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EQUIVARIANT VECTOR BUNDLES ON DRINFELD’S

HALFSPACE OVER A FINITE FIELD

SASCHA ORLIK

Abstract. Let X ⊂ Pd
k
be Drinfeld’s halfspace over a finite field k and let E be a

homogeneous vector bundle on Pd
k
. The paper deals with two different descriptions

of the space of global sections H0(X , E) as GLd+1(k)-representation. This is an

infinite dimensional modular G-representation. Here we follow the ideas of [O2, OS]

treating the p-adic case. As a replacement for the universal enveloping algebra we

consider both the crystalline universal enveloping algebra and the ring of differential

operators on the flag variety with respect to E .

Introduction

Let k be a finite field and denote by X Drinfeld’s halfspace of dimension d ≥ 1

over k. This is the complement of all k-rational hyperplanes in projective space Pd
k,

i.e.,

X = Pd
k \

⋃

H kd+1
P(H).

This object is equipped with an action of G = GLd+1(k) and can be viewed as

a Deligne-Lusztig variety, as well as a period domain over a finite field [OR]. In

particular we get for every homogeneous vector bundle E on Pd
k an induced action of

G on the space of global sections H0(X , E) which is an infinite-dimensional modular

G-representation.

In [O2] we considered the same problem for the Drinfeld halfspace over a p-adic

field K. We constructed for every homogeneous vector bundle E a filtration by closed

GLd+1(K)-subspaces and determined the graded pieces in terms of locally analytic G-

representations in the sense of Schneider and Teitelbaum [ST1]. The definition of the

filtration above involves the geometry of X being the complement of an hyperplane

arrangement. In the p-adic case H0(X , E) is a ”bigger” object, it is a reflexive K-

Fréchet space with a continuous G-action. Its strong dual is a locally analytic G-

representation. The interest here for studying those objects lies in the connection to

the p-adic Langland correspondence.
1
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2 SASCHA ORLIK

In his thesis [Ku] Kuschkowitz adapts the strategy of the p-adic case to the situation

considered here.

Theorem (Kuschkowitz): Let E be a homogeneous vector bundle on Pd
k. There is a

filtration

E(X )0 ⊃ E(X )1 ⊃ · · · ⊃ E(X )d−1 ⊃ E(X )d = H0(Pd, E)

on E(X )0 = H0(X , E) such that for j = 0, . . . , d − 1, there is an extension of G-

representations

0 → IndG
P(j+1,d−j)

(H̃d−j
Pj

(Pd, E)⊗Std+1−j) → E(X )j/E(X)j+1 → vGP(j+1,1,...,1)
⊗Hd−j(Pd

k, E) → 0.

Here the module vGP(j+1,1,...,1)
is a generalized Steinberg representation corresponding

to the decomposition (j + 1, 1, . . . , 1) of d + 1. Further Pj = P(j,d+1−j) ⊂ G is the

(lower) standard-parabolic subgroup attached to the decomposition (j, d + 1 − j) of

d + 1 and Std+1−j is the Steinberg representation of GLd+1−j(k). Here the action of

the parabolic is induced by the composite

P(j,d+1−j) → L(j,d+1−j) = GLj(k)×GLd+1−j(k) → GLd+1−j(k).

Finally we have the reduced local cohomology

H̃d−j

P
j
k

(Pd
k, E) := ker

(

Hd−j

P
j
k

(Pd
k, E) → Hd−j(Pd

k, E)
)

which is a P(j+1,d−j)-module.

In the p-adic setting the substitute of the LHS of this extension has the structure

of an admissible module over the locally analytic distribution algebra. Here we were

able to give a description of the dual representation in terms of a series of functors

FG
P : Op

alg × Rep∞,adm
K (P ) → Repℓa

K(G)

where Op
alg consist of the algebraic objects of type p in the category O, Rep∞,adm

K (P )

is the category of smooth admissible P -representations and Repℓa
K(G) denotes the

category of locally analytic G-representations.

In positive characteristic Lie algebra methods do not behave so nice. E.g. the local

cohomology groups are not finitely generated over the universal enveloping algebra

of the Lie algebra of GLd+1 so that the same machinery does not apply. Our goal in

this paper is to concentrate on the latter aspect and to present two candidates for a

substitution in this situation. The first approach considers the crystalline universal

enveloping algebra U̇(g) (or Kostant form) which coincides with the distribution alge-

bra of G, cf. [Ja]. The action of g extends to one of U̇(g), so that H0(X , E) becomes
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a module over the smash product k[G]#U̇(g). We define a positive characteristic ver-

sion of FG
P and prove analogously properties of them as in the p-adic case, e.g. we

give an irreducibility criterion, cf. [OS].

The second approach uses instead of U̇(g) the ring of distributions DE on the flag

variety with respect to E . The important point is that the natural map U̇(g) → DE

is in contrast to the field of complex numbers not surjective as shown by Smith [Sm].

We will show that the above local cohomology modules are finitely generated leading

to a category ODE where we can define similar our functors FG
P .

Notation: We let p be a prime number, q = pn some power and let k = Fq the

corresponding field with q elements. We fix an algebraic closure F := Fq and denote

by Pd
F the projective space of dimension d over F. If Y ⊂ Pd

F is a closed algebraic

F-subvariety and F is a sheaf on Pd
F we write H∗

Y (P
d
F,F) for the corresponding local

cohomology. We consider the algebraic action G× Pd
F → Pd

F of G on Pd
F given by

g · [q0 : · · · : qd] := m(g, [q0 : · · · : qd]) := [q0 : · · · : qd]g
−1.

