EQUIVARIANT VECTOR BUNDLES ON DRINFELD'S HALFSPACE OVER A FINITE FIELD

SASCHA ORLIK

ABSTRACT. Let $\mathcal{X} \subset \mathbb{P}_k^d$ be Drinfeld's halfspace over a finite field k and let \mathcal{E} be a homogeneous vector bundle on \mathbb{P}_k^d . The paper deals with two different descriptions of the space of global sections $H^0(\mathcal{X}, \mathcal{E})$ as $\operatorname{GL}_{d+1}(k)$ -representation. This is an infinite dimensional modular *G*-representation. Here we follow the ideas of [O2, OS] treating the *p*-adic case. As a replacement for the universal enveloping algebra we consider both the crystalline universal enveloping algebra and the ring of differential operators on the flag variety with respect to \mathcal{E} .

INTRODUCTION

Let k be a finite field and denote by \mathcal{X} Drinfeld's halfspace of dimension $d \geq 1$ over k. This is the complement of all k-rational hyperplanes in projective space \mathbb{P}_k^d , i.e.,

$$\mathcal{X} = \mathbb{P}^d_k \setminus \bigcup\nolimits_{H \varsubsetneq k^{d+1}} \mathbb{P}(H)$$

This object is equipped with an action of $G = \operatorname{GL}_{d+1}(k)$ and can be viewed as a Deligne-Lusztig variety, as well as a period domain over a finite field [OR]. In particular we get for every homogeneous vector bundle \mathcal{E} on \mathbb{P}_k^d an induced action of G on the space of global sections $H^0(\mathcal{X}, \mathcal{E})$ which is an infinite-dimensional modular G-representation.

In [O2] we considered the same problem for the Drinfeld halfspace over a p-adic field K. We constructed for every homogeneous vector bundle \mathcal{E} a filtration by closed $\operatorname{GL}_{d+1}(K)$ -subspaces and determined the graded pieces in terms of locally analytic Grepresentations in the sense of Schneider and Teitelbaum [ST1]. The definition of the filtration above involves the geometry of \mathcal{X} being the complement of an hyperplane arrangement. In the p-adic case $H^0(\mathcal{X}, \mathcal{E})$ is a "bigger" object, it is a reflexive K-Fréchet space with a continuous G-action. Its strong dual is a locally analytic Grepresentation. The interest here for studying those objects lies in the connection to the p-adic Langland correspondence.

In his thesis [Ku] Kuschkowitz adapts the strategy of the *p*-adic case to the situation considered here.

Theorem (*Kuschkowitz*): Let \mathcal{E} be a homogeneous vector bundle on \mathbb{P}_k^d . There is a filtration

$$\mathcal{E}(\mathcal{X})^0 \supset \mathcal{E}(\mathcal{X})^1 \supset \cdots \supset \mathcal{E}(\mathcal{X})^{d-1} \supset \mathcal{E}(\mathcal{X})^d = H^0(\mathbb{P}^d, \mathcal{E})$$

on $\mathcal{E}(\mathcal{X})^0 = H^0(\mathcal{X}, \mathcal{E})$ such that for $j = 0, \ldots, d-1$, there is an extension of *G*-representations

$$0 \to \operatorname{Ind}_{P_{(j+1,d-j)}}^G(\tilde{H}^{d-j}_{\mathbb{P}^j}(\mathbb{P}^d,\mathcal{E}) \otimes St_{d+1-j}) \to \mathcal{E}(\mathcal{X})^j/\mathcal{E}(X)^{j+1} \to v_{P_{(j+1,1,\dots,1)}}^G \otimes H^{d-j}(\mathbb{P}^d_k,\mathcal{E}) \to 0.$$

Here the module $v_{P_{(j+1,1,\dots,1)}}^G$ is a generalized Steinberg representation corresponding to the decomposition $(j + 1, 1, \dots, 1)$ of d + 1. Further $P_{\underline{j}} = P_{(j,d+1-j)} \subset G$ is the (lower) standard-parabolic subgroup attached to the decomposition (j, d + 1 - j) of d + 1 and $\operatorname{St}_{d+1-j}$ is the Steinberg representation of $\operatorname{GL}_{d+1-j}(k)$. Here the action of the parabolic is induced by the composite

$$P_{(j,d+1-j)} \to L_{(j,d+1-j)} = \operatorname{GL}_j(k) \times \operatorname{GL}_{d+1-j}(k) \to \operatorname{GL}_{d+1-j}(k).$$

Finally we have the reduced local cohomology

$$\tilde{H}^{d-j}_{\mathbb{P}^{j}_{k}}(\mathbb{P}^{d}_{k},\mathcal{E}) := \ker \left(H^{d-j}_{\mathbb{P}^{j}_{k}}(\mathbb{P}^{d}_{k},\mathcal{E}) \to H^{d-j}(\mathbb{P}^{d}_{k},\mathcal{E}) \right)$$

which is a $P_{(j+1,d-j)}$ -module.

In the *p*-adic setting the substitute of the LHS of this extension has the structure of an admissible module over the locally analytic distribution algebra. Here we were able to give a description of the dual representation in terms of a series of functors

$$\mathcal{F}_P^G: \mathcal{O}_{\mathrm{alg}}^{\mathfrak{p}} \times \mathrm{Rep}_K^{\infty, adm}(P) \to \mathrm{Rep}_K^{\ell a}(G)$$

where $\mathcal{O}_{alg}^{\mathfrak{p}}$ consist of the algebraic objects of type \mathfrak{p} in the category \mathcal{O} , $\operatorname{Rep}_{K}^{\infty,adm}(P)$ is the category of smooth admissible *P*-representations and $\operatorname{Rep}_{K}^{\ell a}(G)$ denotes the category of locally analytic *G*-representations.

In positive characteristic Lie algebra methods do not behave so nice. E.g. the local cohomology groups are not finitely generated over the universal enveloping algebra of the Lie algebra of GL_{d+1} so that the same machinery does not apply. Our goal in this paper is to concentrate on the latter aspect and to present two candidates for a substitution in this situation. The first approach considers the crystalline universal enveloping algebra $\dot{\mathcal{U}}(\mathfrak{g})$ (or Kostant form) which coincides with the distribution algebra of G, cf. [Ja]. The action of \mathfrak{g} extends to one of $\dot{\mathcal{U}}(\mathfrak{g})$, so that $H^0(\mathcal{X}, \mathcal{E})$ becomes a module over the smash product $k[G] # \mathcal{U}(\mathfrak{g})$. We define a positive characteristic version of \mathcal{F}_P^G and prove analogously properties of them as in the *p*-adic case, e.g. we give an irreducibility criterion, cf. [OS].

The second approach uses instead of $\dot{\mathcal{U}}(\mathfrak{g})$ the ring of distributions $D^{\mathcal{E}}$ on the flag variety with respect to \mathcal{E} . The important point is that the natural map $\dot{\mathcal{U}}(\mathfrak{g}) \to D^{\mathcal{E}}$ is in contrast to the field of complex numbers not surjective as shown by Smith [Sm]. We will show that the above local cohomology modules are finitely generated leading to a category $\mathcal{O}_{D^{\mathcal{E}}}$ where we can define similar our functors \mathcal{F}_{P}^{G} .

Notation: We let p be a prime number, $q = p^n$ some power and let $k = \mathbb{F}_q$ the corresponding field with q elements. We fix an algebraic closure $\mathbb{F} := \overline{\mathbb{F}}_q$ and denote by $\mathbb{P}^d_{\mathbb{F}}$ the projective space of dimension d over \mathbb{F} . If $Y \subset \mathbb{P}^d_{\mathbb{F}}$ is a closed algebraic \mathbb{F} -subvariety and \mathcal{F} is a sheaf on $\mathbb{P}^d_{\mathbb{F}}$ we write $H^*_Y(\mathbb{P}^d_{\mathbb{F}}, \mathcal{F})$ for the corresponding local cohomology. We consider the algebraic action $\mathbf{G} \times \mathbb{P}^d_{\mathbb{F}} \to \mathbb{P}^d_{\mathbb{F}}$ of \mathbf{G} on $\mathbb{P}^d_{\mathbb{F}}$ given by

$$g \cdot [q_0 : \cdots : q_d] := m(g, [q_0 : \cdots : q_d]) := [q_0 : \cdots : q_d]g^{-1}.$$

We use bold letters \mathbf{H} to denote algebraic group schemes over \mathbb{F}_q , whereas we use normal letters H for their \mathbb{F}_q -valued points. We denote by $\mathbf{H}_{\mathbb{F}} := \mathbf{H} \times_{\mathbb{F}_q} \mathbb{F}$ their base change to \mathbb{F} . We use Gothic letters \mathfrak{h} for their Lie algebras (over \mathbb{F}). The corresponding enveloping algebras are denoted as usual by $U(\mathfrak{h})$.

We denote by $\mathbf{G}_{\mathbb{Z}}$ a split reductive algebraic group over \mathbb{Z} . We fix a Borel subgroup $\mathbf{B}_{\mathbb{Z}} \subset \mathbf{G}_{\mathbb{Z}}$ and let $\mathbf{U}_{\mathbb{Z}}$ be its unipotent radical and $\mathbf{U}_{\mathbb{Z}}^-$ the opposite radical. Let $\mathbf{T}_{\mathbb{Z}} \subset \mathbf{G}_{\mathbb{Z}}$ be a fixed split torus and denote the root system by Φ and its subset of simple roots by Δ .

