
Methods for measuring noise, purity changes,
and entanglement entropy in quantum devices

and systems

Raam Uzdin

December 2, 2021

Abstract

We present methods for evaluating the rate of change in quantities
during quantum evolution due to coupling to the environment (dissipa-
tion hereafter). The protocol is based on repeating a given quantum
circuit (or quantum operation) twice, thrice, and so on, and measuring
an expectation value after each number of repetitions. We start by ap-
plying this method for measuring the rate of purity changes in quantum
circuits. This provides direct information on the quality of the circuit.
Furthermore, the presented scheme enables to distill the dissipative con-
tribution in the changes of quantities such as energies and coherence. In
particular, this can be applied to the local Hamiltonians of specific qubits.
Thus, our approach can be used to locate “hotspots” where the dissipa-
tion takes place. A variant of this method can be used to measure the
entanglement buildup in quantum circuits. These methods are scalable as
they involve only a few observables which are relatively easy to measure
in NISQ devices.

1 Introduction
The premise of quantum technology and quantum computing is to provide a
dramatic improvement compared to classical devices. In particular, quantum
computers and simulators should help solve with finite resources (time, memory,
energy, etc.) problems that would otherwise require unrealistic resources. The
complicated nature of quantum evolution makes error detection and diagnostics
very challenging. If the output cannot be computed by some other means, it
is difficult to crosscheck and rule out the possibility that the device is either
defective to begin with, or it had malfunctioned during its operation. This
is especially true in the several dozen qubits NISQ (noisy intermediate scale
quantum) devices that are available today. More importantly, as explained
next, errors can arise either due to calibration imperfections or due to external
noise (environment). Operationally, it is important to distinguish between the
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two types of errors. Unfortunately, this task gets more difficult as the circuits
get larger.

Although our results are not restricted to quantum computers and simulators
it is instructive to have in mind a device such as a quantum processor with
multiple interacting qubits. We start by describing several challenges associated
with quantum diagnostics. What connects these topics is that we can address
them with our method. In the sections that follow, we apply our methods to
these problems.

The methods described in this paper are registered as US provisional patent
63/260501

1.1 Source of errors
There are several sources of errors in NISQ devices and the two main ones are:

• Coherent errors: the device is well isolated from the environment, and
the evolution is unitary. However, the device is not executing the unitary
operation (“the circuit” in quantum computers) it was instructed to run.

• Incoherent error: interaction with some known or unknown environment
leads to non-unitary evolution. This can be either non-unital maps such
as thermalization (e.g. spontaneous emission) or unital maps such as
decoherence or depolarizing channels (in a unital map, the fully mixed
state is a fixed point of the map).

Other sources of errors include state preparation errors and readout errors.
However, the first is typically very small and the latter can be resolved by
detector calibration procedures.

It is of prime importance to distinguish between coherent and incoherent
errors. Coherent errors occur because some parameters in the circuits are not
optimally calibrated. In principle, coherent errors can always be fixed by an-
other unitary transformation in the Hilbert space of the original circuit. In
contrast, incoherent errors, e.g. decoherence, spontaneous emission, and de-
polarizing channels, cannot be removed by unitary operations on the circuit
alone. Resolving coherent errors from incoherent errors can guide developers
and experimentalists where to focus their efforts and also validate if their ef-
forts successfully mitigated the error.

1.2 Holistic vs. One-Circuit Diagnostics
Holistic methods such as quantum volume, randomized benchmarking, and cross
entropy benchmarking , characterize the device as a whole. Holistic scores aim
to assure a certain level of performance for any circuit. This is appealing for
quantum computers where various algorithms may be executed on the same
machine. In one-circuit diagnostics, the circuit that executes the computation
is given and its performance on the existing hardware is evaluated. Although
it may seem that the holistic approach is more useful, the one-circuit approach
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has its own merits, and in many cases it will be the first choice in quantifying
performance.

1. A given hardware may execute some circuits with sufficiently good fi-
delity while in others the fidelity is quite poor. It could be that although the
holistic score is very low (a poor device), a clever choice of qubits and gates
(implementation map) may lead to good fidelity. This is especially relevant for
the presently available NISQ devices. After making this choice there is no point
in recalculating the holistic score of the whole device (it will remain the same).
Instead, the fidelity in the specific choice of implementation map should be eval-
uated directly. Although it is possible to apply holistic methods to evaluate the
selected implementation map the obtained score is not holistic anymore and it
may consume a lot of resources compared to other methods for evaluating a
specific circuit.

2. In the opposite scenario there is a reasonably good holistic score, but for
the circuit of interest, the fidelity is poor. This could be due to an unusually
large usage of a noisy gate. A one-circuit diagnostic scheme can be significantly
better at detecting such problems.