We use bold letters H to denote algebraic group schemes over Fq, whereas we use

normal letters H for their Fq-valued points. We denote by HF := H×Fq F their base

change to F.We use Gothic letters h for their Lie algebras (over F). The corresponding

enveloping algebras are denoted as usual by U(h).

We denote by GZ a split reductive algebraic group over Z. We fix a Borel subgroup

BZ ⊂ GZ and let UZ be its unipotent radical and U−
Z the opposite radical. Let

TZ ⊂ GZ be a fixed split torus and denote the root system by Φ and its subset of

simple roots by ∆.

Acknowledgments: I am grateful to Georg Linden for pointing out to me the paper

of Smith [Sm]. This research was conducted in the framework of the research training

group GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology,

which is funded by the DFG.

1. The theorem of Kuschkowitz

In this section we recall shortly the strategy for proving the theorem of Kuschkowitz.

Here we consider for G the general linear group GLd+1 and for B ⊂ G the Borel
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subgroup of lower triangular matrices and T the diagonal torus. Denote by T its

image in PGLd+1. For 0 ≤ i ≤ d, let ǫi : T → Gm be the character defined by

ǫi(diag(t1, . . . , td)) = ti. Put αi,j := ǫi−ǫj for i 6= j. Then ∆ := {αi,i+1 | 0 ≤ i ≤ d−1}

are the simple roots and Φ := {αi,j | 0 ≤ i 6= j ≤ d − 1} are the roots of G with

respect to T ⊂ B. For a decomposition (i1, . . . , ir) of d + 1, let P(i1,...,ir) be the

corresponding standard-parabolic subgroup of G, U(i1,...,ir) its unipotent radical and

L(i1,...,ir) its Levi component.

Let E be a homogeneous vector bundle on Pd
F. Our finite group G stabilizes X .

Therefore, we obtain an induced action of G on the F-vector space of global sections

E(X ). Further E is naturally a g-module, i.e., there is a homomorphism of Lie algebras

g → End(E). For the structure sheaf O = OPd
F

with its natural G-linearization we

can describe the action of g on O(X ). Indeed, for a root α = αi,j ∈ Φ, let

Lα := L(i,j) ∈ gα

be the standard generator of the weight space gα in g. Let µ ∈ X∗(T) be a character of

the torusT.Write µ in the shape µ =
∑d

i=0miǫi with
∑d

i=0mi = 0. Define Ξµ ∈ O(X )

by

Ξµ(q0, . . . , qd) = qm0
0 · · · qmd

d .

For these functions, the action of g is given by

(1.1) L(i,j) · Ξµ = mj · Ξµ+αi,j

and

t · Ξµ = (
∑

i
miti) · Ξµ, t ∈ t.

Fix an integer 0 ≤ j ≤ d− 1. Let

Pj
F = V (Xj+1, . . . , Xd) ⊂ P

d
F

be the closed subvariety defined by the vanishing of the coordinates Xj+1, . . . , Xd. The

algebraic local cohomology modules H i
P
j
F

(Pd
F, E), i ∈ N, sit in a long exact sequence

· · · → H i−1(Pd
F \ P

j
F,F) → H i

P
j
F

(Pd
F,F) → H i(Pd

F,F) → H i(Pd
F \ P

j
F,F) → · · ·

which is equivariant for the induced action of P(j+1,d−j)⋉U(g). Here the semi-direct

product is defined via the adjoint action of P(j+1,d−j) on g. We set

H̃d−j

P
j
F

(Pd
F, E) := ker

(

Hd−j

P
j
F

(Pd
F, E) → Hd−j(Pd

F, E)
)

which is consequently a P(j+1,d−j) ⋉ U(g)-module.



EQUIVARIANT VECTOR BUNDLES ON DRINFELD’S HALFSPACE OVER A FINITE FIELD 5

Consider the exact sequence of F-vector spaces with G-action

0 → H0(Pd
F, E) → H0(X , E) → H1

Y(P
d
F, E) → H1(Pd

F, E) → 0.

Note that the higher cohomology groups H i(X , E), i > 0, vanish since X is an affine

space. The G-representations H0(Pd
F,F), H1(Pd

F,F) are finite-dimensional algebraic.

Let i : Y →֒ (Pd
F) denote the closed embedding and let Z be constant sheaf on Y .

Then by [SGA2, Proposition 2.3 bis.], we conclude that

Ext∗(i∗(ZY), E) = H∗
Y(P

d
F, E).

The idea is now to plug in a resolution of the sheaf Z on the boundary and works as

follows.

Let {e0, . . . , ed} be the standard basis of V = Fd+1. For any αi ∈ ∆, put

Vi =

i
⊕

j=0

F · ej and Yi = P(Vi)

For any subset I ⊂ ∆ with ∆ \ I = {αi1 < . . . < αir}, set YI = P(Vi1) and consider

it as a closed subvariety of Pd
F. Furthermore, let PI be the lower parabolic subgroup

of G, such that I coincides with the simple roots appearing in the Levi factor of PI .

Hence the group PI stabilizes YI . We obtain

Y =
⋃

g∈G

g · Y∆\{αd−1}.(1.2)

Consider the natural closed embeddings

Φg,I : gYI −→ Y

and put

Zg,I := (Φg,I)∗(Φ
∗
g,I Z).