Acknowledgments: I am grateful to Georg Linden for pointing out to me the paper of Smith [Sm]. This research was conducted in the framework of the research training group *GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology*, which is funded by the DFG.

1. The theorem of Kuschkowitz

In this section we recall shortly the strategy for proving the theorem of Kuschkowitz. Here we consider for **G** the general linear group \mathbf{GL}_{d+1} and for $\mathbf{B} \subset \mathbf{G}$ the Borel

subgroup of lower triangular matrices and **T** the diagonal torus. Denote by $\overline{\mathbf{T}}$ its image in \mathbf{PGL}_{d+1} . For $0 \leq i \leq d$, let $\epsilon_i : \mathbf{T} \to \mathbb{G}_{\mathbf{m}}$ be the character defined by $\epsilon_i(\operatorname{diag}(t_1,\ldots,t_d)) = t_i$. Put $\alpha_{i,j} := \epsilon_i - \epsilon_j$ for $i \neq j$. Then $\Delta := \{\alpha_{i,i+1} \mid 0 \leq i \leq d-1\}$ are the simple roots and $\Phi := \{\alpha_{i,j} \mid 0 \leq i \neq j \leq d-1\}$ are the roots of **G** with respect to $\mathbf{T} \subset \mathbf{B}$. For a decomposition (i_1,\ldots,i_r) of d+1, let $\mathbf{P}_{(\mathbf{i}_1,\ldots,\mathbf{i}_r)}$ be the corresponding standard-parabolic subgroup of **G**, $\mathbf{U}_{(\mathbf{i}_1,\ldots,\mathbf{i}_r)}$ its unipotent radical and $\mathbf{L}_{(\mathbf{i}_1,\ldots,\mathbf{i}_r)}$ its Levi component.

Let \mathcal{E} be a homogeneous vector bundle on $\mathbb{P}^d_{\mathbb{F}}$. Our finite group G stabilizes \mathcal{X} . Therefore, we obtain an induced action of G on the \mathbb{F} -vector space of global sections $\mathcal{E}(\mathcal{X})$. Further \mathcal{E} is naturally a \mathfrak{g} -module, i.e., there is a homomorphism of Lie algebras $\mathfrak{g} \to \operatorname{End}(\mathcal{E})$. For the structure sheaf $\mathcal{O} = \mathcal{O}_{\mathbb{P}^d_{\mathbb{F}}}$ with its natural \mathbf{G} -linearization we can describe the action of \mathfrak{g} on $\mathcal{O}(\mathcal{X})$. Indeed, for a root $\alpha = \alpha_{i,j} \in \Phi$, let

$$L_{\alpha} := L_{(i,j)} \in \mathfrak{g}_{\alpha}$$

be the standard generator of the weight space \mathfrak{g}_{α} in \mathfrak{g} . Let $\mu \in X^*(\overline{\mathbf{T}})$ be a character of the torus $\overline{\mathbf{T}}$. Write μ in the shape $\mu = \sum_{i=0}^d m_i \epsilon_i$ with $\sum_{i=0}^d m_i = 0$. Define $\Xi_{\mu} \in \mathcal{O}(\mathcal{X})$ by

$$\Xi_{\mu}(q_0,\ldots,q_d) = q_0^{m_0}\cdots q_d^{m_d}$$

For these functions, the action of \mathfrak{g} is given by

(1.1)
$$L_{(i,j)} \cdot \Xi_{\mu} = m_j \cdot \Xi_{\mu + \alpha_{i,j}}$$

and

$$t \cdot \Xi_{\mu} = \left(\sum_{i} m_{i} t_{i}\right) \cdot \Xi_{\mu}, \ t \in \mathfrak{t}$$

Fix an integer $0 \le j \le d - 1$. Let

$$\mathbb{P}^{j}_{\mathbb{F}} = V(X_{j+1}, \dots, X_d) \subset \mathbb{P}^{d}_{\mathbb{F}}$$

be the closed subvariety defined by the vanishing of the coordinates X_{j+1}, \ldots, X_d . The algebraic local cohomology modules $H^i_{\mathbb{P}^d_{\mathbb{P}}}(\mathbb{P}^d_{\mathbb{F}}, \mathcal{E}), i \in \mathbb{N}$, sit in a long exact sequence

$$\cdots \to H^{i-1}(\mathbb{P}^d_{\mathbb{F}} \setminus \mathbb{P}^j_{\mathbb{F}}, \mathcal{F}) \to H^i_{\mathbb{P}^j_{\mathbb{F}}}(\mathbb{P}^d_{\mathbb{F}}, \mathcal{F}) \to H^i(\mathbb{P}^d_{\mathbb{F}}, \mathcal{F}) \to H^i(\mathbb{P}^d_{\mathbb{F}} \setminus \mathbb{P}^j_{\mathbb{F}}, \mathcal{F}) \to \cdots$$

which is equivariant for the induced action of $\mathbf{P}_{(\mathbf{j+1},\mathbf{d-j})} \ltimes U(\mathfrak{g})$. Here the semi-direct product is defined via the adjoint action of $\mathbf{P}_{(\mathbf{j+1},\mathbf{d-j})}$ on \mathfrak{g} . We set

$$\tilde{H}^{d-j}_{\mathbb{P}^{j}_{\mathbb{F}}}(\mathbb{P}^{d}_{\mathbb{F}},\mathcal{E}) := \ker \left(H^{d-j}_{\mathbb{P}^{j}_{\mathbb{F}}}(\mathbb{P}^{d}_{\mathbb{F}},\mathcal{E}) \to H^{d-j}(\mathbb{P}^{d}_{\mathbb{F}},\mathcal{E}) \right)$$

which is consequently a $\mathbf{P}_{(\mathbf{j+1},\mathbf{d}-\mathbf{j})} \ltimes U(\mathbf{g})$ -module.

Consider the exact sequence of \mathbb{F} -vector spaces with G-action

$$0 \to H^0(\mathbb{P}^d_{\mathbb{F}}, \mathcal{E}) \to H^0(\mathcal{X}, \mathcal{E}) \to H^1_{\mathcal{Y}}(\mathbb{P}^d_{\mathbb{F}}, \mathcal{E}) \to H^1(\mathbb{P}^d_{\mathbb{F}}, \mathcal{E}) \to 0.$$

Note that the higher cohomology groups $H^i(\mathcal{X}, \mathcal{E})$, i > 0, vanish since \mathcal{X} is an affine space. The *G*-representations $H^0(\mathbb{P}^d_{\mathbb{F}}, \mathcal{F})$, $H^1(\mathbb{P}^d_{\mathbb{F}}, \mathcal{F})$ are finite-dimensional algebraic. Let $i : \mathcal{Y} \to (\mathbb{P}^d_{\mathbb{F}})$ denote the closed embedding and let \mathbb{Z} be constant sheaf on \mathcal{Y} . Then by [SGA2, Proposition 2.3 bis.], we conclude that

$$\operatorname{Ext}^*(i_*(\mathbb{Z}_{\mathcal{Y}}), \mathcal{E}) = H^*_{\mathcal{V}}(\mathbb{P}^d_{\mathbb{F}}, \mathcal{E}).$$

The idea is now to plug in a resolution of the sheaf \mathbb{Z} on the boundary and works as follows.

Let $\{e_0, \ldots, e_d\}$ be the standard basis of $V = \mathbb{F}^{d+1}$. For any $\alpha_i \in \Delta$, put

$$V_i = \bigoplus_{j=0}^i \mathbb{F} \cdot e_j \text{ and } Y_i = \mathbb{P}(V_i)$$

For any subset $I \subset \Delta$ with $\Delta \setminus I = \{\alpha_{i_1} < \ldots < \alpha_{i_r}\}$, set $Y_I = \mathbb{P}(V_{i_1})$ and consider it as a closed subvariety of $\mathbb{P}^d_{\mathbb{F}}$. Furthermore, let P_I be the lower parabolic subgroup of G, such that I coincides with the simple roots appearing in the Levi factor of P_I . Hence the group P_I stabilizes Y_I . We obtain

(1.2)
$$\mathcal{Y} = \bigcup_{g \in G} g \cdot Y_{\Delta \setminus \{\alpha_{d-1}\}}.$$

Consider the natural closed embeddings

$$\Phi_{g,I}: gY_I \longrightarrow \mathcal{Y}$$

and put

$$\mathbb{Z}_{g,I} := (\Phi_{g,I})_* (\Phi_{g,I}^* \mathbb{Z}).$$

We obtain the following complex of sheaves on \mathcal{Y} :

$$0 \to \mathbb{Z} \to \bigoplus_{\substack{I \subset \Delta \\ |\Delta \setminus I| = 1}} \bigoplus_{g \in G/P_I} \mathbb{Z}_{g,I} \to \bigoplus_{\substack{I \subset \Delta \\ |\Delta \setminus I| = 2}} \bigoplus_{g \in G/P_I} \mathbb{Z}_{g,I} \to \dots \to \bigoplus_{\substack{I \subset \Delta \\ |\Delta \setminus I| = i}} \bigoplus_{g \in G/P_I} \mathbb{Z}_{g,I} \to \dots$$

$$(1.3)$$

$$\dots \to \bigoplus_{\substack{I \subset \Delta \\ |\Delta \setminus I| = d-1}} \bigoplus_{g \in G/P_I} \mathbb{Z}_{g,I} \to \bigoplus_{g \in G/P_{\emptyset}} \mathbb{Z}_{g,\emptyset} \to 0.$$

which is acyclic by [O1].