3. In developing the hardware of a quantum computer, there is often a known
gate that is susceptible to noise that the developers want to minimize. Using
an ensemble of random circuits to achieve the “error per gate” interpretation
as in randomized benchmarking, could be a waste of resources in this case.
One can argue that it is possible to simply check the expected functionality of
the circuit. Yet, even the case of a single CNOT (or multiple CNOTS) could
be quite challenging since coherent errors are interwind with incoherent errors.
Thus, a deviation from the ideal CNOT map, may not indicate the presence of
an incoherent error.

1.3 Locating the error
Diagnostic processes may have various levels of resolutions. The first goal is to
know if there is an error. The next goal is to locate the error, and the third is to
classify the type of error or ideally provide the relative weights of various noise
mechanisms. Presently, the location task is carried out by applying holistic
methods to smaller systems (e.g. CNOT’s and single-qubit gates) that compose
the larger device. While this method is useful, it has two limitations that one
should keep in mind: i) there could be crosstalk effects that are difficult to detect
when checking a circuits element by element; ii) in a given circuit and a given
initial condition, it could be that a small level of noise in a good gate is more
harmful than other high-noise gates. One trivial reason could be that this gate
is used more time than the other gates. Thus there is a motivation to locate
the error within the one-circuit diagnostics framework. That is, to run the full
circuit (with many qubits) and mark the hotspots that lead to performance
degradation. Our approach offers a way to locate the noise within a big circuit
without resorting to subsystem benchmarking.
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1.4 Measuring purity
Purity, entropy, or the Rényi entropy are Schur concave functions that can be
used to quantify the amount of randomness (or lack of it) in quantum or classi-
cal systems. The change in the von Neumann entropy, for example, has a major
role in quantum thermodynamics and quantum information. Purity and Rényi
entropy have a variety of applications in quantum information theory as well.
Unfortunately, despite the many insights that these quantities provide, they are
not experimentally friendly. They are nonlinear in the density matrix, and there-
fore cannot be directly associated with observables. Rather, the density matrix
should be mapped by measuring a non-scalable number of observables. The
basis in which the density matrix is diagonal, is a priori unknown, and therefore
all elements in the density matrix have to be evaluated (state tomography).

Several techniques and methods have been suggested to reduce the resources
needed for evaluating the purity. In [1] two copies of the system and a control
swap interaction are used for evaluating the purity. In [2], single-qubit rotations
were used to reduce the number of measurements needed for purity measure-
ment. Reset and reuse of qubits were used in [3] to reduce the resources of
purity and higher-order Rényi entropies measurements. Finally, matrix product
state methods that assume local buildup of correlation have been studied in [4].

Our approach is based on a single observable that is measured at multiple
time points. Thus, the number of observable reduces to one that is evaluated
for each number of cycles. That is, the number of measurements is equal to
the number of cycles which typically ranges in our methods between three two
to five. To avoid overhyping, we stress already at this point, that our method
detects purity changes and not purity. Furthermore, it is valid only when the
change in purity (the dissipation) is small.

1.5 Measuring Entanglement
In the previous section, purity was discussed as an indicator of environment-
induced noise. However, purity can be also used for quantifying entanglement
buildup between two parts of an isolated system. Entanglement is considered
to be the quantum agent responsible for quantum speedups. Nevertheless, it is
quite challenging to measure it, especially if no prior information on the circuit
exists (a “black box”). If, however, there is an efficient way of evaluating the
local purity of a subsystem, it can be used to quantify the entanglement of the
subsystem to the other parts of the system. For pure states, a necessary and
sufficient condition for the presence of entanglement is that the purity of a sub-
system is lower than the purity of the total system (which is one for pure states)
[5]. Although our results on measuring purity changes cannot be applied to en-
tanglement measurement as is, we suggest a modification of the experimental
protocol that makes our methods applicable to entanglement measurements as
well.
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Figure 1: Our methods are based on a set of experiments with a successively
increasing number of repetitions of the basic quantum circuit (denote by U).
The measured quantities at the end of each experiment are combined to form
measures that quantify various dissipation aspects of the system, for example,
the total purity change in the circuit and local dissipation in the qubits.

2 Our method
Our method is based on running the circuit of interest multiple times sequen-
tially, measuring a quantity in each run, and adding the various results with
proper amplitudes. The most general case is illustrated in Fig. 1. The run
we denote by ’k’ is characterized by having k cycles between the initial state
preparation and the measurement. In the general case, each run may have a
different initial condition ρ

(k)
0 and a different measurement operator Ôk (or a

POVM). The expectation value Ok is calculated at the end of each run:

Ok =
〈
Ôk

〉
= tr[ρkÔk]. (1)

For clarity, in each run the circuit is measured many times (“shots”) to gain
sufficiently low Ok variance. Next, we compute the following sum:

AOn =

n∑
k=0

a
(n)
k Ok, (2)

and from this sum, we intend to distill information about the purity change and
the hotspots of dissipation. Potentially, in the most general case, AOn can be a
nonlinear function of {Ok}nk=0.