We obtain the following complex of sheaves on Y :

0 → Z→
⊕

I⊂∆
|∆\I|=1

⊕

g∈G/PI

Zg,I →
⊕

I⊂∆
|∆\I|=2

⊕

g∈G/PI

Zg,I → · · · →
⊕

I⊂∆
|∆\I|=i

⊕

g∈G/PI

Zg,I → · · ·

(1.3)

· · · →
⊕

I⊂∆
|∆\I|=d−1

⊕

g∈G/PI

Zg,I →
⊕

g∈G/P∅

Zg,∅ → 0.

which is acyclic by [O1].
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In a next step one considers the spectral sequence which is induced by this complex

applied to Ext∗(i∗(−), E). Here one uses that for all I ⊂ ∆, there is an isomorphism

Ext∗(i∗(
⊕

g∈G/PI

Zg,I), E) =
⊕

g∈G/PI

H∗
gYI

(Pd
F, E).

By evaluating the spectral sequence Kuschkowitz arrives in [Ku] at the theorem

mentioned in the introduction.

2. First approach

In this section we replace U(g) by its crystalline version and transform the results

of [OS] to this setting.

Let GZ be a split reductive algebraic group over Z and let gC be the Lie algebra of

GZ(C). On the other hand let D(GF) be the distribution algebra of GF = GZ ×Z F.

We identify D(GF) with the universal crystalline enveloping algebra (Kostant form)

U̇(g). Thus U̇(g) = U̇(g)Z ⊗ F where U̇(g)Z is the Z-subalgebra of U(gC) generated

by the expressions

x[n]
α := xn

α/n!, y
[n]
α := ynα/n!, α ∈ Φ+, n ∈ N

and

(

hα

n

)

, α ∈ ∆, n ∈ N,

where xα ∈ gα, yα ∈ g−α are generators and hα = [xα, yα] for all α ∈ ∆. We have a

PBW-decomposition

U̇(g) = U̇(u)⊗F U̇(t)⊗F U̇(u
−)

where the crystalline enveloping algebras for u, u− and t are defined analogously.

We mimic the definition of the category O in the sense of BGG.

Definition 2.1. Let Ȯ be the full subcategory of all U̇(g)-modules such that

i) M is finitely generated as U̇(g)-module

ii) U̇(t) acts semisimple with finite-dimensional weight spaces.

iii) U̇(u) acts locally finite-dimensional, i.e., for all m ∈ M we have dim U̇(u) ·m <

∞.

Remark 2.2. In [Hab, Def. 3.2] Haboush calls U̇(g)-modules satisfying properties

i) and ii) admissible. The category Ȯ has been also recently considered by Andersen

[An] and Fiebig [Fi] (even more generally for weight modules) discussing among others

the structure of these objects.
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Similarly, for a parabolic subgroup P ⊂ G with Levi decomposition P = LP ·UP

(induced by one over Z), we let Ȯp be the full subcategory of Ȯ consisting of objects

which are direct sums of finite-dimensional U̇(lP )-modules. We let Ȯalg be the full

subcategory of Ȯ such that the action of U̇(t) is induced on the weight spaces by

algebraic characters X∗(TF) of TF. Finally we set

Ȯp
alg := Ȯalg ∩ Ȯp.

As in the classical case there is for every object M ∈ Ȯp
alg some finite-dimensional al-

gebraic P -representation1 W ⊂ M which generates M as a U̇(g)-module, i.e., there is

a surjective homomorphism U̇(g)⊗U̇(p)W → M . Again there is a PBW-decomposition

U̇(g) = U̇(uP )⊗F U̇(lP )⊗F U̇(u
−
P ) such that the latter homomorphism can be seen as

a map U̇(u−P )⊗F W → M.

According to [Hab] there is the notion of maximal vectors, highest weights, highest

weight module etc. and we may define Verma modules, cf. Def. 3.1 in loc.cit. In fact

let λ be a one-dimensional U̇(t)-module. Then we consider it as usual via the trivial

U̇(u)-action as a one-dimensional U̇(b)-module Fλ. Then

M(λ) = U̇(g)⊗U̇(b) Fλ

is the attached Verma module of weight λ. As in the classical case Theorem of [Hu,

1.2] holds true for our highest weight modules. In particular it has a unique maximal

proper submodule and therefore a unique simple quotient L(λ), cf. [Hab, Prop. 4.4],

[An, Thm 2.3], [Fi, Prop. 2.3].

Proposition 2.3. The simple modules in Ȯalg are exactly of the shape L(λ) for

λ ∈ X∗(TF).

Proof. We need to show that every simple object in Ȯalg is of this form. But by

[Hab, Thm 4.9 i)] simple admissible highest weight modules are of the form L(λ) for

a one-dimensional U̇(t)-module λ. The algebraic condition forces λ to be an algebraic

character λ ∈ X∗(TF). ✷

We also consider the full subcategory Md
U̇(g)

for all U̇(g)-modules which satisfy con-

dition ii) in the definition of Ȯ. For any such object M we define a dual object M ′

(the graded dual) following the classical concept: consider the weight space decom-

position M =
⊕

λ Mλ where λ is as above a one-dimensional U̇(t)-module. Then the

1Meaning that we restrict an algebraic P-representation to the its rational points P .
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underlying vector space of M ′ is the direct sum
⊕

λ Hom(Mλ, K). The U̇(g)-structure

on it is given by the natural one2. Clearly one has (M ′)′ = M.

We consider the natural action of u−P on O(UP−,F). This extends to a non-

degenerate pairing

U̇(u−P )⊗O(U−
P,F) → F(2.1)

such that O(UP−,F) identifies with the graded dual of U̇(u−P ). Moreover we pull back

via this identification the action of P on (U̇(g)⊗U̇(p) 1)
′ to O(UP−,F). By construction

we obtain the following statement.