In a next step one considers the spectral sequence which is induced by this complex applied to $\text{Ext}^*(i_*(-), \mathcal{E})$. Here one uses that for all $I \subset \Delta$, there is an isomorphism

$$\operatorname{Ext}^*(i_*(\bigoplus_{g\in G/P_I} \mathbb{Z}_{g,I}), \mathcal{E}) = \bigoplus_{g\in G/P_I} H^*_{gY_I}(\mathbb{P}^d_{\mathbb{F}}, \mathcal{E}).$$

By evaluating the spectral sequence Kuschkowitz arrives in [Ku] at the theorem mentioned in the introduction.

2. First Approach

In this section we replace $U(\mathfrak{g})$ by its crystalline version and transform the results of [OS] to this setting.

Let $\mathbf{G}_{\mathbb{Z}}$ be a split reductive algebraic group over \mathbb{Z} and let $\mathfrak{g}_{\mathbb{C}}$ be the Lie algebra of $\mathbf{G}_{\mathbb{Z}}(\mathbb{C})$. On the other hand let $D(\mathbf{G}_{\mathbb{F}})$ be the distribution algebra of $\mathbf{G}_{\mathbb{F}} = \mathbf{G}_{\mathbb{Z}} \times_{\mathbb{Z}} \mathbb{F}$. We identify $D(\mathbf{G}_{\mathbb{F}})$ with the universal crystalline enveloping algebra (Kostant form) $\dot{\mathcal{U}}(\mathfrak{g})$. Thus $\dot{\mathcal{U}}(\mathfrak{g}) = \dot{\mathcal{U}}(\mathfrak{g})_{\mathbb{Z}} \otimes \mathbb{F}$ where $\dot{\mathcal{U}}(\mathfrak{g})_{\mathbb{Z}}$ is the \mathbb{Z} -subalgebra of $U(\mathfrak{g}_{\mathbb{C}})$ generated by the expressions

$$\begin{aligned} x_{\alpha}^{[n]} &:= x_{\alpha}^{n}/n!, \ y_{\alpha}^{[n]} &:= y_{\alpha}^{n}/n!, \ \alpha \in \Phi^{+}, n \in \mathbb{N} \\ \text{and} \ \binom{h_{\alpha}}{n}, \ \alpha \in \Delta, n \in \mathbb{N}, \end{aligned}$$

where $x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}$ are generators and $h_{\alpha} = [x_{\alpha}, y_{\alpha}]$ for all $\alpha \in \Delta$. We have a PBW-decomposition

$$\dot{\mathcal{U}}(\mathfrak{g}) = \dot{\mathcal{U}}(\mathfrak{u}) \otimes_{\mathbb{F}} \dot{\mathcal{U}}(\mathfrak{t}) \otimes_{\mathbb{F}} \dot{\mathcal{U}}(\mathfrak{u}^{-})$$

where the crystalline enveloping algebras for $\mathfrak{u}, \mathfrak{u}^-$ and \mathfrak{t} are defined analogously.

We mimic the definition of the category \mathcal{O} in the sense of BGG.

Definition 2.1. Let \mathcal{O} be the full subcategory of all $\mathcal{U}(\mathfrak{g})$ -modules such that

i) M is finitely generated as $\mathcal{U}(\mathfrak{g})$ -module

ii) $\mathcal{U}(\mathfrak{t})$ acts semisimple with finite-dimensional weight spaces.

iii) $\dot{\mathcal{U}}(\mathfrak{u})$ acts locally finite-dimensional, i.e., for all $m \in M$ we have dim $\dot{\mathcal{U}}(\mathfrak{u}) \cdot m < \infty$.

Remark 2.2. In [Hab, Def. 3.2] Haboush calls $\hat{\mathcal{U}}(\mathfrak{g})$ -modules satisfying properties i) and ii) admissible. The category $\hat{\mathcal{O}}$ has been also recently considered by Andersen [An] and Fiebig [Fi] (even more generally for weight modules) discussing among others the structure of these objects.

Similarly, for a parabolic subgroup $\mathbf{P} \subset \mathbf{G}$ with Levi decomposition $\mathbf{P} = \mathbf{L}_{\mathbf{P}} \cdot \mathbf{U}_{\mathbf{P}}$ (induced by one over \mathbb{Z}), we let $\dot{\mathcal{O}}^{\mathfrak{p}}$ be the full subcategory of $\dot{\mathcal{O}}$ consisting of objects which are direct sums of finite-dimensional $\dot{\mathcal{U}}(\mathfrak{l}_P)$ -modules. We let $\dot{\mathcal{O}}_{alg}$ be the full subcategory of $\dot{\mathcal{O}}$ such that the action of $\dot{\mathcal{U}}(\mathfrak{t})$ is induced on the weight spaces by algebraic characters $X^*(T_{\mathbb{F}})$ of $T_{\mathbb{F}}$. Finally we set

$$\dot{\mathcal{O}}^{\mathfrak{p}}_{\mathrm{alg}} := \dot{\mathcal{O}}_{\mathrm{alg}} \cap \dot{\mathcal{O}}^{\mathfrak{p}}.$$

As in the classical case there is for every object $M \in \dot{\mathcal{O}}_{alg}^{\mathfrak{p}}$ some finite-dimensional algebraic *P*-representation¹ $W \subset M$ which generates M as a $\dot{\mathcal{U}}(\mathfrak{g})$ -module, i.e., there is a surjective homomorphism $\dot{\mathcal{U}}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{p})} W \to M$. Again there is a PBW-decomposition $\dot{\mathcal{U}}(\mathfrak{g}) = \dot{\mathcal{U}}(\mathfrak{u}_P) \otimes_{\mathbb{F}} \dot{\mathcal{U}}(\mathfrak{l}_P) \otimes_{\mathbb{F}} \dot{\mathcal{U}}(\mathfrak{u}_P)$ such that the latter homomorphism can be seen as a map $\dot{\mathcal{U}}(\mathfrak{u}_P) \otimes_{\mathbb{F}} W \to M$.

According to [Hab] there is the notion of maximal vectors, highest weights, highest weight module etc. and we may define Verma modules, cf. Def. 3.1 in loc.cit. In fact let λ be a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$ -module. Then we consider it as usual via the trivial $\dot{\mathcal{U}}(\mathfrak{u})$ -action as a one-dimensional $\dot{\mathcal{U}}(\mathfrak{b})$ -module \mathbb{F}_{λ} . Then

$$M(\lambda) = \mathcal{U}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{b})} \mathbb{F}_{\lambda}$$

is the attached Verma module of weight λ . As in the classical case Theorem of [Hu, 1.2] holds true for our highest weight modules. In particular it has a unique maximal proper submodule and therefore a unique simple quotient $L(\lambda)$, cf. [Hab, Prop. 4.4], [An, Thm 2.3], [Fi, Prop. 2.3].

Proposition 2.3. The simple modules in $\dot{\mathcal{O}}_{alg}$ are exactly of the shape $L(\lambda)$ for $\lambda \in X^*(\mathbf{T}_{\mathbb{F}})$.

Proof. We need to show that every simple object in $\dot{\mathcal{O}}_{alg}$ is of this form. But by [Hab, Thm 4.9 i)] simple admissible highest weight modules are of the form $L(\lambda)$ for a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$ -module λ . The algebraic condition forces λ to be an algebraic character $\lambda \in X^*(\mathbf{T}_{\mathbb{F}})$.

We also consider the full subcategory $M^d_{\dot{\mathcal{U}}(\mathfrak{g})}$ for all $\dot{\mathcal{U}}(\mathfrak{g})$ -modules which satisfy condition ii) in the definition of $\dot{\mathcal{O}}$. For any such object M we define a dual object M'(the graded dual) following the classical concept: consider the weight space decomposition $M = \bigoplus_{\lambda} M_{\lambda}$ where λ is as above a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$ -module. Then the

¹Meaning that we restrict an algebraic **P**-representation to the its rational points P.

underlying vector space of M' is the direct sum $\bigoplus_{\lambda} \operatorname{Hom}(M_{\lambda}, K)$. The $\mathcal{U}(\mathfrak{g})$ -structure on it is given by the natural one². Clearly one has (M')' = M.

We consider the natural action of \mathfrak{u}_P^- on $\mathcal{O}(\mathbf{U}_{\mathbf{P}^-,\mathbb{F}})$. This extends to a nondegenerate pairing

such that $\mathcal{O}(\mathbf{U}_{\mathbf{P}^{-},\mathbb{F}})$ identifies with the graded dual of $\mathcal{U}(\mathfrak{u}_{P}^{-})$. Moreover we pull back via this identification the action of P on $(\dot{\mathcal{U}}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{p})} 1)'$ to $\mathcal{O}(\mathbf{U}_{\mathbf{P}^{-},\mathbb{F}})$. By construction we obtain the following statement.

