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BOUNDEDNESS OF ELLIPTIC CALABI-YAU THREEFOLDS

STEFANO FILIPAZZI, CHRISTOPHER D. HACON, AND ROBERTO SVALDI

ABSTRACT. We show that elliptic Calabi—Yau threefolds form a bounded family. We also show that the
same result holds for minimal terminal threefolds of Kodaira dimension 2, upon fixing the rate of growth of
pluricanonical forms and the degree of a multisection of the Iitaka fibration. Both of these hypotheses are
necessary to prove the boundedness of such a family.
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1. INTRODUCTION

Throughout this paper, we work over the field of complex numbers C.

Normal projective varieties with numerically trivial canonical bundle (in short, K-trivial varieties) and
mild singularities are one of the fundamental building blocks in the birational classification of projective
varieties and they play a prominent role in many areas of research. It is well known that their birational
geometry is rather rich and subtle, and many phenomena in this context are yet to be fully understood.
Among K-trivial varieties, an important and rich class that still defies our understanding is given by Calabi-
Yau varieties, i.e., projective varieties X with Q-factorial terminal singularities, Kx ~ 0 and h*(Ox) = 0
for 0 < i < dim X.

A fundamental and long-standing question, originally due to M. Reid and S.-T. Yau, see, for exam-
ple, [Rei87, Yau09], is whether Calabi-Yau threefolds have finitely many topological types. From the point
of view of birational geometry, one could try to answer affirmatively the above question by showing that
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Calabi—Yau threefolds are parametrized by finitely many algebraic families of deformations. In general, K-
trivial varieties certainly do not form finitely many algebraic families: in dimension 3, it suffices to consider,
for example, the case of products of K3 surfaces and elliptic curves — although this example does not con-
tradict the conjecture on the finiteness of topological types in a fixed dimension. Hence, we cannot drop the
condition on the vanishing of the middle cohomology of the structure sheaf. An interesting and important
result towards a definitive answer to the question posed by Reid and Yau is due to Gross [Gro94]: he showed
that there exist finitely many projective families X; — S; — T; over finite type schemes T; such that for any
elliptic Calabi—Yau fibration f: X — S, whose base S is a rational surface, there is a closed point ¢ in some
T; such that X (resp. S) is birationally isomorphic to the fiber X} (resp. S:) over ¢t and these birational
isomorphism can be chosen so that they identify f with the induced fibration X; — S;. Even better, it is
not hard to show that the birational map X --» A} is an isomorphism in codimension 1, and hence can be
decomposed into a finite sequence of flops. We summarize this property by saying that elliptic Calabi—Yau
threefolds form a bounded family modulo flops. Recently, Wilson [Wil21, Wil20] has proven some new results
in the context of boundedness of Calabi—Yau threefolds at large.

The class of elliptic Calabi—Yau threefolds is of central importance in the study of Calabi—Yau threefolds
in general: indeed, it is expected, based on known examples, that Calabi-Yau threefolds of large Picard
rank are always elliptically fibered, perhaps after flopping a finite number of curves. Thus, this approach
may eventually show that Calabi—Yau threefolds of large Picard rank have finitely many topological types.
When the base S of an elliptic Calabi-Yau f: X — S is not rational, then it is birational to a (possibly
singular) Enriques surface and f is isotrivial, see [Gra9l, Theorem 3.1]. Thus, the birational geometry of
these fibrations is well understood. Even better, by work of Kolldr and Larsen [KL09, Theorem 14], it is
known that X becomes a product of a K3 or Abelian surface with an elliptic curve, after a quasi-étale cover,
see also [Nak88, Appendix].

Since Calabi—Yau threefolds may have infinitely many models that are isomorphic in codimension 1, it
is not clear whether the result of Gross implies the boundedness of topological types for these Calabi—Yau
varieties. However, another celebrated conjecture, the Kawamata—Morrison Conjecture, predicts that the
isomorphism types of such models are just finitely many distinct ones. Kawamata [Kaw97] proved a weaker
version of this conjecture in the elliptically fibered case: given an elliptic threefold f: X — S, he showed
that, up to isomorphism over S, there are only finitely many models of f over S isomorphic in codimension 1,
cf. Theorem 3.4. Hence, Kawamata’s result offers a first hint towards proving boundedness of the topological
types elliptic Calabi-Yau varieties starting from Gross’s theorem.

We give a complete and affirmative answer to Yau’s question for elliptic Calabi—Yau threefolds. In this
paper, an elliptic Calabi—Yau threefold will be a terminal Q-factorial projective variety X with Kx ~ 0 and
HY(X,0Ox) = 0 for i = 1,2, which is moreover endowed with a morphism with connected fibers f: X — S
of relative dimension 1 — which immediately implies, as Kx ~ 0 that the generic fiber is a curve of genus
1. We do not require any further assumptions on the morphism f, besides that on its relative dimension.
The surface S is only assumed to be normal; then, the canonical bundle formula and the assumptions on the
singularities of X immediately imply that S has klt singularities.

Theorem 1.1. The set {S’?’ny o of elliptic Calabi-Yau threefolds forms a bounded family.

Our result includes also the case of those elliptic fibrations whose base is non rational; in such case, the
bases of the fibration is a surface with at worst Du Val singularities whose minimal resolution is an Enriques
surface. Following the philosophy introduced above, we show that there exist a finite number of algebraic
families such that any elliptic Calabi—Yau threefold appears as the fiber of one of the families.

Theorem 1.1 immediately yields the following important corollary proving the finiteness of the topological
types of elliptic Calabi-Yau threefolds, answering a classical question in string theory, see [Gra23] for a
detailed account of the consequences of boundedness in string theory.
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Corollary 1.2. There are only finitely many topological types of elliptic Calabi—Yau threefolds.

Most of the methods developed to tackle Theorem 1.1 can be used to study the boundedness of elliptically
fibered varieties in general. For instance, they naturally apply to minimal n-folds X with x(X) =n — 1,
as their Iitaka fibration f: X — Y is an elliptic fibration. This circle of ideas has been explored by the
first-named author in [Fil20], where necessary and sufficient conditions for boundedness modulo flops are
settled. By further exploring the methods of the proof of Theorem 1.1, we are also able to improve the
criteria in [Fil20] to criteria for honest boundedness in the case of threefolds of Kodaira dimension 2. Let

h2(X;mD) and this

mk
k!

us recall that for a divisor D on a normal algebraic variety, we define vol (D) = lim, 0
value is strictly positive (and finite) exactly when the litaka dimension of D is k.