Lemma 2.4. There is an isomorphism of P⋉U̇(g)-modules O(U−
P,F)

∼= (U̇(g)⊗U̇(p)1)
′.

✷

The pairing (2.1) extends for every algebraic P -representation W to a pairing

(U̇(u−P )⊗W ′)⊗ (O(U−
P,F)⊗W ) → F(2.2)

such that O(U−
P,F)⊗W becomes isomorphic to U̇(u−P )

′ ⊗W ′ as P ⋉ U̇(g)-modules.

Let Ḟ[G, g] := F[G]#U̇(g) be the smash product of U̇(g) and the group algebra

F[G] of G. Recall that this F-algebra has as underlying vector space the tensor product

F[G]⊗ U̇(g) and where the multiplication is induced by (g1 ⊗ z1) · (g2 ⊗ z2) = g1g2 ⊗

Ad(g2)(z1)z2 for elements gi ∈ G, zi ∈ U̇(g), i = 1, 2.

Definition 2.5. i) We denote by Modd
Ḟ[G,g]

be the full subcategory of all Ḟ[G, g]-

modules for which the action of U̇(t) is diagonalisable into finite-dimensional weight

spaces.

ii) We denote by Modfg,d
Ḟ[G,g]

be the full subcategory of Modd
Ḟ[G,g]

which are finitely

generated.

For an object M of Modd
Ḟ[G,g]

we define the dual M′ as the graded dual of the

underlying U̇(g)-module together with the contragradient action of G.

Let M be an object of Ȯp
alg. Then there is a surjection

p : U̇(u−P )⊗W → M

2Without the composition with the Cartan involution.
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for some finite-dimensional algebraic P -moduleW. Let d := ker(p) be its kernel. Then

set

FG
P (M) := IndG

P ((O(U−
P,F)⊗W )d)

where (O(U−
P,F)⊗W )d is the orthogonal complement of d with respect to the pairing

(2.2). The latter submodule can be interpreted as the graded dual of M . In particular

we get

FG
P (M)′ = IndG

P (M).

Lemma 2.6. Let M be an object of Ȯp
alg. Then FG

P (M) is an object of the category

Modd
Ḟ[G,g]

. Its dual FG
P (M)′ is an object of the category Modfg,d

Ḟ[G,g]
.

Proof. It suffices to show the second assertion. As G/P is a finite set, we need only

to show that FG
P (M)′ has a decomposition into finite-dimensional weight spaces. Let

M =
⊕

λ Mλ. We write FG
P (M) =

⊕

g∈G/P δg ⋆ M where δg ⋆ M is the U̇(g)-module

with the same underlying vector space but where the Lie algebra action is twisted

by Ad(g). We consider the Bruhat decomposition G/P =
⋃

w∈WP
UB,wwP/P where

UB,w = U ∩ wU−w−1 and take the obvious representatives for G/P. Thus we have

FG
P (M)′ =

⊕

w∈WP

⊕

u∈U−
B,w

δuw ⋆ M.

In the case of δw, w ∈ W, the grading of δw ⋆ M is given by
⊕

λ Mwλ. In the case of

δu, u ∈ UB,w the grading is given by
⊕

λ u ·Mλ (Note that we have an action of U on

M). In general we consider the mixture of these cases. ✷

Let V be additionally a finite-dimensional P -module. Then we set

FG
P (M,V ) := IndG

P ((O(U−
P,F)⊗W ′)d ⊗ V ).

This is an object of Modd
Ḟ[G,g]

by a slight generalization of the above lemma. In this

way we get a bi-functor

FG
P : Ȯp

alg × Rep(P ) → Modd
Ḟ[G,g]

.

By the following statement the dual FG
P (M,V )′ is an object of Modfg,d

Ḟ[G,g]
.

Lemma 2.7. The dual of FG
P (M,V ) is given by

FG
P (M,V )′ = Ḟ[G, g]⊗Ḟ[P,g] (M ⊗ V ′).

Proof. We have FG
P (M,V )′ = IndG

P (M
′ ⊗ V )′ = IndG

P ((M
′)′ ⊗ V ′) = IndG

P (M ⊗ V ′).

✷
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Proposition 2.8. The functor FG
P is exact in both arguments.

Proof. We start to prove that the functor is exact in the first argument. Let 0 →

M1 → M2 → M3 → 0 be an exact sequence in the category Op
alg. Then the sequence

0 → IndG
PM1 → IndG

PM2 → IndG
PM3 → 0 is also exact. But the graded dual of this

sequence is exactly 0 → FG
P (M3) → FG

P (M2) → FG
P (M1) → 0.

As for exactness in the second argument let 0 → V1 → V2 → V3 → 0 be an exact

sequence of P -representations. As

FG
P (M,V ) := IndG

P ((O(U−
P,F)⊗W ′)d ⊗ Vi)

and IndG
P is an exact functor we see easily the claim. ✷

Now let Q ⊃ P be a parabolic subgroup and let M ∈ Ȯq
alg. Then we may consider

it also as an object of Ȯp
alg.

Proposition 2.9. If Q ⊃ P is a parabolic subgroup, M an object of Ȯq
alg and V a

finite-dimensional P -module, then

FG
P (M,V ) = FG

Q (M, IndQ
P (V )) .