Lemma 2.4. There is an isomorphism of $P \ltimes \dot{\mathcal{U}}(\mathfrak{g})$ -modules $\mathcal{O}(\mathbf{U}_{\mathbf{P},\mathbb{F}}^{-}) \cong (\dot{\mathcal{U}}(\mathfrak{g}) \otimes_{\dot{\mathcal{U}}(\mathfrak{g})} 1)'$. \Box

The pairing (2.1) extends for every algebraic *P*-representation *W* to a pairing

(2.2)
$$(\dot{\mathcal{U}}(\mathfrak{u}_P^-)\otimes W')\otimes (\mathcal{O}(\mathbf{U}_{\mathbf{P},\mathbb{F}}^-)\otimes W) \to \mathbb{F}$$

such that $\mathcal{O}(\mathbf{U}_{\mathbf{P},\mathbb{F}}) \otimes W$ becomes isomorphic to $\dot{\mathcal{U}}(\mathfrak{u}_{P})' \otimes W'$ as $P \ltimes \dot{\mathcal{U}}(\mathfrak{g})$ -modules.

Let $\dot{\mathbb{F}}[G, \mathfrak{g}] := \mathbb{F}[G] \# \dot{\mathcal{U}}(\mathfrak{g})$ be the smash product of $\dot{\mathcal{U}}(\mathfrak{g})$ and the group algebra $\mathbb{F}[G]$ of G. Recall that this \mathbb{F} -algebra has as underlying vector space the tensor product $\mathbb{F}[G] \otimes \dot{\mathcal{U}}(\mathfrak{g})$ and where the multiplication is induced by $(g_1 \otimes z_1) \cdot (g_2 \otimes z_2) = g_1 g_2 \otimes Ad(g_2)(z_1)z_2$ for elements $g_i \in G, z_i \in \dot{\mathcal{U}}(\mathfrak{g}), i = 1, 2$.

Definition 2.5. i) We denote by $Mod^d_{\mathbb{F}[G,\mathfrak{g}]}$ be the full subcategory of all $\mathbb{F}[G,\mathfrak{g}]$ modules for which the action of $\dot{\mathcal{U}}(\mathfrak{t})$ is diagonalisable into finite-dimensional weight spaces.

ii) We denote by $Mod_{\dot{\mathbb{F}}[G,\mathfrak{g}]}^{fg,d}$ be the full subcategory of $Mod_{\dot{\mathbb{F}}[G,\mathfrak{g}]}^{d}$ which are finitely generated.

For an object \mathcal{M} of $Mod^d_{\mathbb{F}[G,\mathfrak{g}]}$ we define the dual \mathcal{M}' as the graded dual of the underlying $\dot{\mathcal{U}}(\mathfrak{g})$ -module together with the contragradient action of G.

Let M be an object of $\dot{\mathcal{O}}^{\mathfrak{p}}_{\text{alg}}$. Then there is a surjection

$$p: \mathcal{U}(\mathfrak{u}_P^-) \otimes W \to M$$

²Without the composition with the Cartan involution.

for some finite-dimensional algebraic *P*-module *W*. Let $\mathfrak{d} := \ker(p)$ be its kernel. Then set

$$\mathcal{F}_P^G(M) := \operatorname{Ind}_P^G((\mathcal{O}(\mathbf{U}_{\mathbf{P},\mathbb{F}}^-) \otimes W)^{\mathfrak{d}})$$

where $(\mathcal{O}(\mathbf{U}_{\mathbf{P},\mathbb{F}}^{-}) \otimes W)^{\mathfrak{d}}$ is the orthogonal complement of \mathfrak{d} with respect to the pairing (2.2). The latter submodule can be interpreted as the graded dual of M. In particular we get

$$\mathcal{F}_P^G(M)' = \operatorname{Ind}_P^G(M).$$

Lemma 2.6. Let M be an object of $\dot{\mathcal{O}}^{\mathfrak{p}}_{alg}$. Then $\mathcal{F}^{G}_{P}(M)$ is an object of the category $Mod^{d}_{\mathbb{F}[G,\mathfrak{g}]}$. Its dual $\mathcal{F}^{G}_{P}(M)'$ is an object of the category $Mod^{fg,d}_{\mathbb{F}[G,\mathfrak{g}]}$.

Proof. It suffices to show the second assertion. As G/P is a finite set, we need only to show that $\mathcal{F}_P^G(M)'$ has a decomposition into finite-dimensional weight spaces. Let $M = \bigoplus_{\lambda} M_{\lambda}$. We write $\mathcal{F}_P^G(M) = \bigoplus_{g \in G/P} \delta_g \star M$ where $\delta_g \star M$ is the $\dot{\mathcal{U}}(\mathfrak{g})$ -module with the same underlying vector space but where the Lie algebra action is twisted by Ad(g). We consider the Bruhat decomposition $G/P = \bigcup_{w \in W_P} U_{B,w} w P/P$ where $U_{B,w} = U \cap w U^- w^{-1}$ and take the obvious representatives for G/P. Thus we have

$$\mathcal{F}_P^G(M)' = \bigoplus_{w \in W_P} \bigoplus_{u \in U_{B,w}^-} \delta_{uw} \star M.$$

In the case of $\delta_w, w \in W$, the grading of $\delta_w \star M$ is given by $\bigoplus_{\lambda} M_{w\lambda}$. In the case of $\delta_u, u \in U_{B,w}$ the grading is given by $\bigoplus_{\lambda} u \cdot M_{\lambda}$ (Note that we have an action of U on M). In general we consider the mixture of these cases. \Box

Let V be additionally a finite-dimensional P-module. Then we set

$$\mathcal{F}_P^G(M,V) := \operatorname{Ind}_P^G((\mathcal{O}(\mathbf{U}_{\mathbf{P},\mathbb{F}}^-) \otimes W')^{\mathfrak{d}} \otimes V).$$

This is an object of $Mod^d_{\dot{\mathbb{F}}[G,\mathfrak{g}]}$ by a slight generalization of the above lemma. In this way we get a bi-functor

$$\mathcal{F}_P^G: \dot{\mathcal{O}}^{\mathfrak{p}}_{\mathrm{alg}} \times \mathrm{Rep}(P) \to Mod^d_{\dot{\mathbb{F}}[G,\mathfrak{g}]}$$

By the following statement the dual $\mathcal{F}_{P}^{G}(M, V)'$ is an object of $Mod_{\mathbb{F}[G,\mathfrak{g}]}^{fg,d}$.

Lemma 2.7. The dual of $\mathcal{F}_{P}^{G}(M, V)$ is given by

$$\mathcal{F}_P^G(M,V)' = \dot{\mathbb{F}}[G,\mathfrak{g}] \otimes_{\dot{\mathbb{F}}[P,\mathfrak{g}]} (M \otimes V').$$

Proof. We have $\mathcal{F}_P^G(M, V)' = \operatorname{Ind}_P^G(M' \otimes V)' = \operatorname{Ind}_P^G((M')' \otimes V') = \operatorname{Ind}_P^G(M \otimes V').$

Proposition 2.8. The functor \mathcal{F}_P^G is exact in both arguments.

Proof. We start to prove that the functor is exact in the first argument. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be an exact sequence in the category $\mathcal{O}_{alg}^{\mathfrak{p}}$. Then the sequence $0 \to \operatorname{Ind}_P^G M_1 \to \operatorname{Ind}_P^G M_2 \to \operatorname{Ind}_P^G M_3 \to 0$ is also exact. But the graded dual of this sequence is exactly $0 \to \mathcal{F}_P^G(M_3) \to \mathcal{F}_P^G(M_2) \to \mathcal{F}_P^G(M_1) \to 0$.

As for exactness in the second argument let $0 \to V_1 \to V_2 \to V_3 \to 0$ be an exact sequence of *P*-representations. As

$$\mathcal{F}_P^G(M,V) := \operatorname{Ind}_P^G((\mathcal{O}(\mathbf{U}_{\mathbf{P},\mathbb{F}}) \otimes W')^{\mathfrak{d}} \otimes V_i)$$

and $\operatorname{Ind}_{P}^{G}$ is an exact functor we see easily the claim.

Now let $\mathbf{Q} \supset \mathbf{P}$ be a parabolic subgroup and let $M \in \dot{\mathcal{O}}_{alg}^{\mathfrak{q}}$. Then we may consider it also as an object of $\dot{\mathcal{O}}_{alg}^{\mathfrak{p}}$.

Proposition 2.9. If $\mathbf{Q} \supset \mathbf{P}$ is a parabolic subgroup, M an object of $\dot{\mathcal{O}}_{alg}^{\mathfrak{q}}$ and V a finite-dimensional P-module, then

$$\mathcal{F}_P^G(M, V) = \mathcal{F}_Q^G(M, \operatorname{Ind}_P^Q(V)).$$

Proof. We have

$$\mathcal{F}_P^G(M, V) = \operatorname{Ind}_P^G(M' \otimes V) = \operatorname{Ind}_Q^G(\operatorname{Ind}_P^Q(M' \otimes V))$$

= $\operatorname{Ind}_Q^G(M' \otimes \operatorname{Ind}_P^Q(V)) = \mathcal{F}_Q^G(M, \operatorname{Ind}_P^Q(V))$

by the projection formula. Hence we deduce the claim.