Theorem 1.3. Fix a positive integer d and a positive real number v. The set

SS’U’C _ X is a projective Q-factorial terminal threefold, Kx is nef, k(Kx) = 2,
K=2 vola(Kx) = v, and the Iitaka fibration of X admits a degree C' rational multisection

forms a bounded family.

We stress that the conditions in Theorem 1.3 are all necessary. Indeed, as discussed in [Fil20, § 3], given
a family m: X — T of minimal n-folds of Kodaira dimension n — 1, up to a stratification of T', their litaka
fibrations deforms along the family, that is, 7 factors as X — Y — T and for any t € T, X; — ) is the litaka
fibration of X;. Consequently, up to a further stratification, Kodaira’s formula for the canonical bundle of
X: — ) is obtained by restriction of the formula for X — ). Furthermore, up to an additional stratification,
a rational multisection of X — ) induces a rational multisection of X; — ).

The following examples will show that these conditions are not vacuously satisfied, but they need to be
imposed and they are independent of each other.

Example 1.4. In this example, we produce an unbounded class of smooth minimal threefolds of Kodaira
dimension 2 with bases belonging to a bounded family. The unboundedness will follow from the fact that
the elliptic threefolds in our construction do not admit a multisection of bounded degree, and vola(X) does
not belong to a finite set.

Fix an elliptic curve E. Let us consider the diagonal action of Z/nZ on E x P! given as the translation
by an element of order n on E and the action of a primitive n-th root of unity on P'. Then, the induced
action on F x P! has no fixed points and we obtain the following commutative diagram

E x P! Y S, = (E x PY)/(Z/nZ)

| B

p! Y P = P(Z/nZ).

By construction, g, has fibers of multiplicity n over {0} and {oo}. Thus, Kodaira’s canonical bundle
formula for surfaces implies that Kg, ~g gi(Kp + (1 — 1)({0} 4+ {o0})). Let C be a genus 2 curve
obtained by as a degree 2 cover h: C' — P! branched away from {0} and {cc}. Taking the base change
of g, by h, we obtain a surface T,, :== S, xp1 C with a morphism [,,: T,, — C such that «(T,) = 1 and
Kr ~qg h*(Kc+ (1= 1)(p+q+7+35)), where p, ¢, 7, s are the preimages of {0} and {co} on C. The divisor
Ke+ (1—L)(p+q+r+s) has degree 2 + 4(1 — 1), As mentioned above, when considering the Iitaka
fibration in a bounded family of minimal models, Kodaira’s formula for the canonical bundle is obtained
by restriction, up to a suitable stratification. Thus, the fact that the log pairs (C,(1 — L)(p+q+r+s))
have coefficients varying in an infinite set implies that corresponding surfaces T3, do not belong to a bounded
family. As the fibration T,, — C has fibers of multiplicity n, that cannot admit a multisection of degree less
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than n. Thus, as n varies, the fibrations g, do not admit a common upper bound for the minimal degree
of a multisection. Then, taking the product of T,, — C with C, we get an example of a smooth minimal
threefold X,, with x(X,) = 2 and with the same properties as above. Indeed, if W,, is a multisection of
X, — C x C, for a general choice of ¢ € C, W,, induces a multisection of X,, xcxc {c} x C — {c} x C which
is isomorphic to T,, — C. Hence, although the bases of the litaka fibrations of the X, are all isomorphic and
thus trivially belong to a bounded family, on the other hand, vols(X,,) does attain infinitely many distinct
values, and there is no lower bound for the degree of a rational multisection of X,, — C x C.

Example 1.5. In this example, we show that the conditions of Theorem 1.3 are independent of each other.

Let C), be a smooth curve of genus n, and let £ be an elliptic curve. Then, C,, x C, x E — C,, x C,
is a smooth minimal elliptic threefold of Kodaira dimension 2 admitting a section. Furthermore, voly(C,, X
Cn x E) = (2n — 2)? depends on n. Thus, the set of the varieties C,, is not bounded, showing that it is
not sufficient to just assume the existence of an upper bound on the degree of a multisection of the Iitaka
fibration to prove the boundedness of the minimal terminal n-folds of Kodaira dimension n — 1.

Fix a curve C with g(C) > 2, and let E be an elliptic curve. Then, by [Fil20, Example 3.1], there exists
a set of smooth surfaces f,,: S, — C with the following properties: f, is smooth, isotrivial, and f,, does
not admit a multisection of degree less than n. Setting X,, := S, x C and g,: X,, — C x C the induced
map, then X,, is a smooth minimal threefold with x(X,,) = 2, volo(Kx, ) = (29(C) — 2)? fixed, whereas X,
does not admit a rational multisection of degree less than n. Hence, this example in turn shows that it is
not sufficient to just assume the existence of an upper bound on vol,,—1(Y") to prove the boundedness of the
minimal terminal n-folds Y of Kodaira dimension n — 1.

Strategy of proof. In the context of Theorem 1.1 and Theorem 1.3, we shall consider a set of ellipti-
cally fibered varieties § that is known to be bounded modulo flops. Furthermore, we can assume that
these flops preserve the elliptic fibration. More precisely, we shall assume that there exists a family

m X A S—2-T of projective morphisms of quasi-projective varieties such that 7 is a flat family

of threefolds, g is a flat family of surfaces, and for every fibration f: X — S € §, there exists t € T such
that the following diagram holds

X—- - — - — — — — — — — = > Xt
sequence of K x-flops

‘/f llet

S S;.

isomorphism

In this setup, Kawamata [Kaw97] showed that each X — S admits only finitely many relatively minimal
models over S, up to isomorphism. That is, while there may be infinite sequences of flops over S and thus
infinitely many marked minimal models, these models belong to finitely many isomorphism classes of S-
schemes. In view of this, our strategy will be to show that also X — S admits only finitely many relatively
minimal models, up to isomorphism over S, and that every X — S in § appears as a fiber of one of those
finitely many models of X — S. More precisely, we shall prove the following two steps:

(i) generalize the results of [Kaw97] to relatively minimal elliptic fibrations of arbitrary dimension; and
(ii) argue that, under suitable geometric assumptions, every sequence of Ky,-flops X; --+ X/ relative to
S; can be lifted to a sequence of Ky-flops X --+ X’ relative to S.

Step (i) guarantees that X — S admits only finitely many relatively minimal models, &1, ..., X%, up to
isomorphism over S, see § 3. Then, step (ii) guarantees that each fibration in § appears as the fiber over a
closed point of X; — T for some 1 < i < k. Indeed, let X — S be an element of §. Then, by assumption,
there is a closed fiber Xy — S; such that S; = S and &; --» X decomposes as a sequence of K y,-flops over
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S = S;. Then, by (ii), we can lift this sequence as a sequence of Kxy-flops X --» X’ over §. Then, by
construction, we have that X is isomorphic to the fiber X;. Since X’ is isomorphic over S, and hence over
T, to &; for some 1 <4 < k, it follows that X is isomorphic to &j;, showing boundedness as desired.