2.1 The weak action limit of the Sn sums

For measuring the change in purity we set ρ(k)0 = ρ0 where ρ0 can be either a
pure state or a mixed state. For the measurement, we set Ôk = ρ0 which lead
to the set observables

Rk = tr[ρ0ρk], (3)
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that we refer to as the survival probability (not to be confused with the calli-
graphicR used later on for Rényi entropy). For a pure state Rk is the probability
to find the system in its initial state. For mixed states it has the same meaning:
writing ρ0 =

∑
i=0 pi |i〉 〈i| , Rk is the probability that the system starts at |0〉

and found to be in |0〉 at the end, plus the probability of starting at |1〉 and
ending in |1〉 and so on. That is, the probability that a system returns to its
initial state without any importance to what state it was initially in.

We define the coefficients

w
(n)
k =

2(2n− 1)

n

n!2

(n− k)!(n+ k)!
(−1)k, (4)

w
(n)
0 = 2− 1

n
, (5)

and denote the resulting Aρ0n by Sn

Sn =

n∑
k=0

w
(n)
k Rk, (6)

where S1 is often too trivial to be of use. The first few entries are:

S2 =
3

2
R0 − 2R1 +

1

2
R2, (7)

S3 = +
5

3
R0 −

5

2
R1 +R2 −

1

6
R3, (8)

S4 =
7

4
R0 −

14

5
R1 +

7

5
R2 −

2

5
R3 +

1

20
R4. (9)

To understand the physical meaning of these series we move from Hilbert
space to Liouville space. In Liouville space, the density matrix ρN×N is flattened
into a column “density vector” of length N2 i.e. ρN×N → |ρ〉N2×1. As a result
the Liouville von Neumann equation of motion idtρ = [H, ρ] becomes:

idt |ρ〉 = HL |ρ〉 (10)

HL = H ⊗ IN − IN ⊗Ht (11)

where IN is the identity operator in the original Hilbert space (N ×N) and the
subscript L indicates that HL is in Liouville space. For unitary dynamics HL

is hermitian and the resulting evolution operator in Liouville space is unitary:
|ρt〉 = UL,t |ρ0〉 and UL,tU†L,t = IN2 . If the dynamics is (quantum) Markovian,
the Schrödinger-like form (10) still holds but now the generator of motion X =
−iHL+L does not have the form (11). In It is easy to obtain L from the Lindblad
equation in Hilbert space (see Sec. 3.1) but we will not need it explicitly here.
Due to the Schrödinger-like form, one can write the one cycle evolution operator
|ρk+1〉 = UL |ρk〉 as

UL = e−iHL,eff , (12)

where HL,eff is an effective time-independent Hamiltonian that same evolution
as the time-dependent Hamiltonian. Furthermore, the calligraphic font indicates
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that we are using for convenience dimensionless operators that already contain
the time duration of the cycle. In the more general quantum Markovian case
we can write

KL = e−iHL,eff+Leff
.
= ex. (13)

Later on, we shall refer to the operator norm of ‖x‖op as the action of
the circuit. Next, we shall employ the fact that the standard scalar product of
matrices in Hilbert space tr[A†B] reads 〈A |B 〉 in Liouville space where 〈·| = |·〉†
as in Hilbert space. Consequently, expectation value can be written as

〈O〉 = tr[Oρ] = 〈O |ρ 〉 . (14)

Combining this with (13) we get Rk =
〈
ρ0
∣∣ekx∣∣ ρ0〉. As a result we obtain

Sn =

n∑
k=0

w
(n)
k

〈
ρ0
∣∣ekx∣∣ ρ0〉 =

〈
ρ0

∣∣∣∣∣
n∑
k=0

w
(n)
k ekx

∣∣∣∣∣ ρ0
〉
. (15)

This form shows that that Sn can be seen as an expectation value of the operator
Gn =

∑n
k=0 w

(n)
k ekx. Expressions similar to Sn have been suggested by the

current author in [6]. Yet, these expressions were used only for constructing
inequalities, and their values were not related to any physical quantities of
interest as done here in the weak action regime.

Next, we carry out a Markovian open quantum system analysis in the regime
of weak action. We start with an expansion for small x:

S2 =

〈
−x+

1

3
x3 +

1

4
x4 +

7

60
x5 +

1

24
x6 +

31

2520
x7 +

1

320
x8 +O

(
x9
)〉

, (16)

S3 =

〈
−x+

1

6
x3 − 11

120
x5 − 1

12
x6 − 239

5040
x7 − 1

48
x8 +O

(
x9
)〉

, (17)

S4 =

〈
−x+

2

15
x3 − 1

30
x5 +

151

6300
x7 +

1

40
x8 +O

(
x9
)〉

. (18)

Our first key observation is that due to the following property of Hamilto-
nians in Liouville space 〈

ρ
∣∣H2n+1

L

∣∣ ρ〉 = 0, (19)

all odd terms in Sn drop out when L = 0. The proof of (19) is given in the
Appendix. Thus, when the evolution is unitary

S2 =
1

4

〈
x4
〉

+O
(
x6
)
, (20)