As in [OS] a parabolic Lie algebra \mathfrak{p} is called *maximal* for an object $M \in \dot{\mathcal{O}}^{\mathfrak{p}}$ if there does not exist a parabolic Lie algebra $\mathfrak{q} \supseteq \mathfrak{p}$ with $M \in \dot{\mathcal{O}}^{\mathfrak{q}}$.

Theorem 2.10. Let p > 3. Let M be an simple object of $\dot{\mathcal{O}}_{alg}^{\mathfrak{p}}$ such that \mathfrak{p} is maximal for M. Then $\mathcal{F}_{P}^{G}(M)$ is a simple $\dot{\mathbb{F}}[G,\mathfrak{g}]$ -module.

Proof. The proof follows the idea of loc.cit. and is even simpler. We start with the observation that by duality $\mathcal{F}_P^G(M, V)$ is simple as $\dot{\mathbb{F}}[G, \mathfrak{g}]$ -module iff $\mathcal{F}_P^G(M, V)'$ is simple as $\dot{\mathbb{F}}[G, \mathfrak{g}]$ -module. We consider again the Bruhat decomposition $G/P = \bigcup_{w \in W_P} U_{B,w}^- wB/B$ and the induced decomposition

$$\mathcal{F}_P^G(M)' = \bigoplus_{w \in W_P} \bigoplus_{u \in U_{B,w}^-} \delta_{uw} \star M.$$

We denote (with respect to $\delta_{uw} \star M$) for elements $\mathfrak{z} \in \mathcal{U}(\mathfrak{g})$ and $m \in M$ the action of \mathfrak{z} on m by $\mathfrak{z}_{\cdot uw} m$. Now each summand $\delta_{uw} \star M$ is simple since M is simple. Thus it suffices to show that the summands are pairwise non isomorphic as $\mathcal{U}(\mathfrak{g})$ -modules. Suppose that there is an isomorphism $\phi : \delta_g \star M \to \delta_h \star M$ for some elements g, h as above. We may suppose that h = e. Write $g = u^{-1}w$. Then such an isomorphism is equivalent to an isomorphism $\phi : \delta_w \star M \to \delta_u \star M \cong M$. The latter isomorphism is given by the mapping $m \mapsto u^{-1} \cdot m$.

We show that this can only happen if $w \in W_P$. Let $\lambda \in X(\mathbf{T})^*$ be the highest weight of M, i.e. $M = L(\lambda)$, and $P = P_I$ is the standard parabolic subgroup induced by $I = \{\alpha \in \Delta \mid \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z}_{\geq 0}\}$, cf. [Hu]. Suppose w is not contained in $W_I = W_P$. Then there is a positive root $\beta \in \Phi^+ \setminus \Phi_I^+$ such that $w^{-1}\beta < 0$, hence $w^{-1}(-\beta) > 0$. Consider a non-zero element element $y \in \mathfrak{g}_{-\beta}$, and let $v^+ \in M$ be a weight vector of weight λ . Then we have for $n \in \mathbb{N}$, the following identity

$$y^{[n]} \cdot_w v^+ = \operatorname{Ad}(w^{-1})(y^{[n]}) \cdot v^+ = 0$$

as $\operatorname{Ad}(w^{-1})(y^{[n]}) \in \mathfrak{g}_{-w^{-1}\beta}$ annihilates v^+ . We have $\phi(v^+) = v$ for some nonzero $v \in M$. And therefore

$$0 = \phi(y^{[n]} \cdot_w v^+) = y^{[n]} \cdot \phi(v^+) = y^{[n]} \cdot v .$$

But y is an element of \mathfrak{u}_P^- , hence we get a contradiction by Proposition 2.13 since n was arbitrary.

Theorem 2.11. Let p > 3. Let M be an simple object of $\dot{\mathcal{O}}^{\mathfrak{p}}_{alg}$ such that \mathfrak{p} is maximal for M and let V be an irreducible P-representation. Then $\mathcal{F}^G_P(M, V)$ and its dual $\mathcal{F}^G_P(M, V)'$ are simple as $\dot{\mathbb{F}}[G, \mathfrak{g}]$ -module.

Proof. Again by duality it is enough to check the assertion for $\mathcal{F}_P^G(M, V)'$. So let $U \subset \mathcal{F}_P^G(M, V)'$ be a non-zero *G*-invariant subspace. Recall that $\mathcal{F}_P^G(M)' = \bigoplus_{\gamma \in G/P} \delta_{\gamma} \star L(\lambda)$ so that

$$\mathcal{F}_P^G(M,V) = \bigoplus_{\gamma \in G/P} \delta_\gamma \star L(\lambda)' \otimes V^\gamma.$$

Considered as $\dot{\mathcal{U}}(\mathfrak{g})$ -module $\mathcal{F}_P^G(M, V)$ is isomorphic to $(\bigoplus_{\gamma \in G/P} \delta_{\gamma} \star L(\lambda)') \otimes V$. Hence by the simplicity of M and since the summands $\delta_{\gamma} \star L(\lambda)'$ are pairwise not isomorphic the $\dot{\mathcal{U}}(\mathfrak{g})$ -module U is equal to

$$\bigoplus_{\gamma \in G/P} \delta_{\gamma} \star L(\lambda)' \otimes_{\mathbb{F}} V_{\gamma} \,,$$

with subspaces, V_{γ}, γ , of V. Here $\delta_1 \star L(\lambda)' \otimes V_1 = L(\lambda)' \otimes V_1$ is a $\mathbb{F}[P, \mathfrak{g}]$ -submodule of $L(\lambda)' \otimes V$. Since V ist irreducible the latter object is irreducible, as well. Hence $V_1 = V$. But since G permutes the summands of U we see that $U = \mathcal{F}_P^G(M, V)'$. \Box

In the following statement we merely consider elements in a root space by the very definition of $\dot{\mathcal{U}}(\mathfrak{g})$.

Lemma 2.12. Let p > 3. Let $x \in \mathfrak{g}_{\gamma}$ some element for $\gamma \in \Phi$. Let M be a $\dot{\mathcal{U}}(\mathfrak{g})$ -module and $v \in M$.

(i) If x acts locally finitely³ on v (i.e., the K-vector space generated by $(x^{[i]}.v)_{i\geq 0}$ is finite-dimensional), then x acts locally finitely on $\dot{\mathcal{U}}(\mathfrak{g}).v$.

(ii) If x.v = 0 and [x, [x, y]] = 0 for some $y \in \mathfrak{g}_{\beta}$, where $\beta \in \Phi$ then $x^{[n]}y^{[n]}.v = [x, y]^{[n]}.v$.

Proof. (i) The idea is to apply Lemma 8.1 of loc.cit. which gives in characteristic 0 the formula

$$x^{k} \cdot z_{1} z_{2} \dots z_{n} = \sum_{i_{1} + \dots + i_{n+1} = k} \frac{k!}{i_{1}! \dots i_{n+1}!} [x^{(i_{1})}, z_{1}] \cdot \dots \cdot [x^{(i_{n})}, z_{n}] x^{i_{n+1}}.$$

Here the expression $[x^{(i)}, z]$ means $ad(x)^i(z)$. We may rewrite this as

$$x^{[k]} \cdot z_1 z_2 \dots z_n = \sum_{i_1 + \dots + i_{n+1} = k} \frac{1}{i_1! \dots i_n!} [x^{(i_1)}, z_1] \cdot \dots \cdot [x^{(i_n)}, z_n] x^{[i_{n+1}]}.$$

Indeed we consider the PBW-decomposition $\dot{\mathcal{U}}(\mathfrak{g}) = \dot{\mathcal{U}}(\mathfrak{u}) \otimes \dot{\mathcal{U}}(\mathfrak{t}) \otimes \dot{\mathcal{U}}(\mathfrak{u})$ and assume that the elements z_i lie without loss of generality in one of these factors. For any element z in some root space it follows from [Hu, 0.2] that $[x^{(k)}, z] = 0$ for all $k \ge 4$. Since we avoid the situation p = 2, 3 we my divide my the denominators 2! and 3!.

Now in contrast to loc.cit. we have again to consider z_i as elements of $\mathcal{U}(\mathfrak{g})$ instead of elements in \mathfrak{g} . Let d_i be the order of the differential z_i . Then $[x^{(i_1)}, z_1] \cdots [x^{(i_n)}, z_n]$ is an differential of order less than $4(d_1 + \ldots + d_n)$. In particular we can conclude as in loc.cit. that the term lies in a finite dimensional vector space which gives now easily the claim.

ii) In characteristic 0 we have the formula $x^n y^n \cdot v = n! \cdot [x, y]^n v$, cf. [OS, Lemma 8.2 ii)]. We only have to divide two times by n!.

³Note that this definition is stronger than the one in characteristic 0.

Proposition 2.13. Let p > 3. Let $\mathfrak{p} = \mathfrak{p}_I$ for some $I \subset \Delta$. Suppose $M \in O^{\mathfrak{p}}$ is a highest weight module with highest weight λ and

$$I = \{ \alpha \in \Delta \mid \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \} .$$

Then no non-zero element of a root space of $\mathfrak{u}_{\mathfrak{p}}^-$ acts locally finitely on M.