In general, it is hard to show that a flop can be lifted from a special fiber of a family, as the Picard rank
of the fibers can jump countably many times. On the other hand, the Calabi-Yau condition guarantees
that, under a suitable base change, the Picard rank remains constant in a family, allowing for identification
between the relative Néron—Severi group and the Néron—Severi group of each fiber. This is worked out in
§ 4. The results of § 3 and § 4 are then combined to prove Theorem 6.18, which represents a general criterion
to prove boundedness for Calabi—Yau varieties that form a bounded family up to flops. Then, Theorem 1.1
immediately follows from Theorem 6.18.

The case of Theorem 1.3 is different, as it is not true in general that threefolds of Kodaira dimension 2
have locally constant Picard rank. To circumvent this issue, we shall use results of Kollar and Mori showing
that flops of terminal threefolds are locally unobstructed, see [KM92, Theorem 11.10]. Thus, while Theorem
1.1 relies on arguments that are valid in higher dimension, the proof of Theorem 1.3 is special to the case of
threefolds.

Acknowledgements. The authors would like to thank Burt Totaro for kindly suggesting the proof of
Theorem 4.1, which is a generalization of [Tot12, Theorem 4.1]. The authors wish to thank Joaquin Moraga
for reading a preliminary draft of this work. They also thank Antonella Grassi, Talon Stark, and Isabel
Stenger for useful comments on the first version of this work. Lastly, the authors would like to thank the
anonymous referee for useful comments and suggestions that helped the authors improve the clarity of this
work.

2. PRELIMINARIES

2.1. Terminology and conventions. Throughout this paper, we will work over C. For anything not
explicitly addressed in this subsection, we refer the reader to [KM98, Kol13].

2.2. Notation on morphisms and maps. A contraction is a projective morphism f: X — Y of quasi-
projective varieties with f.Ox = Oy. If X is normal, then so is Y and the fibers of f are connected.

A fiber space is a contraction f: X — Y of normal quasi-projective varieties with dim X > dim Y. Given
a fiber space f: X — Y, we define

Bir(X/Y) ={¢p€Bir(X) | foop=f} and Aw(X/Y)={ € Aut(X)| foo = f}.

There exists a natural identification Bir(X/Y) = Bir(X,,), where 7 is the generic point of Y, see [Han91] —

Bir(X/Y) is denoted by Biry (X) in [Han91]. More precisely, the k-points of Bir(X/Y) are identified with

the k(Y')-points of Bir(X,). Hence, if f: X — Y is an elliptic fibration, then Bir(X/Y") = Autyy)(X;).
We will need the following simple result.

Lemma 2.1. Let f: X — Y be a contraction of normal varieties. Assume that that f admits a factorization

f
) h

X—Y —Y

where h: Y =Y be a birational contraction. Then, Bir(X/Y) = Bir(X/Y”’) and Aut(X/Y) = Auwt(X/Y").

Proof. Fix ¢ € Bir(X/Y'). Since f = ho g, then Bir(X/Y’) C Bir(X/Y) — this inclusion holds even when
Y’ — Y is not a birational morphism. Let U C Y be an open subset over which h is an isomorphism
and let Xy := X xy U. Then, by construction, g = g o ¢ on Xy. Thus, ¢ € Bir(X/Y’). This proves
Bir(X/Y) = Bir(X/Y”). Finally, Aut(X/Y) = Aut(X/Y”) follows immediately. O
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Let r: X --+ X’ be a birational map of quasi-projective varieties. We say that r is an isomorphism in
codimension 1 if there exists closed Zariski subvarieties Z C X, Z’ C X’ of codimension at least 2 such that
r induces an isomorphism between X \ Z and X'\ Z’.

Let f: X =Y, f': X - Y be morphisms (with the same target variety Y). Then an isomorphism in
codimension 1 r: X --» X’ is said to be an isomorphism in codimension 1 over Y, if the naturally induced
diagram

commutes.

2.3. Divisors. Let K denote Z, Q, or R. We say that D is a K-divisor on a variety X if we can write
D = Z?:l d; P; where d; € K, n € N and the P; are prime Weil divisors on X for all ¢ = 1,...,n. We
say that D is K-Cartier if it can be written as a K-linear combination of Z-divisors that are Cartier. The
support of a K-divisor D = " | d;P; is the union of the prime divisors appearing in the formal sum
Supp(D) = Y, P;. In all of the above, if K = Z, we will systematically drop it from the notation.

Given a K-divisor D and a prime divisor P in the support of D, we denote by up(D) the coefficient of
Pin D. Given D = )", prime HP: (D)P; on a normal variety X, and a morphism 7: X — Z, we define the

vertical (resp. horizontal) part DV (resp. D") of D by

D':= Y pp(D)P;, D":= > pup(D)P
(P)GZ w(P;)=2

Let Dy, and Dy be K-divisors on X and let w: X — Z be a projective morphism of normal varieties. We
write Dy ~g Do if there is a K-Cartier divisor L on Z such that Dy — Dy ~g f*L. Equivalently, we may
also write Dy ~g z D2, or Dy ~g Ds over Z. Similarly, if Z = Spec(k), where k is the ground field, we omit
Z from the notation. In case D; and Dy are K-Cartier, we say that D; and Dy are numerically equivalent
over Z if Dy - C = D5 - C for every curve C C X such that 7(C) is a point, and we write D; =, Da, or,
alternatively, D1 =z Dy. If K = Z, we omit it from the notation.

2.4. Cones of divisors. Let f: X — Y be a projective morphism of varieties. We denote by N&(X/Y') the
real vector space generated by Cartier divisors on X modulo numerical equivalence on curves in X that are
contracted by f. It is a finite-dimensional vector space, and its dimension is denoted by p(X/Y).

We denote by V(X/Y) the R-subspace of N (X/Y) generated by the classes of vertical divisors and by
v(X/Y) its dimension.

We denote by A(X/Y) the cone of f-ample divisors and by A(X/Y) its closure, that is, the cone of f-nef
divisors. Similarly, we denote by B(X/Y') the cone of f-big divisors and by B(X/Y) its closure, that is, the
cone of f-pseudo-effective divisors.

A Cartier divisor D on X is f-movable if we have f.,Ox (D) # 0 and the codimension of the support of
coker(f* f.(Ox (D)) — Ox (D)) is at least 2. We denote by M(X/Y) the closed cone of f-movable divisors:
this cone is the closure of the cone generated by f-movable divisors.

