficient conditions on the interval (a, b) for Nn(a, b) to satisfy both a central
limit theorem and a strong law of large numbers. In the second part of the paper, we
extend our analysis to nondegenerate Gaussian analytic functions, including well-known
examples such as the Gaussian Weyl series and Weyl polynomials.
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1. Introduction and main results

1.1. Background. Consider a positive integer n and a nonempty interval (a, b) ⊂ R,
where a and b may depend on n. Let p0, p1, . . . , pn be polynomials defined on (a, b), and
let ω0, ω1, . . . , ωn be jointly independent copies of a real random variale ω with zero mean
and unit variance. The linear combination

Pn(x) :=

n∑
j=0

ωjpj(x)

is an example of a random polynomial. Various choices for the polynomials pj(x) give
rise to distinct classes of random polynomials. Notable classes, of significant interest in
probability theory and subjects of research attention in mathematical physics, include

(1) Kac polynomials (i.e., pj(x) = xj); and more generally, hyperbolic polynomials

(i.e., pj(x) =
√

L(L+1)···(L+j−1)
j! xj for L > 0);

(2) elliptic polynomials or binomial polynomials (i.e., pj(x) =
√(

n
j

)
xj);

(3) Weyl polynomials or flat polynomials (i.e., pj(x) =
1√
j!
xj);

(4) orthogonal polynomials (i.e., pj(x) form a system of orthonormal polynomials with
respect to a fixed compactly supported measure); and

(5) trigonometric polynomials (i.e., pj(x) are trigonometric polynomials).

Let Nn(a, b) denote the number of real zeros of Pn(x) inside (a, b). Then, Nn(a, b) is
a random variable taking values in {0, 1, ..., n}. A key problem in the theory of random
polynomials is understanding the behavior of this random variable, with n tending to
infinity. During the past 90 years, most studies have been concerned with the estimation
of Nn(a, b), the expectation E[Nn(a, b)], the variance Var[Nn(a, b)], and the distribution
of Nn(a, b) in the large n limit. These problems also naturally arise in different branches of
physics because random polynomials serve as a basic model for eigenfunctions of chaotic
quantum systems (see, for example, Bogomolny, Bohias, and Lebœuf [16,17]).

Earlier investigations focused on Kac polynomials, with seminal contributions from
Bloch and Pólya [15], Kac [34, 35], Littlewood and Offord [39–41], and Erdős and Offord
[28]. Classical results, accompanied by numerous references on the subject, are available
in the books by Bharucha-Reid and Sambandham [10] and Farahmand [29]. We emphasize
that when ω follows a normal distribution, the expected number of real zeros can be ex-
plicitly computed using the Kac-Rice formula (see [34], [48], or [8, Chapter 3]). Edelman
and Kostlan [27] provided an elementary geometric derivation of the Kac-Rice formula,
showing that E[Nn(a, b)] is simply the length of the moment curve x 7→ (p0(x), ..., pn(x))
for x ∈ (a, b), projected onto the surface of the unit sphere, divided by π. In non-Gaussian
scenarios, the universality method is crucial. It employs a replacement principle, en-
abling the comparison of correlation functions between two random functions when their
log magnitudes closely match in distribution and meet specific non-concentration bounds
(see, for example, Nguyen and Vu [46], Tao and Vu [51]). Implementing this principle
transforms the computation of zero distributions and interactions into a Gaussian frame-
work. Currently, one can determine E[Nn(a, b)] for various classes of random polynomials,
considering different choices for pj(x) and under very general assumptions for ω (see Do
[21], Do, H. Nguyen and Vu [23], Do, O. Nguyen and Vu [24,25], Nguyen and Vu [46], and
the references provided therein).

Estimating the variance, however, has proved to be a much more difficult task and it is
evident that this problem still awaits rigorous treatment. Despite a large number of prior
studies, only a few are about Var[Nn(a, b)]. For Kac polynomials, Maslova [43] proved
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that if P({ω = 0}) = 0 and E[|ω|2+ε] <∞ for some ε > 0, then

Var[Nn(R)] =
4

π

(
1− 2

π

)
log n+ o(log n) as n→ ∞.

Beyond Kac polynomials, investigating the asymptotics of Var[Nn(a, b)] for other models
of random polynomials has been extensively considered since the 1990s and has emerged
as an active area of research in recent years. Utilizing the Kac-Rice formula and the
universality method, the leading asymptotic terms for the variances of the real zeros were
established for elliptic polynomials (see Bleher and Di [12], Dalmao [20]), Weyl polynomials
(see Do and Vu [26], Schehr and Majumdar [49]), orthogonal polynomials (see Lubinsky
and Pritsker [42]), and for trigonometric polynomials (see Bally, Caramellino, and Poly
[9], Do, H. Nguyen and O. Nguyen [22], Granville and Wigman [32]). It is essential to
note that most works focus on the case where ω is Gaussian and the second terms in the
variance asymptotics for these random models remain unknown.

Establishing the limiting law of Nn(a, b) presents a more intricate challenge. We say
that Nn(a, b) satisfies the central limit theorem (CLT) if the following convergence in
distribution holds:

Nn(a, b)− E[Nn(a, b)]√
Var[Nn(a, b)]

d−→ N (0, 1) as n→ ∞,

where N (0, 1) denotes the standard normal distribution. In 1974, Maslova [44] proved
the CLT for Kac polynomials. Nearly four decades later, CLTs were extended to other
classes of random polynomials. Granville and Wigman [32] and Azäıs and León [6] studied
the CLT for Gaussian Qualls’ trigonometric polynomials using different methods. Azäıs,
Dalmao, and León [5] extended this result to classical trigonometric polynomials. Dalmao
[20] achieved the same for elliptic polynomials, with Ancona and Letendre [1] recently
generalizing this result using the method of moments. The primary tool employed in [5],
[6], and [20] is an L2 expansion of the number of real zeros. CLTs for Weyl polynomials
and Weyl series were obtained by Do and Vu [26] using the cumulant convergence theorem.
In 2022, Nguyen and Vu [47] established the CLT for random polynomials with coefficients
of polynomial growth. Their proof adapted the universality method and the argument in
Maslova [44], approximating the number of zeros through a sum of independent random
variables.

This paper is dedicated to establishing a full asymptotic expansion for the variance,
along with sharp estimates for the cumulants and moments, of the number of real zeros
of certain Gaussian processes. These findings are essential in comprehending the behavior
and the limiting law of the real zeros. Our exploration begins with Gaussian elliptic poly-
nomials, which arise when considering the quantum mechanics of a spin S system whose
modulus S is conserved (see Bogomolny, Bohias, and Lebœuf [16]). These polynomials are
highly relevant for applications in quantum chaos and have been extensively studied in the
mathematical literature (see Ancona and Letendre [1], Bleher and Di [12,13], Dalmao [20],
Edelman and Kostlan [27], Flasche and Kabluchko [30], Nguyen and Vu [46], Schehr and
Majumdar [49], Tao and Vu [51]). Additionally, our investigation extends to nondegener-
ate Gaussian analytic functions, leading to the establishment of new findings concerning
the Gaussian Weyl series and Weyl polynomials. These random analytic functions are also
objects of considerable interest in probability theory and mathematical physics (see Do
and Vu [26], Edelman and Kostlan [27], Flasche and Kabluchko [30], Nazarov and Sodin
[45], Nguyen and Vu [46], Schehr and Majumdar [49], Tao and Vu [51]).
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1.2. Real zeros of Gaussian elliptic polynomials. Let Nn(a, b) denote the number
of real zeros on (a, b) of the elliptic polynomial

Pn(x) =
n∑

j=0

ωj

√(
n

j

)
xj ,

where ωj are i.i.d. normalized Gaussian random variables. In 1995, Edelman and Kostlan
[27] showed that

E[Nn(a, b)] =
1

π

∫ b

a

√
n

1 + x2
dx =

1

π

√
n(arctan b− arctan a). (1.1)

In 1997, Bleher and Di [12] determined the leading term in the large n expansion of the
variance Var[Nn(a, b)] for fixed a and b. Specifically, defining

δ0(s) =
e−s2/2(1− s2 − e−s2)

1− e−s2 − s2e−s2
, γ0(s) =

1− e−s2 − s2e−s2

(1− e−s2)3/2
,

and

f0(s) =

(√
1− δ20(s) + δ0(s) arcsin δ0(s)

)
γ0(s)− 1,

it was shown in [12, §6] that

Var[Nn(a, b)] = (1 + κ0 + o(1))E[Nn(a, b)] as n→ ∞, (1.2)

where

κ0 :=
2

π

∫ ∞

0
f0(s)ds (1.3)

and (1 + κ0) ≈ 0.5717310486. In [20], Dalmao obtained the same result for Var[Nn(R)].
Notably, for fixed a and b, (1.1) provides an exact formula for E[Nn(a, b)], while (1.2)

offers an asymptotic bound with a less precise error term o(
√
n). The precise characteri-

zation of the error term in Var[Nn(a, b)] remains an open challenge, requiring a nontrivial
and highly technical endeavor. Additionally, the determination of the second asymptotic
term in the variance expansion for the number of real zeros across all classes of random
polynomials in Section 1.1 is yet to be accomplished, presenting ample opportunities for
further improvement.

Our interest extends to establishing a complete asymptotic expansion for the variance
of real zeros in the large degree limit. As a crucial first step, we aim to derive an exact and
accessible formula for Var[Nn(a, b)]. To formulate our results, we introduce the functions

∆n(s) := (1 + s2)−n/2 (1 + s2)[1− (1 + s2)−n]− ns2

1− (1 + s2)−n − ns2(1 + s2)−n
,

Γn(s) :=
1− (1 + s2)−n − ns2(1 + s2)−n

[1− (1 + s2)−n]3/2
,

Fn(s) :=
(√

1−∆2
n(s) + ∆n(s) arcsin∆n(s)

)
Γn(s)− 1,

along with the integrals

Kn(a, b) :=
2

π

∫ √
n|α(a,b)|

0

Fn(s/
√
n)

1 + s2/n
ds,

Ln(a, b) :=
2

π2

∫ √
n|α(a,b)|

0

Fn(s/
√
n)

1 + s2/n

√
n arctan(s/

√
n)ds,
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where α(a, b) := (b− a)/(1 + ab), for −∞ ≤ a, b ≤ ∞. For brevity, we will use Kn and Ln

instead of Kn(a, b) and Ln(a, b) if
√
n|α(a, b)| is replaced by ∞.

Theorem 1.1 (Exact variance formulas).

(1) If α(a, b) > 0, then

Var[Nn(a, b)] = (1 +Kn(a, b))E[Nn(a, b)]− Ln(a, b). (1.4)

(2) For α(a, b) = 0, one has (a, b) = R and

Var[Nn(R)] = (1 +Kn)E[Nn(R)]. (1.5)

(3) When α(a, b) < 0, it holds that

Var[Nn(a, b)] = (1 +Kn)E[Nn(a, b)]

+ (Kn −Kn(a, b))
(
E[Nn(a, b)]−

√
n
)
− Ln(a, b).

(1.6)

By leveraging Theorem 1.1 and rigorously applying Taylor expansions, we derive pre-
cise asymptotic expressions for the variance Var[Nn(a, b)] in the large n limit. The key
advantage of Theorem 1.1 is its applicability to cases where the interval (a, b) depends on
n. Specifically, we establish a complete asymptotic expansion for Var[Nn(a, b)], provided
that the interval (a, b) does not contract too rapidly as n→ ∞.

Theorem 1.2 (Variance asymptotic expansions). Write αn =
√
nα(a, b).

(1) Assume first that |αn| → ∞ as n→ ∞. Let

dn =

⌊
α2
n + 3 log |αn|

log n

⌋
, (1.7)

where ⌊·⌋ denotes the integer part. Then

Var[Nn(a, b)] =

(
1 +

dn∑
k=0

κk
nk

)
E[Nn(a, b)]−

dn∑
k=0

ℓk
nk

+O(α4
ne

−α2
n), (1.8)

in which κk and ℓk are real constants independent of n, a, and b. In particular, κ0
is defined as in (1.3) and

ℓ0 =
2

π2

∫ ∞

0
sf0(s)ds.

Therefore, if α2
n/ log n → ∞ as n → ∞, then Var[Nn(a, b)] admits a full asymp-

totic expansion of the form

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κk
nk

)
E[Nn(a, b)]−

∞∑
k=0

ℓk
nk
. (1.9)

(2) Assume now that |αn| = O(1) as n→ ∞. If αn = c > 0, then

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κc,k
nk

)
E[Nn(a, b)]−

∞∑
k=0

ℓc,k
nk

, (1.10)

in which κc,k and ℓc,k are real constants. In particular,

κc,0 =
2

π

∫ c

0
f0(s)ds and ℓc,0 =

2

π2

∫ c

0
sf0(s)ds.
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For αn = −c < 0, we have

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κk
nk

)
E[Nn(a, b)]

−

( ∞∑
k=0

κk − κc,k
nk

) √
n

π
arctan

c√
n
−

∞∑
k=0

ℓc,k
nk

.

(1.11)

(3) Finally, assume that αn = o(1) as n→ ∞. If αn > 0, then

Var[Nn(a, b)] =
1

π
αn − 1

π2
α2
n +

1

12π
α3
n − 5

12π

α3
n

n
+

2

3π2
α4
n

n
+O(α5

n). (1.12)

If αn < 0, then

Var[Nn(a, b)] =

(
1 +

un∑
k=0

κk
nk

)
√
n+

2

π

(
αn − α3

n

3n

) vn∑
k=0

κk
nk

+
1

π
αn − 1

π2
α2
n − 1

12π
α3
n − 1

4π

α3
n

n
+

2

3π2
α4
n

n
+O(|αn|5),

(1.13)

where

un :=

⌊
1

2
− 5 log |αn|

log n

⌋
and vn :=

⌊
−4 log |αn|

log n

⌋
.

If, in addition, vn → ∞ as n→ ∞, then

Var[Nn(a, b)] ∼

(
1 +

∞∑
k=0

κk
nk

)
√
n. (1.14)

For αn = 0, we have (a, b) = R and Var[Nn(R)] has a full asymptotic expansion
of the form

Var[Nn(R)] ∼

(
1 +

∞∑
k=0

κk
nk

)
√
n. (1.15)

In Section 2.3, we provide exact definitions for κk, κc,k, ℓk, and ℓc,k, along with some
detailed numerical computations (see Table 1).

Remark 1.3. While determining the second-order term in the variance asymptotic expan-
sion for the number of real zeros remains challenging and largely unexplored for other
classes of random polynomials listed in Section 1.1, it becomes more tractable for ellip-
tic polynomials, thanks to the exact variance formulas provided in Theorem 1.1. In the
next subsection, we extend our analysis to encompass other classes of Gaussian processes,
establishing precise expressions for cumulants of the number of real zeros (as detailed in
Theorems 1.15 and 1.24). These expressions form the foundation for deriving second-order
terms or even full asymptotic expansions for all cumulants, central moments, and moments
of the number of real zeros of these processes (as outlined in Remark 1.16, Theorem 1.21,
Remark 5.1, and Remark 5.2).

Here and throughout, for a positive integer k and a random variable X, let sk[X] and
µk[X] denote the kth cumulant and kth central moment of X, respectively.

Our next objective is to explore the asymptotic behaviors of the cumulants sk[Nn(a, b)].

Theorem 1.4 (Asymptotics of cumulants). For each positive integer k, there exists a
finite constant βk independent of n, a, and b, such that

sk[Nn(a, b)] = βkE[Nn(a, b)] +O(1) as n→ ∞. (1.16)
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Remark 1.5. Since s1[Nn(a, b)] = E[Nn(a, b)], (1.16) is trivial for k = 1, where β1 = 1.
Utilizing Theorem 1.2 and recognizing that s2[Nn(a, b)] = Var[Nn(a, b)], we establish the
validity of (1.16) for k = 2, with β2 = 1 + κ0. It is worth noting that when studying the
gap probabilities for elliptic polynomials, Schehr and Majumdar [49, Appendix E] proved
that

s3[Nn(a, b)] ∼ β3E[Nn(a, b)] as n→ ∞,

under the assumptions that β3 is well-defined and E[Nn(a, b)] ∼
√
n in the large n limit.

They expected a similar mechanism to hold for higher values of k (see [49, Equation 93]).
Accordingly, our theorem provides a fuller treatment.

Using the asymptotics in (1.16), we establish the asymptotic normality of Nn(a, b).

Theorem 1.6 (Central limit theorem). Let αn be defined as in Theorem 1.2. If either
αn ≤ 0 or αn → ∞ as n→ ∞, then Nn(a, b) satisfies the CLT.

