EQUIVARIANT VECTOR BUNDLES ON DRINFELD'S HALFSPACE OVER A FINITE FIELD

SASCHA ORLIK

Abstract

Let $\mathcal{X} \subset \mathbb{P}_{k}^{d}$ be Drinfeld's halfspace over a finite field k and let \mathcal{E} be a homogeneous vector bundle on \mathbb{P}_{k}^{d}. The paper deals with two different descriptions of the space of global sections $H^{0}(\mathcal{X}, \mathcal{E})$ as $\mathrm{GL}_{d+1}(k)$-representation. This is an infinite dimensional modular G-representation. Here we follow the ideas of O2, OS treating the p-adic case. As a replacement for the universal enveloping algebra we consider both the crystalline universal enveloping algebra and the ring of differential operators on the flag variety with respect to \mathcal{E}.

Introduction

Let k be a finite field and denote by \mathcal{X} Drinfeld's halfspace of dimension $d \geq 1$ over k. This is the complement of all k-rational hyperplanes in projective space \mathbb{P}_{k}^{d}, i.e.,

$$
\mathcal{X}=\mathbb{P}_{k}^{d} \backslash \bigcup_{H \subsetneq k^{d+1}} \mathbb{P}(H)
$$

This object is equipped with an action of $G=\mathrm{GL}_{d+1}(k)$ and can be viewed as a Deligne-Lusztig variety, as well as a period domain over a finite field OR. In particular we get for every homogeneous vector bundle \mathcal{E} on \mathbb{P}_{k}^{d} an induced action of G on the space of global sections $H^{0}(\mathcal{X}, \mathcal{E})$ which is an infinite-dimensional modular G-representation.

In [O2] we considered the same problem for the Drinfeld halfspace over a p-adic field K. We constructed for every homogeneous vector bundle \mathcal{E} a filtration by closed $\mathrm{GL}_{d+1}(K)$-subspaces and determined the graded pieces in terms of locally analytic G representations in the sense of Schneider and Teitelbaum [ST1]. The definition of the filtration above involves the geometry of \mathcal{X} being the complement of an hyperplane arrangement. In the p-adic case $H^{0}(\mathcal{X}, \mathcal{E})$ is a "bigger" object, it is a reflexive K Fréchet space with a continuous G-action. Its strong dual is a locally analytic G representation. The interest here for studying those objects lies in the connection to the p-adic Langland correspondence.

In his thesis $[\mathrm{Ku}]$ Kuschkowitz adapts the strategy of the p-adic case to the situation considered here.

Theorem (Kuschkowitz): Let \mathcal{E} be a homogeneous vector bundle on \mathbb{P}_{k}^{d}. There is a filtration

$$
\mathcal{E}(\mathcal{X})^{0} \supset \mathcal{E}(\mathcal{X})^{1} \supset \cdots \supset \mathcal{E}(\mathcal{X})^{d-1} \supset \mathcal{E}(\mathcal{X})^{d}=H^{0}\left(\mathbb{P}^{d}, \mathcal{E}\right)
$$

on $\mathcal{E}(\mathcal{X})^{0}=H^{0}(\mathcal{X}, \mathcal{E})$ such that for $j=0, \ldots, d-1$, there is an extension of G representations
$0 \rightarrow \operatorname{Ind}_{P_{(j+1, d-j)}}^{G}\left(\tilde{H}_{\mathbb{P}^{j}}^{d-j}\left(\mathbb{P}^{d}, \mathcal{E}\right) \otimes S t_{d+1-j}\right) \rightarrow \mathcal{E}(\mathcal{X})^{j} / \mathcal{E}(X)^{j+1} \rightarrow v_{P_{(j+1,1, \ldots, 1)}^{G}}^{G} H^{d-j}\left(\mathbb{P}_{k}^{d}, \mathcal{E}\right) \rightarrow 0$.
Here the module $v_{P_{(j+1,1, \ldots, 1)}^{G}}$ is a generalized Steinberg representation corresponding to the decomposition $(j+1,1, \ldots, 1)$ of $d+1$. Further $P_{\underline{j}}=P_{(j, d+1-j)} \subset G$ is the (lower) standard-parabolic subgroup attached to the decomposition $(j, d+1-j)$ of $d+1$ and St_{d+1-j} is the Steinberg representation of $\mathrm{GL}_{d+1-j}(k)$. Here the action of the parabolic is induced by the composite

$$
P_{(j, d+1-j)} \rightarrow L_{(j, d+1-j)}=\mathrm{GL}_{j}(k) \times \mathrm{GL}_{d+1-j}(k) \rightarrow \mathrm{GL}_{d+1-j}(k)
$$

Finally we have the reduced local cohomology

$$
\tilde{H}_{\mathbb{P}_{k}^{j}}^{d-j}\left(\mathbb{P}_{k}^{d}, \mathcal{E}\right):=\operatorname{ker}\left(H_{\mathbb{P}_{k}^{j}}^{d-j}\left(\mathbb{P}_{k}^{d}, \mathcal{E}\right) \rightarrow H^{d-j}\left(\mathbb{P}_{k}^{d}, \mathcal{E}\right)\right)
$$

which is a $P_{(j+1, d-j)}$-module.
In the p-adic setting the substitute of the LHS of this extension has the structure of an admissible module over the locally analytic distribution algebra. Here we were able to give a description of the dual representation in terms of a series of functors

$$
\mathcal{F}_{P}^{G}: \mathcal{O}_{\mathrm{alg}}^{\mathfrak{p}} \times \operatorname{Rep}_{K}^{\infty, a d m}(P) \rightarrow \operatorname{Rep}_{K}^{\ell a}(G)
$$

where $\mathcal{O}_{\text {alg }}^{\mathfrak{p}}$ consist of the algebraic objects of type \mathfrak{p} in the category $\mathcal{O}, \operatorname{Rep}_{K}^{\infty, a d m}(P)$ is the category of smooth admissible P-representations and $\operatorname{Rep}_{K}^{\ell a}(G)$ denotes the category of locally analytic G-representations.

In positive characteristic Lie algebra methods do not behave so nice. E.g. the local cohomology groups are not finitely generated over the universal enveloping algebra of the Lie algebra of GL_{d+1} so that the same machinery does not apply. Our goal in this paper is to concentrate on the latter aspect and to present two candidates for a substitution in this situation. The first approach considers the crystalline universal enveloping algebra $\dot{\mathcal{U}}(\mathfrak{g})$ (or Kostant form) which coincides with the distribution algebra of G, cf. JJa. The action of \mathfrak{g} extends to one of $\dot{\mathcal{U}}(\mathfrak{g})$, so that $H^{0}(\mathcal{X}, \mathcal{E})$ becomes
a module over the smash product $k[G] \# \dot{\mathcal{U}}(\mathfrak{g})$. We define a positive characteristic version of \mathcal{F}_{P}^{G} and prove analogously properties of them as in the p-adic case, e.g. we give an irreducibility criterion, cf. OS.

The second approach uses instead of $\dot{\mathcal{U}}(\mathfrak{g})$ the ring of distributions $D^{\mathcal{E}}$ on the flag variety with respect to \mathcal{E}. The important point is that the natural map $\dot{\mathcal{U}}(\mathfrak{g}) \rightarrow D^{\mathcal{E}}$ is in contrast to the field of complex numbers not surjective as shown by Smith Sm . We will show that the above local cohomology modules are finitely generated leading to a category $\mathcal{O}_{D^{\varepsilon}}$ where we can define similar our functors \mathcal{F}_{P}^{G}.

Notation: We let p be a prime number, $q=p^{n}$ some power and let $k=\mathbb{F}_{q}$ the corresponding field with q elements. We fix an algebraic closure $\mathbb{F}:=\overline{\mathbb{F}}_{q}$ and denote by $\mathbb{P}_{\mathbb{F}}^{d}$ the projective space of dimension d over \mathbb{F}. If $Y \subset \mathbb{P}_{\mathbb{F}}^{d}$ is a closed algebraic \mathbb{F}-subvariety and \mathcal{F} is a sheaf on $\mathbb{P}_{\mathbb{F}}^{d}$ we write $H_{Y}^{*}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{F}\right)$ for the corresponding local cohomology. We consider the algebraic action $\mathbf{G} \times \mathbb{P}_{\mathbb{F}}^{d} \rightarrow \mathbb{P}_{\mathbb{F}}^{d}$ of \mathbf{G} on $\mathbb{P}_{\mathbb{F}}^{d}$ given by

$$
g \cdot\left[q_{0}: \cdots: q_{d}\right]:=m\left(g,\left[q_{0}: \cdots: q_{d}\right]\right):=\left[q_{0}: \cdots: q_{d}\right] g^{-1} .
$$

We use bold letters \mathbf{H} to denote algebraic group schemes over \mathbb{F}_{q}, whereas we use normal letters H for their \mathbb{F}_{q}-valued points. We denote by $\mathbf{H}_{\mathbb{F}}:=\mathbf{H} \times_{\mathbb{F}_{q}} \mathbb{F}$ their base change to \mathbb{F}. We use Gothic letters \mathfrak{h} for their Lie algebras (over \mathbb{F}). The corresponding enveloping algebras are denoted as usual by $U(\mathfrak{h})$.

We denote by $\mathbf{G}_{\mathbb{Z}}$ a split reductive algebraic group over \mathbb{Z}. We fix a Borel subgroup $\mathbf{B}_{\mathbb{Z}} \subset \mathbf{G}_{\mathbb{Z}}$ and let $\mathbf{U}_{\mathbb{Z}}$ be its unipotent radical and $\mathbf{U}_{\mathbb{Z}}^{-}$the opposite radical. Let $\mathbf{T}_{\mathbb{Z}} \subset \mathbf{G}_{\mathbb{Z}}$ be a fixed split torus and denote the root system by Φ and its subset of simple roots by Δ.