We denote by B¢(X/Y) the cone of f-effective divisors, and we set A°(X/Y) = A(X/Y)N B*(X/Y) and
Me(X)Y)=M(X/Y)NB¢X/Y).

Lemma 2.2. Let f: X =Y and g: Y — Z be contractions of normal varieties. Let L be a line bundle on
X that is movable over Z. Then, L is movable over Y.
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Proof. We wish to show that the cokernel of the natural morphism f*f.L — L is supported in codimension
at least 2. By assumption, f.L is a coherent sheaf on Y, and there is a natural morphism

(2.1) 9" 9+(f<L) = felL.
By assumption, the cokernel of the natural morphism
(2.2) (gof)(gof)L — L

has codimension at least 2. By (2.1), the morphism in (2.2) factors as

[ 9" g foL — [ [ L — L,
and the claim follows. O
Lemma 2.3. Let f: X — Y be a contraction of normal varieties. Let L be a line bundle on X that is

movable over Y. Let H be a general member of a basepoint-free linear system on'Y , and let Xy := X xy H.
Then, L|x,, is movable over H.

Proof. Let us consider the Cartesian diagram
Xy—————=X
¥ |
H—" Y.
By assumption, the natural morphism
f*f«L — L
is surjective outside a subset V' C X of codimension at least 2. Since H is a general element of a basepoint-free
linear series, then X is a general element of the free linear series | f* H|, by the projection formula. Thus, we
may assume that V' N X g has codimension at least 2 in Xp. By construction, we have Lx,, = L|x, = v*L,
and we need to show that
g*g*LXH - LXH
is surjective outside a set of codimension 2. Since the pull-back is a right exact functor, we have that
v fo L = v*L
is surjective outside V N Xy, which has codimension at least 2 in Xp.
Since f ov = u o g, we have that v*f*f,L = g*u*f.L. By cohomology and base change [Har77, Remark
I11.9.3.1], there is a natural morphism
u*fo L — g«v* L.
Thus, if we consider the pull-back to Xz, we have morphisms
v f* L = g*u* fuL — g*g.v*L — v* L.
Since the composition is surjective outside of V N Xpg, then so is g*g,v*L — v*L. This concludes the
proof. O

Lemma 2.4. Let f: X — Y be a contraction of quasi-projective varieties. Let v € B(X/Y), and let
(7i)ien C NL(X/Y) be a sequence converging to y. Then, there exist Weil R-divisors D and D; on X, and
i € N, such that:

(1) [D] =1, [Di] = s

(2) there exists a reduced divisor © on X such that for all i € N, the support of D; is contained in O;
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(3) (D;)ien converges to D in the vector space of R-Weil divisors;
(4) D >0 and D; >0 for i > 0.
Moreover, if X is Q-factorial and (X,0) is klt, then there exists a positive real number € such that (X, eD)
is kIt and for all i > 0, (X, eD;) is kit.

Proof. Since f is projective and N4 (X/Y) is finite-dimensional, we may choose a basis [H], ..., [Hy] for
NL(X/Y) such that each H; is ample and effective. Since bigness is an open condition, up to rescaling,
we may assume that v — E;C:l[Hj] is big over Y. Thus, since v — Z;C:l[Hj] is big over Y, there exists a
divisor G > 0 representing v — Z?Zl[Hj] that is big on X. We set D := G + 2521 H;. Since 7; — v and
[Hi],...,[Hy] constitute a basis for N} (X/Y), then, for i > 0, ~; is contained in

k
7+Zaj[Hj] Vj,—1<a; <1
j=1

Thus, for ¢ > 0, v; can be represented by the divisor D; = G—I—Z?:l XijHj, where 0 < A\ ; <2and A\ ; — 1
for all j.

We now prove the last claim. Since we can assume that X is Q-factorial and (X,0) is klt, then there
exists € > 0 such that (X, e(G+ 25:1 2H;)) is klt. In particular, for any of choice of real numbers ¢; € [0, 2],
j=1,...,k, then also (X, (G + 2521 ¢;jH;)) is klt. Taking ¢; = 1 Vj and taking ¢; = X; j, for all i > 0
show that the last claim holds. O

Lemma 2.5. Let (X,A) be a kit pair and f: X — Y be a contraction of normal varieties. Assume that

Kx + A ~q,r 0 and that f factors as X LY 5 Y, where m is a birational morphism of normal varieties.
Then, there is a short exact sequence

0—Nz(Y'/)Y) = V(X/Y) = V(X/Y) = 0.

Proof. The morphism V(X/Y) — V(X/Y”) is naturally induced by the equivalence relations of numerical
equivalence over Y and Y’ respectively, as any curve C' C X that is vertical over Y is also vertical over Y.
Since a divisor on X is vertical over Y if and only if it is vertical over Y’, this morphism is clearly surjective.

The morphism N&(Y'/Y) — V(X/Y) is induced by g*. By considering curves in X that are vertical for
7o g but not for g, and using the projection formula, it follows that N;(Y'/Y) — V(X/Y) is injective. It
also follows immediately that g*NL(Y’/Y) is contained in ker(V(X/Y) — V(X/Y")).

Now, let D be a divisor such that [D] € ker(V(X/Y) — V(X/Y’)): to conclude, we need to show that
[D] € g*N&(Y'/Y). By the definition of the relative Néron—Severi group, without loss of generality, we may
assume that D is a Q-divisor vertical over both Y and Y’. Possibly adding the pull-back of a sufficiently
ample divisor on Y, we may assume that D is effective. Hence, for 0 < ¢ < 1, the log pair (X, A + eD)
is kIt and Kx + A + €D =, 0. Thus, X is a minimal model for (X, A + e¢D) over Y’'. Since D is vertical
and Kx + A ~qg4 0, it follows from [HX13, Theorem 1.1] and [Laill, Proposition 2.4], that X is a good
minimal model for (X, A + eD): in particular, D is semi-ample over Y’, and thus, D ~qg, 0. Hence,
[D] € g*N&(Y'/Y). O

2.5. Boundedness. We now recall the notion of boundedness for a set of log pairs, and we introduce a
suitable notion of boundedness for fibrations. First, we recall the notion of log pair. A log pair (X, B) is
the datum of a normal quasi-projective variety and an R-divisor B, called boundary, such that Kx + B is
R-Cartier and 0 < B < Supp(B).