Remark 1.7. In 2015, Dalmao [20] established the CLT for Nn(R) using the Wiener-
Itô expansion and the fourth-moment theorem. Ancona and Letendre [1] independently
validated Dalmao’s finding in 2021 using the method of moments. In our current study, we
utilize the asymptotic behaviors of cumulants, as described in Theorem 1.4, to establish
sufficient conditions on (a, b) for Nn(a, b) to satisfy the CLT. These conditions essentially
imply that the interval (a, b) should not shrink too rapidly as n→ ∞.

Next, we can apply Theorem 1.4 to derive the asymptotics of the central moments
µk[Nn(a, b)].

Corollary 1.8 (Asymptotics of central moments). Fix k ≥ 1. As n→ ∞, it holds that

µ2k[Nn(a, b)] =
(2k)!βk2
k!2k

(E[Nn(a, b)])
k +O((E[Nn(a, b)])

k−1) (1.17)

and

µ2k+1[Nn(a, b)] =
(2k + 1)!βk−1

2 β3
(k − 1)!2k−13!

(E[Nn(a, b)])
k +O((E[Nn(a, b)])

k−1). (1.18)

Remark 1.9. Ancona and Letendre [1] previously examined the asymptotics of µk[Nn(R)]
and showed that, as n→ ∞,

µk[Nn(R)] = µk[N (0, 1)]β
k/2
2 nk/4 +O(n(k−1)/4 logk(n)), (1.19)

where µk[N (0, 1)] denotes the kth moment of the standard normal distribution. However,
since µ2k+1[N (0, 1)] = 0, formula (1.19) does not provide the leading asymptotics for
µ2k+1[Nn(R)]. Therefore, our results in Corollary 1.8 not only fill this gap but also offer

an improvement of (1.19), as our error terms are only O(n(⌊k/2⌋−1)/2).

By employing the asymptotics of central moments provided in (1.17), reinforced by a
Borel-Cantelli type argument, we establish a strong law of large numbers for Nn(a, b).

Theorem 1.10 (Strong law of large numbers). If either αn ≤ 0 or
∑∞

n=1 α
−k
n < ∞ for

some positive constant k, then

Nn(a, b)

E[Nn(a, b)]

a.s.−−→ 1 as n→ ∞.

Remark 1.11. Similar considerations may apply to the linear statistics Nn(ϕ), defined as

Nn(ϕ) =
∑
x∈Zn

ϕ(x),
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where Zn is the real zero set of the elliptic polynomial Pn(x) and ϕ satisfies suitable
assumptions. Further details on this topic can be found in [1], where Ancona and Letendre
considered the leading asymptotics of the central moments, the CLT, and the strong law
of large numbers for these linear statistics. Note that Nn(ϕ) reduces to Nn(a, b) if we set
ϕ(x) = 111(a,b)(x), denoting the indicator function of the interval (a, b).

In concluding this subsection, we identify potential directions for future research in the
realm of elliptic polynomials.

To begin, for Gaussian elliptic polynomials, it follows from (1.1) that E[Nn(R)] is pre-
cisely

√
n for all n. In [13], Bleher and Di, among other significant findings, extended this

result to non-Gaussian counterparts.

Theorem 1.12 ([13]). Assume there exist positive constants c and C such that the char-
acteristic function φ(s) of ω satisfies the conditions

|φ(s)| ≤ 1

(1 + c|s|)6
,

∣∣∣∣djφ(s)dsj

∣∣∣∣ ≤ C

(1 + c|s|)6
, j = 1, 2, 3, s ∈ R.

Then, as n→ ∞,
E[Nn(R)] =

√
n+ o(n1/2). (1.20)

The same result, without the assumption on φ(s), was established in a recent work
by Flasche and Kabluchko [30]. In [51, Theorem 5.6], Tao and Vu demonstrated the
universality of this result, extending it to scenarios where the random variable ω has zero
mean, unit variance, and finite (2 + ε)-moments. A more refined quantitative version of
(1.20) was recently provided by Nguyen and Vu [46, Corollary 6.4]:

E[Nn(R)] =
√
n+O(n1/2−c), c > 0.

Considering the Gaussian elliptic polynomials, we infer from (1.2) that

Var[Nn(R)] = (1 + κ0)
√
n+ o(n1/2) as n→ ∞. (1.21)

A natural question arises: Is (1.21) still valid if ω has zero mean, unit variance, and finite
(2+ ε)-moments? More broadly, there is an interest in generalizing all the aforementioned
results to a non-Gaussian setting.

Additionally, it could be intriguing to extend the findings of this paper to the number of
real zeros of a square system PPP = (P1, . . . , Pm) of m polynomial equations in m variables
of common degree n > 1,

Pℓ(xxx) =
∑
|jjj|≤n

ωωω
(ℓ)
jjj xxxjjj ,

where

• jjj = (j1, . . . , jm) ∈ Nm and |jjj| =
∑m

k=1 jk;

• ωωω(ℓ)
jjj = ω

(ℓ)
j1...jm

∈ R, ℓ = 1, . . . ,m, |jjj| ≤ n, and the coefficients ωωω
(ℓ)
jjj are independent

centered normally distributed random variables with variances

Var[ωωω
(ℓ)
jjj ] =

(
n

jjj

)
=

n!

j1! . . . jm!(n− |jjj|)!
;

• xxx = (x1, . . . , xm) and xxxjjj =
∏m

k=1 x
jk
k .

Such a system, also referred to as a Kostlan-Shub-Smale system, was initially introduced
and investigated by Kostlan [36] and further developed by Armentano et al. [3, 4], Azäıs
and Wschebor [7], Bleher and Di [13], Edelman and Kostlan [27], Shub and Smale [50],
Wschebor [52]. Accordingly, we hope that the concepts and techniques of this paper may
stimulate further research in this fascinating area.
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1.3. Real zeros of nondegenerate real Gaussian analytic functions. Let

Q(z) =
∞∑
j=0

ωjqj(z)

be a real Gaussian analytic function (real GAF) on C; that is, ωj are i.i.d. normalized
Gaussian random variables and qj are analytic functions on C such that

∑∞
j=0 |qj(z)|2 <∞

uniformly on any compact subset of C (see Do and Vu [26]).
Let k ≥ 1 be an integer. For zzz = (x1, y1, ..., xk, yk) ∈ R2k, let Lzzz be the linear functional

defined as

LzzzQ(ξξξ) =
∑

1≤j≤k

[xjQ(ξj) + yjQ
′(ξj)], ξξξ = (ξ1, ..., ξk) ∈ Rk.

Moreover, for any subset I ⊂ {1, ..., k}, the linear functional Lzzz
I is defined by summing over

j ∈ I instead of the full range. For further insights into the concept of linear functionals,
we refer the reader to Do and Vu [26] and Nazarov and Sodin [45].

For ξξξ = (ξ1, ..., ξk) ∈ Rk and a nonempty subset I ⊂ {1, ..., k}, we define ξξξI = (ξi)i∈I ,
and express the distance between the configurations ξξξI and ξξξJ as

d(ξξξI , ξξξJ) = inf
i∈I,j∈J

|ξi − ξj |.

Define Ψk as the set of all non-increasing functions ψ : [0,∞) → [0,∞) such that∫ ∞

0
ψ(x)xk−1dx <∞,

and let Ψ∞ =
⋂∞

k=1Ψk. The inclusion chain Ψ1 ⊃ Ψ2 ⊃ · · · ⊃ Ψ∞ follows immediately.
Define Ak as the set of all real GAFs Q satisfying the following three hypotheses:

(H1) Q is 2k-nondegenerate.
(H2) For each x ∈ R, there exists a deterministic function Qx : R → (0,∞) such that

E[Qx(t)Q(t+ x)Qx(s)Q(s+ x)] = E[Q(t)Q(s)], t, s ∈ R.
(H3) There exist finite positive constants ck and τk, along with a function ψ ∈ Ψk, such

that the following holds: For any zzz = (x1, y1, ..., xk, yk) ∈ R2k, ξξξ = (ξ1, ..., ξk) ∈ Rk,
and any partition {1, ..., k} = I ∪ J , with d := d(ξξξI , ξξξJ) ≥ 2τk, we have

|E [Lzzz
IQ(ξξξI)L

zzz
JQ(ξξξJ)]| ≤ ckψ(d− τk)

(
E[|Lzzz

IQ(ξξξI)|2] + E[|Lzzz
JQ(ξξξJ)|2]

)
.

Furthermore, let A∞ =
⋂∞

k=1Ak.

Remark 1.13. We refer the reader to [26, §9] for the precise definition of nondegenerate
real GAFs, which serves as the real counterpart to the complex nondegeneracy notion
introduced in [45]. For instance, if Q(z) =

∑∞
j=0 ωjcjz

j , where real constants cj satisfy∑∞
j=0 c

2
j < ∞ and c0, c1, . . . , c2k−1 ̸= 0, then Q is a 2k-nondegenerate GAF. Hypothesis

(H1) ensures the local boundedness of the k-point correlation function ρk for the real zeros
of Q (see Lemma 3.2).

Assumption (H2) further asserts that the distribution of the real zeros of Q is invariant
under translations on R. Specifically, if Q is stationary, then (H2) holds with Qx ≡ 1.

Hypothesis (H3) introduces a clustering property for ρk, indicating that if the variables
in Rk can be divided into two well-separated clusters, the correlation function ρk closely
approximates the product of the corresponding factors (see Lemma 3.3).

If Q is 2k-nondegenerate and m ∈ {1, ..., k}, it is also 2m-nondegenerate. Additionally,
when (H3) holds for k ≥ 1, it extends to all positive integers m ≤ k. This establishes the
inclusion chain A1 ⊃ A2 ⊃ · · · ⊃ A∞. Moreover, if Q ∈ Ak and m is a positive integer
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such that m ≤ k, the m-point correlation function ρm for the real zeros of Q is uniformly
bounded on Rm (see Lemma 3.4).

Example 1.14. For the Gaussian Weyl series, defined as W (z) =
∑∞

j=0 ωj
zj√
j!

with ωj

being i.i.d. normalized Gaussian random variables, we have W ∈ A∞.
Indeed, according to Remark 1.13, W is 2k-nondegenerate for any k ≥ 1. For each

x ∈ R, let Wx(t) = e−xt−x2/2. Then, for any t, s ∈ R, we have

E[Wx(t)W (t+ x)Wx(s)W (s+ x)] = e−xt−x2/2e−xs−x2/2e(t+x)(s+x)

= ets

= E[W (t)W (s)],

showing that W satisfies hypothesis (H2). Finally, it follows from [26, Lemma 18] that W

satisfies hypothesis (H3) for any k ≥ 1 with ψ(t) := e−t2/2 ∈ Ψ∞.

Theorem 1.15 (Precise expressions for cumulants). Fix k ∈ N ∪ {∞} and let Q ∈ Ak.
Given R > 0, let NQ(R) denote the number of real zeros of Q on [0, R]. For any positive

integer m with m ≤ k, there are bounded functions θQm and λQm : [0,∞) → R such that

sm[NQ(R)] = RθQm(R) + λQm(R). (1.22)

Furthermore, there exist finite constants θQm,∞, λQm,∞, and a function ψ ∈ Ψk, independent
of R, satisfying, as R→ ∞,

θQm(R) = θQm,∞ +O

(∫ ∞

R
ψ(x)xm−2dx

)
,

λQm(R) = λQm,∞ +O

(∫ ∞

R
ψ(x)xm−1dx

)
.

(1.23)

Remark 1.16. If ψ ∈ Ψk, then as R→ ∞,∫ ∞

R
ψ(x)xk−1dx = o(1).

Consequently, from (1.22) and (1.23), as R→ ∞,

sm[NQ(R)] = RθQm,∞ + λQm,∞ + o(Rm−k),

where m and k are positive integers with m ≤ k, Q ∈ Ak, and θ
Q
m,∞ and λQm,∞ are finite

real numbers independent of R. Furthermore, if Q ∈ A∞ and m is any positive integer,
then sm[NQ(R)] has a full asymptotic expansion of the form

sm[NQ(R)] ∼ RθQm,∞ + λQm,∞.

Remark 1.17. In [31], Gass investigated cumulant asymptotics for random models with
slowly decreasing covariance functions. Gass’s approach refines recent works by Ancona
and Letendre [1, 2], which established the convergence of the kth central moment of the
number of real zeros, suitably scaled, to the kth moment of a Gaussian random variable.
These investigations assume that the covariance functions and their derivatives belong to
certain Lebesgue spaces. For instance, as shown in [31, Theorem 1.5], if Q is a stationary
Gaussian process with C∞ paths and its covariance function and derivatives belong to
Lk(R) for all k > 1, then for any positive integer m,

lim
R→∞

sm[NQ(R)]

R
= θQm,∞.
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In comparison to this limit, under the assumptions of fast decorrelation and analyticity,
the outcomes in Remark 1.16 provide a more thorough and detailed characterization.

By combining Example 1.14 and Theorem 1.15, we derive precise expressions and as-
ymptotic behaviors for the cumulants of the number of real zeros of the Gaussian Weyl
series.

Corollary 1.18 (Real zeros of the Gaussian Weyl series). For R > 0, let NW (R) denote
the number of real zeros of the Gaussian Weyl series W on [0, R]. For any positive integer
k, there exist bounded functions θWk , λWk : [0,∞) → R such that

sk[NW (R)] = RθWk (R) + λWk (R).

Furthermore, there exist constants θWk,∞, λWk,∞, and ck > 0, which are independent of R
and satisfy, as R→ ∞,

θWk (R) = θWk,∞ +O(Rk−3e−ckR
2
) and λWk (R) = λWk,∞ +O(Rk−2e−ckR

2
).

Specifically, θWk,∞ = 1
πβk, where βk is as in Theorem 1.4. Consequently, θW2,∞ > 0 and

NW (R) follows the CLT as R→ ∞.

Remark 1.19. For a nonzero, compactly supported, and bounded function ϕ : R → R,
define Nϕ

W (R) =
∑

x∈Z(W ) ϕ(x/R), where Z(W ) represents the multiset of real zeros ofW .

In [26], Do and Vu established the asymptotic normality result for Nϕ
W (R) by employing

the cumulant convergence theorem (see [33]) and demonstrating that

lim
R→∞

Var[Nϕ
W (R)]

R∥ϕ∥22
= θW2,∞

and
|sk[Nϕ

W (R)]| ≤ Cϕ,kR,

where Cϕ,k is a positive constant depending only on ϕ and k. These findings were motivated
by related results for the complex zeros of W by Nazarov and Sodin [45]. Choosing

ϕ(t) = 111[0,R](t) implies Nϕ
W (R) = NW (R). Consequently, the CLT also applies to NW (R).

However, it is worth noting that Corollary 1.18 provides much more precise estimates for
sk[NW (R)].

Now, we broaden the scope of Theorem 1.15 to include a wider range of Gaussian
processes, such as random polynomials. To this end, fix a positive integer k and let
Q ∈ Ak. For n ≥ 1, let In ⊂ R be an interval whose endpoints may depend on n and

let εn > 0 be such that εn → 0 as n → ∞. Define AQ
k (In, εn) as the set of all smooth

centered Gaussian processes {Qn(x) : x ∈ In} that satisfy the following hypothesis:

(H4) For any zzz = (x1, y1, ..., xk, yk) ∈ R2k and ξξξ = (ξ1, ..., ξk) ∈ Ik
n, we have

(1− εn)E[|LzzzQ(ξξξ)|2] ≤ E[|LzzzQn(ξξξ)|2] ≤ (1 + εn)E[|LzzzQ(ξξξ)|2].

If Q ∈ A∞ and hypothesis (H4) holds for all k ≥ 1, we write Qn ∈ AQ
∞(In, εn).

Remark 1.20. For ξξξ = (ξ1, ..., ξk) ∈ Rk, let Λ(ξξξ) and Λn(ξξξ) be the covariance matrices
of (Q(ξ1), Q

′(ξ1), ..., Q(ξk), Q
′(ξk)) and (Qn(ξ1), Q

′
n(ξ1), ..., Qn(ξk), Q

′
n(ξk)), respectively.

Through elementary computation, for any zzz = (x1, y1, ..., xk, yk) ∈ R2k, we have

⟨zzzΛ(ξξξ), zzz⟩ = E[|LzzzQ(ξξξ)|2]. (1.24)

Therefore, hypothesis (H4) implies that

(1− εn)Λ(ξξξ) ≤ Λn(ξξξ) ≤ (1 + εn)Λ(ξξξ), ξξξ ∈ Ik
n. (1.25)
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Using the Kac-Rice formula (see, for example, [8, Chapter 3]) and (1.25), we deduce that
the correlation functions for the real zeros of Qn on In closely approximate those of Q. It
is worth noting that Qn may not meet the criteria for a real GAF.