S3 = − 1

12

〈
x6
〉

+O
(
x8
)
, (21)

S4 =
1

40

〈
x8
〉

+O
(
x9
)
. (22)
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Consequently, if x is small the Sn rapidly converges to zero as the number of
cycles increases. On the other hand if x = −iHL,eff + Leff we obtain

S2 = −〈Leff 〉+
1

3

〈
x3
〉

+O
(
x4
)
, (23)

S3 = −〈Leff 〉+
1

6

〈
x3
〉

+O
(
x5
)
, (24)

S4 = −〈Leff 〉+
2

15

〈
x3
〉

+O
(
x5
)
. (25)

Note, that this time
〈
x3
〉
6= 0 since it contains term like H2L and L3. Nev-

ertheless, we will assume that in the weak action regime, x3 has a negligible
contribution to S2. Furthermore, by taking 2S3 − S2 we get

2S3 − S2 = −〈Leff 〉+O
(
x4
)
. (26)

By increasing the cycle number it is possible to eliminate higher-order correc-
tions and make the evaluation 〈Leff 〉 applicable to circuits with larger action.
This, however, cannot be done indefinitely, since the measurement uncertainty
tends to increase when adding more cycles to eliminate higher-order corrections.
In the rest of the paper, for brevity, we drop the “eff” and “L” subscripts from
the generators of motion.

3 Applications

3.1 Measuring the matrix element of the dissipator
Equations (23)-(25) show that the Sn’s provide a direct information on the
“dissipator matrix element” in Liouville space. This allows to learn about the
active noise mechanisms in a given circuit and also use this information to
predict how they affect other circuits. As a first example let us look at a
single spin spontaneous emission. The annihilation operator in Hilbert space

is a =

(
0 0
1 0

)
and the corresponding Liouvillian is:

Lspon = ξ[a⊗ (a†)t − 1

2
a†a⊗ I2 −

1

2
I2 ⊗ a†a], (27)

where ξ corresponds to the decay rate (the decay time “T1” is equal to 1/ξ).
Using |↑L〉 = {1, 0, 0, 0}, |↑L〉 = {0, 0, 0, 1} and |+L〉 = 1

2{1, 1, 1, 1} to denote
up, down and plus states in Liouville space, we find that

〈↑L |Lspon| ↑L〉 = −ξ, (28)
〈↓L |Lspon| ↓L〉 = 0, (29)

〈+L |Lspon|+L〉 = −1

4
ξ. (30)
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A depolarizing channel can be written as Ldepol = Lspon + Lspon(a ↔ a†)
and it satisfies:

〈↑L |Ldepol| ↑L〉 = −ξ, (31)
〈↓L |Ldepol| ↓L〉 = −ξ, (32)

〈+L |Ldepol|+L〉 = −1

2
ξ. (33)

For a pure decoherence channel the Lindblad operator is the Pauli σz and
the resulting Liouvillian is:

Ldecoh =
1

2
ξ[σz ⊗ σz − I2 ⊗ I2], (34)

and we get

〈↑L |Ldecoh| ↑L〉 = 0, (35)
〈↓L |Lspon| ↓L〉 = 0, (36)

〈+L |Lspon|+L〉 = −1

2
ξ. (37)

Thus by evaluating −S2 (or Sn>2) for the initial states |↓〉 〈↓|, |↑〉 〈↑| and |+〉 〈+|
it is possible to identify the decay mechanism of the spin. If the channel is
thermal, one can use the ratio 〈↑L |Lβ | ↑L〉 / 〈↓L |Lβ | ↓L〉 = e−βω for evaluating
the inverse temperature β given the energy gap of the qubit ω. We conclude
that by using different initial condition it is possible to investigate the nature
of some unknown environment.

The reader may be puzzled at this point since the decoherence time, for

example, could be simply evaluated by measuring
√
〈σx〉2 + 〈σy〉2 as a function

of time in the absence of driving. Yet, our method enables to extract information
on the dissipator under arbitrary weak driving which fits the spirit of “one-circuit
diagnostics” rather than using a dedicated circuit for the job.

In the presence of multiple qubits evaluation of S2 for the initial state |+〉⊗
|+〉 ⊗ |+〉 ... will yield the sum of the local decoherence rates which represent
the leading term in the purity loss in the total circuit as explained in the next
section. Interestingly, even when running the whole circuit it is possible to
evaluate the individual qubit dissipation rate using the methods we present in
Sec. 3.4 and in Fig. 4.
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3.2 Measuring small purity changes using Sn
Let us look at the change in purity after one cycle in the weak action regime:

∆trρ2 =
〈

0
∣∣∣ex†

ex
∣∣∣ 0〉− 〈0 |0 〉

=
〈
0
∣∣(1 + x† + x†2/2)(1 + x+ x2/2)

∣∣ 0〉− 〈0 |0 〉+O(x3, x2x†, ..)