Definition 2.6. Let © be a set of projective log pairs.
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(1) We say that © is log bounded if there exist a log pair (X, B) and a projective morphism 7: X — T,
where T is of finite type, such that for any log pair (X, B) € © there exist a closed point t € T and
an isomorphism f;: Xy — X such that (f;).5; = B.
(2) We say that ® is log birationally bounded if there exist a log pair (X, B) and a projective morphism
w: X = T, where T is of finite type, such that for any log pair (X, B) € © there exist a closed point
t € T and a birational map f: X; --+ X such that Supp(B;) = Supp((f; ')« Supp(B) + E), where
FE is the exceptional divisor of f;.
(3) If © is log birationally bounded and for any log pair (X, B) € © the map f; in (2) is an isomorphism
in codimension 1, then we say that © is log bounded in codimension 1.
When a set © of log pairs is actually a set of varieties, i.e., for any pair (X, A) € D, the condition A =0 is
satisfied, then we shall say that ® is bounded, (resp. birationally bounded, bounded in codimension 1) rather
than log bounded, (resp. log birationally bounded, log bounded in codimension 1).

Definition 2.7. Let § be a set of triples ((X, B), (Y, D), ¢), where (X, B) and (Y, D) are projective log pairs
and ¢: X — Y is a contraction.

(1) We say that § is log bounded if there exist log pairs (X, B), (), D), a variety of finite type T, and a
commutative diagram of projective morphisms

X—>722 sy
N
T
such that for any ((X, B),(Y,D),¢) € §, there is a closed point ¢ € T together with morphisms
ft: & — X and g¢: Vs — Y inducing a commutative diagram

(2.3)

X, i X
UIXt\L l/ﬁ
yt gt Y

such that (X, B) 2 (X3, B;) and (Y, D) = (Y4, Dy).

(2) We say that § is log birationally bounded if there exist log pairs (X, B), (V,D), a variety of finite
type T, the same commutative diagram as in (2.3) holds and for any ((X, B), (Y, D), ¢) € §, there
is a closed point t € T together with birational morphisms f;: X; --+ X and g¢: Y --+ Y inducing
a commutative diagram

Xt ***** >X
U'-th ‘/‘75
Vi--"-->Y

such that Supp(B;) contains the strict transform of Supp(B) and all the f; exceptional divisors) and
Supp(D;) contains the strict transform of Supp(D) and all the g; exceptional divisors.

(3) If § is log birationally bounded and the maps f;, g¢ in (2) are isomorphisms in codimension 1, we
say that § is log bounded in codimension 1.

When in a set § of triples, for any triple ((X, B), (Y, D), ¢) € §, the condition B = 0 = D is satisfied, then
we say that § is bounded, (resp. birationally bounded, bounded in codimension 1) rather than log bounded,
(resp. log birationally bounded, log bounded in codimension 1).
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2.6. Crepant birational models. The following statement is known to the experts and follows from
[BCHM10, Theorem E]. For the reader’s convenience, we include a short proof.

Lemma 2.8 (Finiteness of crepant models). Let (Y, A) be a kit pair with Y quasi-projective. Let us consider

the set M of all v:'Y — Y projective birational morphisms of normal varieties such that if Ko + Ay =
V' (Ky + Ay), then Ay > 0. Then M is finite.

Proof. Let Ay be an ample effective divisor on Y. For any model v: Y > Yin M, we set Ay = v*Ay.
Let (Y', A’) be a Q-factorial terminal model of (Y, A) realized by a birational contraction 7: Y/ — Y such

that Ky + A’ = r*(Ky + A)- such model exists by [BCHM10, Corollary 1.4.3]. By the construction in

loc.cit., for any model v: Y 5Yin M, there exists a birational contraction r,: Y’ --» Y such that

T

/‘\

v -y Yoy,
and r}(Kp + Ap) = Ky + A’, and also Ay = r*Ay. Here the pull-back under the birational map 7, is
well-defined, since r, is a birational contraction, i.e., 7, does not contract any divisor.

Let us write Ay’ ~g Hy’ + Ey-, where Hy/ is a r-ample and effective Q-divisor, while Ey- is effective.
Since (Y, A’) is klt by construction, then there exists a positive rational number 0 < € < 1 such that
(Y', A"+ e(Hy' + Ey)) is still klt. Then, given any pair (Y, Ap) with v: Y — Y which belongs the set M
defined in the statement of the lemma, then
(24) T';(Ki} + Ai} + EA?) = Ky/ —|— A/ + EAY/ NQ Ky/ —|— A/ + E(Hy/ —|— Ey/).

In particular, (2.4) implies that (Y, Ay +€(ry«Hyr + 1, Ey+)) is a weak log canonical model of (Y', A" +
e(Hy' + Ey)) relatively over Y, in the sense of [BCHM10, Definition 3.6.6]. Then [BCHM10, Theorem E|
implies the finiteness of all possible distinct weak log canonical models of (Y’ A’ + e(Hy: + Ey+)), which in
turn also proves the finiteness of the models contained in M. O

Proposition 2.9. Let X be a projective kit variety admitting an elliptic fibration f: X — Y. Assume that
Kx ~q,y 0. There exist finitely many birational morphisms h;: Y; =Y, i =1,...,n such that the following
property holds:

given a commutative diagram

(2.5) X---2__ = X'

where ¢ is an isomorphism in codimension 1 over Y, and h is birational, then there exists 1 < i < n such

thatY' =Y; and h = h;.
The definition of a relative isomorphism of codimension 1 can be found in § 2.2.

Proof. The canonical bundle formula, see, for example, [Amb05|, guarantees the existence of a generalized
log pair! (Y, By + My ) with generalized klt singularities such that Kx ~ f*(Ky + By + My). Furthermore,
given a commutative diagram as in (2.5), then

(0) the canonical bundle formula for g provides a generalized pair (Y’, By + My) such that h*(Ky +
By + My) = Ky + By + My, By = h,By+, and My = h,My;

IFor the theory of generalized log pairs and their canonical bundle formula we refer the reader to [FS23].
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(1) there exists an effective Q-divisor N ~g My independent of Y’ such that, setting Ay := By + N,
then (Y, Ay) is klt; and

(2) the log pull-back (Y’ Ay/) of (Y, Ay) to Y satisfies Ay~ > 0.
Item (0) immediately follows from the canonical bundle formula and the definition of generalized pair. To
achieve (1) and (2), we argue as follows. Consider a resolution Y” —— Yieem — Y of a terminalization
Yierm of the generalized pair (Y, By + My) where the trace My~ of the moduli part on Y descends. Since
By is effective on any model as in (2.5) and Yierm is a generalized terminalization for (Y, By + My ), we
have that Yierm --+ Y is a birational contraction.