Acknowledgments: I am grateful to Georg Linden for pointing out to me the paper of Smith [Sm]. This research was conducted in the framework of the research training group GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology, which is funded by the DFG.

1. The theorem of Kuschkowitz

In this section we recall shortly the strategy for proving the theorem of Kuschkowitz. Here we consider for \mathbf{G} the general linear group $\mathbf{G L}_{\mathbf{d}+\mathbf{1}}$ and for $\mathbf{B} \subset \mathbf{G}$ the Borel
subgroup of lower triangular matrices and \mathbf{T} the diagonal torus. Denote by $\overline{\mathbf{T}}$ its image in $\mathbf{P G L}_{d+1}$. For $0 \leq i \leq d$, let $\epsilon_{i}: \mathbf{T} \rightarrow \mathbb{G}_{\mathbf{m}}$ be the character defined by $\epsilon_{i}\left(\operatorname{diag}\left(t_{1}, \ldots, t_{d}\right)\right)=t_{i}$. Put $\alpha_{i, j}:=\epsilon_{i}-\epsilon_{j}$ for $i \neq j$. Then $\Delta:=\left\{\alpha_{i, i+1} \mid 0 \leq i \leq d-1\right\}$ are the simple roots and $\Phi:=\left\{\alpha_{i, j} \mid 0 \leq i \neq j \leq d-1\right\}$ are the roots of \mathbf{G} with respect to $\mathbf{T} \subset \mathbf{B}$. For a decomposition $\left(i_{1}, \ldots, i_{r}\right)$ of $d+1$, let $\mathbf{P}_{\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{\mathbf{r}}\right)}$ be the corresponding standard-parabolic subgroup of $\mathbf{G}, \mathbf{U}_{\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{\mathbf{r}}\right)}$ its unipotent radical and $\mathbf{L}_{\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{\mathbf{r}}\right)}$ its Levi component.

Let \mathcal{E} be a homogeneous vector bundle on $\mathbb{P}_{\mathbb{F}}^{d}$. Our finite group G stabilizes \mathcal{X}. Therefore, we obtain an induced action of G on the \mathbb{F}-vector space of global sections $\mathcal{E}(\mathcal{X})$. Further \mathcal{E} is naturally a \mathfrak{g}-module, i.e., there is a homomorphism of Lie algebras $\mathfrak{g} \rightarrow \operatorname{End}(\mathcal{E})$. For the structure sheaf $\mathcal{O}=\mathcal{O}_{\mathbb{P}_{\mathbb{F}}^{d}}$ with its natural G-linearization we can describe the action of \mathfrak{g} on $\mathcal{O}(\mathcal{X})$. Indeed, for a root $\alpha=\alpha_{i, j} \in \Phi$, let

$$
L_{\alpha}:=L_{(i, j)} \in \mathfrak{g}_{\alpha}
$$

be the standard generator of the weight space \mathfrak{g}_{α} in \mathfrak{g}. Let $\mu \in X^{*}(\overline{\mathbf{T}})$ be a character of the torus $\overline{\mathbf{T}}$. Write μ in the shape $\mu=\sum_{i=0}^{d} m_{i} \epsilon_{i}$ with $\sum_{i=0}^{d} m_{i}=0$. Define $\Xi_{\mu} \in \mathcal{O}(\mathcal{X})$ by

$$
\Xi_{\mu}\left(q_{0}, \ldots, q_{d}\right)=q_{0}^{m_{0}} \cdots q_{d}^{m_{d}}
$$

For these functions, the action of \mathfrak{g} is given by

$$
\begin{equation*}
L_{(i, j)} \cdot \Xi_{\mu}=m_{j} \cdot \Xi_{\mu+\alpha_{i, j}} \tag{1.1}
\end{equation*}
$$

and

$$
t \cdot \Xi_{\mu}=\left(\sum_{i} m_{i} t_{i}\right) \cdot \Xi_{\mu}, t \in \mathfrak{t}
$$

Fix an integer $0 \leq j \leq d-1$. Let

$$
\mathbb{P}_{\mathbb{F}}^{j}=V\left(X_{j+1}, \ldots, X_{d}\right) \subset \mathbb{P}_{\mathbb{F}}^{d}
$$

be the closed subvariety defined by the vanishing of the coordinates X_{j+1}, \ldots, X_{d}. The algebraic local cohomology modules $H_{\mathbb{P}_{\mathbb{F}}^{j}}^{i}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right), i \in \mathbb{N}$, sit in a long exact sequence

$$
\cdots \rightarrow H^{i-1}\left(\mathbb{P}_{\mathbb{F}}^{d} \backslash \mathbb{P}_{\mathbb{F}}^{j}, \mathcal{F}\right) \rightarrow H_{\mathbb{P}_{\mathbb{F}}^{j}}^{i}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{F}\right) \rightarrow H^{i}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{F}\right) \rightarrow H^{i}\left(\mathbb{P}_{\mathbb{F}}^{d} \backslash \mathbb{P}_{\mathbb{F}}^{j}, \mathcal{F}\right) \rightarrow \cdots
$$

which is equivariant for the induced action of $\mathbf{P}_{(\mathbf{j}+\mathbf{1}, \mathbf{d}-\mathbf{j})} \ltimes U(\mathfrak{g})$. Here the semi-direct product is defined via the adjoint action of $\mathbf{P}_{(\mathbf{j}+\mathbf{1}, \mathbf{d}-\mathbf{j})}$ on \mathfrak{g}. We set

$$
\tilde{H}_{\mathbb{P}_{\mathbb{F}}^{j}}^{d-j}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right):=\operatorname{ker}\left(H_{\mathbb{P}_{\mathbb{F}}^{j}}^{d-j}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right) \rightarrow H^{d-j}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right)\right)
$$

which is consequently a $\mathbf{P}_{(\mathbf{j}+\mathbf{1}, \mathbf{d}-\mathbf{j})} \ltimes U(\mathfrak{g})$-module.

Consider the exact sequence of \mathbb{F}-vector spaces with G-action

$$
0 \rightarrow H^{0}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right) \rightarrow H^{0}(\mathcal{X}, \mathcal{E}) \rightarrow H_{\mathcal{Y}}^{1}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right) \rightarrow H^{1}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right) \rightarrow 0
$$

Note that the higher cohomology groups $H^{i}(\mathcal{X}, \mathcal{E}), i>0$, vanish since \mathcal{X} is an affine space. The G-representations $H^{0}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{F}\right), H^{1}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{F}\right)$ are finite-dimensional algebraic. Let $i: \mathcal{Y} \hookrightarrow\left(\mathbb{P}_{\mathbb{F}}^{d}\right)$ denote the closed embedding and let \mathbb{Z} be constant sheaf on \mathcal{Y}. Then by [SGA2, Proposition 2.3 bis.], we conclude that

$$
\operatorname{Ext}^{*}\left(i_{*}\left(\mathbb{Z}_{\mathcal{Y}}\right), \mathcal{E}\right)=H_{\mathcal{Y}}^{*}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right)
$$

The idea is now to plug in a resolution of the sheaf \mathbb{Z} on the boundary and works as follows.

Let $\left\{e_{0}, \ldots, e_{d}\right\}$ be the standard basis of $V=\mathbb{F}^{d+1}$. For any $\alpha_{i} \in \Delta$, put

$$
V_{i}=\bigoplus_{j=0}^{i} \mathbb{F} \cdot e_{j} \text { and } Y_{i}=\mathbb{P}\left(V_{i}\right)
$$

For any subset $I \subset \Delta$ with $\Delta \backslash I=\left\{\alpha_{i_{1}}<\ldots<\alpha_{i_{r}}\right\}$, set $Y_{I}=\mathbb{P}\left(V_{i_{1}}\right)$ and consider it as a closed subvariety of $\mathbb{P}_{\mathbb{F}}^{d}$. Furthermore, let P_{I} be the lower parabolic subgroup of G, such that I coincides with the simple roots appearing in the Levi factor of P_{I}. Hence the group P_{I} stabilizes Y_{I}. We obtain

$$
\begin{equation*}
\mathcal{Y}=\bigcup_{g \in G} g \cdot Y_{\Delta \backslash\left\{\alpha_{d-1}\right\}} . \tag{1.2}
\end{equation*}
$$

Consider the natural closed embeddings

$$
\Phi_{g, I}: g Y_{I} \longrightarrow \mathcal{Y}
$$

and put

$$
\mathbb{Z}_{g, I}:=\left(\Phi_{g, I}\right)_{*}\left(\Phi_{g, I}^{*} \mathbb{Z}\right)
$$

We obtain the following complex of sheaves on \mathcal{Y} :

$$
\begin{array}{r}
0 \rightarrow \mathbb{Z} \rightarrow \bigoplus_{\substack{I \subset \Delta \\
|\Delta \backslash I|=1}} \bigoplus_{g \in G / P_{I}} \mathbb{Z}_{g, I} \rightarrow \bigoplus_{\substack{I \subset \Delta \\
|\Delta \backslash I|=2}} \bigoplus_{g \in G / P_{I}} \mathbb{Z}_{g, I} \rightarrow \cdots \rightarrow \bigoplus_{\substack{I \subset \Delta \\
|\Delta \backslash I|=i}} \bigoplus_{g \in G / P_{I}} \mathbb{Z}_{g, I} \rightarrow \cdots \tag{1.3}\\
\cdots \rightarrow \bigoplus_{\substack{I \subset \Delta \\
|\Delta| I \mid=d-1}} \bigoplus_{g \in G / P_{I}} \mathbb{Z}_{g, I} \rightarrow \bigoplus_{g \in G / P_{\emptyset}} \mathbb{Z}_{g, \emptyset} \rightarrow 0 .
\end{array}
$$

which is acyclic by [01].