=
〈
x+ x† + x†2/2 + x2/2 + x†x

〉
+O(x3, x2x†, ..)

=
〈
2L − i{H,L†}+ i{H,L}+ L†2/2 + L2/2 + L†L

〉
+O(x3, x2x†, ..).

(38)

Thus when L and H are small the second-order terms are negligible and we
get

∆trρ2 = −2Sn +O(L2,LH,HL). (39)

For some dissipators, the expression (38) simplifies and further approxima-
tions can be made. For example, for depolarizing channel and for all Hermitian
Lindblad operators, e.g., decoherence operators, it holds that L = L† and there-
fore:

∆trρ2 = 2 〈L〉+ 2
〈
L†L

〉
+O(x3, x2x†, ..). (40)

Since
〈
L†L

〉
≥ 〈L〉2 it follows that ∆trρ2 ≥ 〈L〉 + 2 〈L〉2. For pure state

〈L〉 ≤ 0 so 2 〈L〉 slightly overestimates the rate and the term 2 〈L〉2 reduces this
overestimation. Hence we can write

∆trρ2 ' 2 〈L〉+ 2 〈L〉2 = −2S2 + 2S22 . (41)

Figure 2 test our purity change estimation on random circuits. Each point on
the horizontal axis corresponds to a different circuit. A randomly chosen (weak)
Hamiltonian generates the unitary drive and each qubit undergoes decoherence
at a different random rate (the rate change from one circuit to another but not
during the evolution). The Blue circles correspond to the exact value of the
purity change in one cycle trρ21 − trρ20, and the red squares correspond to our
−2S2 estimation. Since the Lindblad operator is hermitian (decoherence) we
also plot in green diamonds the refinement (41) which substantially improves
the purity estimation accuracy for higher purity changes.

3.3 Measuring entanglement
In continuation to Sec. (1.5), one of the entanglement measures for a pure
state ρAB in a bipartite system AB is directly related to the purity, or more
accurately to the Rényi entanglement entropy of order two [5]:

R2 = − ln tr[ρ2A], (42)

where ρA = trBρAB . Thus, methods for evaluating the purity of a subsystem
can be exploited to quantify entanglement as well. While in some methods for
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Figure 2: Estimating the purity change in a four-qubit weak action random
circuits with random decoherence in each qubit. (b) Each point on the horizontal
axis corresponds to a different circuit and different decoherence rates. The blue
circles mark the exact purity change, the red square corresponds to our −2S2
method, and green diamonds stand for the refinement −2S2 + 2S22 , in Eq. (41).

evaluating the purity, the application to entanglement measurement is straight-
forward, here there is an interesting difference that requires a modification in
the Sn experimental protocol.

The Sn method for evaluating the purity change in the first cycle (Sec.
3.2) assumes that the dynamics is periodic and Markovian, or alternatively
stated, a periodic CP map. However, if the AB system evolves unitarily, the
reduced dynamics of ρA is typically non-markovian and therefore Sn will not
yield information on the purity change in A. To induce a periodic CP map we
use the following recipe. Assume the initial state is a product pure product
state

ρ0 = |ψA〉 〈ψA| ⊗ |ψB〉 〈ψB | . (43)

After applying one cycle of the unitary evolution we reset subsystem B to its
initial state and only then perform the unitary evolution of the next cycle. In
the general case, the same is carried out for the other cycles so that:

ρn = ρn,A ⊗ |ψB〉 〈ψB | , (44)

ρn+1 = U(ρn,A ⊗ |ψB〉 〈ψB |)U†. (45)

The resetting generate a periodic CP map for which we can apply our method.
The resetting changes evolution, however for the first cycle ρno reset

A,1 = ρreset
A,1 .

Thus, by evaluating the purity change in the first cycle of the system with the
reset, we obtain the purity change in the original system. Starting in a pure
state we finally get

∆R2 = Rfin2 = − ln trρ2fin,A = − ln(1 + ∆trρ2A) ' Sresetn,A , (46)

where Sresetn,A stands for the purity change evaluation in subsystem A with the
reset protocol. In Fig. 3 we took a six-qubit system and partitioned it into
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Figure 3: (a) A numerical simulation of measuring the entanglement in a six-
qubit system using our periodic reset protocol (b). The blue circles represent the
exact value of the Rényi 2 entanglement entropy between two sets of three qubits.
The red squares correspond to our Sreset2 method. Each point on the horizontal
axis corresponds to a different small action random circuit. As expected, the
method works well when the entanglement is small (roughly 0.07 in this case).

two parts with three qubits each. Random Hamiltonians in the space of the six
qubits were used to weakly entangle the two parts. To make sure the dynamics is
in the weak action regime the operator norm of the Hamiltonians was restricted
to values below 0.8. The blue circles in Fig. 3 show the exact calculation of R2,
and the red square corresponds to our reset method (46). Fig. 3b illustrates
the two-cycle run in the reset protocol.