Proof. The proof is in principal the same as in the case of characteristic 0 [OS, Cor. 8.2]. However we have to modify some technical ingredients of the necessary lemmas due the different characteristic.

let $y \in (\mathfrak{u}_{\mathfrak{p}}^{-})_{\gamma}$ for some root γ . Let v^{+} be a weight vector with weight λ . Write $\gamma = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$ (with non-negative integers c_{α}). We show by induction on the height $ht(\gamma)$ of γ (Recall that $ht(\gamma) = \sum_{\alpha \in \Delta} c_{\alpha}$) that y_{γ} can not act locally finite. For this it suffices by weight reasons to show that $y_{\gamma}^{[n]} \cdot v^{+} \neq 0$ for infinitely many positive integers n.

If $ht(\gamma) = 1$, then γ is an element of $\Delta \setminus I$. Rescaling y_{γ} we can choose $x_{\gamma} \in \mathfrak{g}_{\gamma}$ such that $[x_{\gamma}, y_{\gamma}] = h_{\gamma}$ and $[h_{\gamma}, x_{\gamma}] = 2x_{\gamma}$ and $[h_{\gamma}, y_{\gamma}] = -2y_{\gamma}$. Then by [Hab, 5.2] we get

(2.3)
$$x_{\gamma}^{[n]}y_{\gamma}^{[n]}.v^{+} = \left(\frac{\lambda(h_{\gamma})}{n}\right).v^{+} = \frac{1}{n!}\prod_{i=0}^{n-1}(\langle\lambda,\gamma^{\vee}\rangle - i).v^{+}$$

As $I = \{ \alpha \in \Delta \mid \langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \}$, it follows that $\langle \lambda, \gamma^{\vee} \rangle \notin \mathbb{Z}_{\geq 0}$ and the term on the right of 2.3 does not vanish for infinitely many n. In particular, $y_{\gamma}^{n} \cdot v^{+} \neq 0$ for infinitely many $n \geq 0$.

Now suppose $ht(\gamma) > 1$. Then we can write $\gamma = \alpha + \beta$ with $\alpha \in \Delta$ and $\beta \in \Phi^+$. Clearly, not both α and β can be contained in Φ_I . We distinguish two cases.

(a) Let $\beta - \alpha \notin \Phi$. Then we get for $\alpha \notin I$ by Lemma 2.12:

$$x_{\beta}^{[n]}y_{\gamma}^{[n]}.v^{+} = [x_{\beta}, y_{\gamma}]^{[n]}.v^{+}$$

where x_{β} is a non-zero element of \mathfrak{g}_{β} . We conclude by induction that $[x_{\beta}, y_{\gamma}]^{[n]} \cdot v^{+} \neq 0$ for infinitely many $n \geq 0$.

For $\alpha \in I$ we have by Lemma 2.12:

$$x_{\alpha}^{[n]}y_{\gamma}^{[n]}.v^{+} = [x_{\alpha}, y_{\gamma}]^{[n]}.v^{+}$$

where x_{α} be a non-zero element of \mathfrak{g}_{α} . Again we conclude by induction the claim. And thus $y_{\gamma}^{[n]} v^+ \neq 0$ for infinitely many $n \geq 0$.

(b) Let $\beta - \alpha$ is in Φ . Then we have $\gamma - k\alpha \in \Phi^+$ for $0 \le k \le k_0$ (with $k_0 \le 3$, cf. [Hu, 0.2]), and $\gamma - k\alpha \notin \Phi \cup \{0\}$ for $k > k_0$. This implies $[x_{\alpha}^{(i)}, y_{\gamma}] = 0$ for $i > k_0$. By Lemma 2.12 we conclude as in loc.cit.

$$x_{\alpha}^{[nk_0]}y_{\gamma}^n \cdot v^+ = \sum_{i_1+\ldots+i_n=nk_0} \frac{1}{i_1!\ldots i_n!} [x_{\alpha}^{(i_1)}, y_{\gamma}] \cdot \ldots \cdot [x_{\alpha}^{(i_n)}, y_{\gamma}] \cdot v^+$$

which can be rewritten as (the corresponding term vanishes if there is one $i_j > k_0$)

$$\frac{1}{(k_0!)^n} \left[x_{\alpha}^{(k_0)}, y_{\gamma} \right]^n . v^+.$$

Thus we get

$$x_{\alpha}^{[nk_0]}y_{\gamma}^{[n]}.v^+ = \frac{1}{(k_0!)^n} \left[x_{\alpha}^{(k_0)}, y_{\gamma}\right]^{[n]}.v^+.$$

If $\gamma - k_0 \alpha$ is not in Φ_I we are done by induction. Otherwise we necessarily have $\alpha \notin I$. In this case, if we choose some $x_\beta \in \mathfrak{g}_\beta \setminus \{0\}$ and deduce as in loc.cit that

$$x_{\beta}^{[n]}y_{\gamma}^{[n]}.v^{+} = [x_{\beta}, y_{\gamma}]^{[n]}.v^{+}$$

As we are now in the case of height one, we can thus conclude again.

Remark 2.14. Unfortunately objects in the category $\dot{\mathcal{O}}$ do not have finite length in general. This holds in particular for the local cohomology modules $H^{d-i}_{\mathbb{P}^i}(\mathbb{P}^d, \mathcal{O})$ as discussed in [Ku]. However in loc.cit. it was pointed out that one can consider composition series of countable length in the sense of Birkhoff [Bi]. In this way one can use similar to the *p*-adic case [OS] the functors \mathcal{F}^G_P for a description of the composition factors of the terms $\mathrm{Ind}^G_{P_{(j+1,d-j)}}(\tilde{H}^{d-j}_{\mathbb{P}^j}(\mathbb{P}^n, \mathcal{E}) \otimes St_{d+1-j})$ appearing in the Theorem of Kuschkowitz.

3. Second Approach

This section is inspired by the theory of \mathcal{D} -modules. Here we carry out the theory presented in the previous section for the rings of differential operators on the flag variety $X := \mathbf{B}_{\mathbb{F}} \backslash \mathbf{G}_{\mathbb{F}}$.

Let $D_{\mathbb{P}^d_{\mathbb{F}}}(\mathbb{P}^d_{\mathbb{F}})$ be the space of global sections of the \mathcal{D} -module sheaf $D_{\mathbb{P}^d_{\mathbb{F}}}$ on the projective variety $\mathbb{P}^d_{\mathbb{F}}$. For a homogeneous vector bundle \mathcal{E} on $\mathbb{P}^d_{\mathbb{F}}$, set

$$D^{\mathcal{E}}_{\mathbb{P}^d_{\mathbb{F}}} = \mathcal{E}(\mathbb{P}^d_{\mathbb{F}}) \otimes D_{\mathbb{P}^d_{\mathbb{F}}}(\mathbb{P}^d_{\mathbb{F}}) \otimes \mathcal{E}^*(\mathbb{P}^d_{\mathbb{F}}).$$

Then $D_{\mathbb{P}^d_{\mathbb{P}}}^{\mathcal{E}}$ acts naturally on $\mathcal{E}(\mathcal{X})$ and the filtration appearing in Kuschkowitz's theorem. Instead we consider (which become clear later) the space of global sections $D = D_X(X)$ of the differential operators on X and

$$D^{\mathcal{E}} = \mathcal{E}(X) \otimes D \otimes \mathcal{E}(X)$$

for any homogeneous vector bundle \mathcal{E} on $B \setminus G$. There is an action of $D^{\mathcal{E}}$ on all the above objects as well. We consider further the Beilinson-Bernstein homomorphism

$$\pi^{\mathcal{E}}: \dot{\mathcal{U}}(\mathfrak{g}) \to D^{\mathcal{E}}$$

which is not surjective (for $\mathcal{E} = \mathcal{O}_X$) in positive characteristic as shown by Smith in [Sm].

Consider the covering $X = \bigcup_{w \in W} B \setminus BU^- w$ by translates of the big open cell $B \setminus BU^-$. Let $D^1 = D(B \setminus BU^-)$. Thus D^1 is the crystalline Weyl algebra

$$D^{1} = \mathbb{F}[T_{\alpha} \mid \alpha \in \Phi^{-}] \langle y_{\alpha}^{[n]} \mid \alpha \in \Phi^{-}, n \in \mathbb{N} \rangle.$$

By the sheaf property we see that D coincides with the set

(3.1)
$$\{\Theta \in D^1 \mid \Theta(\mathcal{O}(B \setminus BU^- w)) \subset \mathcal{O}(B \setminus BU^- w) \; \forall w\}.$$

For any prime power $q = p^n$ we let D_q^1 be the differential operators which are $\mathbb{F}[T_{\alpha}^q \mid \alpha \in \Phi^-]$ -linear. Then we have $D = \bigcup_n D_{p^n}$. The next statement is a generalization of [Sm, lemma 3.1]. We set for $\alpha > 0$, $T_{\alpha} := T_{-\alpha}^{-1}$.

Lemma 3.1. Let $\Theta \in D^1_q$. Then $\Theta \in D$ iff

i)
$$\Theta(1) \in \mathbb{F}$$

and

ii)
$$\Theta(\prod_{\alpha \in \Phi^-} T_{\alpha}^{i_{\alpha}}) \in V := \bigoplus_{0 \le j_{\alpha} \le q} \prod_{\alpha \in \Phi^-} T_{\alpha}^{j_{\alpha}}$$
 for all tuples $(i_{\alpha})_{\alpha}$ with $0 \le i_{\alpha} \le q-1$.