Let ¢: Y — Y denote the induced morphism, and write Ky~ + By + My = ¢*(Ky + By + My ). Since
(Y, By + My) is generalized klt, then (Y, By~) is sub-klt. By [PS09, Example 7.16], 12My~ is globally
generated divisor on Y”. By Bertini’s theorem, we may choose a general element 12N" € |12My | such
that (Y”, By~ + N") is sub-klt. Then, by construction, (Y, By + N) is a klt pair, where N denotes the
push-forward of N” to Y. Then, (1) follows.

By construction, (Y, By~ + N") is the log pull-back of (Y, Ay ), and Y” --» Y” is a rational contraction.
Therefore, the log pull-back (Y’, Ay+) of (Y, Ay) coincides with the sub-pair obtained by pushing forward
the sub-pair (Y", By~ + N") via the rational map Y” --» Y’. Then, by construction, Ay is the sum of
By, which is effective by (0), and the strict transform of N”. In particular, Ay~ is effective, and (2) follows.

In particular, as (Y, Ay) is klt, it follows from Lemma 2.8, that there are finitely many log pairs (Y, Ay/)
that can arise in the above construction. 0

Lemma 2.10. Let 7: Y/ — Y be a birational contraction, where Y' is Q-factorial. Assume there exists a

boundary A’ >0 on Y’ such that (Y',A') is kit and Ky + A" ~g . 0. Then, M(Y'/Y)=M(Y']Y).

Proof. Let [D'] € M(Y'/Y). Since 7 is birational, D’ is relatively big and we may assume that D’ > 0.
Since [D'] € M(Y']Y), there exists a sequence of divisors D} > 0 such that [D}] € M(Y'/Y) and [D}] — [D']
in NL(Y'/Y). For 0 < € < 1, the log pair (Y, A’ + €D’) is klt, and

Ky + A"+ €D ~q €D’

In particular, we may run a D’-MMP with scaling over Y, and this terminates with a good model Y — Y,
since 7 is birational. Let D’ be the push-forward of D’ to Y”. Thus, D" is semi-ample over Y and
[D"]e M(Y"]Y).

To conclude, it suffices to show that Y’ --» Y is an isomorphism in codimension 1. For this purpose, we
observe that, as the MMP Y’ --» Y has finitely many steps, and since [D] converges to [D’'] in N}(Y'/Y),
it follows that Y --» Y is a composition of steps of the D-MMP over Y, for all i >> 1. Since each [D}] is
in M(Y'/Y'), the MMP is forced to be an isomorphism in codimension 1. O

Lemma 2.11. Let m: Y’ — Y be a birational contraction of Q-factorial normal varieties. Assume there
exists a boundary A" > 0 on Y’ such that (Y',A') is kit and Ky + A" ~qg . 0. Let Ei,...,E; denote
the prime m-exceptional divisors. Then, the classes of the E! form a basis of NL(Y'/Y). Furthermore, if
[D'] e M(Y']Y), and we write [D'] =" a;[E}], then a; <0 for all 4.

Proof. For 0 < € < 1, the log pair (Y', A’ + Zle eE!) is kit and big over Y; therefore it admits a good
minimal model Y over Y. Since the E/ are contained in the stable base locus of Ky + A’ + Y% €El, it
follows that Y — Y is a small birational morphism of Q-factorial varieties and hence an isomorphism. But
then p(Y'/Y) = k as it is well known that every divisorial contraction contracts an irreducible exceptional
divisor.

Fix [D'] € M(Y')Y). We can write D’ = > a;E]. As D’ is movable and Ky + A’ ~g - 0, up to
replacing Y/ with a model that is isomorphic in codimension 1, we may assume that D’ is semi-ample over
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Y. Then, since D’ is supported on the exceptional locus of Y’ — Y, by the negativity lemma, it follows that
D' <. O

2.7. Calabi—Yau fiber spaces. Let X and Y be normal quasi-projective varieties, and let f: X — Y be
a projective morphism. We say that f: X — Y is a Calabi-Yau fiber space if the following conditions hold:

(CYF1) X is terminal and Q-factorial;
(CYF2) f is a contraction; and

Remark 2.12. In view of [Gonl3, Theorem 1.2], [HX13, Theorem 1.1}, and [Laill, Proposition 2.4], condi-
tion (CYF3) is equivalent to Kx ~q,s 0.

For a given Calabi—Yau fiber space f: X — Y, a relatively minimal model of X over Y (or, of f) is a
contraction f’: X’ — Y such X’ is terminal, Q-factorial, Kx, =y 0, and X’ is birationally equivalent to X.
It is a well-known fact that, if f': X’ — Y is a relatively minimal model of f, then X and X’ are isomorphic
in codimension 1. Furthermore, X and X’ are connected by a sequence of K x-flops over Y, see [Kaw08].

Given two Calabi-Yau fiber spaces f: X — Y, f/: X/ — Y with X, X’ birationally equivalent, let
a: X’ --» X be the isomorphism in codimension 1 over Y. We refer to o as the marking of the minimal
model f'. A marked minimal model of f is the datum of an ordered couple (f': X’ — Y, a) where f’ is a
relatively minimal model of f together with the marking a. A marked birational model of Y is the datum of
a birational projective morphism r: Y’ — Y.

Let f: X — Y be a Calabi—Yau fiber space and (f’': X’ — Y, @) be a marked minimal model. Then, c.
induces an isomorphism between N} (X’/Y) and N&(X/Y) such that

a.B(X')Y)=B(X/)Y), a.M(X')Y)=M(X/Y), and oa.V(X'/)Y)=V(X/Y).
We define
AX/Y,a) = a, AX')Y), AX/Y,a)=a,AX']Y), and A°(X/Y,a):=a.A°(X'/Y).

By [Kaw97, Lemma 1.5], A(X/Y,a) N A(X/Y) # 0 if and only if « is an isomorphism.
Having introduced this notation, it is easy to show that, assuming the termination of a relative MMP for
any element of M¢(X/Y), we have

(2.6) MUxX/Y)= | AUX/Y.a),
(f: X'=Y,«a)

where (f': X’ — Y, ) runs over all distinet Q-factorial marked relatively minimal models of f. In particular,
(2.6) holds true whenever dim X —dimY < 3; see, e.g., [Fil20, Theorem 1.5].

Notation 2.13. We call the decomposition in (2.6) the chamber decomposition of M¢(X/Y). We call each
cone A°(X/Y,a) in (2.6) a chamber of the decomposition.