In a next step one considers the spectral sequence which is induced by this complex applied to $\operatorname{Ext}^{*}\left(i_{*}(-), \mathcal{E}\right)$. Here one uses that for all $I \subset \Delta$, there is an isomorphism

$$
\operatorname{Ext}^{*}\left(i_{*}\left(\bigoplus_{g \in G / P_{I}} \mathbb{Z}_{g, I}\right), \mathcal{E}\right)=\bigoplus_{g \in G / P_{I}} H_{g Y_{I}}^{*}\left(\mathbb{P}_{\mathbb{F}}^{d}, \mathcal{E}\right)
$$

By evaluating the spectral sequence Kuschkowitz arrives in $[\mathrm{Ku}$ at the theorem mentioned in the introduction.

2. First approach

In this section we replace $U(\mathfrak{g})$ by its crystalline version and transform the results of OS to this setting.

Let $\mathbf{G}_{\mathbb{Z}}$ be a split reductive algebraic group over \mathbb{Z} and let $\mathfrak{g}_{\mathbb{C}}$ be the Lie algebra of $\mathbf{G}_{\mathbb{Z}}(\mathbb{C})$. On the other hand let $D\left(\mathbf{G}_{\mathbb{F}}\right)$ be the distribution algebra of $\mathbf{G}_{\mathbb{F}}=\mathbf{G}_{\mathbb{Z}} \times_{\mathbb{Z}} \mathbb{F}$. We identify $D\left(\mathbf{G}_{\mathbb{F}}\right)$ with the universal crystalline enveloping algebra (Kostant form) $\dot{\mathcal{U}}(\mathfrak{g})$. Thus $\dot{\mathcal{U}}(\mathfrak{g})=\dot{\mathcal{U}}(\mathfrak{g})_{\mathbb{Z}} \otimes \mathbb{F}$ where $\dot{\mathcal{U}}(\mathfrak{g})_{\mathbb{Z}}$ is the \mathbb{Z}-subalgebra of $U\left(\mathfrak{g}_{\mathbb{C}}\right)$ generated by the expressions

$$
\begin{gathered}
x_{\alpha}^{[n]}:=x_{\alpha}^{n} / n!, y_{\alpha}^{[n]}:=y_{\alpha}^{n} / n!, \alpha \in \Phi^{+}, n \in \mathbb{N} \\
\text { and }\binom{h_{\alpha}}{n}, \alpha \in \Delta, n \in \mathbb{N},
\end{gathered}
$$

where $x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}$ are generators and $h_{\alpha}=\left[x_{\alpha}, y_{\alpha}\right]$ for all $\alpha \in \Delta$. We have a PBW-decomposition

$$
\dot{\mathcal{U}}(\mathfrak{g})=\dot{\mathcal{U}}(\mathfrak{u}) \otimes_{\mathbb{F}} \dot{\mathcal{U}}(\mathfrak{t}) \otimes_{\mathbb{F}} \dot{\mathcal{U}}\left(\mathfrak{u}^{-}\right)
$$

where the crystalline enveloping algebras for $\mathfrak{u}, \mathfrak{u}^{-}$and \mathfrak{t} are defined analogously.
We mimic the definition of the category \mathcal{O} in the sense of BGG.
Definition 2.1. Let $\dot{\mathcal{O}}$ be the full subcategory of all $\dot{\mathcal{U}}(\mathfrak{g})$-modules such that
i) M is finitely generated as $\dot{\mathcal{U}}(\mathfrak{g})$-module
ii) $\dot{\mathcal{U}}(\mathfrak{t})$ acts semisimple with finite-dimensional weight spaces.
iii) $\dot{\mathcal{U}}(\mathfrak{u})$ acts locally finite-dimensional, i.e., for all $m \in M$ we have $\operatorname{dim} \dot{\mathcal{U}}(\mathfrak{u}) \cdot m<$ ∞.

Remark 2.2. In [Hab, Def. 3.2] Haboush calls $\dot{\mathcal{U}}(\mathfrak{g})$-modules satisfying properties i) and ii) admissible. The category $\dot{\mathcal{O}}$ has been also recently considered by Andersen [An] and Fiebig [Fi] (even more generally for weight modules) discussing among others the structure of these objects.

Similarly, for a parabolic subgroup $\mathbf{P} \subset \mathbf{G}$ with Levi decomposition $\mathbf{P}=\mathbf{L}_{\mathbf{P}} \cdot \mathbf{U}_{\mathbf{P}}$ (induced by one over \mathbb{Z}), we let $\dot{\mathcal{O}}^{\mathfrak{p}}$ be the full subcategory of $\dot{\mathcal{O}}$ consisting of objects which are direct sums of finite-dimensional $\dot{\mathcal{U}}\left(\mathfrak{l}_{P}\right)$-modules. We let $\dot{\mathcal{O}}_{\text {alg }}$ be the full subcategory of $\dot{\mathcal{O}}$ such that the action of $\dot{\mathcal{U}}(\mathfrak{t})$ is induced on the weight spaces by algebraic characters $X^{*}\left(T_{\mathbb{F}}\right)$ of $T_{\mathbb{F}}$. Finally we set

$$
\dot{\mathcal{O}}_{\text {alg }}^{p}:=\dot{\mathcal{O}}_{\text {alg }} \cap \dot{\mathcal{O}}^{\mathfrak{p}}
$$

As in the classical case there is for every object $M \in \dot{\mathcal{O}}_{\text {alg }}^{p}$ some finite-dimensional algebraic P-representation 1 ㄱ a surjective homomorphism $\dot{\mathcal{U}}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{p})} W \rightarrow M$. Again there is a PBW-decomposition $\dot{\mathcal{U}}(\mathfrak{g})=\dot{\mathcal{U}}\left(\mathfrak{u}_{P}\right) \otimes_{\mathbb{F}} \dot{\mathcal{U}}\left(\mathfrak{l}_{P}\right) \otimes_{\mathbb{F}} \dot{\mathcal{U}}\left(\mathfrak{u}_{P}^{-}\right)$such that the latter homomorphism can be seen as a map $\dot{\mathcal{U}}\left(\mathfrak{u}_{P}^{-}\right) \otimes_{\mathbb{F}} W \rightarrow M$.

According to Hab there is the notion of maximal vectors, highest weights, highest weight module etc. and we may define Verma modules, cf. Def. 3.1 in loc.cit. In fact let λ be a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$-module. Then we consider it as usual via the trivial $\dot{\mathcal{U}}(\mathfrak{u})$-action as a one-dimensional $\dot{\mathcal{U}}(\mathfrak{b})$-module \mathbb{F}_{λ}. Then

$$
M(\lambda)=\dot{\mathcal{U}}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{b})} \mathbb{F}_{\lambda}
$$

is the attached Verma module of weight λ. As in the classical case Theorem of Hu, 1.2] holds true for our highest weight modules. In particular it has a unique maximal proper submodule and therefore a unique simple quotient $L(\lambda)$, cf. [Hab, Prop. 4.4], [An, Thm 2.3], [Fi, Prop. 2.3].

Proposition 2.3. The simple modules in $\dot{\mathcal{O}}_{\text {alg }}$ are exactly of the shape $L(\lambda)$ for $\lambda \in X^{*}\left(\mathbf{T}_{\mathbb{F}}\right)$.

Proof. We need to show that every simple object in $\dot{\mathcal{O}}_{\text {alg }}$ is of this form. But by [Hab, Thm 4.9 i)] simple admissible highest weight modules are of the form $L(\lambda)$ for a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$-module λ. The algebraic condition forces λ to be an algebraic character $\lambda \in X^{*}\left(\mathbf{T}_{\mathbb{F}}\right)$.

We also consider the full subcategory $M_{\dot{\mathcal{U}}(\mathfrak{g})}^{d}$ for all $\dot{\mathcal{U}}(\mathfrak{g})$-modules which satisfy condition ii) in the definition of $\dot{\mathcal{O}}$. For any such object M we define a dual object M^{\prime} (the graded dual) following the classical concept: consider the weight space decomposition $M=\bigoplus_{\lambda} M_{\lambda}$ where λ is as above a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$-module. Then the

[^0]underlying vector space of M^{\prime} is the direct $\operatorname{sum} \bigoplus_{\lambda} \operatorname{Hom}\left(M_{\lambda}, K\right)$. The $\dot{\mathcal{U}}(\mathfrak{g})$-structure on it is given by the natural one2. Clearly one has $\left(M^{\prime}\right)^{\prime}=M$.

We consider the natural action of \mathfrak{u}_{P}^{-}on $\mathcal{O}\left(\mathbf{U}_{\mathbf{P}^{-}, \mathbb{F}}\right)$. This extends to a nondegenerate pairing

$$
\begin{equation*}
\dot{\mathcal{U}}\left(\mathfrak{u}_{P}^{-}\right) \otimes \mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{F}}^{-}\right) \rightarrow \mathbb{F} \tag{2.1}
\end{equation*}
$$

such that $\mathcal{O}\left(\mathbf{U}_{\mathbf{P}^{-}, \mathbb{F}}\right)$ identifies with the graded dual of $\dot{\mathcal{U}}\left(\mathfrak{u}_{P}^{-}\right)$. Moreover we pull back via this identification the action of P on $\left(\dot{\mathcal{U}}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{p})} 1\right)^{\prime}$ to $\mathcal{O}\left(\mathbf{U}_{\mathbf{P}^{-}, \mathbb{F}}\right)$. By construction we obtain the following statement.

Lemma 2.4. There is an isomorphism of $P \ltimes \dot{\mathcal{U}}(\mathfrak{g})$-modules $\mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{F}}^{-}\right) \cong\left(\dot{\mathcal{U}}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{p})} 1\right)^{\prime}$.