Alternatively, we can establish (1.25) by examining the covariance functions of Q and
Qn, defined as r(x, y) = E[Q(x)Q(y)] and rn(x, y) = E[Qn(x)Qn(y)]. In this context,

Λ(ξξξ) =
(
Λij

)k
i,j=1

, where Λij =

(
r(ξi, ξj)

∂r
∂y (ξi, ξj)

∂r
∂x(ξi, ξj)

∂2r
∂x∂y (ξi, ξj)

)
and

Λn(ξξξ) =
(
Λ
(n)
ij

)k
i,j=1

, where Λ
(n)
ij =

(
rn(ξi, ξj)

∂rn
∂y (ξi, ξj)

∂rn
∂x (ξi, ξj)

∂2rn
∂x∂y (ξi, ξj)

)
.

Therefore, assuming that there exists a positive constant εn, with limn→∞ εn = 0, such
that for all i, j ∈ {0, 1} and (x, y) ∈ I2

n, we have

∂i+jrn
∂xi∂yj

(x, y) = (1 +O(εn))
∂i+jr

∂xi∂yj
(x, y), (1.26)

we can then obtain (1.25).

Note that when Qn represents the nth partial sum of Q, the partial derivatives ∂i+jrn
∂xi∂yj

converge uniformly to ∂i+jr
∂xi∂yj

on any compact subset of R2. In this scenario, it suffices to

determine the rate of convergence εn and verify (1.26) for the case supn |In| = ∞.

Theorem 1.21 (Asymptotic cumulants). Let k ∈ N∪{∞}, Q ∈ Ak, and Qn ∈ AQ
k (In, εn).

For a finite interval In ⊂ In, we define NQn(In) as the number of real zeros of Qn on In.
For any positive integer m such that m ≤ k, one has

sm[NQn(In)] = |In|θQm(|In|) + λQm(|In|) +O(εn|In|m), (1.27)

where θQm and λQm are bounded functions provided in Theorem 1.15. Furthermore, as
n→ ∞, if |In| → ∞ and εn|In|m → 0, then

sm[NQn(In)] = |In|θQm,∞ + λQm,∞ + o(1). (1.28)

Corollary 1.22 (Strong law of large numbers). If Qn ∈ AQ
k+1(In, εn) and In ⊂ In with

|In| <∞ and
∑∞

n=1max(|In|−m, εmn ) <∞ for some finite positive constant m ≤ k, then

NQn(In)

E[NQn(In)]

a.s.−−→ 1 as n→ ∞.

Consider the Gaussian Weyl polynomial, Wn(z) =
∑n

j=0 ωj
zj√
j!
, where ωj are i.i.d.

normalized Gaussian random variables, serving as the nth partial sum of the Weyl series
W (z). It is well-known that the majority of real zeros of the Weyl polynomial Wn(z) lie

within the interval [−
√
n+ n1/6,

√
n− n1/6] (see, for example, [26] and [51]).

Our focus is on the subinterval In = [−ε1
√
n, ε2

√
n], where 0 < ε1 ≤ ε2 < 1 and

ε = max(ε1ε2e
1+ε1ε2 , ε22e

1−ε22) < 1. Under these conditions, Wn ∈ AW
∞(In, εn) with εn =

εn/
√
n. To establish this, we only need to verify the estimates in (1.26), where r(x, y) =

E[W (x)W (y)] and rn(x, y) = E[Wn(x)Wn(y)].
Through elementary computation, we find that r(x, y) = exy and rn(x, y) = en(xy),

where en(x) =
∑n

j=0
xj

j! . Notably, the relationship
d
dxen(x) = en−1(x) allows us to estimate

∂i+jrn
∂x∂y (x, y) by focusing solely on the estimation of en(xy). Proving (1.26) is then simplified

to demonstrating
en(nt) = ent(1 +O(εn)), t ∈ [−ε1ε2, ε22],
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which immediately follows from Buckholtz [18] and Stirling’s formula.
Therefore, by synthesizing insights from Theorem 1.21, Corollary 1.18, and Corollary

1.22, we establish the large n asymptotic behaviors of cumulants, the CLT, and a strong
law of large numbers for the real zeros of Wn on In ⊂ In.

Corollary 1.23 (Real zeros of the Gaussian Weyl polynomials). Let 0 < ε1 ≤ ε2 < 1 be

such that ε = max(ε1ε2e
1+ε1ε2 , ε22e

1−ε22) < 1. For a nonempty interval In ⊂ [−ε1
√
n, ε2

√
n],

let NWn(In) denote the number of real zeros of the Gaussian Weyl polynomial Wn of degree
n. For any positive integer k, we have

sk[NWn(In)] = |In|θWk (|In|) + λWk (|In|) +O

(
εn√
n
|In|k

)
,

where θWk and λWk are defined as in Corollary 1.18. Consequently, as n→ ∞, if |In| → ∞,
then

sk[NWn(In)] = |In|θWk,∞ + λWk,∞ + o(1)

and hence, NWn(In) satisfies the CLT. Furthermore, if there exists some positive constant
m such that

∑∞
n=1 |In|−m <∞, then

NWn(In)
1
π |In|

a.s.−−→ 1 as n→ ∞.

Finally, we propose an alternative approach to extending Theorem 1.15 to encompass
more general Gaussian processes.

Theorem 1.24 (Real zeros of composition of functions). Fix k ∈ N∪{∞} and let Q ∈ Ak.
For U = (−u, u) ⊂ R, let ρ : U → (0,∞) be an integrable function. We set ϱ(x) =∫ x
0 ρ(t)dt and introduce a new process P (x) = Q(ϱ(x)) defined on U . For (a, b) ⊂ U , let
NP (a, b) denote the number of real zeros of P on (a, b). For any positive integer m with
m ≤ k, it holds that

sm[NP (a, b)] =

(∫ b

a
ρ(t)dt

)
θQm

(∫ b

a
ρ(t)dt

)
+ λQm

(∫ b

a
ρ(t)dt

)
, (1.29)

where θQm and λQm are bounded functions defined as in Theorem 1.15.

Remark 1.25. It is worth noting that the Gaussian processes {P (x) : x ∈ U} discussed in
Theorem 1.24 might not possess analytic properties, and the distribution of the real zeros
of P may lack translation invariance. Additionally, if {xj} are the zeros of P (x), then
{zj = ϱ(xj)} are the zeros of Q(z). Therefore, if ρ represents the density of real zeros xj
of P (x), so that

E[NP (a, b)] =

∫ b

a
ρ(t)dt,

then zj = ϱ(xj), referred to as the straightening of xj , are uniformly distributed on
ϱ(U). This observation, coupled with Theorems 1.21 and 1.24, provides a framework for
studying the cumulants of real zeros of random functions through the examination of their
straightened zero distribution. Exploiting these invariance properties offers substantial
advantages through this approach.

Consider, for example, the Gaussian Kac polynomial Pn(x) =
∑n

j=0 ωjx
j on (−1, 1).

By the Kac formula [34], the limit of the density function of the real zeros of Pn is given
by

ρ(t) =
1

π(1− t2)
, t ∈ (−1, 1).
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For the real zeros xj ∈ (−1, 1), define the straightening of xj as

zj = ϱ(xj), where ϱ(x) =

∫ x

0
ρ(t)dt =

1

2π
log

∣∣∣∣1 + x

1− x

∣∣∣∣ .
In the limit as n→ ∞, the straightened zeros zj are uniformly distributed on the real line.
Furthermore, it was shown in [12, Theorem 1.2] that the limit k-point correlation function
ϱk of the straightened zeros zj = ϱ(xj) of the Kac polynomial is given by

ϱk(ξξξ) =
1

2k

∏
1≤i<j≤k

tanh4 π(ξi − ξj)

∫
Rk

|η1 · · · ηk|e−
1
2
⟨ηηηΛ(ξξξ),ηηη⟩dη1 · · · dηk,

where ξξξ = (ξ1, ..., ξk), ηηη = (η1, ..., ηk), and the matrix Λ(ξξξ) is defined as

Λ(ξξξ) =
(

1
coshπ(ξi−ξj)

)k
i,j=1

.

Remarkably, the function ϱk(ξξξ) is translation-invariant. While it is possible to estimate
the cumulants of the number of straightened zeros, we will not delve into this topic further
here.

Remark 1.26. Extending the insights from Theorems 1.15, 1.21, and 1.24 by relaxing the
constraints on Q opens up intriguing avenues for exploration. One promising direction
involves building upon the techniques delineated in [1] and [31].

1.4. Organization of the paper and notational conventions. In Section 2.1, we
revisit the Kac-Rice formula, crucial for proving Theorem 1.1 in Section 2.2. Section
2.3 then utilizes asymptotic expansions of Kn(a, b) and Ln(a, b) to establish Theorem 1.2.
Moving to Section 3.1, we provide a concise review of correlation and truncated correlation
functions, emphasizing their role in computing moments and cumulants. Section 3.2 offers
estimates for the correlation functions of real zeros of real GAFs, playing a pivotal role in
proving Theorems 1.15, 1.21, and 1.24 in Sections 3.3, 3.4, and 3.5. Section 3.6 analyzes
correlation functions of real zeros of Gaussian elliptic polynomials, contributing to the
establishment of Theorem 1.4 in Section 3.7. Section 4 focuses on asymptotic normality
results, presenting the proof of Theorem 1.6. In Section 5.1, we establish the asymptotics
of central moments, as stated in Corollary 1.8, while the proof of a strong law of large
numbers is provided in Section 5.2.

In this paper, we employ the standard asymptotic notation A = O(B) or A ≪ B to
indicate the bound |A| ≤ cB, where c is independent of B. For any I ⊂ R, we denote |I|
as the length of I if I is an interval, or the cardinality of I if I is a finite set. Given I ⊂ R
and a positive integer k, we define Ik = I × · · · × I ⊂ Rk. The constants ck and Ck may
depend on k and can vary across different contexts.

2. Variance of the number of real zeros

Our primary tool for computing the variance is the Kac-Rice formula (see [8, Chapter
3]). It is very general and allows one to obtain an integral formula for the variance of the
number of real zeros of a smooth Gaussian process.

2.1. The Kac-Rice formula. Let G = {G(x), x ∈ I}, I an interval on the real line, be
a non-degenerate, centered Gaussian process having C1 paths. We normalize G so that
the covariance kernel defined by r(x, y) = E[G(x)G(y)] satisfies r(x, x) = 1. A trivial
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verification shows that

E[G(x)G′(x)] = E[G(y)G′(y)] = 0,

E[G′(x)G(y)] =
∂

∂x
r(x, y) =: r10(x, y),

E[G(x)G′(y)] =
∂

∂y
r(x, y) =: r01(x, y),

E[G′(x)G′(y)] =
∂2

∂x∂y
r(x, y) =: r11(x, y).

Let ρ1(x) =
1
π

√
r11(x, x) and

ρ2(x, y) =
1

π2

(√
1− ρ2(x, y) + ρ(x, y) arcsin ρ(x, y)

) σ(x, y)√
1− r2(x, y)

, (2.1)

where

ρ(x, y) :=
r11(x, y) +

r(x,y)r10(x,y)r01(x,y)
1−r2(x,y)√(

r11(x, x)−
r210(x,y)

1−r2(x,y)

)(
r11(y, y)−

r201(x,y)

1−r2(x,y)

) ,
σ(x, y) :=

√(
r11(x, x)−

r210(x, y)

1− r2(x, y)

)(
r11(y, y)−

r201(x, y)

1− r2(x, y)

)
.

The following lemma is standard (see, for example, [12] and [42]), and we include a proof
here for the convenience of the reader.

Lemma 2.1. Let N(I) denote the number of real zeros of G on I. One has

Var[N(I)] =

∫
I2
[ρ2(x, y)− ρ1(x)ρ1(y)] dydx+

∫
I
ρ1(x)dx. (2.2)

Proof. We first write

Var[N(I)] = E[N(I)(N(I)− 1)]− (E[N(I)])2 + E[N(I)]. (2.3)

By the Kac-Rice formula,

E[N(I)] =

∫
I
ρ1(x)dx. (2.4)

As a consequence,

(E[N(I)])2 =

∫
I2
ρ1(x)ρ1(y)dydx. (2.5)

The Rice formula for the second factorial moment now asserts that

E[N(I)(N(I)− 1)] =

∫
I2
E[|G′(x)G′(y)| | G(x) = 0, G(y) = 0]px,y(0, 0)dydx,

where px,y is the joint density of (G(x), G(y)), so

px,y(0, 0) =
1

2π
√

1− r2(x, y)
.

Observe that conditionally on C := {G(x) = 0, G(y) = 0}, G′(x) and G′(y) have a joint
Gaussian distribution. Utilizing regression formulas, we derive the following expressions
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for expectations, variances, and covariances:

E[G′(x) | C] = E[G′(y) | C] = 0,

Var[G′(x) | C] = r11(x, x)−
r210(x, y)

1− r2(x, y)
,

Var[G′(y) | C] = r11(y, y)−
r201(x, y)

1− r2(x, y)
,

E[G′(x)G′(y) | C] = r11(x, y) +
r(x, y)r10(x, y)r01(x, y)

1− r2(x, y)
.

Therefore,

E[G′(x)G′(y) | C]√
Var[G′(x) | C]Var[G′(y) | C]

= ρ(x, y) and
√

Var[G′(x) | C]Var[G′(y) | C] = σ(x, y).

Applying [38, Corollary 3.1] leads to

E[|G′(x)G′(y)| | C] = 2

π

(√
1− ρ2(x, y) + ρ(x, y) arcsin ρ(x, y)

)
σ(x, y).

Combining this with (2.1), we derive

E[N(I)(N(I)− 1)] =

∫
I2
ρ2(x, y)dydx. (2.6)

Substituting (2.4), (2.5), and (2.6) into (2.3), we obtain (2.2) as required. □

Remark 2.2. It is worth suggesting that, by leveraging Lemma 2.1 and conducting a
thorough analysis, we can deduce the leading terms in the asymptotics of Var[Nn(a, b)]
for random polynomials described in Section 1.1, with ω being Gaussian.

2.2. Proof of Theorem 1.1. Let us now apply Lemma 2.1 to the Gaussian elliptic
polynomial Pn(x). Using the binomial theorem we see that the covariance function of

Pn(x)/
√
Var[Pn(x)] is given by

r(x, y) =
E[Pn(x)Pn(y)]√

Var[Pn(x)]Var[Pn(y)]
=

(1 + xy)n√
(1 + x2)n(1 + y2)n

.

A straightforward calculation reveals that

r10(x, y) = nr(x, y)
(y − x)

(1 + xy)(1 + x2)
,

r01(x, y) = nr(x, y)
(x− y)

(1 + xy)(1 + y2)
,

r11(x, y) = nr(x, y)

(
1

(1 + xy)2
− n(x− y)2

(1 + xy)2(1 + x2)(1 + y2)

)
.

Using α(x, y) = (y − x)/(1 + xy) and (1 + x2)(1 + y2) = (1 + xy)2 + (x− y)2, expression
(2.1) can be reformulated as

ρ2(x, y) =
1

π2
n

(1 + x2)(1 + y2)
(Fn(α(x, y)) + 1).

Together with

ρ1(x)ρ1(y) =
1

π2
n

(1 + x2)(1 + y2)
,
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we deduce from (2.2) that

Var[Nn(a, b)] = In,2(a, b) + E[Nn(a, b)], (2.7)

where

In,2(a, b) :=
1

π2

∫ b

a

∫ b

a

n

(1 + x2)(1 + y2)
Fn(α(x, y))dydx. (2.8)

The proof of Theorem 1.1 now falls naturally into three following lemmas.

Lemma 2.3. If α(a, b) > 0, then

In,2(a, b) = Kn(a, b)E[Nn(a, b)]− Ln(a, b). (2.9)

This gives (1.4) when substituted in (2.7).

Proof. If α(a, b) > 0, then ab > −1 and hence, 1+xy ̸= 0 for all a < x, y < b. Fix x ∈ (a, b)

and make the change of variables s =
√
nα(x, y) for the integral

∫ b
a

√
nFn(α(x,y))

1+y2
dy, we see

that

In,2(a, b) =
1

π2

∫ b

a

√
ndx

1 + x2

∫ √
nα(x,b)

√
nα(x,a)

Fn(s/
√
n)

1 + s2/n
ds.