Let f: X — Y be a Calabi—Yau fiber space, and let
f
7T
x w2y

be a factorization of f such that h is a contraction of normal varieties which is not an isomorphism. In
particular, ¢ is itself a Calabi-Yau fiber space. Moreover, g*: NE(W/Y) — NL(X/Y) is injective, and



BOUNDEDNESS OF ELLIPTIC CALABI-YAU THREEFOLDS 13

gFAS(W/Y) = g*NL(W/Y) N A%(X/Y) is an extremal face of A°(X/Y). Analogously, if (f': X’ — Y, a) is
a marked minimal model of f factoring as

f!
/\

(2.7) xLew L2y,

where 1’ is a contraction of normal varieties which is not an isomorphism, then a, o (¢')*: Ng(W'/Y) —
NL(X/Y) is injective. If dim(X’) > dim(W’) or if ¢’ is a birational morphism that contracts at least one
divisor, a.((¢")*A*(W'/Y)) = a.((¢')*NL(W'/Y)) N M¢(X/Y) is an extremal face of M*(X/Y). If ¢’ is a
small birational morphism, . ((¢')* A¢(W’/Y)) is a cone intersecting the interior of M°(X/Y) and is called
wall. The terminology comes from the following observation: if ¢’: X’ — W’ is a small contraction with
p(X' /W) =1, then a.((¢')*A¢(W’'/Y)) is the wall separating the chambers corresponding to (f': X’ —
Y,a) and ((f")*: (X")t = Y,a"), where (¢')": (X')" — W’ is the flop of ¢'.

Notation 2.14. With the notation and assumptions introduced above, if ¢’ in (2.7) is a birational mor-
phism that contracts at least a divisor, we say that a.(g')*A°(W’'/Y)) is an extremal face of M°¢(X/Y)
corresponding to a birational contraction. If dim X’ > dim W', we say that a..(¢')* A°(W'/Y) is an extremal
face of M¢(X/Y) corresponding to a fiber space structure.

If f: X — Y isa Calabi-Yau fiber space, as X is terminal and minimal over Y, then for any ¢ € Bir(X/Y),
¢: X --+ X is a small birational map over Y. Hence, ¢, induces a bijection on the lattice of Weil divisors
and on its quotient modulo numerical equivalence {Weil divisors on Y}/ =y C N(X/Y). Thus, there exists
a natural induced representation

o: Bir(X/Y) —— GL(NL(X/Y),Z)
oy D
Moreover, ¢, preserves the subspace V(X/Y) and permutes the chambers of the partition of M¢(X/Y") given
in (2.6).
The following result shows that the chamber decomposition of M¢(X/Y), cf. (2.6), is well behaved in the

part of the movable cone of a Calabi—Yau fiber space consisting of big divisors. The result generalizes [Kaw97,
Theorem 2.6].

Lemma 2.15. Let f: X — Y be a Calabi—Yau fiber space. Then, the decomposition

(2.8)  M¢(X/Y)NB(X/Y)=M(X/Y)NB(X/Y) = U A°(X/Y,a) N B(X/Y)

(f: X'=Y,«)
marked minimal model of f

is locally finite in the open cone B(X/Y).

By local finiteness of the decomposition in (2.8), we simply mean that if ¥ is a closed convex cone contained
in {0}UB(X/Y), then there exist only finitely many relatively minimal models (f/: X! = Y, o), i =1,....k
such that the cones A°(X/Y, ;) N ({0} U B(X/Y)) intersect X.

Proof. By definition, M¢(X/Y) D M(X/Y). Therefore, the inclusion M¢(X/Y)N B(X/Y) D M(X/Y) N
B(X/Y) is clear, so we will prove the reverse inclusion. Suppose that [D] € M¢(X/Y) N B(X/Y), we
must show that [D] € M(X/Y). Since [D] € B*(X/Y), there is A > 0 such that A ~ry aD, for some
positive real number «, and (X, A) is terminal. Then, for a general point y € Y, the divisor A, is f-
big and Kx, + A, ~qg A,. By [BCHMI10], the general fiber (X,,A,) has a good minimal model. By
[HMX18, Theorem 1.2] and [HX13, Theorem 1.1], (X, A) has a good minimal model ¢: X --» X’ for (X, A)
over Y and in particular ¢, D is semi-ample over Y. By continuity, there is a movable divisor D’ (sufficiently
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close to D in N(X/Y)) such that ¢ is given by a sequence of D’'-flips and divisorial contractions. Suppose
that ¢ contracts a divisor F'; then F is in the stable base locus of D’, which is impossible as D’ is movable.
Thus ¢ is small and hence D = ¢, ¢, D is also movable.

Hence, if [D] € X, then [D] is contained in the interior of a rational polyhedral cone spanned by effective
big Q-divisors D; such that eD; ~gy A; for some rational number 0 < € < 1 where (X, A;) is klt. Thus, we
may apply finiteness of models [BCHM10, Theorem E]. Since, for all ¢, D; is relatively movable if and only
if the corresponding minimal models do not contract any divisors, then the claim now follows easily. O

The following result is a generalization of [Kaw97, Lemma 3.3.(2)]. See also [GW22, Theorem 40] for a
similar statement.

Lemma 2.16. Let X be a Q-factorial terminal variety, and let f: X — Y be a Calabi-Yau fiber space of
relative dimension 1. There exists a marked minimal model (f': X' — Y, «) of f together with a factorization
%

XLy My

such that

(1) Y’ is Q-factorial;

(2) K is birational; and

(3) every prime divisor in X' vertical over Y’ dominates a divisor in Y.
Proof. We will proceed by induction on the relative Picard number p(X/Y). If p(X/Y) = 1 there is nothing
to prove, as every vertical prime divisor is relatively numerically trivial and, thus, it is numerically the
pull-back of a Q-divisor on Y. Thus, we can assume that p(X/Y) > 1 and that the conclusions of the lemma
hold for all Calabi—Yau fiber spaces of Picard rank lower than p(X/Y).

Let E C X be a prime divisor such that codim(f(E)) > 2. Let us consider a sufficiently positive very
ample divisor A on Y. Fix a general element H of the non-complete sub-series V' C |A| of divisors in |A|
containing f(FE). Passing to a higher multiple of A, if needed, we may assume that the sub-series V is
non-empty and has no fixed divisor. Writing f*H = D; 4+ Dg, where each component of D; dominates a
divisor on Y, while the image of each prime component of Dy has codimension at least 2 on Y, then, Dy # 0,
and F < Dsy. By construction, D7 is f-movable, as it is a general member of the moving part of the linear
series obtained by pull-back.? Thus, by running a (Kx + eD1)-MMP over Y, where 0 < € < 1, this must
terminate with a model f X — Y where the strict transform Dy of Dy is relatively nef over Y. Since
dim(Y) = dim(X) — 1, then D; is semi-ample over Y, cf. [Fil20, Theorem 1.5]. In particular, D; induces
a morphism g: X — Y over Y: as D1 is vertical over Y, then Y — Y is birational and D1 is trivial over
Y. Since [D1] #0 € NE(X/Y), then Y is not isomorphic to Y. Thus, p(X/Y) = p(X/Y) > p(X/Y), and
the claim follows by the inductive hypothesis applied to X’ — Y’. Finally, the Q-factoriality of Y’ follows
from [Fil20, Proposition 2.9]. O