The pairing (2.1) extends for every algebraic P-representation W to a pairing

$$
\begin{equation*}
\left(\dot{\mathcal{U}}\left(\mathfrak{u}_{P}^{-}\right) \otimes W^{\prime}\right) \otimes\left(\mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{F}}^{-}\right) \otimes W\right) \rightarrow \mathbb{F} \tag{2.2}
\end{equation*}
$$

such that $\mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{F}}^{-}\right) \otimes W$ becomes isomorphic to $\dot{\mathcal{U}}\left(\mathfrak{u}_{P}^{-}\right)^{\prime} \otimes W^{\prime}$ as $P \ltimes \dot{\mathcal{U}}(\mathfrak{g})$-modules.
Let $\dot{\mathbb{F}}[G, \mathfrak{g}]:=\mathbb{F}[G] \# \dot{\mathcal{U}}(\mathfrak{g})$ be the smash product of $\dot{\mathcal{U}}(\mathfrak{g})$ and the group algebra $\mathbb{F}[G]$ of G. Recall that this \mathbb{F}-algebra has as underlying vector space the tensor product $\mathbb{F}[G] \otimes \dot{\mathcal{U}}(\mathfrak{g})$ and where the multiplication is induced by $\left(g_{1} \otimes z_{1}\right) \cdot\left(g_{2} \otimes z_{2}\right)=g_{1} g_{2} \otimes$ $\operatorname{Ad}\left(g_{2}\right)\left(z_{1}\right) z_{2}$ for elements $g_{i} \in G, z_{i} \in \dot{\mathcal{U}}(\mathfrak{g}), i=1,2$.

Definition 2.5. i) We denote by $\operatorname{Mod}_{\dot{\mathbb{F}}[G, \mathfrak{g}]}^{d}$ be the full subcategory of all $\dot{\mathbb{F}}[G, \mathfrak{g}]$ modules for which the action of $\dot{\mathcal{U}}(\mathfrak{t})$ is diagonalisable into finite-dimensional weight spaces.
ii) We denote by $\operatorname{Mod}_{\underset{\mathbb{F}}{ }[G, g]}^{f g, d}$ be the full subcategory of $\operatorname{Mod}_{\dot{\mathbb{F}}[G, \mathfrak{g}]}^{d}$ which are finitely generated.

For an object \mathcal{M} of $\operatorname{Mod}_{\dot{\mathbb{F}}[G, \mathfrak{g}]}^{d}$ we define the dual \mathcal{M}^{\prime} as the graded dual of the underlying $\dot{\mathcal{U}}(\mathfrak{g})$-module together with the contragradient action of G.

Let M be an object of $\dot{\mathcal{O}}_{\text {alg }}^{\mathfrak{p}}$. Then there is a surjection

$$
p: \dot{\mathcal{U}}\left(\mathfrak{u}_{P}^{-}\right) \otimes W \rightarrow M
$$

[^1]for some finite-dimensional algebraic P-module W. Let $\mathfrak{d}:=\operatorname{ker}(p)$ be its kernel. Then set
$$
\mathcal{F}_{P}^{G}(M):=\operatorname{Ind}_{P}^{G}\left(\left(\mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{F}}^{-}\right) \otimes W\right)^{\mathfrak{d}}\right)
$$
where $\left(\mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{F}}^{-}\right) \otimes W\right)^{\mathfrak{d}}$ is the orthogonal complement of \mathfrak{d} with respect to the pairing (2.2). The latter submodule can be interpreted as the graded dual of M. In particular we get
$$
\mathcal{F}_{P}^{G}(M)^{\prime}=\operatorname{Ind}_{P}^{G}(M)
$$

Lemma 2.6. Let M be an object of $\dot{\mathcal{O}}_{\text {alg }}^{p}$. Then $\mathcal{F}_{P}^{G}(M)$ is an object of the category $\operatorname{Mod}_{\mathbb{F}[G, \mathfrak{g}]}^{d}$. Its dual $\mathcal{F}_{P}^{G}(M)^{\prime}$ is an object of the category $\operatorname{Mod}_{\mathfrak{F}[G, \mathfrak{g}]}^{f q, d}$.

Proof. It suffices to show the second assertion. As G / P is a finite set, we need only to show that $\mathcal{F}_{P}^{G}(M)^{\prime}$ has a decomposition into finite-dimensional weight spaces. Let $M=\bigoplus_{\lambda} M_{\lambda}$. We write $\mathcal{F}_{P}^{G}(M)=\bigoplus_{g \in G / P} \delta_{g} \star M$ where $\delta_{g} \star M$ is the $\dot{\mathcal{U}}(\mathfrak{g})$-module with the same underlying vector space but where the Lie algebra action is twisted by $A d(g)$. We consider the Bruhat decomposition $G / P=\bigcup_{w \in W_{P}} U_{B, w} w P / P$ where $U_{B, w}=U \cap w U^{-} w^{-1}$ and take the obvious representatives for G / P. Thus we have

$$
\mathcal{F}_{P}^{G}(M)^{\prime}=\bigoplus_{w \in W_{P}} \bigoplus_{u \in U_{B, w}^{-}} \delta_{u w} \star M
$$

In the case of $\delta_{w}, w \in W$, the grading of $\delta_{w} \star M$ is given by $\bigoplus_{\lambda} M_{w \lambda}$. In the case of $\delta_{u}, u \in U_{B, w}$ the grading is given by $\bigoplus_{\lambda} u \cdot M_{\lambda}$ (Note that we have an action of U on $M)$. In general we consider the mixture of these cases.

Let V be additionally a finite-dimensional P-module. Then we set

$$
\mathcal{F}_{P}^{G}(M, V):=\operatorname{Ind}_{P}^{G}\left(\left(\mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{E}}^{-}\right) \otimes W^{\prime}\right)^{\mathfrak{d}} \otimes V\right)
$$

This is an object of $M o d_{\dot{\mathbb{F}}[G, \mathfrak{g}]}^{d}$ by a slight generalization of the above lemma. In this way we get a bi-functor

$$
\mathcal{F}_{P}^{G}: \dot{\mathcal{O}}_{\mathrm{alg}}^{\mathfrak{p}} \times \operatorname{Rep}(P) \rightarrow \operatorname{Mod}_{\mathbb{F}[G, \mathfrak{g}]}^{d}
$$

By the following statement the dual $\mathcal{F}_{P}^{G}(M, V)^{\prime}$ is an object of $M o d_{\tilde{F}[G, \mathfrak{g}]}^{f g, d}$.
Lemma 2.7. The dual of $\mathcal{F}_{P}^{G}(M, V)$ is given by

$$
\mathcal{F}_{P}^{G}(M, V)^{\prime}=\dot{\mathbb{F}}[G, \mathfrak{g}] \otimes_{\dot{\mathbb{F}}[P, \mathfrak{g}]}\left(M \otimes V^{\prime}\right)
$$

Proof. We have $\mathcal{F}_{P}^{G}(M, V)^{\prime}=\operatorname{Ind}_{P}^{G}\left(M^{\prime} \otimes V\right)^{\prime}=\operatorname{Ind}_{P}^{G}\left(\left(M^{\prime}\right)^{\prime} \otimes V^{\prime}\right)=\operatorname{Ind}_{P}^{G}\left(M \otimes V^{\prime}\right)$.

Proposition 2.8. The functor \mathcal{F}_{P}^{G} is exact in both arguments.

Proof. We start to prove that the functor is exact in the first argument. Let $0 \rightarrow$ $M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ be an exact sequence in the category $\mathcal{O}_{\mathrm{alg}}^{\mathfrak{p}}$. Then the sequence $0 \rightarrow \operatorname{Ind}_{P}^{G} M_{1} \rightarrow \operatorname{Ind}_{P}^{G} M_{2} \rightarrow \operatorname{Ind}_{P}^{G} M_{3} \rightarrow 0$ is also exact. But the graded dual of this sequence is exactly $0 \rightarrow \mathcal{F}_{P}^{G}\left(M_{3}\right) \rightarrow \mathcal{F}_{P}^{G}\left(M_{2}\right) \rightarrow \mathcal{F}_{P}^{G}\left(M_{1}\right) \rightarrow 0$.

As for exactness in the second argument let $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0$ be an exact sequence of P-representations. As

$$
\mathcal{F}_{P}^{G}(M, V):=\operatorname{Ind}_{P}^{G}\left(\left(\mathcal{O}\left(\mathbf{U}_{\mathbf{P}, \mathbb{F}}^{-}\right) \otimes W^{\prime}\right)^{\mathfrak{d}} \otimes V_{i}\right)
$$

and $\operatorname{Ind}_{P}^{G}$ is an exact functor we see easily the claim.
Now let $\mathbf{Q} \supset \mathbf{P}$ be a parabolic subgroup and let $M \in \dot{\mathcal{O}}_{\text {alg }}^{q}$. Then we may consider it also as an object of $\dot{\mathcal{O}}_{\text {alg }}^{p}$.

Proposition 2.9. If $\mathbf{Q} \supset \mathbf{P}$ is a parabolic subgroup, M an object of $\dot{\mathcal{O}}_{\text {alg }}^{\mathfrak{q}}$ and V a finite-dimensional P-module, then

$$
\mathcal{F}_{P}^{G}(M, V)=\mathcal{F}_{Q}^{G}\left(M, \operatorname{Ind}_{P}^{Q}(V)\right)
$$

Proof. We have

$$
\begin{aligned}
\mathcal{F}_{P}^{G}(M, V) & =\operatorname{Ind}_{P}^{G}\left(M^{\prime} \otimes V\right)=\operatorname{Ind}_{Q}^{G}\left(\operatorname{Ind}_{P}^{Q}\left(M^{\prime} \otimes V\right)\right) \\
& =\operatorname{Ind}_{Q}^{G}\left(M^{\prime} \otimes \operatorname{Ind}_{P}^{Q}(V)\right)=\mathcal{F}_{Q}^{G}\left(M, \operatorname{Ind}_{P}^{Q}(V)\right)
\end{aligned}
$$

by the projection formula. Hence we deduce the claim.
As in OS a parabolic Lie algebra \mathfrak{p} is called maximal for an object $M \in \dot{\mathcal{O}}^{\mathfrak{p}}$ if there does not exist a parabolic Lie algebra $\mathfrak{q} \supsetneq \mathfrak{p}$ with $M \in \dot{\mathcal{O}^{q}}$.