Proof. We have

FG
P (M,V ) = IndG

P (M
′ ⊗ V ) = IndG

Q(Ind
Q
P (M

′ ⊗ V ))

= IndG
Q(M

′ ⊗ IndQ
P (V )) = FG

Q (M, IndQ
P (V ))

by the projection formula. Hence we deduce the claim. ✷

As in [OS] a parabolic Lie algebra p is called maximal for an object M ∈ Ȯp if

there does not exist a parabolic Lie algebra q ) p with M ∈ Ȯq.

Theorem 2.10. Let p > 3. Let M be an simple object of Ȯp
alg such that p is maximal

for M . Then FG
P (M) is a simple Ḟ[G, g]-module.

Proof. The proof follows the idea of loc.cit. and is even simpler. We start with

the observation that by duality FG
P (M,V ) is simple as Ḟ[G, g]-module iff FG

P (M,V )′

is simple as Ḟ[G, g]-module. We consider again the Bruhat decomposition G/P =
⋃

w∈WP
U−
B,wwB/B and the induced decomposition

FG
P (M)′ =

⊕

w∈WP

⊕

u∈U−
B,w

δuw ⋆ M.
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We denote (with respect to δuw ⋆ M) for elements z ∈ U̇(g) and m ∈ M the action

of z on m by z ·uw m. Now each summand δuw ⋆M is simple since M is simple. Thus

it suffices to show that the summands are pairwise non isomorphic as U̇(g)-modules.

Suppose that there is an isomorphism φ : δg ⋆M → δh ⋆M for some elements g, h as

above. We may suppose that h = e. Write g = u−1w. Then such an isomorphism is

equivalent to an isomorphism φ : δw ⋆ M → δu ⋆ M ∼= M . The latter isomorphism is

given by the mapping m 7→ u−1 ·m.

We show that this can only happen if w ∈ WP . Let λ ∈ X(T)∗ be the highest

weight of M , i.e. M = L(λ), and P = PI is the standard parabolic subgroup induced

by I = {α ∈ ∆ | 〈λ, α∨〉 ∈ Z≥0}, cf. [Hu]. Suppose w is not contained in WI = WP .

Then there is a positive root β ∈ Φ+ \ Φ+
I such that w−1β < 0, hence w−1(−β) > 0.

Consider a non-zero element element y ∈ g−β, and let v+ ∈ M be a weight vector of

weight λ. Then we have for n ∈ N, the following identity

y[n] ·w v+ = Ad(w−1)(y[n]) · v+ = 0

as Ad(w−1)(y[n]) ∈ g−w−1β annihilates v+. We have φ(v+) = v for some nonzero

v ∈ M . And therefore

0 = φ(y[n] ·w v+) = y[n] · φ(v+) = y[n] · v .

But y is an element of u−P , hence we get a contradiction by Proposition 2.13 since n

was arbitrary. ✷

Theorem 2.11. Let p > 3. Let M be an simple object of Ȯp
alg such that p is maximal

for M and let V be an irreducible P -representation. Then FG
P (M,V ) and its dual

FG
P (M,V )′ are simple as Ḟ[G, g]-module.

Proof. Again by duality it is enough to check the assertion for FG
P (M,V )′. So let U ⊂

FG
P (M,V )′ be a non-zero G-invariant subspace. Recall that FG

P (M)′ =
⊕

γ∈G/P δγ ⋆

L(λ) so that

FG
P (M,V ) =

⊕

γ∈G/P

δγ ⋆ L(λ)
′ ⊗ V γ.

Considered as U̇(g)-module FG
P (M,V ) is isomorphic to (

⊕

γ∈G/P δγ ⋆L(λ)
′)⊗V. Hence

by the simplicity of M and since the summands δγ ⋆L(λ)
′ are pairwise not isomorphic

the U̇(g)-module U is equal to
⊕

γ∈G/P

δγ ⋆ L(λ)
′ ⊗F Vγ ,
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with subspaces, Vγ , γ, of V . Here δ1 ⋆ L(λ)
′ ⊗ V1 = L(λ)′ ⊗ V1 is a Ḟ[P, g]-submodule

of L(λ)′ ⊗ V . Since V ist irreducible the latter object is irreducible, as well. Hence

V1 = V. But since G permutes the summands of U we see that U = FG
P (M,V )′. ✷

In the following statement we merely consider elements in a root space by the very

definition of U̇(g).

Lemma 2.12. Let p > 3. Let x ∈ gγ some element for γ ∈ Φ. Let M be a U̇(g)-

module and v ∈ M .

(i) If x acts locally finitely3 on v (i.e., the K-vector space generated by (x[i].v)i≥0 is

finite-dimensional), then x acts locally finitely on U̇(g).v.

(ii) If x.v = 0 and [x, [x, y]] = 0 for some y ∈ gβ, where β ∈ Φ then

x[n]y[n].v = [x, y][n].v .

Proof. (i) The idea is to apply Lemma 8.1 of loc.cit. which gives in characteristic 0

the formula

xk · z1z2 . . . zn =
∑

i1+...+in+1=k

k!

i1! . . . in+1!
[x(i1), z1] · . . . · [x

(in), zn]x
in+1 .

Here the expression [x(i), z] means ad(x)i(z). We may rewrite this as

x[k] · z1z2 . . . zn =
∑

i1+...+in+1=k

1

i1! . . . in!
[x(i1), z1] · . . . · [x

(in), zn]x
[in+1].

Indeed we consider the PBW-decomposition U̇(g) = U̇(u)⊗ U̇(t)⊗ U̇(u) and assume

that the elements zi lie without loss of generality in one of these factors. For any

element z in some root space it follows from [Hu, 0.2] that [x(k), z] = 0 for all k ≥ 4.