Proof. \Rightarrow : The first item follows from the sheaf property (3.1) since $\mathcal{O}(B \setminus G) = \mathbb{F}$. Now let $\Theta \in D \cap D_q^1$. Let $w_0 \in W$ be the longest element and $f = \prod_{\alpha < 0} T_{\alpha}^{i_{\alpha}}$ as above. Then $g = f \cdot \prod_{\alpha > 0} T_{\alpha}^q \in \mathcal{O}(B \setminus BU^- w_0)$. But then

$$\Theta(f) = (\prod_{\alpha < 0} T^q_{\alpha}) \Theta(g) \in (\prod_{\alpha} T^q_{\alpha < 0}) \mathcal{O}(B \setminus BU^- w_0) \cap \mathcal{O}(B \setminus BU^-) \subset V.$$

 \Leftarrow : We show that $\Theta(\mathcal{O}(B \setminus BU^- w)) \subset \mathcal{O}(B \setminus BU^- w) \ \forall w \in W$. We consider the element $f = \prod_{\beta \in w(\Phi^-)} T_{\beta}^{i_{\beta}} \in \mathcal{O}(B \setminus BU^- w)$. Write

$$f = \prod_{\substack{\beta \in w(\Phi^-) \\ \beta < 0}} T_{\beta}^{i_{\beta}} \prod_{\substack{\beta \in w(\Phi^-) \\ \beta > 0}} T_{\beta}^{i_{\beta}} = \prod_{\substack{\beta \in w(\Phi^-) \\ \beta < 0}} T_{\beta}^{i_{\beta}} \prod_{\substack{\beta \in w(\Phi^-) \\ \beta > 0}} T_{-\beta}^{-i_{\beta}}.$$

For each $\beta > 0$ let m_{β} be the integer with $m_{\beta}q < i_{\beta} \leq (m_{\beta} + 1)q$. On the other hand, for each $\beta < 0$ let m_{β} be the integer with $m_{\beta}q \leq i_{\beta} < (m_{\beta} + 1)q$. Then $\prod_{\substack{\beta \in w(\Phi^{-})\\\beta < 0}} T_{\beta}^{i_{\beta}} = \prod_{\substack{\beta \in w(\Phi^{-})\\\beta < 0}} T_{\beta}^{m_{\beta}q} T_{\beta}^{i_{\beta}-m_{\beta}q}$. Putting this together we get by assumption (ii)

$$\Theta(\prod_{\substack{\beta \in w(\Phi^{-})\\\beta>0}} T_{-\beta}^{(m_{\beta}+1)q-i_{\beta}} \prod_{\substack{\beta \in w(\Phi^{-})\\\beta<0}} T_{\beta}^{i_{\beta}-m_{\beta}q}) \in V.$$

Thus $\Theta(f) \in \prod_{\substack{\beta \in w(\Phi^{-})\\\beta>0}} T_{-\beta}^{-(m_{\beta}+1)q} \prod_{\substack{\beta \in w(\Phi^{-})\\\beta<0}} T_{\beta}^{m_{\beta}q}V \subset \mathcal{O}(B \setminus BU^{-}w).$

We fix the same setup as in the previous section. I.e. $\mathbf{P} \subset \mathbf{G}$ is a parabolic subgroup, $\mathbf{U}_{\mathbf{P}}$ its unipotent radical and $\mathbf{U}_{\mathbf{P}}^-$ its opposite unipotent radical. Moreover we have fixed as before lifts $\mathbf{P}_{\mathbb{Z}}$ etc. inside $\mathbf{G}_{\mathbb{Z}}$. We consider the following subalgebras of D in terms of generators:

$$\begin{split} D(P) &= \langle T_{\alpha}^{m} \cdot y_{\alpha}^{[n]} \in D \mid m \leq n \text{ for } y_{\alpha} \in \mathfrak{p} \cap \mathfrak{b}^{-}, m \geq n \text{ for } L_{-\alpha} \in \mathfrak{u} \rangle. \\ D(U_{P}) &= \langle (T_{\alpha})^{m} \cdot y_{\alpha}^{[n]} \in D \mid m > n, L_{-\alpha} \in \mathfrak{u}_{P} \rangle. \\ D(U_{P}^{-}) &= \langle (T_{\alpha})^{m} \cdot y_{\alpha}^{[n]} \in D \mid m < n, y_{\alpha} \in \mathfrak{u}_{P}^{-} \rangle. \\ D(L_{P}) &= \langle (T_{\alpha})^{m} \cdot y_{\alpha}^{[n]} \in D \mid m \leq n \text{ for } y_{\alpha} \in \mathfrak{l}_{P} \cap \mathfrak{b}^{-}, m > n \text{ for } L_{-\alpha} \in \mathfrak{l}_{P} \cap \mathfrak{u} \rangle \\ D(T) &= \langle (T_{\alpha})^{m} \cdot y_{\alpha}^{[n]} \in D \mid m = n, \alpha \in \Delta \rangle. \end{split}$$

Remark 3.2. i) Note that D(T) is for $p \neq 2$ nothing else but $\pi^{\mathcal{O}_X}(\dot{\mathcal{U}}(\mathfrak{t}))$ as $T_{\alpha}y_{\alpha} = \pi(2h_{\alpha})$ for all $\alpha \in \Delta$. Hence if $\lambda \in X^*(T)$, it induces a D(T)-module structure on \mathbb{F} which we denote by \mathbb{F}_{λ} .

ii) By Lemma 3.1 one checks that $D(U_P) = \pi^{\mathcal{O}_X}(\dot{\mathcal{U}}(\mathfrak{u}_P))$ since $T^2_{\alpha}y_{\alpha} = \pi(L_{-\alpha})\forall \alpha \in \Phi^-$.

Lemma 3.3. There is for all $n \in \mathbb{N}$ and $\alpha \in \Delta$ the identity $\binom{T_{\alpha}y_{\alpha}}{n} = T_{\alpha}^{n}y_{\alpha}^{[n]}$.

Proof. This is left to the reader.

We set $D^{\mathcal{E}}(P) = \mathcal{E}(X) \otimes D(P) \otimes \mathcal{E}^*(X)$ etc. Then there is a product decomposition $D^{\mathcal{E}} = D^{\mathcal{E}}(P)D^{\mathcal{E}}(U_P^-)$ (an almost PBW-decomposition).

Again we mimic the definition of the category \mathcal{O} in the sense of BGG. Let $\mathcal{O}_{D^{\mathcal{E}}}^{P}$ be the category of $D^{\mathcal{E}}$ -modules such that

i) M is finitely generated as a $D^{\mathcal{E}}$ -module

ii) As a $D^{\mathcal{E}}(L_P)$ -module it is a direct sum of finite-dimensional modules.

iii) $D^{\mathcal{E}}(U_P)$ acts locally finite-dimensional, i.e. for all $m \in M$ the subspace $D^{\mathcal{E}}(U_P)$. v is finite-dimensional.

Remark 3.4. For $\mathcal{E} = \mathcal{O}_X$ this category corresponds in analogy to the classical case to the principal block.

We define the algebraic part of $\mathcal{O}_{D^{\mathcal{E}},\mathrm{alg}}^{P}$ as usual, i.e. we denote by $\mathcal{O}_{D^{\mathcal{E}},\mathrm{alg}}^{P}$ the full subcategory of $\mathcal{O}_{D^{\mathcal{E}}}^{P}$ consisting of objects such that the action of $\dot{\mathcal{U}}(\mathfrak{t})$ on the weight spaces is given by algebraic characters $\lambda \in X^{*}(T)$. Note that axioms ii) and iii) induce together with the map $\pi^{\mathcal{E}} : \dot{\mathcal{U}}(\mathfrak{g}) \to D^{\mathcal{E}}$ an algebraic *P*-module structure on any object in $\mathcal{O}_{D^{\mathcal{E}},\mathrm{alg}}^{P}$.