Theorem 2.10. Let $p>3$. Let M be an simple object of $\dot{\mathcal{O}}_{\text {alg }}^{\mathfrak{p}}$ such that \mathfrak{p} is maximal for M. Then $\mathcal{F}_{P}^{G}(M)$ is a simple $\dot{\mathbb{F}}[G, \mathfrak{g}]$-module.

Proof. The proof follows the idea of loc.cit. and is even simpler. We start with the observation that by duality $\mathcal{F}_{P}^{G}(M, V)$ is simple as $\dot{\mathbb{F}}[G, \mathfrak{g}]$-module iff $\mathcal{F}_{P}^{G}(M, V)^{\prime}$ is simple as $\dot{\mathbb{F}}[G, \mathfrak{g}]$-module. We consider again the Bruhat decomposition $G / P=$ $\bigcup_{w \in W_{P}} U_{B, w}^{-} w B / B$ and the induced decomposition

$$
\mathcal{F}_{P}^{G}(M)^{\prime}=\bigoplus_{w \in W_{P}} \bigoplus_{u \in U_{B, w}^{-}} \delta_{u w} \star M
$$

We denote (with respect to $\delta_{u w} \star M$) for elements $\mathfrak{z} \in \dot{\mathcal{U}}(\mathfrak{g})$ and $m \in M$ the action of \mathfrak{z} on m by $\mathfrak{z} \cdot{ }_{u w} m$. Now each summand $\delta_{u w} \star M$ is simple since M is simple. Thus it suffices to show that the summands are pairwise non isomorphic as $\dot{\mathcal{U}}(\mathfrak{g})$-modules. Suppose that there is an isomorphism $\phi: \delta_{g} \star M \rightarrow \delta_{h} \star M$ for some elements g, h as above. We may suppose that $h=e$. Write $g=u^{-1} w$. Then such an isomorphism is equivalent to an isomorphism $\phi: \delta_{w} \star M \rightarrow \delta_{u} \star M \cong M$. The latter isomorphism is given by the mapping $m \mapsto u^{-1} \cdot m$.

We show that this can only happen if $w \in W_{P}$. Let $\lambda \in X(\mathbf{T})^{*}$ be the highest weight of M, i.e. $M=L(\lambda)$, and $P=P_{I}$ is the standard parabolic subgroup induced by $I=\left\{\alpha \in \Delta \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}_{\geq 0}\right\}$, cf. Hu . Suppose w is not contained in $W_{I}=W_{P}$. Then there is a positive root $\beta \in \Phi^{+} \backslash \Phi_{I}^{+}$such that $w^{-1} \beta<0$, hence $w^{-1}(-\beta)>0$. Consider a non-zero element element $y \in \mathfrak{g}_{-\beta}$, and let $v^{+} \in M$ be a weight vector of weight λ. Then we have for $n \in \mathbb{N}$, the following identity

$$
y^{[n]} \cdot{ }_{w} v^{+}=\operatorname{Ad}\left(w^{-1}\right)\left(y^{[n]}\right) \cdot v^{+}=0
$$

as $\operatorname{Ad}\left(w^{-1}\right)\left(y^{[n]}\right) \in \mathfrak{g}_{-w^{-1} \beta}$ annihilates v^{+}. We have $\phi\left(v^{+}\right)=v$ for some nonzero $v \in M$. And therefore

$$
0=\phi\left(y^{[n]} \cdot{ }_{w} v^{+}\right)=y^{[n]} \cdot \phi\left(v^{+}\right)=y^{[n]} \cdot v .
$$

But y is an element of \mathfrak{u}_{P}^{-}, hence we get a contradiction by Proposition 2.13 since n was arbitrary.

Theorem 2.11. Let $p>3$. Let M be an simple object of $\dot{\mathcal{O}}_{\text {alg }}^{p}$ such that \mathfrak{p} is maximal for M and let V be an irreducible P-representation. Then $\mathcal{F}_{P}^{G}(M, V)$ and its dual $\mathcal{F}_{P}^{G}(M, V)^{\prime}$ are simple as $\dot{\mathbb{F}}[G, \mathfrak{g}]$-module.

Proof. Again by duality it is enough to check the assertion for $\mathcal{F}_{P}^{G}(M, V)^{\prime}$. So let $U \subset$ $\mathcal{F}_{P}^{G}(M, V)^{\prime}$ be a non-zero G-invariant subspace. Recall that $\mathcal{F}_{P}^{G}(M)^{\prime}=\bigoplus_{\gamma \in G / P} \delta_{\gamma} \star$ $L(\lambda)$ so that

$$
\mathcal{F}_{P}^{G}(M, V)=\bigoplus_{\gamma \in G / P} \delta_{\gamma} \star L(\lambda)^{\prime} \otimes V^{\gamma}
$$

Considered as $\dot{\mathcal{U}}(\mathfrak{g})$-module $\mathcal{F}_{P}^{G}(M, V)$ is isomorphic to $\left(\bigoplus_{\gamma \in G / P} \delta_{\gamma} \star L(\lambda)^{\prime}\right) \otimes V$. Hence by the simplicity of M and since the summands $\delta_{\gamma} \star L(\lambda)^{\prime}$ are pairwise not isomorphic the $\dot{\mathcal{U}}(\mathfrak{g})$-module U is equal to

$$
\bigoplus_{\gamma \in G / P} \delta_{\gamma} \star L(\lambda)^{\prime} \otimes_{\mathbb{F}} V_{\gamma}
$$

with subspaces, V_{γ}, γ, of V. Here $\delta_{1} \star L(\lambda)^{\prime} \otimes V_{1}=L(\lambda)^{\prime} \otimes V_{1}$ is a $\dot{\mathbb{F}}[P, \mathfrak{g}]$-submodule of $L(\lambda)^{\prime} \otimes V$. Since V ist irreducible the latter object is irreducible, as well. Hence $V_{1}=V$. But since G permutes the summands of U we see that $U=\mathcal{F}_{P}^{G}(M, V)^{\prime}$.

In the following statement we merely consider elements in a root space by the very definition of $\dot{\mathcal{U}}(\mathfrak{g})$.

Lemma 2.12. Let $p>3$. Let $x \in \mathfrak{g}_{\gamma}$ some element for $\gamma \in \Phi$. Let M be a $\dot{\mathcal{U}}(\mathfrak{g})$ module and $v \in M$.
(i) If x acts locally finitely ${ }_{3}^{3}$ on v (i.e., the K-vector space generated by $\left(x^{[i]} . v\right)_{i \geq 0}$ is finite-dimensional), then x acts locally finitely on $\dot{\mathcal{U}}(\mathfrak{g})$.v.
(ii) If $x . v=0$ and $[x,[x, y]]=0$ for some $y \in \mathfrak{g}_{\beta}$, where $\beta \in \Phi$ then

$$
x^{[n]} y^{[n]} \cdot v=[x, y]^{[n]} . v .
$$

Proof. (i) The idea is to apply Lemma 8.1 of loc.cit. which gives in characteristic 0 the formula

$$
x^{k} \cdot z_{1} z_{2} \ldots z_{n}=\sum_{i_{1}+\ldots+i_{n+1}=k} \frac{k!}{i_{1}!\ldots i_{n+1}!}\left[x^{\left(i_{1}\right)}, z_{1}\right] \cdot \ldots \cdot\left[x^{\left(i_{n}\right)}, z_{n}\right] x^{i_{n+1}}
$$

Here the expression $\left[x^{(i)}, z\right]$ means $a d(x)^{i}(z)$. We may rewrite this as

$$
x^{[k]} \cdot z_{1} z_{2} \ldots z_{n}=\sum_{i_{1}+\ldots+i_{n+1}=k} \frac{1}{i_{1}!\ldots i_{n}!}\left[x^{\left(i_{1}\right)}, z_{1}\right] \cdot \ldots \cdot\left[x^{\left(i_{n}\right)}, z_{n}\right] x^{\left[i_{n+1}\right]}
$$

Indeed we consider the PBW-decomposition $\dot{\mathcal{U}}(\mathfrak{g})=\dot{\mathcal{U}}(\mathfrak{u}) \otimes \dot{\mathcal{U}}(\mathfrak{t}) \otimes \dot{\mathcal{U}}(\mathfrak{u})$ and assume that the elements z_{i} lie without loss of generality in one of these factors. For any element z in some root space it follows from [Hu, 0.2] that $\left[x^{(k)}, z\right]=0$ for all $k \geq 4$. Since we avoid the situation $p=2,3$ we my divide my the denominators 2 ! and 3 !.

Now in contrast to loc.cit. we have again to consider z_{i} as elements of $\dot{\mathcal{U}}(\mathfrak{g})$ instead of elements in \mathfrak{g}. Let d_{i} be the order of the differential z_{i}. Then $\left[x^{\left(i_{1}\right)}, z_{1}\right] \cdots\left[x^{\left(i_{n}\right)}, z_{n}\right]$ is an differential of order less than $4\left(d_{1}+\ldots+d_{n}\right)$. In particular we can conclude as in loc.cit. that the term lies in a finite dimensional vector space which gives now easily the claim.
ii) In characteristic 0 we have the formula $x^{n} y^{n} \cdot v=n!\cdot[x, y]^{n} v$, cf. [OS, Lemma 8.2 ii)]. We only have to divide two times by $n!$.

[^2]Proposition 2.13. Let $p>3$. Let $\mathfrak{p}=\mathfrak{p}_{I}$ for some $I \subset \Delta$. Suppose $M \in \dot{\mathcal{O}}^{\mathfrak{p}}$ is a highest weight module with highest weight λ and

$$
I=\left\{\alpha \in \Delta \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}_{\geq 0}\right\} .
$$

Then no non-zero element of a root space of $\mathfrak{u}_{\mathfrak{p}}^{-}$acts locally finitely on M.