Since we avoid the situation p = 2, 3 we my divide my the denominators 2! and 3!.

Now in contrast to loc.cit. we have again to consider zi as elements of U̇(g) instead

of elements in g. Let di be the order of the differential zi. Then [x(i1), z1] · · · [x
(in), zn]

is an differential of order less than 4(d1 + . . . + dn). In particular we can conclude

as in loc.cit. that the term lies in a finite dimensional vector space which gives now

easily the claim.

ii) In characteristic 0 we have the formula xnyn.v = n! · [x, y]nv, cf. [OS, Lemma

8.2 ii)]. We only have to divide two times by n!. ✷

3Note that this definition is stronger than the one in characteristic 0.
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Proposition 2.13. Let p > 3. Let p = pI for some I ⊂ ∆. Suppose M ∈ Ȯp is a

highest weight module with highest weight λ and

I = {α ∈ ∆ | 〈λ, α∨〉 ∈ Z≥0} .

Then no non-zero element of a root space of u−p acts locally finitely on M .

Proof. The proof is in principal the same as in the case of characteristic 0 [OS, Cor.

8.2]. However we have to modify some technical ingredients of the necessary lemmas

due the different characteristic.

let y ∈ (u−p )γ for some root γ. Let v+ be a weight vector with weight λ. Write

γ =
∑

α∈∆ cαα (with non-negative integers cα). We show by induction on the height

ht(γ) of γ (Recall that ht(γ) =
∑

α∈∆ cα) that yγ can not act locally finite. For this

it suffices by weight reasons to show that y
[n]
γ .v+ 6= 0 for infinitely many positive

integers n.

If ht(γ) = 1, then γ is an element of ∆ \ I. Rescaling yγ we can choose xγ ∈ gγ

such that [xγ , yγ] = hγ and [hγ, xγ ] = 2xγ and [hγ , yγ] = −2yγ. Then by [Hab, 5.2] we

get

(2.3) x[n]
γ y[n]γ .v+ =

(

λ(hγ)

n

)

.v+ =
1

n!

n−1
∏

i=0

(〈λ, γ∨〉 − i).v+ .

As I = {α ∈ ∆ | 〈λ, α∨〉 ∈ Z≥0}, it follows that 〈λ, γ∨〉 /∈ Z≥0 and the term on

the right of 2.3 does not vanish for infinitely many n. In particular, ynγ .v
+ 6= 0 for

infinitely many n ≥ 0.

Now suppose ht(γ) > 1. Then we can write γ = α + β with α ∈ ∆ and β ∈ Φ+.

Clearly, not both α and β can be contained in ΦI . We distinguish two cases.

(a) Let β − α /∈ Φ. Then we get for α /∈ I by Lemma 2.12:

x
[n]
β y[n]γ .v+ = [xβ, yγ]

[n].v+

where xβ is a non-zero element of gβ . We conclude by induction that [xβ , yγ]
[n].v+ 6= 0

for infinitely many n ≥ 0.

For α ∈ I we have by Lemma 2.12:

x[n]
α y[n]γ .v+ = [xα, yγ]

[n].v+ .

where xα be a non-zero element of gα. Again we conclude by induction the claim.

And thus y
[n]
γ .v+ 6= 0 for infinitely many n ≥ 0.
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(b) Let β − α is in Φ. Then we have γ − kα ∈ Φ+ for 0 ≤ k ≤ k0 (with k0 ≤ 3, cf.

[Hu, 0.2]), and γ − kα /∈ Φ ∪ {0} for k > k0. This implies [x
(i)
α , yγ] = 0 for i > k0. By

Lemma 2.12 we conclude as in loc.cit.

x[nk0]
α ynγ .v

+ =
∑

i1+...+in=nk0

1

i1! . . . in!
[x(i1)

α , yγ] · . . . · [x
(in)
α , yγ].v

+

which can be rewritten as (the corresponding term vanishes if there is one ij > k0)

1

(k0!)n
[x(k0)

α , yγ]
n.v+.

Thus we get

x[nk0]
α y[n]γ .v+ =

1

(k0!)n
[x(k0)

α , yγ]
[n].v+.

If γ−k0α is not in ΦI we are done by induction. Otherwise we necessarily have α /∈ I.

In this case, if we choose some xβ ∈ gβ \ {0} and deduce as in loc.cit that

x
[n]
β y[n]γ .v+ = [xβ , yγ]

[n].v+ ,

As we are now in the case of height one, we can thus conclude again. ✷

Remark 2.14. Unfortunately objects in the category Ȯ do not have finite length

in general. This holds in particular for the local cohomology modules Hd−i
Pi

(Pd,O)

as discussed in [Ku]. However in loc.cit. it was pointed out that one can consider

composition series of countable length in the sense of Birkhoff [Bi]. In this way

one can use similar to the p-adic case [OS] the functors FG
P for a description of the

composition factors of the terms IndG
P(j+1,d−j)

(H̃d−j
Pj

(Pn, E)⊗Std+1−j) appearing in the

Theorem of Kuschkowitz.

3. Second approach

This section is inspired by the theory of D-modules. Here we carry out the theory

presented in the previous section for the rings of differential operators on the flag

variety X := BF\GF.