Using Fubini’s theorem, the identity

arctanα(s/
√
n, a) = arctan a− arctan(s/

√
n),

and (1.1), we find that∫ b

a

√
ndx

1 + x2

∫ 0

√
nα(x,a)

Fn(s/
√
n)

1 + s2/n
ds =

∫ 0

√
nα(b,a)

Fn(s/
√
n)

1 + s2/n
ds

∫ b

α(s/
√
n,a)

√
ndx

1 + x2

=
π2

2
Kn(a, b)E[Nn(a, b)]−

π2

2
Ln(a, b).

Similarly,∫ b

a

√
ndx

1 + x2

∫ √
nα(x,b)

0

Fn(s/
√
n)

1 + s2/n
ds =

π2

2
Kn(a, b)E[Nn(a, b)]−

π2

2
Ln(a, b).

Combining these we obtain (2.9) as required. □

Lemma 2.4. Equation (1.5) follows from the fact that

In,2(R) = Kn

√
n. (2.10)

Proof. Starting from (2.8), we have

In,2(R) =
1

π2

∫ ∞

−∞
dx

∫ ∞

−∞

nFn(α(x, y))

(1 + x2)(1 + y2)
dy. (2.11)

Fix x ∈ (−∞, 0) and substitute s =
√
nα(x, y), we see that

1

π2

∫ 0

−∞
dx

∫ ∞

−∞

nFn(α(x, y))

(1 + x2)(1 + y2)
dy =

1

π2

∫ 0

−∞

√
n

1 + x2
dx

∫ ∞

−∞

Fn(s/
√
n)

1 + s2/n
ds =

√
n

2
Kn.

Similarly,
1

π2

∫ ∞

0
dx

∫ ∞

−∞

nFn(α(x, y))

(1 + x2)(1 + y2)
dy =

√
n

2
Kn.

Substituting these results into (2.11) yields (2.10) as claimed. □

Lemma 2.5. If α(a, b) < 0, then

In,2(a, b) = KnE[Nn(a, b)] + (Kn −Kn(a, b))
(
E[Nn(a, b)]−

√
n
)
− Ln(a, b), (2.12)

which implies (1.6) when combined with (2.7).
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Proof. If α(a, b) < 0, then ab < −1 and either a or b is finite. Thus, a < −1/b < −1/a < b
and the equation 1 + xy = 0 has a solution (x,−1/x) only if x ∈ (a,−1/b) ∪ (−1/a, b).
Write

In,2(a, b) =
1

π2

∫ −1/b

a

√
ndx

1 + x2

∫ −1/x

a

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ −1/b

a

√
ndx

1 + x2

∫ b

−1/x

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ −1/a

−1/b

√
ndx

1 + x2

∫ b

a

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ b

−1/a

√
ndx

1 + x2

∫ −1/x

a

√
nFn(α(x, y))

1 + y2
dy

+
1

π2

∫ b

−1/a

√
ndx

1 + x2

∫ b

−1/x

√
nFn(α(x, y))

1 + y2
dy.

We now proceed analogously to the proof of Lemma 2.3. Using the substitution s =√
nα(x, y), Fubini’s theorem, and the facts that

arctanα(x, y) =


arctan y − arctanx if 1 + xy > 0,

arctan y − arctanx− π if 1 + xy < 0 and y > 0,

arctan y − arctanx+ π if 1 + xy < 0 and y < 0,

and

arctanx+ arctan(1/x) =

{
+π/2 if x > 0,

−π/2 if x < 0,

we conclude that

In,2(a, b) =
1

2
(Kn +Kn(−1/a, b))(E[Nn(a, b)]−

√
n/2)− 1

2
Ln(−1/a, b)

+
1

2
(Kn −Kn(a, b))(E[Nn(a, b)]−

√
n) +

1

2
(Ln − Ln(a, b))

+

√
n

2
Kn −Kn(−1/a, b)(E[Nn(a, b)]−

√
n/2)− Ln + Ln(−1/a, b)

+
1

2
(Kn −Kn(a, b))(E[Nn(a, b)]−

√
n) +

1

2
(Ln − Ln(a, b))

+
1

2
(Kn +Kn(−1/a, b))(E[Nn(a, b)]−

√
n/2)− 1

2
Ln(−1/a, b)

= KnE[Nn(a, b)] + (Kn −Kn(a, b))(E[Nn(a, b)]−
√
n)− Ln(a, b),

which gives (2.12). □

2.3. Proof of Theorem 1.2. Before proving Theorem 1.2, let us introduce some lemmas
that will be crucial to the proof. Notably, Theorem 1.1 enables us to derive the large
n expansion of Var[Nn(a, b)] using the expansions of Kn(a, b) and Ln(a, b). In order

to expand Kn(a, b) and Ln(a, b), we initially demonstrate that the functions Fn(s/
√
n)

1+s2/n

and Fn(s/
√
n)

1+s2/n

√
n arctan(s/

√
n) can be transformed into series consisting of terms that are

powers of 1/n.
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Lemma 2.6. Given 0 < cn <
√
n, one has

Fn(s/
√
n)

1 + s2/n
=

∞∑
k=0

fk(s)

nk
uniformly for s ∈ [0, cn], (2.13)

where fk(s) have continuous extensions to [0,∞) such that, as s→ 0,

fk(s) =


−1 + π

4 s+O(s3) if k = 0,

−π
4 s+ s2 +O(s3) if k = 1,

O(s3) if k ≥ 2,

(2.14)

and, as s→ ∞,

fk(s) =
1

2k+1k!
s4k+4e−s2 +O(s4k+2e−s2), k ≥ 0. (2.15)

Proof. The proof will be divided into four steps.

Step 1. Expand ∆n(s/
√
n).

Observe that

∆n(s/
√
n) =

(
1 +

s2

n

)−n/2
(1 + s2/n)[1− (1 + s2/n)−n]− s2

1− (1 + s2)(1 + s2/n)−n
.

If s ∈ [0, cn], then s
2/n ≤ c2n/n < 1. Hence, for any c > 0,

−cn log(1 + s2/n) = −cs2 + c
∞∑
k=1

qk(s)

k!

1

nk
uniformly for s ∈ [0, cn],

in which qk(s) = (−s2)k+1k!/(k + 1). But then(
1 +

s2

n

)−cn

= e−cs2

(
1 +

∞∑
k=1

ec,k(s)

nk

)
, (2.16)

where

ec,k(s) =
1

k!

k∑
j=1

cjBk,j(q1(s), ..., qk−j+1(s)) (2.17)

with Bk,j denoting the exponential partial Bell polynomials (see [19, §3.3]). Explicit
formulas for these polynomials are as follows

Bk,j(q1(s), ..., qk−j+1(s)) =
∑ k!

m1! · · ·mk−j+1!

k−j+1∏
r=1

(
(−s2)r+1

r + 1

)mr

, (2.18)

where the sum is over all solutions in non-negative integers of the equations

m1 + 2m2 + · · ·+ (k − j + 1)mk−j+1 = k,

m1 +m2 + · · ·+mk−j+1 = j.

Combining (2.17) with (2.18) yields

ec,k(s) =

{
c(−1)k+1

k+1 s2k+2 +O(s2k+4) as s→ 0,
ck

k!2k
s4k +O(s4k−2) as s→ ∞.

(2.19)

With (2.16) and a bit of work, we can write(
1 +

s2

n

)−n/2 [
(1 + s2/n)[1− (1 + s2/n)−n]− s2

]
=

∞∑
k=0

uk(s)

nk
,
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in which

u0(s) = e−s2/2
(
1− s2 − e−s2

)
, u1(s) = e−s2/2

[
s2 +

s4

4
− s6

4
− e−s2

(
s2 +

3s4

4

)]
,

and, for k ≥ 2,

uk(s) = e−s2/2
[
s2e1/2,k−1(s) + (1− s2)e1/2,k(s)

]
− e−3s2/2

[
e3/2,k(s) + s2e3/2,k−1(s)

]
.

Notice that

u0(s) =

{
−1

2s
4 +O(s6) as s→ 0,

−s2e−s2/2 +O(e−s2/2) as s→ ∞,
(2.20)

u1(s) =

{
1
2s

4 +O(s6) as s→ 0,

−1
4s

6e−s2/2 +O(s4e−s2/2) as s→ ∞,
(2.21)

and, by (2.19), for k ≥ 2,

uk(s) =

{
O(s2k+2) as s→ 0,

− 1
4kk!

s4k+2e−s2/2 +O(s4ke−s2/2) as s→ ∞.
(2.22)

For s ∈ (0, cn], one has 0 < (1 + s2)(1 + s2/n)−n < 1, and so

1

1− (1 + s2)(1 + s2/n)−n
= 1 +

∞∑
m=1

(1 + s2)m
(
1 +

s2

n

)−mn

= 1 +
∞∑

m=1

(1 + s2)me−ms2

(
1 +

∞∑
k=1

em,k(s)

nk

)

=: v0(s) +
∞∑
k=1

vk(s)

nk
.

Clearly,

v0(s) = 1 +

∞∑
m=1

(1 + s2)me−ms2 =
1

1− (1 + s2)e−s2
,

which gives

v0(s) =

{
2s−4 +O(s−2) as s→ 0,

1 +O(s2e−s2) as s→ ∞.
(2.23)

For k ≥ 1, vk(s) can be expressed in terms of the polylogarithm functions (see [37]) defined
by

Lij(z) :=
∞∑

m=1

zm

mj
.
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Indeed, by definition of vk(s) and (2.17),

vk(s) =

∞∑
m=1

(1 + s2)me−ms2em,k(s)

=
∞∑

m=1

(1 + s2)me−ms2 1

k!

k∑
j=1

mjBk,j(q1(s), ..., qk−j+1(s))

=
1

k!

k∑
j=1

Bk,j(q1(s), ..., qk−j+1(s)) Li−j((1 + s2)e−s2).

In particular,

v1(s) = B1,1(q1(s)) Li−1((1 + s2)e−s2) =
s4

2

(1 + s2)e−s2

(1− (1 + s2)e−s2)2
.

Since, for 1 ≤ j ≤ k,

Li−j((1 + s2)e−s2) ∼

{
j!2j+1s−4(j+1) as s→ 0,

(1 + s2)e−s2 as s→ ∞,

it follows that

vk(s) =

{
2s−4 +O(s−2) as s→ 0,
1

2kk!
s4k+2e−s2 +O(s4ke−s2) as s→ ∞.

(2.24)

Next, by the Cauchy product, for s ∈ (0, cn],( ∞∑
k=0

uk(s)

nk

)( ∞∑
k=0

vk(s)

nk

)
=

∞∑
k=0

δk(s)

nk
,

where

δk(s) :=
k∑

j=0

uj(s)vk−j(s), k ≥ 0.

In particular,

δ0(s) =
e−s2/2(1− s2 − e−s2)

1− (1 + s2)e−s2
,

δ1(s) =
s4e−s2/2

2

(1− s2 − e−s2)(1 + s2)e−s2

(1− (1 + s2)e−s2)2

+
e−s2/2

1− (1 + s2)e−s2

[
s2 +

s4

4
− s6

4
− e−s2

(
s2 +

3s4

4

)]
.

We check at once that

δ0(s) =

{
−1 +O(s2) as s→ 0,

−s2e−s2/2 +O(e−s2/2) as s→ ∞.
(2.25)

Using (2.22), (2.23), and (2.24), we see that, for k ≥ 1,

δk(s) =

{
u0(s)vk(s) + u1(s)vk−1(s) +O(s2) as s→ 0,

uk(s)v0(s) +O(s4k+4e−3s2/2) as s→ ∞.
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Together with (2.20) and (2.21), we arrive at

δk(s) =

{
O(s2) as s→ 0,

− 1
4kk!

s4k+2e−s2/2 +O(s4k+4e−3s2/2) as s→ ∞.
(2.26)

This implies that the functions δk(s) extend by continuity at s = 0. Hence,

∆n(s/
√
n) =

∞∑
k=0

δk(s)

nk
uniformly for s ∈ [0, cn]. (2.27)

Step 2. Expand h(∆n(s/
√
n)), where h(x) :=

√
1− x2 + x arcsinx.

For s > 0, we see that −1 < ∆n(s/
√
n) < 1. Thus, by (2.27) and Faà di Bruno’s

formula (see [19, §3.4]),

h(∆n(s/
√
n)) = h(0) +

∞∑
m=1

h(m)(0)

m!
(∆n(s/

√
n))m

= 1 +

∞∑
m=1

h(m)(0)

m!

( ∞∑
k=0

δk(s)

nk

)m

=: z0(s) +

∞∑
k=1

zk(s)

nk
,

where

z0(s) = 1 +

∞∑
m=1

h(m)(0)

m!
δm0 (s) = h(δ0(s)),

and, for k ≥ 1,

zk(s) =
1

k!

k∑
j=1

h(j)(δ0(s))Bk,j(1!δ1(s), ..., (k − j + 1)!δk−j+1(s)).

In particular,

z1(s) = B1,1(δ1(s))h
′(δ0(s)) = δ1(s) arcsin(δ0(s)).

By (2.25) and the asymptotic behaviors of h(x) as x→ 0 and as x→ −1+,

z0(s) =

{
π/2 +O(s2) as s→ 0,

1 + 1
2s

4e−s2 +O(s2e−s2) as s→ ∞.
(2.28)

Note that h′(x) = arcsinx, so

h′(x) =

{
O(1) as x→ −1+,

x+O(x3) as x→ 0,

and, for j ≥ 2,

h(j)(x) =

{
O((1− x2)(3−2j)/2) as x→ −1+,
1+(−1)j

2 +O(x2) as x→ 0.

Together with (2.25), we see that

h′(δ0(s)) =

{
O(1) as s→ 0,

−s2e−s2/2 +O(s6e−3s2/2) as s→ ∞,

and, for j ≥ 2,

h(j)(δ0(s)) =

{
O(s3−2j) as s→ 0,
1+(−1)j

2 +O(s4e−s2) as s→ ∞.
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Thus, using (2.26) and the fact that 1 +Bk,2(1, ..., 1) = 2k−1, we get

zk(s) =

{
O(s2) as s→ 0,

1
2k+1k!

s4k+4e−s2 +O(s4k+2e−s2) as s→ ∞.
(2.29)

Summarizing, we have

h(∆n(s/
√
n)) =

∞∑
k=0

zk(s)

nk
uniformly for s ∈ [0, cn]. (2.30)

Step 3. Expand Γn(s/
√
n).

For this purpose, let us consider the function x 7→ gs(x) given by

gs(x) =
1− (1 + s2)x

(1− x)3/2
, x ∈ (−1, 1).

For s > 0, we have 0 < (1 + s2/n)−n < 1 and

Γn(s/
√
n) =

1− (1 + s2)(1 + s2/n)−n

[1− (1 + s2/n)−n]3/2
= gs

(
(1 + s2/n)−n

)
.

Therefore,

Γn(s/
√
n) = gs(0) +

∞∑
m=1

g
(m)
s (0)

m!

(
1 +

s2

n

)−mn

= 1 +
∞∑

m=1

g
(m)
s (0)

m!
e−ms2

∞∑
k=0

em,k(s)

nk

= 1 +
∞∑

m=1

g
(m)
s (0)

m!
e−ms2 +

∞∑
k=1

( ∞∑
m=1

g
(m)
s (0)

m!
e−ms2em,k(s)

)
1

nk

=: γ0(s) +
∞∑
k=1

γk(s)

nk
.

In particular,

γ0(s) = 1 +
∞∑

m=1

g
(m)
s (0)

m!
e−ms2 = gs(e

−s2) =
1− (1 + s2)e−s2

(1− e−s2)3/2
.

To determine γk(s), for k ≥ 1, we utilize the following identity (see [19, §5.1]), for m ≥ 1
and 1 ≤ j ≤ k,

mj =

j∑
r=1

S(j, r)(m)r,
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where S(j, r) are the Stirling numbers of the second kind, and (m)r are the falling factorials
defined by (m)r = m(m− 1) · · · (m− r + 1). This implies

γk(s) =
∞∑

m=1

g
(m)
s (0)

m!
e−ms2em,k(s)

=

∞∑
m=1

g
(m)
s (0)

m!
e−ms2 1

k!

k∑
j=1

mjBk,j(q1(s), ..., qk−j+1(s))

=
1

k!

k∑
j=1

Bk,j(q1(s), ..., qk−j+1(s))

j∑
r=1

S(j, r)e−rs2g(r)s (e−s2).

In particular,

γ1(s) = B1,1(q1(s))S(1, 1)e
−s2g′s(e

−s2) =
s4e−s2(1− 2s2 − (1 + s2)e−s2)

4(1− e−s2)5/2
.

A trivial verification shows that

γ0(s) =

{
1
2s+O(s3) as s→ 0,

1− s2e−s2 +O(e−s2) as s→ ∞,
(2.31)

γ1(s) =

{
−1

2s+O(s3) as s→ 0,

−1
2s

6e−s2 +O(s4e−s2) as s→ ∞.
(2.32)

Notice that

gs(e
−s2) =

1− (1 + s2)e−s2

(1− e−s2)3/2
=

{
1
2s+O(s3) as s→ 0,

1 +O(s2e−s2) as s→ ∞,

g(r)s (e−s2) =
2r

(2r + 1)!!