Proof. The proof is in principal the same as in the case of characteristic 0 OS, Cor. 8.2]. However we have to modify some technical ingredients of the necessary lemmas due the different characteristic.
let $y \in\left(\mathfrak{u}_{\mathfrak{p}}^{-}\right)_{\gamma}$ for some root γ. Let v^{+}be a weight vector with weight λ. Write $\gamma=\sum_{\alpha \in \Delta} c_{\alpha} \alpha$ (with non-negative integers c_{α}). We show by induction on the height $h t(\gamma)$ of γ (Recall that $\left.h t(\gamma)=\sum_{\alpha \in \Delta} c_{\alpha}\right)$ that y_{γ} can not act locally finite. For this it suffices by weight reasons to show that $y_{\gamma}^{[n]} . v^{+} \neq 0$ for infinitely many positive integers n.

If $h t(\gamma)=1$, then γ is an element of $\Delta \backslash I$. Rescaling y_{γ} we can choose $x_{\gamma} \in \mathfrak{g}_{\gamma}$ such that $\left[x_{\gamma}, y_{\gamma}\right]=h_{\gamma}$ and $\left[h_{\gamma}, x_{\gamma}\right]=2 x_{\gamma}$ and $\left[h_{\gamma}, y_{\gamma}\right]=-2 y_{\gamma}$. Then by [Hab, 5.2] we get

$$
\begin{equation*}
x_{\gamma}^{[n]} y_{\gamma}^{[n]} \cdot v^{+}=\binom{\lambda\left(h_{\gamma}\right)}{n} \cdot v^{+}=\frac{1}{n!} \prod_{i=0}^{n-1}\left(\left\langle\lambda, \gamma^{\vee}\right\rangle-i\right) \cdot v^{+} . \tag{2.3}
\end{equation*}
$$

As $I=\left\{\alpha \in \Delta \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}_{\geq 0}\right\}$, it follows that $\left\langle\lambda, \gamma^{\vee}\right\rangle \notin \mathbb{Z}_{\geq 0}$ and the term on the right of 2.3 does not vanish for infinitely many n. In particular, $y_{\gamma}^{n} \cdot v^{+} \neq 0$ for infinitely many $n \geq 0$.

Now suppose $h t(\gamma)>1$. Then we can write $\gamma=\alpha+\beta$ with $\alpha \in \Delta$ and $\beta \in \Phi^{+}$. Clearly, not both α and β can be contained in Φ_{I}. We distinguish two cases.
(a) Let $\beta-\alpha \notin \Phi$. Then we get for $\alpha \notin I$ by Lemma 2.12,

$$
x_{\beta}^{[n]} y_{\gamma}^{[n]} \cdot v^{+}=\left[x_{\beta}, y_{\gamma}\right]^{[n]} \cdot v^{+}
$$

where x_{β} is a non-zero element of \mathfrak{g}_{β}. We conclude by induction that $\left[x_{\beta}, y_{\gamma}\right]^{[n]} . v^{+} \neq 0$ for infinitely many $n \geq 0$.

For $\alpha \in I$ we have by Lemma 2.12,

$$
x_{\alpha}^{[n]} y_{\gamma}^{[n]} \cdot v^{+}=\left[x_{\alpha}, y_{\gamma}\right]^{[n]} \cdot v^{+} .
$$

where x_{α} be a non-zero element of \mathfrak{g}_{α}. Again we conclude by induction the claim. And thus $y_{\gamma}^{[n]} \cdot v^{+} \neq 0$ for infinitely many $n \geq 0$.
(b) Let $\beta-\alpha$ is in Φ. Then we have $\gamma-k \alpha \in \Phi^{+}$for $0 \leq k \leq k_{0}$ (with $k_{0} \leq 3$, cf. [Hu, 0.2]), and $\gamma-k \alpha \notin \Phi \cup\{0\}$ for $k>k_{0}$. This implies $\left[x_{\alpha}^{(i)}, y_{\gamma}\right]=0$ for $i>k_{0}$. By Lemma 2.12 we conclude as in loc.cit.

$$
x_{\alpha}^{\left[n k_{0}\right]} y_{\gamma}^{n} \cdot v^{+}=\sum_{i_{1}+\ldots+i_{n}=n k_{0}} \frac{1}{i_{1}!\ldots i_{n}!}\left[x_{\alpha}^{\left(i_{1}\right)}, y_{\gamma}\right] \cdot \ldots \cdot\left[x_{\alpha}^{\left(i_{n}\right)}, y_{\gamma}\right] \cdot v^{+}
$$

which can be rewritten as (the corresponding term vanishes if there is one $i_{j}>k_{0}$)

$$
\frac{1}{\left(k_{0}!\right)^{n}}\left[x_{\alpha}^{\left(k_{0}\right)}, y_{\gamma}\right]^{n} \cdot v^{+}
$$

Thus we get

$$
x_{\alpha}^{\left[n k_{0}\right]} y_{\gamma}^{[n]} \cdot v^{+}=\frac{1}{\left(k_{0}!\right)^{n}}\left[x_{\alpha}^{\left(k_{0}\right)}, y_{\gamma}\right]^{[n]} \cdot v^{+} .
$$

If $\gamma-k_{0} \alpha$ is not in Φ_{I} we are done by induction. Otherwise we necessarily have $\alpha \notin I$. In this case, if we choose some $x_{\beta} \in \mathfrak{g}_{\beta} \backslash\{0\}$ and deduce as in loc.cit that

$$
x_{\beta}^{[n]} y_{\gamma}^{[n]} \cdot v^{+}=\left[x_{\beta}, y_{\gamma}\right]^{[n]} \cdot v^{+}
$$

As we are now in the case of height one, we can thus conclude again.

Remark 2.14. Unfortunately objects in the category $\dot{\mathcal{O}}$ do not have finite length in general. This holds in particular for the local cohomology modules $H_{\mathbb{P}^{i}}^{d-i}\left(\mathbb{P}^{d}, \mathcal{O}\right)$ as discussed in Ku . However in loc.cit. it was pointed out that one can consider composition series of countable length in the sense of Birkhoff [Bi]. In this way one can use similar to the p-adic case [OS the functors \mathcal{F}_{P}^{G} for a description of the composition factors of the terms $\operatorname{Ind}_{P_{(j+1, d-j)}}^{G}\left(\tilde{H}_{\mathbb{P} j}^{d-j}\left(\mathbb{P}^{n}, \mathcal{E}\right) \otimes S t_{d+1-j}\right)$ appearing in the Theorem of Kuschkowitz.

3. SECOND APPROACH

This section is inspired by the theory of \mathcal{D}-modules. Here we carry out the theory presented in the previous section for the rings of differential operators on the flag variety $X:=\mathbf{B}_{\mathbb{F}} \backslash \mathbf{G}_{\mathbb{F}}$.

Let $D_{\mathbb{P}_{\mathbb{P}}^{d}}\left(\mathbb{P}_{\mathbb{F}}^{d}\right)$ be the space of global sections of the \mathcal{D}-module sheaf $D_{\mathbb{P}_{\mathbb{F}}^{d}}$ on the projective variety $\mathbb{P}_{\mathbb{F}}^{d}$. For a homogeneous vector bundle \mathcal{E} on $\mathbb{P}_{\mathbb{F}}^{d}$, set

$$
D_{\mathbb{P}_{\mathbb{F}}^{d}}^{\mathcal{E}}=\mathcal{E}\left(\mathbb{P}_{\mathbb{F}}^{d}\right) \otimes D_{\mathbb{P}_{\mathbb{F}}^{d}}\left(\mathbb{P}_{\mathbb{F}}^{d}\right) \otimes \mathcal{E}^{*}\left(\mathbb{P}_{\mathbb{F}}^{d}\right)
$$

Then $D_{\mathbb{P}_{\mathbb{F}}^{d}}^{\mathcal{E}}$ acts naturally on $\mathcal{E}(\mathcal{X})$ and the filtration appearing in Kuschkowitz's theorem. Instead we consider (which become clear later) the space of global sections $D=D_{X}(X)$ of the differential operators on X and

$$
D^{\mathcal{E}}=\mathcal{E}(X) \otimes D \otimes \mathcal{E}(X)
$$

for any homogeneous vector bundle \mathcal{E} on $B \backslash G$. There is an action of $D^{\mathcal{E}}$ on all the above objects as well. We consider further the Beilinson-Bernstein homomorphism

$$
\pi^{\mathcal{E}}: \dot{\mathcal{U}}(\mathfrak{g}) \rightarrow D^{\mathcal{E}}
$$

which is not surjective (for $\mathcal{E}=\mathcal{O}_{X}$) in positive characteristic as shown by Smith in Sm.

Consider the covering $X=\bigcup_{w \in W} B \backslash B U^{-} w$ by translates of the big open cell $B \backslash B U^{-}$. Let $D^{1}=D\left(B \backslash B U^{-}\right)$. Thus D^{1} is the crystalline Weyl algebra

$$
D^{1}=\mathbb{F}\left[T_{\alpha} \mid \alpha \in \Phi^{-}\right]\left\langle y_{\alpha}^{[n]} \mid \alpha \in \Phi^{-}, n \in \mathbb{N}\right\rangle .
$$

By the sheaf property we see that D coincides with the set

$$
\begin{equation*}
\left\{\Theta \in D^{1} \mid \Theta\left(\mathcal{O}\left(B \backslash B U^{-} w\right)\right) \subset \mathcal{O}\left(B \backslash B U^{-} w\right) \forall w\right\} \tag{3.1}
\end{equation*}
$$

For any prime power $q=p^{n}$ we let D_{q}^{1} be the differential operators which are $\mathbb{F}\left[T_{\alpha}^{q} \mid\right.$ $\left.\alpha \in \Phi^{-}\right]$-linear. Then we have $D=\bigcup_{n} D_{p^{n}}$. The next statement is a generalization of [Sm, lemma 3.1]. We set for $\alpha>0, T_{\alpha}:=T_{-\alpha}^{-1}$.