As in the classical case we see that the axioms imply the existence of a finitedimensional $D^{\mathcal{E}}(P)$ -module N which generates M as a $D^{\mathcal{E}}$ -module. Further there are similar definitions. E.g. a vector in an $D^{\mathcal{E}}$ -module $M \in \mathcal{O}_{D^{\mathcal{E}}}$ is called a maximal vector of weight $\lambda \in \mathfrak{t}^*$ if $v \in M_{\lambda}$ and $D^{\mathcal{E}}(U_P) \cdot v = 0$. A $D^{\mathcal{E}}$ -module M is called a highest weight module of weight λ if there is a maximal vector $v \in M_{\lambda}$ such that $M = D^{\mathcal{E}} \cdot v$. By the very definition such a module satisfies $M = D^{\mathcal{E}}(U_B^-) \cdot v$. For a one-dimensional $\dot{\mathcal{U}}(\mathfrak{t})$ -module λ we consider it as usual via the trivial $D^{\mathcal{E}}(U_B)$ -action as a one-dimensional $D^{\mathcal{E}}(B)$ -module \mathbb{F}_{λ} and set $M(\lambda) = D^{\mathcal{E}} \otimes_{D^{\mathcal{E}}(B)} \mathbb{F}_{\lambda}$. More generally we may define for every finite-dimensional $D^{\mathcal{E}}(P)$ -module W the generalized Verma module $M(W) = D^{\mathcal{E}} \otimes_{D(P)} W$. Note that we have surjections $D^{\mathcal{E}}(U_B^-) \otimes \mathbb{F}_{\lambda} \to M(\lambda)$ and $D^{\mathcal{E}}(U_P^-) \otimes_{\mathbb{F}} W \to M(W)$. We see by the above surjections that [Hu, Thm. 1.3] holds true in our category, i.e. if $M(\lambda) \neq 0$ then it has a unique simple quotient $L(\lambda)$. Moreover these modules form a complete list of simple modules in the "union" of our categories $\mathcal{O}_{D^{\mathcal{E}}}$. Consider the local cohomology module $\tilde{H}^{d-j}_{\mathbb{P}^j}(\mathbb{P}^d, \mathcal{O})$. For $d-j \geq 2$ this coincides with the vector space of polynomials

$$\bigoplus_{\substack{n_0,\dots,n_j \ge 0\\n_{j+1}\dots n_d < 0\\\sum_i n_i = 0}} \mathbb{F} \cdot X_0^{n_0} \cdots X_j^{n_j} X_{j+1}^{n_{j+1}} \cdots X_d^{n_d}$$

cf. [O2]. In general there is some finite-dimensional $\mathbf{P}_{(\mathbf{j+1,d-j})}$ -module V such that $\tilde{H}^{d-j}_{\mathbb{P}^{j}}(\mathbb{P}^{d},\mathcal{E})$ is a quotient of $\bigoplus_{\substack{n_{0},\dots,n_{j}\geq 0\\ \sum_{i}n_{i}=0}} \mathbb{F}\cdot X_{0}^{n_{0}}\cdots X_{j}^{n_{j}}X_{j+1}^{n_{j+1}}\cdots X_{d}^{n_{d}}\otimes V.$

Proposition 3.5. Let \mathcal{E} be a homogeneous vector bundle on $\mathbb{P}^d_{\mathbb{F}}$. Then $\tilde{H}^{d-j}_{\mathbb{P}^j}(\mathbb{P}^d, \mathcal{E})$ is an object of $\mathcal{O}^{P_{(j+1,d-j)}}_{D^{\mathcal{E}}}$.

Proof. The non-trivial aspect is to show that $\tilde{H}^{d-j}_{\mathbb{P}^j}(\mathbb{P}^d, \mathcal{E})$ is finitely generated. We will show this for $\mathcal{E} = \mathcal{O}$. We claim that

$$\bigoplus_{\substack{n_0,\dots,n_j \ge 0\\\sum_{j=0}^j n_i = d-j}} \mathbb{F} \cdot X_0^{n_0} \cdots X_j^{n_j} X_{j+1}^{-1} \cdots X_d^{-1}$$

is as in characteristic 0 a generating system of $H_{\mathbb{P}^j}^{d-j}(\mathbb{P}^d, \mathcal{O})$. Indeed, as in the latter case we can apply successively the differential operators $L_{\alpha} \in \mathfrak{u}_{P_{(j+1,d-j)}}^-$ to obtain all expressions $X_0^{n_0} \cdots X_j^{n_j} X_{j+1}^{n_{j+1}} \cdots X_d^{n_d}$ such that $|n_i| \leq p$ for all $i \geq j+1$. In order to obtain those where $n_i = -(p+1)$ for some $i \geq j+1$ we can apply $y_{(-,j+1)}^{[p]}$ to get the desired denominators. However, we do not get all possible nominators. But in our algebra D we have in contrast to $\dot{\mathcal{U}}(\mathfrak{g})$ the differential operator $T_{(a,b)}^{p-1} L_{(a,b)}^{[p]}$ with $j+1 \leq a < b \leq d$ at our disposal. Applying these operators we can realize all nominators. For $|n_i| > p+1$ in particular for $|n_i| = rp+1, r \geq 2$ we use the same method as above etc..

Proposition 3.6. The object $\tilde{H}^i_{\mathbb{P}^j}(\mathbb{P}^d, \mathcal{O})$ is a simple module isomorphic to $L(s_i \cdots s_1 \cdots s_1 \cdots s_1)$.

Proof. In characteristic 0 we gave a proof in [OS, Prop. 7.5]. Here we can argue with the differential operators at our disposal in the same way. Note that for general $\lambda \in X^*(T)$ the simple module $L(\lambda)$ is an avatar of the characteristic 0 version. \Box

We let

$$\mathcal{A}_G^{\mathcal{E}} := \mathbb{F}[G] \# D^{\mathcal{E}}$$

be the smash product of the group algebra $\mathbb{F}[G]$ and $D^{\mathcal{E}}$.

18

Let M be an object of $\mathcal{O}_{D^{\mathcal{E}}, alg}^{P}$ and let V be a finite-dimensional P-module. Then we set

$$\mathcal{F}_P^G(M,V) := \mathbb{F}[G] \otimes_{\mathbb{F}[P]} (M \otimes V).$$

Note that $\mathcal{F}_P^G(M, V) = \operatorname{Ind}_P^G(M \otimes V)$. This is a $\mathcal{A}_G^{\mathcal{E}}$ -module. In this way we get a bi-functor

$$\mathcal{F}_P^G: \mathcal{O}_{D^{\mathcal{E}}, \mathrm{alg}}^P \times \mathrm{Rep}(P) \to Mod_{\mathcal{A}_G^{\mathcal{E}}}.$$

The proof of the next statement is the same as in Propositions 2.8 and 2.9.

Proposition 3.7. a) The bi-functor \mathcal{F}_P^G is exact in both arguments.

b) If $Q \supset P$ is a parabolic subgroup, M an object of $\mathcal{O}_{D^{\mathcal{E}}, alg}^{Q}$, then

$$\mathcal{F}_P^G(M, V) = \mathcal{F}_Q^G(M, \operatorname{Ind}_P^Q(V)),$$

where $\operatorname{Ind}_{P}^{Q}(V)$ denotes the corresponding induced representation.

Theorem 3.8. Let M be an simple object of $\mathcal{O}_{D^{\mathcal{E}}, alg}^{P}$ such that P is maximal for Mand let V be a simple P-representation. Then $\mathcal{F}_{P}^{\mathcal{E}}(M, V)$ is simple as $\mathcal{A}_{G}^{\mathcal{E}}$ -module.

Proof. The proof follows the strategy of Theorems 2.10 and 2.11. Note that Proposition 2.13 does also hols true for our objects $L(\lambda)$ as avatars of their character zero versions.

References

- [An] H.H. Andersen, *BGG categories in prime characteristic*, preprint http://arxiv.org/abs/2106.00057v1.
- [Bi] G. Birkhoff, Transfinite subgroup series. Bull. Amer. Math. Soc. 40, no. 12, 847–850 (1934).
- [Fi] P. Fiebig, *Periodicity of subqutients of the modular category* \mathcal{O} ., prepint https://arxiv.org/abs/2102.09865.
- [Hab] W.F. Haboush, Central differential operators on split semisimple groups over fields of positive characteristic. Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), pp. 35–85, Lecture Notes in Math., 795, Springer, Berlin (1980).
- [Hu] J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category O. Graduate Studies in Mathematics, 94. American Mathematical Society, Providence, RI (2008).
- [Ja] J.C. Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, Vol. 131, Academic Press (1987).
- [Ku] M. Kuschkowitz, Equivariant Vector Bundles and Rigid Cohomology on Drinfeld's Upper Half Space over a Finite Field, PhD Thesis Wuppertal (2016).
- [O1] S. Orlik, Kohomologie von Periodenbereichen über endlichen Körpern, J. Reine Angew. Math. 528, 201–233 (2000).

- [O2] S. Orlik, Equivariant vector bundles on Drinfeld's upper half space, Invent. Math. 172, no. 3, 585–656 (2008).
- [OR] S. Orlik, M. Rapoport, Period domains over finite and over local fields, J. Algebra 320, no. 3, 1220 - 1234 (2008).
- [OS] S. Orlik, M. Strauch, On Jordan-Hölder series of some locally analytic representations, J. Amer. Math. Soc. 28, no. 1, 99 - 157 (2015).
- [SGA2] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théoremes de Lefschetz locaux et globaux (SGA 2). Revised reprint of the 1968 French original. Documents Mathématiques (Paris), 4. Soc.Math. de France, Paris (2005).
- [Sm] S. P. Smith, Differential operators on the affine and projective lines in characteristic p > 0. Séminaire d'algebre Paul Dubreil et Marie-Paule Malliavin, 37ème anné (Paris, 1985), 157–177, Lecture Notes in Math., **1220**, Springer, Berlin (1986).
- [ST1] P. Schneider, J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with applications to GL₂, J. Amer. Math. Soc. 15, no. 2, 443–468 (2002).
- [ST2] P. Schneider, J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. Math. 153, No.1, 145-196 (2003).

FACHGRUPPE MATHEMATIK UND INFORMATIK, BERGISCHE UNIVERSITÄT WUPPERTAL, GAUSSS-TRASSE D-42119 WUPPERTAL, GERMANY

Email address: orlik@math.uni-wuppertal.de