1− (1 + s2)e−s2

(1− e−s2)(2r+3)/2
− r2r−1

(2r − 1)!!

1 + s2

(1− e−s2)(2r+1)/2

=

{
− r2r−1

(2r−1)!!s
−(2r+1) +O(s−(2r−1)) as s→ 0,

− r2r−1

(2r−1)!!s
2 +O(1) as s→ ∞.

Combining with (2.18) yields, for k ≥ 2,

γk(s) =

{
O(s2k−1) as s→ 0,

− 1
2kk!

s4k+2e−s2 +O(s4ke−s2) as s→ ∞.
(2.33)

Therefore,

Γn(s/
√
n) =

∞∑
k=0

γk(s)

nk
uniformly for s ∈ [0, cn]. (2.34)

Step 4. Expand Fn(s/
√
n)

1+s2/n
.

Combining (2.30) with (2.34), we have

Fn(s/
√
n) =

( ∞∑
k=0

zk(s)

nk

)( ∞∑
k=0

γk(s)

nk

)
− 1 =

∞∑
k=0

ak(s)

nk
(2.35)
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uniformly for s ∈ [0, cn], in which

a0(s) = z0(s)γ0(s)− 1 and ak(s) =
k∑

j=0

zj(s)γk−j(s), k ≥ 1.

On account of (2.28), (2.29), (2.31), (2.32), and (2.33), we have

a0(s) =

{
−1 + π

4 s+O(s3) as s→ 0,
1
2s

4e−s2 +O(s2e−s2) as s→ ∞,

a1(s) =

{
−π

4 s+O(s3) as s→ 0,
1
4s

8e−s2 +O(s6e−s2) as s→ ∞,

and, for k ≥ 2,

ak(s) =

{
O(s3) as s→ 0,

1
2k+1k!

s4k+4e−s2 +O(s4k+2e−s2) as s→ ∞.

Since
1

1 + s2/n
=

∞∑
k=0

(−s2)k

nk
,

it follows from (2.35) that

Fn(s/
√
n)

1 + s2/n
=

( ∞∑
k=0

ak(s)

nk

)( ∞∑
k=0

(−s2)k

nk

)
=

∞∑
k=0

fk(s)

nk

uniformly for s ∈ [0, cn], where

fk(s) :=

k∑
j=0

(−1)js2jak−j(s), k ≥ 0.

As shown above, fk(s) have continuous extensions to [0,∞) such that

f0(s) =

{
−1 + π

4 s+O(s3) as s→ 0,
1
2s

4e−s2 +O(s2e−s2) as s→ ∞,

f1(s) =

{
−π

4 s+ s2 +O(s3) as s→ 0,
1
4s

8e−s2 +O(s6e−s2) as s→ ∞,

and, for k ≥ 2,

fk(s) =

{
O(s3) as s→ 0,

1
2k+1k!

s4k+4e−s2 +O(s4k+2e−s2) as s→ ∞.

Thus, Lemma 2.6 is verified. □

Recall that

f0(s) = h(δ0(s))γ0(s)− 1

and

f1(s) = h(δ0(s))γ1(s) + δ1(s) arcsin(δ0(s))γ0(s)− s2f0(s),

where explicit formulas for h(x), δ0(s), δ1(s), γ0(s), and γ1(s) are provided. This means
that one can also obtain explicit formulas for both f0(s) and f1(s). In Figure 1, we show
plots of f0(s) and f1(s) for s ∈ [0, 5].
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Figure 1. Plots of f0(s) and f1(s).

Note that, for −1 ≤ s/
√
n ≤ 1,

√
n arctan(s/

√
n) =

∞∑
k=0

(−1)ks2k+1

2k + 1

1

nk
.

Together with Lemma 2.6, we obtain the following lemma.

Lemma 2.7. Given 0 < cn <
√
n, one has

Fn(s/
√
n)

1 + s2/n

√
n arctan(s/

√
n) =

∞∑
k=0

gk(s)

nk
uniformly for s ∈ [0, cn], (2.36)

where

gk(s) =
k∑

j=0

(−1)js2j+1

2j + 1
fk−j(s), k ≥ 0.

Furthermore, gk(s) have continuous extensions to [0,∞) such that, as s→ 0,

gk(s) =


−s+ π

4 s
2 +O(s4) if k = 0,

−π
4 s

2 + 4
3s

3 +O(s4) if k = 1,

O(s4) if k ≥ 2,

(2.37)

and, as s→ ∞,

gk(s) =
1

2k+1k!
s4k+5e−s2 +O(s4k+3e−s2), k ≥ 0. (2.38)

Note that explicit formulas for g0(s) and g1(s) can be obtained from g0(s) = sf0(s) and

g1(s) = sf1(s)− s3

3 f0(s). Plots of g0(s) and g1(s) for s ∈ [0, 5] are included in Figure 2.
We can now define, for k ≥ 0 and c > 0,

κk :=
2

π

∫ ∞

0
fk(s)ds, κc,k :=

2

π

∫ c

0
fk(s)ds,

ℓk :=
2

π2

∫ ∞

0
gk(s)ds, ℓc,k :=

2

π2

∫ c

0
gk(s)ds.

The continuity of fk(s) and gk(s), along with the asymptotic behaviors given in (2.14),
(2.15), (2.37), and (2.38), justifies the definitions of κk, ℓk, κc,k, and ℓc,k. Explicit formulas
for fk(s) and gk(s) allow for the numerical computation of κk, ℓk, κc,k, and ℓc,k, for k = 0, 1,
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Figure 2. Plots of g0(s) and g1(s).

and c > 0. Table 1 lists some numerical values, where the integrals were numerically
evaluated using MATLAB.

Table 1. Numerical values of κk, ℓk, κ1,k, and ℓ1,k for k = 0, 1.

k κk ℓk κ1,k ℓ1,k
0 −0.4282689510 −0.0580365252 −0.3955313789 −0.0505415303
1 −0.1522064957 −0.0082122652 −0.1093878905 −0.0138350833

We emphasize that the expansions provided in (2.13) and (2.36) enable us to express
Kn(a, b) and Ln(a, b) as series of terms that are powers of 1/n, under the condition |αn| <√
n. Our subsequent objective is to estimate |Kn−Kn(a, b)| and |Ln−Ln(a, b)| when |αn|

is arbitrarily large.

Lemma 2.8. Suppose |αn| ≥ 2. There exists a positive constant n0 such that for all
n ≥ n0,

|Kn −Kn(a, b)| ≤
8

π
|αn|3

(
1 + α2

n/n
)−n

, (2.39)

|Ln − Ln(a, b)| ≤
4

π

√
n|αn|3

(
1 + α2

n/n
)−n

. (2.40)

Proof. Observe that

|Kn −Kn(a, b)| ≤
2

π

∫ ∞

|αn|

|Fn(s/
√
n)|

1 + s2/n
ds,

|Ln − Ln(a, b)| ≤
2

π2

∫ ∞

|αn|

|Fn(s/
√
n)|

1 + s2/n

√
n arctan(s/

√
n)ds.

Since 0 ≤ arctan(s/
√
n) ≤ π

2 for s ∈ [|αn|,∞), it follows that (2.40) is a consequence of
(2.39).

We now prove (2.39). Choose n0 > 0 such that for n ≥ n0 and s ≥ 2, we have

s2(1 + s2/n)−n/2 ≤ 1

4
.

Then, for n ≥ n0 and s ≥ 2,

|∆n(s/
√
n)| = (1 + s2/n)−n/2 |(1 + s2/n)[1− (1 + s2/n)−n]− s2|

1− (1 + s2/n)−n − s2(1 + s2/n)−n
≤ 2s2(1 + s2/n)−n/2.

Let sn := 2s2(1 + s2/n)−n/2. Then, 0 ≤ sn ≤ 1/2 and

1 ≤ h(x) =
√
1− x2 + x arcsinx ≤ 1 +

x2

2
√
1− s2n

, x ∈ [−sn, sn].
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This gives

1 ≤ h(∆n(s/
√
n)) ≤ 1 +

s2n

2
√
1− s2n

≤ 1 +
s2n√
3
.

Together with

1− 2s2(1 + s2/n)−n ≤ Γn(s/
√
n) =

1− (1 + s2/n)−n − s2(1 + s2/n)−n

[1− (1 + s2/n)−n]3/2

≤ 1√
1− (1 + s2/n)−n

≤ 1 + (1 + s2/n)−n,

we deduce that

|Fn(s/
√
n)| = |h(∆n(s/

√
n))Γn(s/

√
n)− 1| ≤ s2n = 4s4(1 + s2/n)−n,

hence, for n ≥ n0 and s ≥ 2,

|Fn(s/
√
n)|

1 + s2/n
≤ 4s4(1 + s2/n)−n−1. (2.41)

For |αn| ≥ 2 and n ≥ n0, the function s 7→ s3
(
1 + s2/n

)−n/2
achieves its maximum value

on [|αn|,∞) at s = |αn|, and therefore∫ ∞

|αn|
4s4
(
1 +

s2

n

)−n−1

ds ≤ 4|αn|3
(
1 +

α2
n

n

)−n/2 ∫ ∞

|αn|
s

(
1 +

s2

n

)−n/2−1

ds

= 4|αn|3
(
1 +

α2
n

n

)−n

.

Combining with (2.41) yields (2.39) as required. □

We can now formulate the asymptotic expansions of Kn(a, b) and Ln(a, b).

Lemma 2.9. As n→ ∞, if α2
n/ log n→ ∞, then

Kn(a, b) ∼
∞∑
k=0

κk
nk
, (2.42)

Ln(a, b) ∼
∞∑
k=0

ℓk
nk
. (2.43)

Consequently, as n→ ∞,

Kn ∼
∞∑
k=0

κk
nk
, (2.44)

Ln ∼
∞∑
k=0

ℓk
nk
. (2.45)

Proof. We first prove (2.42). If α2
n ≥ n, one has

|αn|3
(
1 + α2

n/n
)−n ≤ n3/22−n.

But then (2.39) implies that the integral 2
π

∫ |αn|√
n

Fn(s/
√
n)

1+s2/n
ds is negligible. Thus, it suffices

to assume that α2
n < n. By (2.13),

Kn(a, b) =

∞∑
k=0

(
2

π

∫ |αn|

0
fk(s)ds

)
1

nk
. (2.46)
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We now show that
∞∑
k=0

(
2

π

∫ ∞

|αn|
fk(s)ds

)
1

nk
≪ |αn|3e−α2

n+α4
n/2n. (2.47)

In fact, since |αn| → ∞ as n → ∞, we see that, for any fixed k ≥ 0 and all n sufficiently

large, the function s 7→ s4k+3e−s2/2 achieves its maximum value on [|αn|,∞) at s = |αn|.
This implies

0 ≤
∫ ∞

|αn|

s4k+4e−s2

2k+1k!
ds ≤ |αn|4k+3e−α2

n/2

2k+1k!

∫ ∞

|αn|
se−s2/2ds =

|αn|4k+3e−α2
n

2k+1k!
.

Therefore,

∞∑
k=0

(
2

π

∫ ∞

|αn|

s4k+4e−s2

2k+1k!
ds

)
1

nk
≤ |αn|3e−α2

n+α4
n/2n

π
,

which gives (2.47) when combined with (2.15). Next, in view of (2.46) and (2.47), the
series on the right-hand side of (2.42) converges and

Kn(a, b) =
∞∑
k=0

κk
nk

+O
(
|αn|3e−α2

n+α4
n/2n

)
.

Since O(|αn|3e−α2
n+α4

n/2n) is negligible when α2
n/ log n→ ∞, we get (2.42).

Similarly, (2.43) follows from applying Lemma 2.7 and (2.40).
Finally, by Lemma 2.8, (2.44) and (2.45) follow from (2.42) and (2.43), respectively. □

Note that if α2
n does not grow faster than log n, then |αn|3e−α2

n+α4
n/2n ≥ n−c for some

constant c > 0. In this case, we are thus looking for finite expansions of Kn(a, b) and
Ln(a, b).

Lemma 2.10. As n → ∞, if |αn| → ∞ and α2
n = O(log n), then for dn given by (1.7),

we have

Kn(a, b) =

dn∑
k=0

κk
nk

+O(|αn|3e−α2
n) and Ln(a, b) =

dn∑
k=0

ℓk
nk

+O(α4
ne

−α2
n).

Proof. Since α2
n = O(log n), dn is bounded. A slight change in the proof of Lemma 2.6

actually shows that, for s ∈ [0, |αn|],

Fn(s/
√
n)

1 + s2/n
=

dn∑
k=0

fk(s)

nk
+O

(
α4dn
n

ndn+1

)
.

It follows that

Kn(a, b) =

dn∑
k=0

(
2

π

∫ |αn|

0
fk(s)ds

)
1

nk
+O

(
|αn|4dn+1

ndn+1

)

=

dn∑
k=0

κk
nk

−
dn∑
k=0

(
2

π

∫ ∞

|αn|
fk(s)ds

)
1

nk
+O

(
|αn|4dn+1

ndn+1

)
.

Analysis similar to that in the proof of (2.47) shows

dn∑
k=0

(
2

π

∫ ∞

|αn|
fk(s)ds

)
1

nk
≤ 1 + dn

π
|αn|3e−α2

n ≪ |αn|3e−α2
n .
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This clearly forces

Kn(a, b) =

dn∑
k=0

κk
nk

+O(|αn|3e−α2
n).

The term Ln(a, b) can be handled in much the same way. □

Next, we establish the asymptotics of Kn(a, b) and Ln(a, b) when αn = o(1).

Lemma 2.11. As n→ ∞, if αn = o(1), then

Kn(a, b) = − 2

π
|αn|+

1

4
α2
n − 1

4

α2
n

n
+

2

3π

|αn|3

n
+O(α4

n), (2.48)

Ln(a, b) = − 1

π2
α2
n +

1

6π
|αn|3 −

1

6π

|αn|3

n
+

2

3π2
α4
n

n
+O(|αn|5). (2.49)

Proof. By (2.13) and (2.14),

Kn(a, b) =
2

π

∫ |αn|

0

[
−1 +

π

4
s+

1

n

(
−π
4
s+ s2

)]
ds+O(α4

n)

= − 2

π
|αn|+

1

4
α2
n − 1

4

α2
n

n
+

2

3π

|αn|3

n
+O(α4

n),

and (2.48) is proved. Similarly, (2.49) follows from applying Lemma 2.7. □

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof relies on the asymptotic behavior of αn as n becomes
large.

(1) Assume first that |αn| → ∞ as n → ∞. Then (1.9) is a consequence of Theorem
1.1 and Lemma 2.9, while (1.8) follows from Theorem 1.1, the relation (2.44), and
Lemma 2.10.

(2) If αn = c > 0, then

E[Nn(a, b)] =

√
n

π
arctan

c√
n
.

Thus, using (1.4), Lemmas 2.6 and 2.7, we deduce (1.10). For αn = −c, (1.11)
follows from (1.6), (2.44), Lemmas 2.6 and 2.7, along with the fact that

E[Nn(a, b)] =
√
n+

√
n

π
arctan

c√
n
.

(3) Suppose that αn = o(1) as n→ ∞. If αn > 0, then

E[Nn(a, b)] =

√
n

π
arctanα(a, b) =

1

π

(
αn − α3

n

3n

)
+O(α5

n).

Hence, (1.12) follows from (1.4) and Lemma 2.11. Next, for αn < 0, we see that

E[Nn(a, b)] =
√
n+

1

π

(
αn − α3

n

3n

)
+O(|αn|5).

Combining this with (1.6), Lemma 2.11, and the facts that
√
n/nun = O(|αn|5) and

αn/n
vn = O(|αn|5), we establish (1.13). If additionally, vn → ∞, implying un → ∞

and αn = o(n−vn/4), which is negligible, then (1.14) follows as a consequence of
(1.13). Finally, substituting (2.44) into (1.5) yields (1.15).

□
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3. Cumulants and their asymptotics

In this section, we thoroughly explore the computation and asymptotic analysis of
cumulants related to the number of real zeros of GAFs. Additionally, we provide proofs
for Theorems 1.15, 1.21, 1.24, and 1.4.

3.1. Correlation functions. To compute the cumulants of the number of real zeros of
GAFs, we employ the concept of correlation functions and truncated correlation functions,
as outlined below (see Do and Vu [26] and Nazarov and Sodin [45] for additional details).