Lemma 3.1. Let $\Theta \in D_{q}^{1}$. Then $\Theta \in D$ iff
i) $\Theta(1) \in \mathbb{F}$
and
ii) $\Theta\left(\prod_{\alpha \in \Phi^{-}} T_{\alpha}^{i_{\alpha}}\right) \in V:=\bigoplus_{0 \leq j_{\alpha} \leq q} \prod_{\alpha \in \Phi^{-}} T_{\alpha}^{j_{\alpha}}$ for all tuples $\left(i_{\alpha}\right)_{\alpha}$ with $0 \leq i_{\alpha} \leq$ $q-1$.

Proof. \Rightarrow : The first item follows from the sheaf property (3.1) since $\mathcal{O}(B \backslash G)=\mathbb{F}$. Now let $\Theta \in D \cap D_{q}^{1}$. Let $w_{0} \in W$ be the longest element and $f=\prod_{\alpha<0} T_{\alpha}^{i_{\alpha}}$ as above. Then $g=f \cdot \prod_{\alpha>0} T_{\alpha}^{q} \in \mathcal{O}\left(B \backslash B U^{-} w_{0}\right)$. But then

$$
\Theta(f)=\left(\prod_{\alpha<0} T_{\alpha}^{q}\right) \Theta(g) \in\left(\prod_{\alpha} T_{\alpha<0}^{q}\right) \mathcal{O}\left(B \backslash B U^{-} w_{0}\right) \cap \mathcal{O}\left(B \backslash B U^{-}\right) \subset V
$$

\Leftarrow : We show that $\Theta\left(\mathcal{O}\left(B \backslash B U^{-} w\right)\right) \subset \mathcal{O}\left(B \backslash B U^{-} w\right) \forall w \in W$. We consider the element $f=\prod_{\beta \in w\left(\Phi^{-}\right)} T_{\beta}^{i_{\beta}} \in \mathcal{O}\left(B \backslash B U^{-} w\right)$. Write

$$
f=\prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta<0}} T_{\beta}^{i_{\beta}} \prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta>0}} T_{\beta}^{i_{\beta}}=\prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta<0}} T_{\beta}^{i_{\beta}} \prod_{\substack{\beta \in w(\Phi-) \\ \beta>0}} T_{-\beta}^{-i_{\beta}}
$$

For each $\beta>0$ let m_{β} be the integer with $m_{\beta} q<i_{\beta} \leq\left(m_{\beta}+1\right) q$. On the other hand, for each $\beta<0$ let m_{β} be the integer with $m_{\beta} q \leq i_{\beta}<\left(m_{\beta}+1\right) q$. Then $\prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta<0}} T_{\beta}^{i i_{\beta}}=\prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta<0}} T_{\beta}^{m_{\beta} q} T_{\beta}^{i_{\beta}-m_{\beta} q}$. Putting this together we get by assumption (ii)

$$
\Theta\left(\prod_{\substack{\beta \in w(\Phi-) \\ \beta>0}} T_{-\beta}^{\left(m_{\beta}+1\right) q-i_{\beta}} \prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta<0}} T_{\beta}^{i_{\beta}-m_{\beta} q}\right) \in V .
$$

Thus $\Theta(f) \in \prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta>0}} T_{-\beta}^{-\left(m_{\beta}+1\right) q} \prod_{\substack{\beta \in w\left(\Phi^{-}\right) \\ \beta<0}} T_{\beta}^{m_{\beta} q} V \subset \mathcal{O}\left(B \backslash B U^{-} w\right)$.

We fix the same setup as in the previous section. I.e. $\mathbf{P} \subset \mathbf{G}$ is a parabolic subgroup, $\mathbf{U}_{\mathbf{P}}$ its unipotent radical and $\mathbf{U}_{\mathbf{P}}^{-}$its opposite unipotent radical. Moreover we have fixed as before lifts $\mathbf{P}_{\mathbb{Z}}$ etc. inside $\mathbf{G}_{\mathbb{Z}}$. We consider the following subalgebras of D in terms of generators:

$$
\begin{aligned}
& \left.D(P)=\left\langle T_{\alpha}^{m} \cdot y_{\alpha}^{[n]} \in D\right| m \leq n \text { for } y_{\alpha} \in \mathfrak{p} \cap \mathfrak{b}^{-}, m \geq n \text { for } L_{-\alpha} \in \mathfrak{u}\right\rangle . \\
& D\left(U_{P}\right)=\left\langle\left(T_{\alpha}\right)^{m} \cdot y_{\alpha}^{[n]} \in D \mid m>n, L_{-\alpha} \in \mathfrak{u}_{P}\right\rangle . \\
& D\left(U_{P}^{-}\right)=\left\langle\left(T_{\alpha}\right)^{m} \cdot y_{\alpha}^{[n]} \in D \mid m<n, y_{\alpha} \in \mathfrak{u}_{P}^{-}\right\rangle . \\
& \left.D\left(L_{P}\right)=\left\langle\left(T_{\alpha}\right)^{m} \cdot y_{\alpha}^{[n]} \in D\right| m \leq n \text { for } y_{\alpha} \in \mathfrak{l}_{P} \cap \mathfrak{b}^{-}, m>n \text { for } L_{-\alpha} \in \mathfrak{l}_{P} \cap \mathfrak{u}\right\rangle . \\
& D(T)=\left\langle\left(T_{\alpha}\right)^{m} \cdot y_{\alpha}^{[n]} \in D \mid m=n, \alpha \in \Delta\right\rangle .
\end{aligned}
$$

Remark 3.2. i) Note that $D(T)$ is for $p \neq 2$ nothing else but $\pi^{\mathcal{O}_{X}}(\dot{\mathcal{U}}(\mathfrak{t}))$ as $T_{\alpha} y_{\alpha}=$ $\pi\left(2 h_{\alpha}\right)$ for all $\alpha \in \Delta$. Hence if $\lambda \in X^{*}(T)$, it induces a $D(T)$-module structure on \mathbb{F} which we denote by \mathbb{F}_{λ}.
ii) By Lemma 3.1 one checks that $D\left(U_{P}\right)=\pi^{\mathcal{O}_{X}}\left(\dot{\mathcal{U}}\left(\mathfrak{u}_{P}\right)\right)$ since $T_{\alpha}^{2} y_{\alpha}=\pi\left(L_{-\alpha}\right) \forall \alpha \in$ Φ^{-}.

Lemma 3.3. There is for all $n \in \mathbb{N}$ and $\alpha \in \Delta$ the identity $\binom{T_{\alpha} y_{\alpha}}{n}=T_{\alpha}^{n} y_{\alpha}^{[n]}$.

Proof. This is left to the reader.

We set $D^{\mathcal{E}}(P)=\mathcal{E}(X) \otimes D(P) \otimes \mathcal{E}^{*}(X)$ etc. Then there is a product decomposition $D^{\mathcal{E}}=D^{\mathcal{E}}(P) D^{\mathcal{E}}\left(U_{P}^{-}\right)$(an almost PBW-decomposition).

Again we mimic the definition of the category \mathcal{O} in the sense of BGG. Let $\mathcal{O}_{D^{\mathcal{E}}}^{P}$ be the category of $D^{\mathcal{E}}$-modules such that
i) M is finitely generated as a $D^{\mathcal{E}}$-module
ii) As a $D^{\mathcal{E}}\left(L_{P}\right)$-module it is a direct sum of finite-dimensional modules.
iii) $D^{\mathcal{E}}\left(U_{P}\right)$ acts locally finite-dimensional, i.e. for all $m \in M$ the subspace $D^{\mathcal{E}}\left(U_{P}\right)$. v is finite-dimensional.

Remark 3.4. For $\mathcal{E}=\mathcal{O}_{X}$ this category corresponds in analogy to the classical case to the principal block.

We define the algebraic part of $\mathcal{O}_{D^{\mathcal{E}} \text {,alg }}^{P}$ as usual, i.e. we denote by $\mathcal{O}_{D^{\mathcal{E}} \text {,alg }}^{P}$ the full subcategory of $\mathcal{O}_{D^{\varepsilon}}^{P}$ consisting of objects such that the action of $\dot{\mathcal{U}}(\mathfrak{t})$ on the weight spaces is given by algebraic characters $\lambda \in X^{*}(T)$. Note that axioms ii) and iii) induce together with the map $\pi^{\mathcal{E}}: \dot{\mathcal{U}}(\mathfrak{g}) \rightarrow D^{\mathcal{E}}$ an algebraic P-module structure on any object in $\mathcal{O}_{D^{\mathcal{E}}, \text { alg }}^{P}$.

As in the classical case we see that the axioms imply the existence of a finitedimensional $D^{\mathcal{E}}(P)$-module N which generates M as a $D^{\mathcal{E}}$-module. Further there are similar definitions. E.g. a vector in an $D^{\mathcal{E}}$-module $M \in \mathcal{O}_{D^{\varepsilon}}$ is called a maximal vector of weight $\lambda \in \mathfrak{t}^{*}$ if $v \in M_{\lambda}$ and $D^{\mathcal{E}}\left(U_{P}\right) \cdot v=0$. A $D^{\mathcal{E}}$-module M is called a highest weight module of weight λ if there is a maximal vector $v \in M_{\lambda}$ such that $M=D^{\mathcal{E}} \cdot v$. By the very definition such a module satisfies $M=D^{\mathcal{E}}\left(U_{B}^{-}\right) \cdot v$. For a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$-module λ we consider it as usual via the trivial $D^{\mathcal{E}}\left(U_{B}\right)$-action as a one-dimensional $D^{\mathcal{E}}(B)$-module \mathbb{F}_{λ} and set $M(\lambda)=D^{\mathcal{E}} \otimes_{D^{\mathcal{E}}(B)} \mathbb{F}_{\lambda}$. More generally we may define for every finite-dimensional $D^{\mathcal{E}}(P)$-module W the generalized Verma module $M(W)=D^{\mathcal{E}} \otimes_{D(P)} W$. Note that we have surjections $D^{\mathcal{E}}\left(U_{B}^{-}\right) \otimes \overline{\mathbb{F}}_{\lambda} \rightarrow M(\lambda)$ and $D^{\mathcal{E}}\left(U_{P}^{-}\right) \otimes_{\mathbb{F}} W \rightarrow M(W)$. We see by the above surjections that [Hu, Thm. 1.3] holds true in our category, i.e. if $M(\lambda) \neq 0$ then it has a unique simple quotient $L(\lambda)$. Moreover these modules form a complete list of simple modules in the "union" of our categories $\mathcal{O}_{D^{\varepsilon}}$.