Let DPd
F

(Pd
F) be the space of global sections of the D-module sheaf DPd

F

on the

projective variety Pd
F. For a homogeneous vector bundle E on Pd

F, set

DE
Pd
F

= E(Pd
F)⊗DPd

F

(Pd
F)⊗ E∗(Pd

F).
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Then DE
Pd
F

acts naturally on E(X ) and the filtration appearing in Kuschkowitz’s the-

orem. Instead we consider (which become clear later) the space of global sections

D = DX(X) of the differential operators on X and

DE = E(X)⊗D ⊗ E(X)

for any homogeneous vector bundle E on B\G. There is an action of DE on all the

above objects as well. We consider further the Beilinson-Bernstein homomorphism

πE : U̇(g) → DE

which is not surjective (for E = OX) in positive characteristic as shown by Smith in

[Sm].

Consider the covering X =
⋃

w∈W B\BU−w by translates of the big open cell

B\BU−. Let D1 = D(B\BU−). Thus D1 is the crystalline Weyl algebra

D1 = F[Tα | α ∈ Φ−]〈y[n]α | α ∈ Φ−, n ∈ N〉.

By the sheaf property we see that D coincides with the set

(3.1) {Θ ∈ D1 | Θ(O(B\BU−w)) ⊂ O(B\BU−w) ∀w}.

For any prime power q = pn we let D1
q be the differential operators which are F[T q

α |

α ∈ Φ−]-linear. Then we have D =
⋃

n Dpn. The next statement is a generalization

of [Sm, lemma 3.1]. We set for α > 0, Tα := T−1
−α.

Lemma 3.1. Let Θ ∈ D1
q . Then Θ ∈ D iff

i) Θ(1) ∈ F

and

ii) Θ(
∏

α∈Φ− T iα
α ) ∈ V :=

⊕

0≤jα≤q

∏

α∈Φ− T jα
α for all tuples (iα)α with 0 ≤ iα ≤

q − 1.

Proof. ⇒: The first item follows from the sheaf property (3.1) since O(B\G) = F.

Now let Θ ∈ D∩D1
q . Let w0 ∈ W be the longest element and f =

∏

α<0 T
iα
α as above.

Then g = f ·
∏

α>0 T
q
α ∈ O(B\BU−w0). But then

Θ(f) = (
∏

α<0

T q
α)Θ(g) ∈ (

∏

α

T q
α<0)O(B\BU−w0) ∩O(B\BU−) ⊂ V.
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⇐: We show that Θ(O(B\BU−w)) ⊂ O(B\BU−w) ∀w ∈ W . We consider the

element f =
∏

β∈w(Φ−) T
iβ
β ∈ O(B\BU−w). Write

f =
∏

β∈w(Φ−)
β<0

T
iβ
β

∏

β∈w(Φ−)
β>0

T
iβ
β =

∏

β∈w(Φ−)
β<0

T
iβ
β

∏

β∈w(Φ−)
β>0

T
−iβ
−β .

For each β > 0 let mβ be the integer with mβq < iβ ≤ (mβ + 1)q. On the other

hand, for each β < 0 let mβ be the integer with mβq ≤ iβ < (mβ + 1)q. Then
∏

β∈w(Φ−)
β<0

T
iβ
β =

∏

β∈w(Φ−)
β<0

T
mβq
β T

iβ−mβq
β . Putting this together we get by assumption

(ii)

Θ(
∏

β∈w(Φ−)
β>0

T
(mβ+1)q−iβ
−β

∏

β∈w(Φ−)
β<0

T
iβ−mβq

β ) ∈ V.

Thus Θ(f) ∈
∏

β∈w(Φ−)
β>0

T
−(mβ+1)q

−β

∏

β∈w(Φ−)
β<0

T
mβq

β V ⊂ O(B\BU−w). ✷

We fix the same setup as in the previous section. I.e. P ⊂ G is a parabolic

subgroup, UP its unipotent radical and U−
P its opposite unipotent radical. Moreover

we have fixed as before lifts PZ etc. inside GZ. We consider the following subalgebras

of D in terms of generators:

D(P ) = 〈Tm
α · y

[n]
α ∈ D | m ≤ n for yα ∈ p ∩ b−, m ≥ n for L−α ∈ u〉.

D(UP ) = 〈(Tα)
m · y

[n]
α ∈ D | m > n,L−α ∈ uP 〉.

D(U−
P ) = 〈(Tα)

m · y
[n]
α ∈ D | m < n, yα ∈ u−P 〉.

D(LP ) = 〈(Tα)
m · y

[n]
α ∈ D | m ≤ n for yα ∈ lP ∩ b−, m > n for L−α ∈ lP ∩ u〉.

D(T ) = 〈(Tα)
m · y

[n]
α ∈ D | m = n, α ∈ ∆〉.

Remark 3.2. i) Note that D(T ) is for p 6= 2 nothing else but πOX (U̇(t)) as Tαyα =

π(2hα) for all α ∈ ∆. Hence if λ ∈ X∗(T ), it induces a D(T )-module structure on F

which we denote by Fλ.

ii) By Lemma 3.1 one checks that D(UP ) = πOX (U̇(uP )) since T
2
αyα = π(L−α)∀α ∈

Φ−.

Lemma 3.3. There is for all n ∈ N and α ∈ ∆ the identity
(

Tαyα
n

)

= T n
α y

[n]
α .

Proof. This is left to the reader. ✷
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We set DE(P ) = E(X)⊗D(P )⊗E∗(X) etc. Then there is a product decomposition

DE = DE(P )DE(U−
P ) (an almost PBW-decomposition).

Again we mimic the definition of the category O in the sense of BGG. Let OP
DE be

the category of DE -modules such that

i) M is finitely generated as a DE -module

ii) As a DE(LP )-module it is a direct sum of finite-dimensional modules.

iii)DE(UP ) acts locally finite-dimensional, i.e. for allm ∈ M the subspace DE(UP )·

v is finite-dimensional.