Let Z be a random point process on R. For k ≥ 1, the function ρk : Rk → R is called the
k-point correlation function of Z if, for any compactly supported C∞ function f : Rk → R,
it holds that

E
[∑

f(x1, ..., xk)
]
=

∫
Rk

f(ξ1, ..., ξk)ρk(ξ1, ..., ξk)dξ1 · · · dξk,

where the sum is taken over all possible ordered k-tuples (x1, ..., xk) of distinct points in Z.
The k-point correlation function is symmetric and locally integrable on Rk. Furthermore,
if there is ϵ > 0 such that ρk is locally L1+ϵ integrable, then for any interval U ⊂ R, it
holds that

E[NZ(U)(NZ(U)− 1) · · · (NZ(U)− k + 1)] =

∫
Uk

ρk(ξ1, ..., ξk)dξ1 · · · dξk,

where NZ(U) = |Z ∩ U | (see, for example, [26, §7]).
It is important to note that the k-point correlation function does not always exist.

Within the scope of this paper, the presence of correlation functions directly derives from
the Kac-Rice formula (see, for example, [8, Chapter 3]). For instance, if Z denotes the
multiset of real zeros of a smooth, non-degenerate, centered Gaussian process G, the k-
point correlation function ρk(ξξξ) is well-defined for ξξξ = (ξ1, ..., ξk) of distinct points in R,
and it is given by

ρk(ξξξ) =

∫
Rk

|y1 · · · yk|Dk(yyy;ξξξ)dy1 · · · dyk,

where yyy = (0, y1, ..., 0, yk) ∈ R2k and Dk(yyy;ξξξ) is the probability density of the Gaussian
vector (G(ξ1), G

′(ξ1), ..., G(ξk), G
′(ξk)). This density can be more explicitly expressed as

Dk(yyy;ξξξ) =
e−

1
2
⟨yyy(Γ(ξξξ))−1,yyy⟩

(2π)k
√

det Γ(ξξξ)
,

where Γ(ξξξ) is the covariance matrix of (G(ξ1), G
′(ξ1), ..., G(ξk), G

′(ξk)).
We define Π(k) as the set of all unordered partitions of the set {1, . . . , k} into disjoint

nonempty blocks, and Π(k, j) as the set of all unordered partitions of the set {1, . . . , k}
into exactly j disjoint nonempty blocks. For a partition γ in Π(k, j), we denote the blocks
as {γ1, . . . , γj} with an arbitrarily chosen enumeration and the lengths of the blocks as
li = |γi| for 1 ≤ i ≤ j. For ξξξ = (ξ1, . . . , ξk) and γj ⊂ {1, . . . , k}, let ξξξγj stand for (ξi)i∈γj .

The function ρTk , defined as

ρTk (ξξξ) =
k∑

j=1

(−1)j−1(j − 1)!
∑

γ∈Π(k,j)

ρl1(ξξξγ1) · · · ρlj (ξξξγj ), (3.1)

is called the truncated k-point correlation function of Z.
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We can verify that ρT1 (ξ1) = ρ1(ξ1), ρ
T
2 (ξ1, ξ2) = ρ2(ξ1, ξ2)− ρ1(ξ1)ρ1(ξ2),

ρT3 (ξ1, ξ2, ξ3) = ρ3(ξ1, ξ2, ξ3)− ρ2(ξ1, ξ2)ρ1(ξ3)− ρ2(ξ2, ξ3)ρ1(ξ1)− ρ2(ξ1, ξ3)ρ1(ξ2)

+ 2ρ1(ξ1)ρ1(ξ2)ρ1(ξ3),

and so on. Moreover, the inversion of (3.1) takes the form

ρk(ξξξ) =
∑

γ∈Π(k)

ρTl1(ξξξγ1) · · · ρ
T
lj
(ξξξγj ). (3.2)

The computation of the kth cumulant sk[NZ(U)] necessitates knowledge of m-point
truncated correlation functions ρTm for all m ∈ {1, ..., k}.

Lemma 3.1. Let k ≥ 1. If ρTm ∈ L1(Um) for all m ∈ {1, ..., k}, then

sk[NZ(U)] =
∑

γ∈Π(k)

∫
U |γ|

ρT|γ|(ξξξγ)dξξξγ ,

where |γ| is the number of blocks in the partition γ and dξξξγ is the Lebesgue measure on

U |γ|.

For detailed proofs, we refer the reader to, for example, [26, Appendix B] or [45, Ap-
pendix].

3.2. Estimates for correlation functions of real zeros of real GAFs. In what
follows, let k ≥ 1 be an integer and Q be a real GAF. Let ρk and ρTk denote the k-point
and truncated k-point correlation functions for the real zeros of Q, respectively. The proofs
in this subsection adhere closely to the approach in [26], building upon arguments from
[45].

The following lemma asserts that if Q is 2k-nondegenerate, then ρk is locally bounded
(see [26, §10.1] for a proof).

Lemma 3.2 ([26]). If Q is 2k-nondegenerate, then for any M > 0, there exists a finite
positive constant CQ,M,k such that, for all ξ1, . . . , ξk ∈ [−M,M ], one has

1

CQ,M,k

∏
1≤i<j≤k

|ξi − ξj | ≤ ρk(ξ1, ..., ξk) ≤ CQ,M,k

∏
1≤i<j≤k

|ξi − ξj |.

The next result illustrates a clustering property for ρk when Q fulfills hypothesis (H3).

Lemma 3.3. Suppose that Q satisfies hypothesis (H3). There exist positive constants Ck

and Dk such that the following holds: For any ξξξ = (ξ1, ..., ξk) of distinct points in R and
any partition ξξξ = ξξξI ∪ ξξξJ with d = d(ξξξI , ξξξJ) ≥ Dkτk, we have∣∣∣∣ ρk(ξξξ)

ρ|I|(ξξξI)ρ|J |(ξξξJ)
− 1

∣∣∣∣ ≤ Ckψ(d− τk).

Proof. For ck, τk, and ψ as in (H3), let ϵ = 2ckψ(d− τk) > 0. Since limx→∞ ψ(x) = 0, we
can choose Dk ≥ 2 such that ϵ < 1. Let Ck > 0 be such that

0 < 1− Ckψ(d− τk) ≤
(
1− ϵ

1 + ϵ

)k

and

(
1 + ϵ

1− ϵ

)k

≤ 1 + Ckψ(d− τk).

The proof is completed by showing that(
1− ϵ

1 + ϵ

)k

ρ|I|(ξξξI)ρ|J |(ξξξJ) ≤ ρk(ξξξ) ≤
(
1 + ϵ

1− ϵ

)k

ρ|I|(ξξξI)ρ|J |(ξξξJ). (3.3)



THE NUMBER OF REAL ZEROS OF ELLIPTIC POLYNOMIALS 33

By (H3),

|E [Lzzz
IQ(ξξξI)L

zzz
JQ(ξξξJ)]| ≤

1

2
ϵ
(
E[|Lzzz

IQ(ξξξI)|2] + E[|Lzzz
JQ(ξξξJ)|2]

)
,

which implies

(1− ϵ)
(
E[|Lzzz

IQ(ξξξI)|2] + E[|Lzzz
JQ(ξξξJ)|2]

)
≤ E[|LzzzQ(ξξξ)|2]

≤ (1 + ϵ)
(
E[|Lzzz

IQ(ξξξI)|2] + E[|Lzzz
JQ(ξξξJ)|2]

)
.

Let Λ(ξξξ) be the covariance matrix of (Q(ξ1), Q
′(ξ1), ..., Q(ξk), Q

′(ξk)). Similarly, we can
define the covariance matrices ΛI(ξξξI) and ΛJ(ξξξJ). We set

ΛI,J(ξξξ) =

(
ΛI(ξξξI) 0

0 ΛJ(ξξξJ)

)
.

By (1.24), we deduce that

(1− ϵ)ΛI,J(ξξξ) ≤ Λ(ξξξ) ≤ (1 + ϵ)ΛI,J(ξξξ).

This yields

detΛ(ξξξ) ≥ (1− ϵ)2k detΛI,J(ξξξ) = (1− ϵ)2k detΛI(ξξξI) detΛJ(ξξξJ),

and hence, applying the Kac-Rice formula, we derive

ρk(ξξξ) =
1

(2π)k
√
detΛ(ξξξ)

∫
Rk

|y1 · · · yk|e−
1
2
⟨yyy(Λ(ξξξ))−1,yyy⟩dy1 · · · dyk

≤ (1− ϵ)−k

(2π)k
√
detΛI,J(ξξξ)

∫
Rk

|y1 · · · yk|e
− 1

2(1+ϵ)
⟨yyy(ΛI,J (ξξξ))

−1,yyy⟩
dy1 · · · dyk

=

(
1 + ϵ

1− ϵ

)k

ρ|I|(ξξξI)ρ|J |(ξξξJ),

where yyy = (0, y1, ..., 0, yk) and the last equality is obtained by changing variables and using
the fact that

(ΛI,J(ξξξ))
−1 =

(
(ΛI(ξξξI))

−1 0
0 (ΛJ(ξξξJ))

−1

)
.

Similarly, we have

ρk(ξξξ) ≥
(
1− ϵ

1 + ϵ

)k

ρ|I|(ξξξI)ρ|J |(ξξξJ),

and (3.3) is proved. □

Lemma 3.3 demonstrates that when variables in Rk are partitioned into two well-
separated clusters, the correlation function ρk closely approximates the product of the
corresponding factors. Hypothesis (H2) ensures translation invariance of ρm (1 ≤ m ≤ k).
Complementing the local estimates derived from Lemma 3.2, we establish the following
uniform estimates for ρk.

Lemma 3.4. If Q ∈ Ak, there exists a positive constant Ck such that

1

Ck

∏
1≤i<j≤k

min(1, |ξi − ξj |) ≤ ρk(ξ1, ..., ξk) ≤ Ck

∏
1≤i<j≤k

min(1, |ξi − ξj |).
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Proof. We proceed with induction on k. The base case k = 1 is evident, with ρ1 being
a constant. For any k ≥ 2, assuming the lemma holds for m-point correlation functions
with m ≤ k − 1, we aim to prove it for k-point functions. We consider two scenarios.

If ξξξ = (ξ1, ..., ξk) ∈ Rk can be split into two groups ξξξI and ξξξJ with d(ξξξI , ξξξJ) ≥ Dkτk,
then employing Lemma 3.3, we obtain

(1− Ckψ(d− τk))ρ|I|(ξξξI)ρ|J |(ξξξJ) ≤ ρk(ξξξ) ≤ (1 + Ckψ(d− τk))ρ|I|(ξξξI)ρ|J |(ξξξJ),

and the result follows from the induction hypothesis.
If no such splitting exists, then diam(ξξξ) = max1≤i<j≤k |ξi− ξj | is bounded. In this case,

the result follows from the local bounds in Lemma 3.2 and translation invariance due to
(H2). □

By combining Lemma 3.3 and Lemma 3.4, we readily obtain the following additive
version of the clustering property.

Lemma 3.5. If Q ∈ Ak, there exist positive constants Ck and τk such that the following
holds: For ξξξ = (ξ1, ..., ξk) ∈ Rk and any partition ξξξ = ξξξI ∪ ξξξJ with d = d(ξξξI , ξξξJ) ≥ 2τk, we
have ∣∣ρk(ξξξ)− ρ|I|(ξξξI)ρ|J |(ξξξJ)

∣∣ ≤ Ckψ(d− τk).

The asymptotic factorization of k-point correlation functions, as stated in Lemma 3.5,
results in the asymptotic decay of truncated k-point functions as the variable’s diameter
increases.

Lemma 3.6. Assuming Q ∈ Ak, there exist finite positive constants ck and Ck such that
for any ξξξ = (ξ1, ..., ξk) ∈ Rk, the following inequality holds

|ρTk (ξξξ)| ≤ Ckψ̂(ck diam(ξξξ)), (3.4)

where ψ̂ = min(1, ψ) and diam(ξξξ) = max1≤i<j≤k |ξi − ξj | is the diameter of ξξξ.

Proof. For k = 1, (3.4) is obvious since ρT1 = ρ1, which is a constant. For k ≥ 2,
we aim to show that there exist finite positive constants ck and Ck such that, for any
ξξξ = (ξ1, ..., ξk) ∈ Rk and any partition {1, . . . , k} = I ∪ J ,

|ρTk (ξξξ)| ≤ Ckψ̂(ckd(ξξξI , ξξξJ)). (3.5)

Since for any ξξξ ∈ Rk, there exists a partition {1, ..., k} = I ∪ J such that d(ξξξI , ξξξJ) ≥
1
2k diam(ξξξ), it follows that (3.5) implies (3.4).
We prove (3.5) by induction on k. For k = 2, it follows from the clustering of ρ2 and

the uniform boundedness of ρ1 and ρ2 that

|ρT2 (ξ1, ξ2)| = |ρ2(ξ1, ξ2)− ρ1(ξ1)ρ1(ξ2)| ≤ Cmin(1, ψ(c|ξ1 − ξ2|)).
Let k ≥ 3. Fix a partition {1, ..., k} = I ∪ J and define Π(I, J) as the set of non-trivial
partitions of {1, ..., k} that mix I∪J ; that is, it contains partitions with at least two blocks
such that there exists a block intersecting both I and J . By the inversion formula (3.2),
we have

ρk(ξξξ)− ρ|I|(ξξξI)ρ|J |(ξξξJ) = ρTk (ξξξ) +
∑

γ∈Π(I,J)

ρTl1(ξξξγ1) · · · ρ
T
lj
(ξξξγj ),

which implies

|ρTk (ξξξ)| ≤ |ρk(ξξξ)− ρ|I|(ξξξI)ρ|J |(ξξξJ)|+
∑

γ∈Π(I,J)

|ρTl1(ξξξγ1) · · · ρ
T
lj
(ξξξγj )|.

Therefore, by employing Lemma 3.5 and the induction assumption, we can assert that
there exist positive constant ck and Ck such that (3.5) holds. □
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It is noteworthy that in [14, §5], Bleher, Shiffman, and Zelditch derived analogous
estimates for correlation functions and truncated correlation functions utilizing the Wick
formula, subject to the condition mini ̸=j |ξi − ξj | ≥ c > 0.

3.3. Proof of Theorem 1.15. Applying Lemma 3.1, we express sm[NQ(R)] as

sm[NQ(R)] =
∑

γ∈Π(m)

∫
[0,R]|γ|

ρT|γ|(ξξξγ)dξξξγ ,

where |γ| is the number of blocks in the partition γ and dξξξγ is the Lebesgue measure

on [0, R]|γ|. Our goal is to establish, for each j ∈ {1, ...,m}, the existence of bounded

functions θ̂j and λ̂j : [0,∞) → R such that∫
[0,R]j

ρTj (ξξξ)dξξξ = Rθ̂j(R) + λ̂j(R). (3.6)

Assuming (3.6), we obtain (1.22) with

θQm(R) =
∑

γ∈Π(m)

θ̂|γ|(R) and λQm(R) =
∑

γ∈Π(m)

λ̂|γ|(R). (3.7)

Clearly, (3.6) holds for j = 1, where θ̂1(R) = ρ1(0) and λ̂1(R) = 0. Now, consider the case
where j ≥ 2. Due to translation invariance,∫

[0,R]j
ρTj (ξξξ)dξξξ =

∫ R

0
dξj

∫
[0,R]j−1

ρTj (ξ1 − ξj , ..., ξj−1 − ξj , 0)dξ1 · · · dξj−1.

Through a change of variables and application of Fubini’s theorem, we see that∫
[0,R]j

ρTj (ξξξ)dξξξ =

∫ R

0
dξj

∫
[−ξj ,R−ξj ]j−1

ρTj (t1, ..., tj−1, 0)dt1 · · · dtj−1

=

∫ R

0
dξj

∫
[−R,R]j−1

ρTj (t1, ..., tj−1, 0)

j−1∏
i=1

111[−ξj ,R−ξj ](ti)dt1 · · · dtj−1

=

∫
[−R,R]j−1

dt1 · · · dtj−1

∫ R

0
ρTj (t1, ..., tj−1, 0)

j−1∏
i=1

111[−ti,R−ti](ξj)dξj

=

∫
[−R,R]j−1

dt1 · · · dtj−1ρ
T
j (t1, ..., tj−1, 0)

× [R−max(t1, ..., tj−1, 0) + min(t1, ..., tj−1, 0)]

= R

∫
[−R,R]j−1

ρTj (ttt, 0)dttt−
∫
[−R,R]j−1

ρTj (ttt, 0) diam(ttt, 0)dttt,

where ttt = (t1, ..., tj−1), dttt = dt1 · · · dtj−1, and diam(ttt, 0) is the diameter of the configura-
tion (t1, ..., tj−1, 0). This implies (3.6) with

θ̂j(R) =

∫
[−R,R]j−1

ρTj (ttt, 0)dttt and λ̂j(R) = −
∫
[−R,R]j−1

ρTj (ttt, 0) diam(ttt, 0)dttt.