3.4 Dissipation hot spots - locating the incoherent errors
in the circuit

In trying to apply our method to other quantities (observables) its useful to
point the key elements in the Sn method:

1. The choice of w(n)
k lead to the cancellation of some of the leading even-

order terms in the weak action regime.

2. The odd terms are zero when x = iH,
〈
ρ0
∣∣H2k+1

∣∣ ρ0〉 = 0.

3. For periodic CP maps, the first-order term is not zero, but it depends only

12



on the dissipative part of the dynamics. Thus the first-order term can be
used to study the interaction of the system with the environment.

Property #1 makes no use of the fact that the quantity of interest is purity.
Property #2 was proved in the first part of the Appendix for survival probabil-
ities. That is, the observable A was equal to the initial density matrix ρ0. As it
turn out, for a general observable A = A† in Hilbert space,

〈
A
∣∣H2n+1

L

∣∣ ρ0〉 6= 0.
Yet, we show in the second part of the appendix that for observables satisfying
[A, ρ0] = 0 it holds that

〈A |HL| ρ0〉 = 0. (47)

Next, we set Ôk = A in (2) and for the coefficients we choose a(n)k = w
(n)
k as

before, and we get

SAn =

n∑
k=0

w
(n)
k Ak =

n∑
k=0

w
(n)
k tr[Aρk], (48)

that, as before, we can write as

SAn =

n∑
k=0

a
(n)
k

〈
A
∣∣ekx∣∣ ρ0〉 =

〈
A

∣∣∣∣∣
n∑
k=0

a
(n)
k ekx

∣∣∣∣∣ ρ0
〉
. (49)

Using (47) we obtain

SA2 = −〈A |L| ρ0〉+O
(
x3
)
, (50)

2SA3 − SA2 = −〈A |L| ρ0〉+O
(
x4
)
. (51)

Note, that here the third order does not cancel out. Yet, by running one
more cycle and using (51) the third order can be eliminated for (for unitary
and nonunitary evolution both). To understand what this quantity means we
evaluate the “dissipative change” in 〈A〉:

∆diss 〈A〉 = ∆ 〈A〉 −∆no diss 〈A〉
= 〈A |ex| ρ0〉 − 〈A |ρ0 〉 − (

〈
A
∣∣e−iH∣∣ ρ0〉− 〈A |ρ0 〉)

=
〈
A
∣∣(1 + x+ x2/2

∣∣ ρ0〉− 〈A ∣∣(1− iH−H2/2
∣∣ ρ0〉+O(x3, x2x†, ..)

= 〈A| L+ (iH+ L)2/2 +H2/2 |ρ0〉+O(x3, x2x†, ..)

= 〈A| L+ L2/2 + i{L,H}/2 |ρ0〉+O(x3, x2x†, ..). (52)

If the Lindblad operators that generates L are hermitian and the dissipator
is incoherent i.e. 〈cohences| L |diagonal state〉 = 0 (the map does not create
coherences when starting in a diagonal state) then 〈A |{L,H}| ρ0〉 = 0. Another
option for eliminating the HL term is to run another circuit with H → −H,
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and measure the mean 1
2 [SA2 (H) + SA2 (−H)]. Assuming that {L,H} is either

zero or removed we get:

∆diss 〈A〉 = −SA2 +O(L2) +O(x3), (53)

∆diss 〈A〉 = −2SA3 + SA2 +O(L2) +O(x4), (54)

∆diss 〈A〉 = −5SA4 + 4SA3 +O(L2) +O(x5). (55)

Note that the driving term can be significant so the cancellation of the third
order can be important.

To illustrate our finding, in Fig. 4, we consider a four-qubit example with
a random weak unitary driving. Qubits 2 and 4 are noisy (inset). The driving
Hamiltonian is chosen with random elements in the interval {±0.1± 0.1i} and
the time interval is T = 1 which leads to an average action of [max(H) −
min(H)]T = 0.08. The initial state is |+ + ++〉. The decoherence rate of qubit
#2 is ξ2 = 1e−3 (τ(2) = 1000) and in qubit #4 it is ξ4 = 7e−4 (τ(4) = 1428.6).
Without driving the coherence 〈σx〉 of qubit 2 decays from 1 to 0.9995. Qubits
1 and 3 are not directly dissipated, they only interact with dissipative qubits.
The observables of interest are the 〈σx〉 of each qubit. Before studying the
dissipative change in 〈σx〉 of each qubit we plot in Fig. 4a the “total” change
(driving + dissipation) in qubit i, ∆ 〈σxi 〉 = tr[(ρ1 − ρ0)σxi ]. The dissipative
qubits 2 & 4 seem no different from the non-dissipative qubits 1 & 2. Yet, by
running three [Fig. 4(b)] or four [Fig. 4(c)] cycles, we can employ our methods
and correctly evaluate the decoherence rate of the different qubits despite the
random unitary in the background.