Remark 3.4. For E = OX this category corresponds in analogy to the classical case

to the principal block.

We define the algebraic part of OP
DE ,alg as usual, i.e. we denote by OP

DE ,alg the

full subcategory of OP
DE consisting of objects such that the action of U̇(t) on the

weight spaces is given by algebraic characters λ ∈ X∗(T ). Note that axioms ii) and

iii) induce together with the map πE : U̇(g) → DE an algebraic P -module structure

on any object in OP
DE ,alg.

As in the classical case we see that the axioms imply the existence of a finite-

dimensional DE(P )-module N which generates M as a DE -module. Further there are

similar definitions. E.g. a vector in an DE -module M ∈ ODE is called a maximal

vector of weight λ ∈ t∗ if v ∈ Mλ and DE(UP ) · v = 0. A DE-module M is called

a highest weight module of weight λ if there is a maximal vector v ∈ Mλ such that

M = DE · v. By the very definition such a module satisfies M = DE(U−
B ) · v. For a

one-dimensional U̇(t)-module λ we consider it as usual via the trivial DE(UB)-action

as a one-dimensional DE(B)-module Fλ and set M(λ) = DE⊗DE (B)Fλ. More generally

we may define for every finite-dimensional DE(P )-module W the generalized Verma

module M(W ) = DE ⊗D(P ) W. Note that we have surjections DE(U−
B )⊗ F̄λ → M(λ)

and DE(U−
P ) ⊗F W → M(W ). We see by the above surjections that [Hu, Thm. 1.3]

holds true in our category, i.e. if M(λ) 6= 0 then it has a unique simple quotient L(λ).

Moreover these modules form a complete list of simple modules in the ”union” of our

categories ODE .
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Consider the local cohomology module H̃d−j
Pj

(Pd,O). For d − j ≥ 2 this coincides

with the vector space of polynomials
⊕

n0,...,nj≥0

nj+1...nd<0
∑

i ni=0

F ·Xn0
0 · · ·X

nj

j X
nj+1

j+1 · · ·Xnd

d

cf. [O2]. In general there is some finite-dimensional P(j+1,d−j)-module V such that

H̃d−j
Pj

(Pd, E) is a quotient of
⊕

n0,...,nj≥0

nj+1...nd≤0
∑

i ni=0

F ·Xn0
0 · · ·X

nj

j X
nj+1

j+1 · · ·Xnd

d ⊗ V.

Proposition 3.5. Let E be a homogeneous vector bundle on Pd
F. Then H̃d−j

Pj
(Pd, E)

is an object of O
P(j+1,d−j)

DE .

Proof. The non-trivial aspect is to show that H̃d−j
Pj

(Pd, E) is finitely generated. We

will show this for E = O. We claim that
⊕

n0,...,nj≥0
∑j

i=0
ni=d−j

F ·Xn0
0 · · ·X

nj

j X−1
j+1 · · ·X

−1
d

is as in characteristic 0 a generating system of Hd−j
Pj

(Pd,O). Indeed, as in the latter

case we can apply successively the differential operators Lα ∈ u−P(j+1,d−j)
to obtain all

expressions Xn0
0 · · ·X

nj

j X
nj+1

j+1 · · ·Xnd

d such that |ni| ≤ p for all i ≥ j + 1. In order to

obtain those where ni = −(p + 1) for some i ≥ j + 1 we can apply y
[p]
(−,j+1) to get

the desired denominators. However, we do not get all possible nominators. But in

our algebra D we have in contrast to U̇(g) the differential operator T p−1
(a,b)L

[p]
(a,b) with

j + 1 ≤ a < b ≤ d at our disposal. Applying these operators we can realize all

nominators. For |ni| > p + 1 in particular for |ni| = rp + 1, r ≥ 2 we use the same

method as above etc.. ✷

Proposition 3.6. The object H̃ i
Pj(P

d,O) is a simple module isomorphic to L(si · · · s1 ·

0).

Proof. In characteristic 0 we gave a proof in [OS, Prop. 7.5]. Here we can argue

with the differential operators at our disposal in the same way. Note that for general

λ ∈ X∗(T ) the simple module L(λ) is an avatar of the characteristic 0 version. ✷

We let

AE
G := F[G]#DE

be the smash product of the group algebra F[G] and DE .
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Let M be an object of OP
DE ,alg and let V be a finite-dimensional P -module. Then

we set

FG
P (M,V ) := F[G]⊗F[P ] (M ⊗ V ).

Note that FG
P (M,V ) = IndG

P (M ⊗ V ). This is a AE
G-module. In this way we get a

bi-functor

FG
P : OP

DE ,alg × Rep(P ) → ModAE
G
.

The proof of the next statement is the same as in Propositions 2.8 and 2.9.

Proposition 3.7. a) The bi-functor FG
P is exact in both arguments.

b) If Q ⊃ P is a parabolic subgroup, M an object of OQ
DE ,alg

, then

FG
P (M,V ) = FG

Q (M, IndQ
P (V )) ,

where IndQ
P (V ) denotes the corresponding induced representation. ✷

Theorem 3.8. Let M be an simple object of OP
DE ,alg such that P is maximal for M

and let V be a simple P -representation. Then FG
P (M,V ) is simple as AE

G-module.

Proof. The proof follows the strategy of Theorems 2.10 and 2.11. Note that Propo-

sition 2.13 does also hols true for our objects L(λ) as avatars of their character zero

versions. ✷
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