We deduce from Lemma 3.6 that

|θ̂j(R)| ≤
∫
[−R,R]j−1

|ρTj (ttt, 0)|dttt≪
∫
[−R,R]j−1

ψ(ck diam(ttt, 0))dttt.
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Similarly,

|λ̂j(R)| ≪
∫
[−R,R]j−1

ψ(ck diam(ttt, 0)) diam(ttt, 0)dttt.

Hence, the boundedness of θ̂j and λ̂j follows from the subsequent lemma and the fact that∫ ∞

0
ψ(x)xk−1dx <∞.

Lemma 3.7. For any ψ ∈ Ψk and R > 0, it holds that

k

∫ R

0
ψ(x)xk−1dx ≤

∫
(−R,R)k

ψ(diam(ξξξ, 0))dξξξ ≤ 2kk

∫ 2R

0
ψ(x)xk−1dx. (3.8)

Assuming Lemma 3.7, we can define

θ̂j,∞ =

∫
Rj−1

ρTj (ttt, 0)dttt and λ̂j,∞ = −
∫
Rj−1

ρTj (ttt, 0) diam(ttt, 0)dttt.

Moreover, there exists a function ψ ∈ Ψk such that, as R→ ∞, we have

|θ̂j(R)− θ̂j,∞| ≪
∫ ∞

R
ψ(x)xj−2dx and |λ̂j(R)− λ̂j,∞| ≪

∫ ∞

R
ψ(x)xj−1dx.

Substituting these estimates into (3.7), we deduce

θQm(R) = θQm,∞ +O

(∫ ∞

R
ψ(x)xm−2dx

)
and λQm(R) = λQm,∞ +O

(∫ ∞

R
ψ(x)xm−1dx

)
,

where

θQm,∞ =
∑

γ∈Π(m)

θ̂|γ|,∞ and λQm,∞ =
∑

γ∈Π(m)

λ̂|γ|,∞.

Thus, (1.23) is verified. It remains to prove Lemma 3.7.

Proof of Lemma 3.7. We begin by noting that∫
(0,R)k

ψ(diam(ξξξ, 0))dξξξ ≤
∫
(−R,R)k

ψ(diam(ξξξ, 0))dξξξ ≤ 2k
∫
(0,2R)k

ψ(diam(ξξξ, 0))dξξξ.

For ξξξ ∈ (0, R)k, we have diam(ξξξ, 0) = max(ξ1, ..., ξk) := maxξξξ. Hence, (3.8) will be proved
once we show that ∫

(0,R)k
ψ(maxξξξ)dξξξ = k

∫ R

0
ψ(x)xk−1dx. (3.9)

For ξξξ = (ξ1, ..., ξk−1, ξk), let ξξξk−1 = (ξ1, ..., ξk−1). Applying Fubini’s theorem, we have∫
(0,R)k

ψ(maxξξξ)dξξξ =

∫
(0,R)k−1

dξξξk−1

∫ R

0
ψ(maxξξξ)dξk

=

∫
(0,R)k−1

dξξξk−1

(∫ maxξξξk−1

0
ψ(maxξξξk−1)dξk +

∫ R

maxξξξk−1

ψ(ξk)dξk

)

=

∫
(0,R)k−1

dξξξk−1

(
ψ(maxξξξk−1)maxξξξk−1 +

∫ R

0
ψ(ξk)111(maxξξξk−1,R)(ξk)dξk

)
=

∫
(0,R)k−1

ψ(maxξξξk−1)maxξξξk−1dξξξk−1 +

∫ R

0
ψ(ξk)ξ

k−1
k dξk.
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By repeatedly applying this argument, we obtain∫
(0,R)k

ψ(maxξξξ)dξξξ =

k∑
j=1

∫ R

0
ψ(ξj)ξ

k−1
j dξj ,

which gives (3.9). □

3.4. Proof of Theorem 1.21. For each j ∈ {1, ...,m}, let ρn,j and ρTn,j denote the j-
point and truncated j-point correlation functions for the real zeros of Qn, respectively.
According to the Kac-Rice formula,

ρn,j(ξξξ) =
1

(2π)j
√
detΛn(ξξξ)

∫
Rj

|y1 · · · yj |e−
1
2
⟨yyy(Λn(ξξξ))−1,yyy⟩dy1 · · · dyj ,

where ξξξ = (ξ1, ..., ξj), Λn(ξξξ) is the covariance matrix of (Qn(ξ1), Q
′
n(ξ1), ..., Qn(ξj), Q

′
n(ξj)),

and yyy = (0, y1, ..., 0, yj). Note that hypothesis (H4) implies

(1− εn)Λ(ξξξ) ≤ Λn(ξξξ) ≤ (1 + εn)Λ(ξξξ),

where Λ(ξξξ) is the covariance matrix of (Q(ξ1), Q
′(ξ1), ..., Q(ξj), Q

′(ξj)). Analysis similar
to that in the proof of Lemma 3.3 shows that(

1− εn
1 + εn

)j

ρj(ξξξ) ≤ ρn,j(ξξξ) ≤
(
1 + εn
1− εn

)j

ρj(ξξξ).

Combining this with (3.1) and the uniform boundedness of ρj , we deduce that

|ρTn,j(ξξξ)− ρTj (ξξξ)| ≪ εn, j = 1, ...,m.

Consequently, by employing Lemma 3.1 and the fact that ρTj is translation-invariant, we
derive

|sm[NQn(In)]− sm[NQ(|In|)]| ≪ εn|In|m.

According to Theorem 1.15,

sm[NQ(|In|)] = |In|θQm(|In|) + λQm(|In|),

and hence (1.27) follows.
As n → ∞, if |In| → ∞ and εn|In|m → 0, then (1.28) is a consequence of (1.27) and

(1.23).

3.5. Proof of Theorem 1.24. For each j ∈ {1, ...,m}, let ρ̃j and ρ̃Tj denote the j-

point and truncated j-point correlation functions for the real zeros of P (x) = Q(ϱ(x)),
respectively, where ϱ(x) =

∫ x
0 ρ(t)dt. Given (x1, ..., xm) ∈ Rm, (∆x1, ...,∆xm) ∈ Rm, and

j ∈ {1, ...,m}, let

ξj = ϱ(xj), ∆ξj = ϱ(xj +∆xj)− ϱ(xj) =

∫ xj+∆xj

xj

ρ(t)dt,

and denote by NQ(ξj , ξj + ∆ξj) the number of real zeros of Q between ξj and ξj + ∆ξj .
Note that P has a real zero between xj and xj + ∆xj if and only if Q has a real zero
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between ξj and ξj +∆ξj . This implies

ρ̃j(x1, ..., xj) = lim
∆x1,...,∆xj→0

E[NP (x1, x1 +∆x1) · · ·NP (xj , xj +∆xj)]

|∆x1 · · ·∆xj |

= lim
∆x1,...,∆xj→0

E[NQ(ξ1, ξ1 +∆ξ1) · · ·NQ(ξj , ξj +∆ξj)]

|∆x1 · · ·∆xj |

= lim
∆x1,...,∆xj→0

|∆ξ1 · · ·∆ξj |
|∆x1 · · ·∆xj |

E[NQ(ξ1, ξ1 +∆ξ1) · · ·NQ(ξj , ξj +∆ξj)]

|∆ξ1 · · ·∆ξj |
= ρ(x1) · · · ρ(xj)ρj(ξ1, ..., ξj),

where ρj is the j-point correlation function of the real zeros of Q. Together with (3.1), we
deduce that

ρ̃Tj (x1, ..., xj) = ρ(x1) · · · ρ(xj)ρTj (ϱ(x1), ..., ϱ(xj)), j = 1, ...,m.

Therefore,∫
(a,b)j

ρ̃Tj (x1, ..., xj)dx1 · · · dxj =
∫
(a,b)j

ρ(x1) · · · ρ(xj)ρTj (ϱ(x1), ..., ϱ(xj))dx1 · · · dxj

=

∫
(ϱ(a),ϱ(b))j

ρTj (ξ1, ..., ξj)dξ1 · · · dξj

=

∫
(ϱ(a),ϱ(b))j

ρTj (ξ1 − ϱ(a), ..., ξj − ϱ(a))dξ1 · · · dξj

=

∫
(0,R)j

ρTj (ξ1, ..., ξj)dξ1 · · · dξj

= Rθ̂j(R) + λ̂j(R),

where R := ϱ(b)− ϱ(a) =
∫ b
a ρ(t)dt and we used (3.6) and the fact that ρTj is translation-

invariant. According to Lemma 3.1, we have

sm[NP (a, b)] =
∑

γ∈Π(m)

[Rθ̂|γ|(R) + λ̂|γ|(R)] = RθQm(R) + λQm(R),

which establishes (1.29).

3.6. Correlation functions of real zeros of elliptic polynomials. We denote by ρn,k
and ρTn,k the k-point and truncated k-point correlation functions for the real zeros of the

Gaussian elliptic polynomial Pn(x), respectively. As shown in [12], for any ξξξ = (ξ1, ..., ξk)
of distinct points in R, it holds that

ρn,k(ξξξ) =
k∏

j=1

( √
n

1 + ξ2j

)∫
Rk

|y1 · · · yk|Dn,k(yyy;ξξξ)dy1 · · · dyk, (3.10)

where yyy = (0, y1, ..., 0, yk) ∈ R2k and Dn,k(·;ξξξ) is a Gaussian density with the covariance
matrix

Σn(ξξξ) =
(
Σ
(n)
ij

)k
i,j=1

,

in which

Σ
(n)
ij = (1 + α2(ξi, ξj))

−n/2

(
1 −

√
nα(ξi, ξj)√

nα(ξi, ξj) 1 + (1− n)α2(ξi, ξj)

)
. (3.11)
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In particular,

ρTn,1(ξ1) = ρn,1(ξ1) =

√
n

π(1 + ξ21)
.

For k ≥ 2, to find a scaling limit of ρTn,k, let us make the change of variables

tj =
√
nα(ξ1, ξj) =

√
n
ξj − ξ1
1 + ξ1ξj

, j = 2, ..., k, (3.12)

so that

α(ξi, ξj) = α(ti/
√
n, tj/

√
n), i, j = 2, ..., k. (3.13)

For ttt = (t1, ..., tk), let ttt0 = (0, t2, ..., tk). Then the integral
∫
Rk |y1 · · · yk|Dn,k(yyy;ξξξ)dy1 · · · dyk

appeared in (3.10) can be interpreted as a function of ttt0. More precisely, by letting t1 = 0,
we deduce from (3.11) and (3.13) that∫

Rk

|y1 · · · yk|Dn,k(yyy;ξξξ)dy1 · · · dyk =

∫
Rk

|y1 · · · yk|dn,k(yyy; ttt0)dy1 · · · dyk,

in which dn,k(·; ttt) is a Gaussian density with the covariance matrix

Ωn(ttt) =
(
Ω
(n)
ij

)k
i,j=1

,

where

Ω
(n)
ij =

(
1 + α2

(
ti√
n
,
tj√
n

))−n/2
 1 −

√
nα
(

ti√
n
,

tj√
n

)
√
nα
(

ti√
n
,

tj√
n

)
1 + (1− n)α2

(
ti√
n
,

tj√
n

) . (3.14)

For γj ⊂ {1, ..., k} with lj = |γj | ≥ 1, let us introduce the lj-point functions

Θn,lj (tttγj ) =

∫
Rlj

|y1 · · · ylj |dn,lj (yyyγj ; tttγj )dy1 · · · dylj ,

where yyyγj = (0, y1, ..., 0, ylj ) and tttγj = (ti)i∈γj . We also consider the corresponding trun-
cated functions

ΘT
n,k(ttt) =

k∑
j=1

(−1)j−1(j − 1)!
∑

γ∈Π(k,j)

Θn,l1(tttγ1) · · ·Θn,lj (tttγj ).

Put this way, one has

ρTn,k(ξξξ) =

 k∏
j=1

√
n

1 + ξ2j

ΘT
n,k(ttt0). (3.15)

Lemma 3.8. For k ≥ 1, let ΘT
k denote the truncated k-point correlation function for the

real zeros of the Weyl series W . As n→ ∞, ΘT
n,k(ttt) converges pointwise to ΘT

k (ttt) on Rk.

Furthermore, if 0 < αn <
√
n, it holds uniformly that

ΘT
n,k(ttt) = ΘT

k (ttt) +O(α2
n/n), ttt ∈ [−αn, αn]

k. (3.16)

Proof. For any ttt = (t1, ..., tk) ∈ Rk, it holds that

lim
n→∞

√
nα

(
ti√
n
,
tj√
n

)
= tj − ti, 1 ≤ i, j ≤ k.

Combining this with (3.14) leads to

lim
n→∞

Ωn(ttt) = Ω(ttt), (3.17)
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where

Ω(ttt) = (Ωij)
k
i,j=1 with Ωij = e−(tj−ti)

2/2

(
1 −(tj − ti)

tj − ti 1− (tj − ti)
2

)
. (3.18)

Let Θk denote the k-point correlation function for the real zeros of the Weyl series W .

Since W̃ (t) = e−t2/2W (t) and W (t) have the same real zeros, it follows that Θk is also the

k-point correlation function for the real zeros of W̃ . Applying the Kac-Rice formula and
(3.18), we verify that

Θk(ttt) =

∫
Rk

|y1 · · · yk|dk(yyy; ttt)dy1 · · · dyk,

where dk(·; ttt) is a Gaussian density with the covariance matrix Ω(ttt). Therefore, (3.17)
implies

lim
n→∞

Θn,k(ttt) = Θk(ttt), ttt ∈ Rk.

Together with (3.1), we deduce that

lim
n→∞

ΘT
n,k(ttt) = ΘT

k (ttt), ttt ∈ Rk,

as required.
For ttt = (t1, ..., tk) ∈ [−αn, αn]

k, since

√
nα

(
ti√
n
,
tj√
n

)
= (tj − ti)(1 +O(α2

n/n)), 1 ≤ i, j ≤ k,

it follows that

Ωn(ttt) = Ω(ttt)(1 +O(α2
n/n)),

and consequently,

Θn,k(ttt) = Θk(ttt)(1 +O(α2
n/n)), ttt ∈ [−αn, αn]

k.

By (3.1) and the uniform boundedness of Θj on Rj , for j = 1, ..., k, we establish (3.16). □

Henceforth, for ttt = (t1, t2, ..., tk) ∈ Rk, define

Θ̃T
n,k(ttt) =

ΘT
n,k(ttt)∏k

j=1(1 + t2j/n)
. (3.19)

Lemma 3.9. For αn > 0, let Un = (−αn, αn)
k−1 and An = min(αn,

√
n). As n → ∞, if

αn → ∞, then ∫
Un

Θ̃T
n,k(ttt0)dttt0 =

∫
Rk−1

ΘT
k (ttt0)dttt0 + o(1/An), (3.20)

where ttt0 = (0, t2, ..., tk) and dttt0 = dt2 · · · dtk.

Proof. Let U c
n = Rk−1\Un. By Lemmas 3.6, 3.7, and 3.8, there exist positive constants ck

and Ck such that ∫
Uc
n

|Θ̃T
n,k(ttt0)|dttt0 ≤ Ck

∫
Uc
n

e−ck(diam(ttt0))2dttt0

≪
∫ ∞

αn

e−ckx
2
xk−2dx

= O(αk−3
n e−ckα

2
n).
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Assume first that αn ≤ log n, so αk+1
n /n = o(1/An). By (3.16),∫

Un

Θ̃T
n,k(ttt0)dttt0 =

∫
Un

ΘT
k (ttt0)dttt0 +O(αk+1

n /n)

=

∫
Rk−1

ΘT
k (ttt0)dttt0 +O(αk−3

n e−ckα
2
n) +O(αk+1

n /n),

which implies (3.20).
Now, let us suppose αn > log n. Define Vn = (− log n, log n)k−1 and V ′

n = Un\Vn.
Utilizing the aforementioned estimates, we obtain∫

Un

Θ̃T
n,k(ttt0)dttt0 =

∫
Vn

Θ̃T
n,k(ttt0)dttt0 +

∫
V ′
n

Θ̃T
n,k(ttt0)dttt0

=

∫
Rk−1

ΘT
k (ttt0)dttt0 +O((log n)k+1/n) +O((log n)k−3e−ck log2 n),

establishing (3.20). □

Remark 3.10. Similarly, for any polynomial p(t0), we have∫
Rk−1

|Θ̃T
n,k(ttt0)p(ttt0)|dttt0 = O(1).