Finally, let us point out that the “hotspot” may not be individual qubits but
gates. If the gate mechanism itself involves some interaction with the environ-
ment, then only when this gate is activated noise will appear in the system. The
qubits that are affected by this gate will appear as noisy.

4 Relieving the weak action restriction
Due to the weak action validity regime, it is not possible to immediately apply
the methods here presented to any quantum circuit. Yet there are two alterna-
tives that enable indirectly to address any circuit provide the noise is sufficiently
small.

4.1 “Weakened circuits”
The first option is to have a “weak version” of the original circuit. This can
be done by simply making all the RF/laser control weaker by a factor γ <
1. Assuming the dissipation in the original circuit is weak the new evolution
operator is e−iγH

eff
L +Leff

will be in the weak action regime and our methods
can be applied. Although we presently do not know how to analytically connect
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Figure 4: In this example, four qubits interact via a random Hamiltonian (in-
set). Qubit #2 undergoes decoherence at a rate ξ2 = 0.001 and the decoherence
rate of qubit #4 is ξ4 = 0.0007. Qubit #1 and #3 are not directly dissipated.
In all plots, the x axis corresponds to different random Hamiltonians. Figure
(a) shows that the change in the σx expectation values of the qubits is roughly
the same for all qubits. Thus it is not possible to tell which qubits are losing
coherence. However, when using our method [Fig. (b) & (c)] to evaluate the
dissipative contribution to the change in 〈σxi 〉, it becomes clear that qubit #2
(orange squares) and qubit #4 (red triangles) have clear dissipative change while
qubit #1 (blue circles) and qubit #3 (green diamonds) experience no dissipative
change. In Fig. (b) three cycles are used, which lead to fourth-order correction
in the action (54). As a result, the dissipative change of qubits 1# and 3# is
not exactly zero. In (c) we use 4 cycles, and consequently, the correction is of
order five in the action (55). Here it is clear that our method correctly retrieves
the values of the decoherence rate ξ2, ξ4 and the null rates of qubits 1 and 3.
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the change in purity in the weakened circuit to the purity change in the original
large action circuit, one can argue that the weak action version has the same
implementation map and it is susceptible to the same noise mechanism as the
original circuit. In particular, if non-negligible dissipation effects appear already
at the weakened version they are unlikely to just fade away in the original circuit.
Thus it could be a good practice to first use the weakened version to optimize the
performance of the device and only then proceed to check the original circuit.

Another way of using the weakened circuit is to moderately increase the
action of the weakened circuit but use more cycles to evaluate higher-order Sn’s
[and combinations of Sn’s as in (55)]. Interestingly, when using sufficiently
weak local dissipators on each qubit, we find that the purity loss is roughly
independent of the strength of the drive (the action of the noiseless circuit)
even if it is very strong. We observed this behavior when the purity loss was
∼ 0.03 or less. If this finding is general, it paves the way to using weakened
circuits for quantifying the noise in arbitrary circuits that are subjected only to
local decay and decoherence.

4.2 Using the inverse circuit
Another alternative is to implement the circuit and immediately after imple-
menting the inverse circuit. Since the dissipation mechanisms are the same for
the inverse circuit, it follows that if the evolution operator (with the dissipation)
in Liouville space is given by K = e−iH+L, then the evolution operator of the
inverse circuit is given KI = e−iHI+L where HI = −H+dH where dH represent
potential coherent errors. For simplicity we Next we compare the purity in one
cycle:

∆tr[ρ2]K =
〈
r0
∣∣K†K∣∣ r0〉− 〈r0 |r0 〉 (56)

to the purity create by the circuit and its noisy inverse

∆tr[ρ2]KIK =
〈
r0
∣∣(KIK)†KIK

∣∣ r0〉− 〈r0 |r0 〉 (57)

Treating L as small and using the derivative of the exponential map we get:

K = e−iH+L = e−iH{1 +

∞∑
k=0

1

k + 1
[(+iH)(k),L]}+O(L2)} (58)

where [A(1), B] = [A,B], [A(2), B] = [A, [A,B]], [A(3), B] = [A, [A, [A,B]]] and
so on. After some algebra we show in Appendix II that:

∆tr[ρ2]K =

〈
r0

∣∣∣∣∣1 +

∞∑
k=0

2

k + 1
[(+iH)(k),L]

∣∣∣∣∣ r0
〉

+O(L2) (59)

which is an extension of eq. (38) to large H. Next, we calculate the change in
purity of the inverse circuit. In Appendix II we get:

KIK = 1 +

∞∑
k=0

2

k + 1
[(+iH)(k),L] +O(L2) (60)
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and finally the purity

(KIK)†KIK = 1 +

∞∑
k=0

2

k + 1
{[(−iH)(k),L] + [(−iH)(k),L]†}+O(L2) (61)

this is a positive operator so so for a state φ it holds that
〈
φ
∣∣[(−iH)(k),L]†

∣∣φ〉 =〈
φ
∣∣[(−iH)(k),L]

∣∣φ〉 as a result we get that:

〈
r0
∣∣(KIK)†KIK

∣∣ r0〉 = 1 +

∞∑
k=0

4

k + 1
[(−iH)(k),L] (62)

and we get

∆tr[ρ2]KIK =

〈
r0

∣∣∣∣∣
∞∑
k=0

4

k + 1
[(−iH)(k),L]

∣∣∣∣∣ r0
〉

+O(L2)

= 2

〈
r0

∣∣∣∣∣
∞∑
k=0

2

k + 1
[(−iH)(k),L]

∣∣∣∣∣ r0
〉

+O(L2)

= 2∆tr[ρ2]K +O(L2) (63)

δH represents the presence a potential unitary error. We now make the
approximation ∆tr[ρ2]δH6=0 = ∆tr[ρ2]δH=0 which means that a slight coherent
error will not affect the leading orders in the purity loss of the circuit+inverse
system. Thus we can replace K ′† with K†. Next, we study the purity change
in the circuit that contains the original circuit and its inverse. To make a point
we start with ρ0 which can be either mixed or pure.

Concluding remarks
In this paper, we derived several tools that are based on collecting data from
several different repetitions of the same circuit to retrieve information on the
dissipative effects that take place in the quantum device (circuit). It was shown
how to measure the purity change and even how to differentiate between different
noise mechanisms. Our approach also enables to locate the error in specific
parts of the circuit while running the whole circuit. Thus, it saves the need
to evaluate each part of the system separately in order to isolate the problem.
Since we use only a few observable regardless of the system size, our approach
is scalable. Another interesting application that is unrelated to diagnostics,
is entanglement measurement in isolated systems. We demonstrated that by
incorporating a reset to part of the system in our basing protocol it is possible
to measure the Rényi 2 entanglement. While these methods can be valuable
for developers, they can also be useful for end-users that want to verify the
performance of the device just before using it.
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Appendix I - Derivation of
〈
ρ0

∣∣H2n+1
L

∣∣ ρ0

〉
= 0

Let start with simple case of n=0. By definition H it holds that

〈ρ0 |HL| ρ0〉 = 〈ρ0 |[H, ρ0] 〉 = tr(ρ†0[H, ρ0])

= tr(ρ0Hρ0 − ρ0ρ0H) = 0 (64)

note that the only needed property of property ρ0 is hermiticity.〈
ρ0
∣∣H2n+1

L

∣∣ ρ0〉 = −(〈ρ0 |Hn
L)HL(Hn

L| ρ0〉)
= 〈r |HL| r〉 = tr(r†[H, r])

= tr(r†Hr − r†rH) = tr{(rr† − r†r)H}. (65)

Thus if r† = r (in Hilbert space)

[H, [H, [H, ρ0]]]† = [[[ρ0, H], H], H] = (−1)n[H, [H, [H, ρ0]]]. (66)

In the second part of the appendix show that if and observable A = A†

satisfies [A, ρ0] = 0 it holds that

〈A |HL| ρ0〉 = 0. (67)

The derivation is straight forward and similar to (64)

〈A |HL| ρ0〉 =
〈
A† |[H, ρ0]

〉
= tr(A†Hρ0 −A†ρ0H])

= tr([ρ0, A
†]H) = 0. (68)

Appendix II - purity change with the inverse cir-
cuit
Using the identity

[A(k), B]† = (−1)k[(A†)(k), B†] = [(−A†)(k), B†], (69)

we get [(iH)(k),L]† = [(iH)(k),L†] so that

K†K = {1 +

∞∑
k=1

1

k + 1
[(iH)(k),L]†}+O(L†2)}e+iH

× e−iH{1 +

∞∑
k=1

1

k + 1
[(iH)(k),L]}+O(L2)}. (70)

Using the fact
〈
φ
∣∣[(−iH)(k),L]

∣∣φ〉 is real it holds that〈
φ
∣∣∣[(iH)(k),L]

∣∣∣φ〉 =
〈
φ
∣∣∣[(iH)(k),L]†

∣∣∣φ〉 , (71)
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and keeping only O(L) we get:

K†K = 1 + (

∞∑
k=1

2

k + 1
[(iH)(k),L] + h.c.) +O(L2). (72)

Dealing with the inverse circuit

To deal with KI we write it as KI = (e−iH+L†
)†

e−iH+L†
= e−iH{1 +

∞∑
k=0

1

k + 1
[(+iH)(k),L†]}+O(L†2)}. (73)

Thus

KIK = {1 +

∞∑
k=1

1

k + 1
[(+iH)(k),L†]†}+O(L2)}

× {1 +

∞∑
k=1

1

k + 1
[(+iH)(k),L]}+O(L2)} = (74)

1 +

∞∑
k=1

2

k + 1
[(+iH)(k),L]}+O(L2). (75)

where we have used (69) to get

∞∑
k=0

1

k + 1
[(iH)(k),L†]† =

∞∑
k=0

1

k + 1
[−[(−iH)†](k),L]. (76)
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