Consider the local cohomology module $\tilde{H}_{\mathbb{P} j}^{d-j}\left(\mathbb{P}^{d}, \mathcal{O}\right)$. For $d-j \geq 2$ this coincides with the vector space of polynomials

$$
\bigoplus_{\substack{n_{0}, \ldots, n_{j} \geq 0 \\ n_{j+1}+n_{n}<0 \\ \sum_{i} n_{i}=0}} \mathbb{F} \cdot X_{0}^{n_{0}} \cdots X_{j}^{n_{j}} X_{j+1}^{n_{j+1}} \cdots X_{d}^{n_{d}}
$$

cf. ©02. In general there is some finite-dimensional $\mathbf{P}_{(\mathbf{j}+\mathbf{1}, \mathbf{d}-\mathbf{j})}$-module V such that $\tilde{H}_{\mathbb{P} j}^{d-j}\left(\mathbb{P}^{d}, \mathcal{E}\right)$ is a quotient of $\bigoplus \substack{n_{0}, \ldots, n_{j} \geq 0 \\ n_{j}+1, \ldots n_{d} \leq 0 \\ \sum_{i} n_{i}=0} \substack{ } X_{0}^{n_{0}} \cdots X_{j}^{n_{j}} X_{j+1}^{n_{j+1}} \cdots X_{d}^{n_{d}} \otimes V$.

Proposition 3.5. Let \mathcal{E} be a homogeneous vector bundle on $\mathbb{P}_{\mathbb{F}}^{d}$. Then $\tilde{H}_{\mathbb{P}^{j}}^{d-j}\left(\mathbb{P}^{d}, \mathcal{E}\right)$ is an object of $\mathcal{O}_{D^{\varepsilon}}^{P_{(j+1, d-j)}}$.

Proof. The non-trivial aspect is to show that $\tilde{H}_{\mathbb{P}^{j}}^{d-j}\left(\mathbb{P}^{d}, \mathcal{E}\right)$ is finitely generated. We will show this for $\mathcal{E}=\mathcal{O}$. We claim that

$$
\bigoplus_{\substack{n_{0}, \ldots, n_{j} \geq 0 \\ \sum_{i=0}^{j}=n_{i}=d-j}} \mathbb{F} \cdot X_{0}^{n_{0}} \cdots X_{j}^{n_{j}} X_{j+1}^{-1} \cdots X_{d}^{-1}
$$

is as in characteristic 0 a generating system of $H_{\mathbb{P} j}^{d-j}\left(\mathbb{P}^{d}, \mathcal{O}\right)$. Indeed, as in the latter case we can apply successively the differential operators $L_{\alpha} \in \mathfrak{u}_{P_{(j+1, d-j)}}^{-}$to obtain all expressions $X_{0}^{n_{0}} \cdots X_{j}^{n_{j}} X_{j+1}^{n_{j+1}} \cdots X_{d}^{n_{d}}$ such that $\left|n_{i}\right| \leq p$ for all $i \geq j+1$. In order to obtain those where $n_{i}=-(p+1)$ for some $i \geq j+1$ we can apply $y_{(-, j+1)}^{[p]}$ to get the desired denominators. However, we do not get all possible nominators. But in our algebra D we have in contrast to $\dot{\mathcal{U}}(\mathfrak{g})$ the differential operator $T_{(a, b)}^{p-1} L_{(a, b)}^{[p]}$ with $j+1 \leq a<b \leq d$ at our disposal. Applying these operators we can realize all nominators. For $\left|n_{i}\right|>p+1$ in particular for $\left|n_{i}\right|=r p+1, r \geq 2$ we use the same method as above etc..

Proposition 3.6. The object $\tilde{H}_{\mathbb{P}^{j}}^{i}\left(\mathbb{P}^{d}, \mathcal{O}\right)$ is a simple module isomorphic to $L\left(s_{i} \cdots s_{1}\right.$. $0)$.

Proof. In characteristic 0 we gave a proof in [OS, Prop. 7.5]. Here we can argue with the differential operators at our disposal in the same way. Note that for general $\lambda \in X^{*}(T)$ the simple module $L(\lambda)$ is an avatar of the characteristic 0 version.

We let

$$
\mathcal{A}_{G}^{\mathcal{E}}:=\mathbb{F}[G] \# D^{\mathcal{E}}
$$

be the smash product of the group algebra $\mathbb{F}[G]$ and $D^{\mathcal{E}}$.

Let M be an object of $\mathcal{O}_{D^{\mathcal{E}} \text {,alg }}^{P}$ and let V be a finite-dimensional P-module. Then we set

$$
\mathcal{F}_{P}^{G}(M, V):=\mathbb{F}[G] \otimes_{\mathbb{F}[P]}(M \otimes V) .
$$

Note that $\mathcal{F}_{P}^{G}(M, V)=\operatorname{Ind}_{P}^{G}(M \otimes V)$. This is a $\mathcal{A}_{G}^{\mathcal{E}}$-module. In this way we get a bi-functor

$$
\mathcal{F}_{P}^{G}: \mathcal{O}_{D^{\varepsilon}, \text { alg }}^{P} \times \operatorname{Rep}(P) \rightarrow \operatorname{Mod}_{\mathcal{A}_{G}^{\mathcal{E}}} .
$$

The proof of the next statement is the same as in Propositions 2.8 and 2.9.
Proposition 3.7. a) The bi-functor \mathcal{F}_{P}^{G} is exact in both arguments.
b) If $Q \supset P$ is a parabolic subgroup, M an object of $\mathcal{O}_{D^{\varepsilon} \text {,alg }}^{Q}$, then

$$
\mathcal{F}_{P}^{G}(M, V)=\mathcal{F}_{Q}^{G}\left(M, \operatorname{Ind}_{P}^{Q}(V)\right),
$$

where $\operatorname{Ind}_{P}^{Q}(V)$ denotes the corresponding induced representation.
Theorem 3.8. Let M be an simple object of $\mathcal{O}_{D^{\varepsilon} \text {,alg }}^{P}$ such that P is maximal for M and let V be a simple P-representation. Then $\mathcal{F}_{P}^{G}(M, V)$ is simple as $\mathcal{A}_{G}^{\mathcal{E}}$-module.

Proof. The proof follows the strategy of Theorems 2.10 and 2.11. Note that Proposition 2.13 does also hols true for our objects $L(\lambda)$ as avatars of their character zero versions.

References

[An] H.H. Andersen, BGG categories in prime characteristic, preprint http://arxiv.org/abs/2106.00057v1.
[Bi] G. Birkhoff, Transfinite subgroup series. Bull. Amer. Math. Soc. 40, no. 12, 847-850 (1934).
[Fi] P. Fiebig, Periodicity of subqutients of the modular category \mathcal{O}., prepint https://arxiv.org/abs/2102.09865.
[Hab] W.F. Haboush, Central differential operators on split semisimple groups over fields of positive characteristic. Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), pp. 35-85, Lecture Notes in Math., 795, Springer, Berlin (1980).
[Hu] J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category O. Graduate Studies in Mathematics, 94. American Mathematical Society, Providence, RI (2008).
[Ja] J.C. Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, Vol. 131, Academic Press (1987).
[Ku] M. Kuschkowitz, Equivariant Vector Bundles and Rigid Cohomology on Drinfeld's Upper Half Space over a Finite Field, PhD Thesis Wuppertal (2016).
[O1] S. Orlik, Kohomologie von Periodenbereichen über endlichen Körpern, J. Reine Angew. Math. 528, 201-233 (2000).
[O2] S. Orlik, Equivariant vector bundles on Drinfeld's upper half space, Invent. Math. 172, no. 3, 585-656 (2008).
[OR] S. Orlik, M. Rapoport, Period domains over finite and over local fields, J. Algebra 320, no. 3, 1220-1234 (2008).
[OS] S. Orlik, M. Strauch, On Jordan-Hölder series of some locally analytic representations, J. Amer. Math. Soc. 28, no. 1, 99-157 (2015).
[SGA2] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théoremes de Lefschetz locaux et globaux (SGA 2). Revised reprint of the 1968 French original. Documents Mathématiques (Paris), 4. Soc.Math. de France, Paris (2005).
[Sm] S. P. Smith, Differential operators on the affine and projective lines in characteristic $p>0$. Séminaire d'algebre Paul Dubreil et Marie-Paule Malliavin, 37ème anné (Paris, 1985), 157-177, Lecture Notes in Math., 1220, Springer, Berlin (1986).
[ST1] P. Schneider, J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with applications to GL_{2}, J. Amer. Math. Soc. 15, no. 2, 443-468 (2002).
[ST2] P. Schneider, J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. Math. 153, No.1, 145-196 (2003).

Fachgruppe Mathematik und Informatik, Bergische Universität Wuppertal, Gaussstrasse D-42119 Wuppertal, Germany

Email address: orlik@math.uni-wuppertal.de

[^0]: ${ }^{1}$ Meaning that we restrict an algebraic \mathbf{P}-representation to the its rational points P.

[^1]: ${ }^{2}$ Without the composition with the Cartan involution.

[^2]: ${ }^{3}$ Note that this definition is stronger than the one in characteristic 0 .