3.7. Proof of Theorem 1.4. Our proof commences by recalling the relationship between
sk[Nn(a, b)] and truncated correlation functions ρTn,j , where j ∈ {1, ..., k}. According to
Lemma 3.1, we have

sk[Nn(a, b)] =
∑

γ∈Π(k)

∫
(a,b)|γ|

ρTn,|γ|(ξξξγ)dξξξγ , (3.21)

where |γ| is the number of blocks in the partition γ and dξξξγ is the Lebesgue measure

on (a, b)|γ|. The subsequent step involves the estimation of the integrals present on the
right-hand side of (3.21).

Lemma 3.11. For k ≥ 1, we have, as n→ ∞,∫
(a,b)k

ρTn,k(ξξξ)dξξξ = θkE[Nn(a, b)] +O(1), (3.22)

where θ1 = 1 and for k ≥ 2,

θk = π

∫
Rk−1

ΘT
k (ttt0)dttt0.

Note that Theorem 1.4 immediately follows from applying Lemma 3.11 and (3.21).
More precisely, by substituting (3.22) into (3.21), we obtain (1.16), where

βk :=
∑

γ∈Π(k)

θ|γ| = πθWk,∞.

For k = 1, Lemma 3.11 is trivial. Assume now that k ≥ 2. Making the change of
variables (3.12), we see that

√
n

1 + ξ2j
dξj =

1

1 + t2j/n
dtj , j = 2, ..., k.

Combining this with (3.15), we derive

ρTn,k(ξξξ)dξξξ =

√
n

1 + ξ21
Θ̃T

n,k(ttt0)dξ1dttt0, (3.23)
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where Θ̃T
n,k is given by (3.19), ttt0 = (0, t2, ..., tk), and dttt0 = dt2 · · · dtk.

To prove Lemma 3.11, we consider three cases of αn =
√
nα(a, b). For brevity, let

Un = (−|αn|, |αn|)k−1 and In,k(a, b) =
∫
(a,b)k ρ

T
n,k(ξξξ)dξξξ.

Claim 1. If αn > 0, then (3.22) holds.

Proof. Using (3.23), we obtain

In,k(a, b) =

∫ b

a

√
n

1 + ξ21
dξ1

∫
Un(ξ1)

Θ̃T
n,k(ttt0)dttt0,

where

Un(ξ1) :=
{
(t2, ..., tk) ∈ (a, b)k−1 :

√
nα(ξ1, a) < t2, ..., tk <

√
nα(ξ1, b)

}
.

By Fubini’s theorem,

In,k(a, b) =

∫
Un

Θ̃T
n,k(ttt0)dttt0

∫ b

a

√
n
G(ξ1, t2, ..., tk)

1 + ξ21
dξ1,

where

G(ξ1, t2, ..., tk) :=

k∏
j=2

(
111(−αn,0)(tj)111(α(tj/

√
n,a),b)(ξ1) + 111(0,αn)(tj)111(a,α(tj/

√
n,b))(ξ1)

)
.

For k ≥ 2, let Π2(k) denote the set of all ordered pair (γ1, γ2) of disjoint subsets of
{2, ..., k} such that γ1 ∪ γ2 = {2, ..., k}. For each γ = (γ1, γ2) ∈ Π2(k), we introduce the
function

Gγ(ξ1, t2, ..., tk) :=
∏
j∈γ1

111(−αn,0)(tj)111(α(tj/
√
n,a),b)(ξ1)

∏
i∈γ2

111(0,αn)(ti)111(a,α(ti/
√
n,b))(ξ1)

so that

In,k(a, b) =

∫
Un

Θ̃T
n,k(ttt0)dttt0

∑
γ∈Π2(k)

∫ b

a

√
n
Gγ(ξ1, t2, ..., tk)

1 + ξ21
dξ1.

For each γ = (γ1, γ2) ∈ Π2(k) and (t2, ..., tk) ∈ Rk−1, let

tmin
γ1 =

{
0 if γ1 = ∅,
minj∈γ1 tj if γ1 ̸= ∅,

and tmax
γ2 =

{
0 if γ2 = ∅,
maxi∈γ2 ti if γ2 ̸= ∅.

By a direct computation, we obtain∫ b

a

√
n
Gγ(ξ1, t2, ..., tk)

1 + ξ21
dξ1

= π
∏
j∈γ1

111(−αn,0)(tj)
∏
i∈γ2

111(0,αn)(ti)E[Nn(a, b)]

+
∏
j∈γ1

111(−αn,0)(tj)
∏
i∈γ2

111(0,αn)(ti)
√
n

(
arctan

tmin
γ1√
n

− arctan
tmax
γ2√
n

)
.

For any fixed (t2, ..., tk) ∈ Rk−1, we have

lim
n→∞

√
n

(
arctan

tmin
γ1√
n

− arctan
tmax
γ2√
n

)
= tmin

γ1 − tmax
γ2 .
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Therefore, using Remark 3.10, we deduce that, as n→ ∞,

In,k(a, b) =

(
π

∫
Un

Θ̃T
n,k(ttt0)dttt0

)
E[Nn(a, b)] +O(1).

Since αn > 0, we have

E[Nn(a, b)] =

√
n

π
arctan

αn√
n
≤ min

(
αn

π
,

√
n

2

)
≪ An.

Combining this with Lemma 3.9, we deduce that

In,k(a, b) =

(
π

∫
Rk−1

ΘT
k (ttt0)dt2 · · · dtk + o(1/An)

)
E[Nn(a, b)] +O(1),

and (3.22) follows. □

Claim 2. The asymptotic formula (3.22) holds for αn = 0.

Proof. If αn = 0, then (a, b) = R. Using (3.23) and Lemma 3.9, we have

In,k(R) =
∫
R

√
n

1 + ξ21
dξ1

∫
Rk−1

Θ̃T
n,k(ttt0)dttt0

=

(
π

∫
Rk−1

Θ̃T
n,k(ttt0)dttt0

)
E[Nn(R)]

=

(
π

∫
Rk−1

ΘT
k (ttt0)dttt0 + o(1/

√
n)

)
E[Nn(R)]

=

(
π

∫
Rk−1

ΘT
k (ttt0)dttt0

)
E[Nn(R)] + o(1),

which yields (3.22). □

Claim 3. If αn < 0, then (3.22) occurs.

Proof. We first write

In,k(a, b) =

∫ −1/b

a
dξ1

∫
(a,b)k−1

ρTn,k(ξξξ)dξ2 · · · dξk

+

∫ −1/a

−1/b
dξ1

∫
(a,b)k−1

ρTn,k(ξξξ)dξ2 · · · dξk +
∫ b

−1/a
dξ1

∫
(a,b)k−1

ρTn,k(ξξξ)dξ2 · · · dξk.

By (3.23) and Fubini’s theorem,

In,k(a, b) =

∫
Rk−1

Θ̃T
n,k(ttt0)dttt0

∫ b

a

√
n
H(ξ1, t2, ..., tk)

1 + ξ21
dξ1,
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where

H(ξ1, t2, ..., tk) = 111(a,−1/b)(ξ1)
k∏

j=2

(
111(−∞,αn)(tj)111(a,α(tj/

√
n,b))(ξ1)

+ 111(n/αn,0)(tj)111(α(tj/
√
n,a),−1/b)(ξ1) + 111(0,∞)(tj)

)
+111(−1/b,−1/a)(ξ1)

k∏
j=2

(
111(−∞,n/αn)(tj)111(α(tj/

√
n,a),−1/a)(ξ1)

+ 111(n/αn,−n/αn)(tj) + 111(−n/αn,∞)(tj)111(−1/b,α(tj/
√
n,b))(ξ1)

)
+111(−1/a,b)(ξ1)

k∏
j=2

(
111(−∞,0)(tj) + 111(0,−n/αn)(tj)111(−1/a,α(tj/

√
n,b))(ξ1)

+ 111(−αn,∞)(tj)111(α(tj/
√
n,a),b)(ξ1)

)
.

We may now estimate In,k(a, b) using the same method as in the proof of Claim 1 to
conclude that

In,k(a, b) =

(
π

∫
Rk−1

Θ̃T
n,k(ttt0)dttt0

)
E[Nn(a, b)] +O(1),

which establishes the asymptotic formula (3.22) when combined with Lemma 3.9. □

4. Asymptotic normality

In this section, we briefly discuss the CLTs for the number of real zeros of Gaussian
processes. Drawing on the method of moments (see, for example, [11, §30]), we deduce
that if {Xn} is a sequence of random variables such that, as n→ ∞,

s1[Xn] → 0, s2[Xn] → 1, and sk[Xn] → 0 (k ≥ 3),

then Xn
d−→ N (0, 1). Utilizing this insight for the normalized number of real zeros allows

us to deduce the CLTs outlined in Sections 1.2 and 1.3. Since the proofs are analogous,
we only present the proof of Theorem 1.6.

Proof of Theorem 1.6. Let

Xn :=
Nn(a, b)− E[Nn(a, b)]√

Var[Nn(a, b)]
, n ≥ 1.

We show that as n → ∞, Xn
d−→ N (0, 1), provided that either αn ≤ 0 or αn → ∞ as

n→ ∞.
Notably, s1[Xn] = E[Xn] = 0 and s2[Xn] = Var[Xn] = 1. To complete the proof, we

show that for k ≥ 3, sk[Xn] → 0 as n → ∞. Utilizing the semi-invariance property, one
has

sk[Xn] =
sk[Nn(a, b)]

(Var[Nn(a, b)])k/2
.

If either αn ≤ 0 or αn → ∞ as n→ ∞, then E[Nn(a, b)] → ∞. By Theorem 1.4,

sk[Xn] =
βkE[Nn(a, b)] +O(1)

(β2E[Nn(a, b)] +O(1))k/2
→ 0 as n→ ∞,
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and Theorem 1.6 is proved. □

5. Asymptotics of moments and strong law of large numbers

In this section, we use the asymptotics of cumulants to deduce corresponding results for
central moments and moments, ultimately establishing the strong law of large numbers.

5.1. Asymptotics of moments. It is well-known that we can express the kth central
moment in terms of the first k cumulants. Here, for the reader’s convenience, we briefly
explain how to obtain this explicit expression using Faà di Bruno’s formula (see [19, §3.4])
and the exponential partial Bell polynomials (see [19, §3.3]), both of which are tools utilized
in Section 2.3. More precisely, consider the cumulant- and central moment-generating
functions of a bounded random variable X given by

K(t) = logE[etX ] and C(t) = E
[
et(X−E[X])

]
,

respectively. Then

sk[X] =
dk

dtk
K(t)

∣∣∣∣
t=0

and µk[X] =
dk

dtk
C(t)

∣∣∣∣
t=0

.

Since C(t) = eK(t)−tE[X], it follows from Faà di Bruno’s formula that

µk[X] =
dk

dtk
eK(t)−tE[X]

∣∣∣∣
t=0

=

k∑
j=1

Bk,j(0, s2[X], ..., sk−j+1[X]).

Recall that, for 1 ≤ j ≤ k,

Bk,j(x1, ..., xk−j+1) =
∑ k!

m1! · · ·mk−j+1!

k−j+1∏
r=1

(xr
r!

)mr

,

where the sum is over all solutions in non-negative integers of the equations

m1 + 2m2 + · · ·+ (k − j + 1)mk−j+1 = k,

m1 +m2 + · · ·+mk−j+1 = j.

Note that m1 ≥ 1 whenever j > k/2, so Bk,j(0, x2, ..., xk−j+1) = 0 for all j > k/2.
Therefore, for k ≥ 2,

µk[X] =

⌊k/2⌋∑
j=1

Bk,j(0, s2[X], ..., sk−j+1[X]). (5.1)

When X represents the number of real zeros of Gaussian processes considered in this
paper, it is safe to employ (5.1) since all mentioned quantities are finite.

Proof of Corollary 1.8. By (5.1), it holds for k ≥ 2 that

µk[Nn(a, b)] =

⌊k/2⌋∑
j=1

Bk,j(0, s2[Nn(a, b)], ..., sk−j+1[Nn(a, b)]).

Together with (1.16), we obtain

µ2k[Nn(a, b)] = B2k,k(0, s2[Nn(a, b)], ..., sk+1[Nn(a, b)]) +O((E[Nn(a, b)])
k−1)

=
(2k)!

k!

(
s2[Nn(a, b)]

2!

)k

+O((E[Nn(a, b)])
k−1),



46 NHAN D. V. NGUYEN

which yields (1.17). Similarly,

µ2k+1[Nn(a, b)] = B2k+1,k(0, s2[Nn(a, b)], ..., sk+2[Nn(a, b)]) +O((E[Nn(a, b)])
k−1)

=
(2k + 1)!

(k − 1)!

(
s2[Nn(a, b)]

2!

)k−1 s3[Nn(a, b)]

3!
+O((E[Nn(a, b)])

k−1),

which implies (1.18). □

Remark 5.1. Utilizing (5.1) and Theorem 1.15, we can derive a precise expression for
the central moment µk[NQ(R)] whenever Q ∈ Ak. Consequently, if Q ∈ A∞, then from
Remark 1.16, it follows that for each positive integer k ≥ 2, as R→ ∞, µk[NQ(R)] admits
a full asymptotic expansion of the form

µk[NQ(R)] ∼
⌊k/2⌋∑
j=1

Bk,j(0, Rθ
Q
2,∞ + λQ2,∞, ..., Rθ

Q
k−j+1,∞ + λQk−j+1,∞).

When k is even, the right-hand side is a polynomial of R of degree k/2. When k is odd,
it is a polynomial of R of degree at most (k − 1)/2.

Similar conclusions apply to NW (R), NQn(In), and NWn(In).
We emphasize that in [2, Theorem 1.6], Ancona and Letendre investigated a broader

context; nonetheless, our estimates prove more precise in specific instances.

Remark 5.2. We also have an explicit expression for the kth moment E[(NQ(R))
k] in terms

of the first k cumulants sj [NQ(R)] for 1 ≤ j ≤ k, as follows (see, for example, [45, Equation
26]):

E[(NQ(R))
k] =

k∑
j=1

∑
γ∈Π(k,j)

sl1 [NQ(R)] · · · slj [NQ(R)].

Combining this with Theorem 1.15, we obtain an exact formula for E[(NQ(R))
k] whenever

Q ∈ Ak. Furthermore, Remark 1.16 implies that if Q ∈ A∞, then, as R→ ∞,

E[(NQ(R))
k] ∼

k∑
j=1

∑
γ∈Π(k,j)

(RθQl1,∞ + λQl1,∞) · · · (RθQlj ,∞ + λQlj ,∞),

where the right-hand side is a polynomial of R of degree k. Note that this full asymptotic
expansion specifically applies to the Gaussian Weyl series W .

In [26, Theorem 6], Do and Vu demonstrated that

E[(Nϕ
W (R))k] ≤ Cϕ,kR

k.

Choosing ϕ = 111[0,R] implies

E[(NW (R))k] ≤ CkR
k.

In this particular case, our estimate is more precise.

5.2. Strong law of large numbers. In this subsection, we aim to establish a strong
law of large numbers for the number of real zeros using asymptotics of central moments,
reinforced by a Borel-Cantelli type argument. Only the proof for Theorem 1.10 is provided
here, as the proofs for other results follow a similar approach.

Proof of Theorem 1.10. The given assumption implies
∞∑
n=1

1

(E[Nn(a, b)])k
<∞.
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By Corollary 1.8, this leads to

E

[ ∞∑
n=1

(
Nn(a, b)

E[Nn(a, b)]
− 1

)2k
]
=

∞∑
n=1

µ2k[Nn(a, b)]

(E[Nn(a, b)])2k
= O

( ∞∑
n=1

1

(E[Nn(a, b)])k

)
<∞.

Therefore, almost surely,
∞∑
n=1

(
Nn(a, b)

E[Nn(a, b)]
− 1

)2k

<∞,

yielding
Nn(a, b)

E[Nn(a, b)]
− 1

a.s.−−→ 0 as n→ ∞,

and the theorem is proved. □

Acknowledgements

The author extends deep gratitude to his esteemed PhD advisor, Yen Do, for invaluable
guidance and suggestions throughout the preparation of this paper. Appreciation is also
expressed to the anonymous reviewers whose feedback significantly enhanced the paper’s
quality.

References

[1] Ancona, M. and Letendre, T.: Roots of Kostlan polynomials: moments, strong law of large numbers
and central limit theorem. Ann. H. Lebesgue 4, (2021), 1659–1703. MR4353974

[2] Ancona, M. and Letendre, T.: Zeros of smooth stationary Gaussian processes. Electron. J. Probab.
26, (2021), Paper No. 68, 81 pp. MR4262341
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[5] Azäıs, J.-M., Dalmao, F. and León, J. R.: CLT for the zeros of classical random trigonometric poly-
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