Lemma 2.17. Let (X,A) be a Q-factorial log canonical pair and let f: X =Y be a contraction. Assume
that Kx + A ~q 5 0 and that f admits a factorization

f

x 2oz "2y,

2To see this, it suffices to consider the linear series |W| = f*|V|: two general elements T1,T» € |W| have the same
multiplicity along any prime divisor D on X such that f(D) C f(F) and they share no other component; thus, 71 = F} + D>
and T» = F» + D2, where the support of D2 is mapped to f(F); hence, Fi ~ F» and they share no prime divisor, hence |F}| is
movable. It then suffices to take Dy = F7.
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Letv: X --» X' be a sequence of (Kx + A)-flops over Z, and let f': X' =Y and ¢': X' — Z be the induced
morphisms. Then,

g Ne(Z/Y) =7 ((9') Na(Z/Y)).
Furthermore, all the cones inside N&(Z/Y') are identified by this identity.

Proof. By induction, it suffices to show the statement for one flop. Thus, we may assume that X admits
a small contraction ¢: X — X" over Z such that v: X --» X’ arises as the flop of ¢. Let ¢": X" — Z,
¥: X’ — X" be the induced morphisms. Since g* = ¢* o (¢”)* and (¢')* = ¥* o (¢”)*, it suffices to show
that, if D is an R-Cartier divisor on X", then ¥*D = a,¢*D, which follows at once from the construction.
This equality also implies the claim about the cones of NL(Z/Y). |

Lemma 2.18. Let f: X — Y be a Calabi-Yau fiber space. Assume that f admits a factorization

f
m
Xy oy
such that h is a birational contraction with Y Q-factorial. Let (}7, Ag) be a kit log pair such that Kx ~g
g (Ky + Ay), and let B:Y --» Y be a (Ky + Ay )-flop over Y. Then, there exists a marked minimal
model (ft: Xt —Y,a) of f together with a commutative diagram

(2.9) Xt - _ > =X
g*l lg
o L -V

Y.

In particular, g*NL (YY) = a.((g7)*NL(YT/Y)) € NL(X/Y).

Proof. The existence of the marked minimal model and of the diagram in (2.9) follows from [Fil20, Propo-
sition 2.9].

To prove the final claim, it suffices to notice that the linear map au: NE(XT/Y) — NE(X/Y) is an
isomorphism, as « is an isomorphism in codimension 1; similarly, 8,: NL(Y/Y) — NL(Y+/Y) is also an
isomorphism; the conclusion then follows from the commutativity of (2.9). O

Corollary 2.19. Let f: X — Y be a Calabi-Yau fiber space of relative dimension 1. There exist only finitely
many extremal faces of M¢(X/Y) corresponding to fiber space structures.

Let us recall, cf. Notation 2.14, that, since the relative dimension of f is 1, an extremal face of M¢(X/Y)
corresponding to a fiber space structure is an extremal face of M¢(X/Y") of the form a.((¢')*A°(Y'/Y)),
where (f': X’ — Y, a) is a marked minimal model of X — Y together with a factorization

such that A’ is birational.
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Proof. By Proposition 2.9, there exist ﬁnitely many birational morphisms Y — Y such that, if X is a
relatively minimal model for X — Y, then X = Y factors through Y.
Fix one such choice of X and Y and let g: X — Y be the corresponding morphism. By Lemma 2.1,
g*A*(Y]Y) C NL r(X/Y) is invariant under the action of Bir(X/Y); notice that here we are identifying
NL(X/Y) and N§ (X/Y) By Lemma 2.17, if h: X — Y is another model whose structure morphism over Y
factors through Y, we have h*A°(Y/Y) = g*A°(Y/Y). Then, by the finiteness of the models Y, the claim
follows. 0

2.8. Calabi—Yau varieties. A normal projective variety X is a Calabi—Yau variety if
(CY1) Kx ~0;

(CY2) X has terminal Q-factorial singularities; and

(CY3) hi(X,0x) =0, for 0 < i < dim(X).

Some authors define Calabi—Yau varieties using instead of (CY1) the slightly weaker condition that the
canonical bundle is a torsion rank 1 divisorial sheaf. Passing to the index 1 cover of such variety, one can
always reduce to the case where the canonical bundle is trivial. Nonetheless, this reduction may affect
conditions (CY2-3).

In our treatment, the condition (CY1) will be used to guarantee that any elliptic Calabi-Yau f: X — S
can be reconstructed via the Tate—Shafarevich group (over a big open set of S) of the associated Jacobian
fibration j: J(X) — S, see § 6. In order to do that, we need to know that over any codimension 1 point of
S the general fiber is not a multiple one, which is implied by adjunction and the fact that Kx is linearly
equivalent to 0 rather than torsion, cf. Remark 6.8.

2.9. The cone conjecture. Consider a Calabi-Yau fiber space f: X — Y. Then, as explained in § 2.7,
the cone of effective movable divisors M¢(X/Y) admits a decomposition into chambers A°(X/Y, «), where
a: X --» X’ is some marked minimal model of X over Y. Under this decomposition, either A°(X/Y,a) =
A¢(X/Y) and « is an isomorphism, or a., Int(A°(X/Y))NInt(A®(X'/Y)) = (), where Int indicates the interior
of a set, see [Kaw97, Lemma 1.5].

Therefore, to study all the possible minimal models of f: X — Y we can analyze the cones M¢(X/Y)
and A°(X/Y). It can happen that a minimal model X’ is isomorphic to X, while the rational map over
Y, a: X --» X’ is not an isomorphism [Kaw97, Example 3.8.(2)]. Thus, we may have more chambers corre-
sponding to the same isomorphism class of varieties. Therefore, if we are only interested in the isomorphism
classes as schemes over Y of the relative minimal models of X --+ Y, we should study when different marked
minimal models are actually isomorphic over Y.

The so-called Kawamata—Morrison cone conjecture [Tot10, Conjecture 2.1] addresses the discrepancy
mentioned above between isomorphism classes of varieties X’ that appear as total spaces of a relatively
minimal model f': X’ — Y of f and isomorphism classes over Y of relatively minimal models of f.

Cone conjecture (Kawamata—Morrison). Let f: X — Y be a projective morphism with connected fibers
between normal varieties. Let (X, A) be a kit pair such that Kx + A =0/Y. Let A*(X/Y) and M*(X/Y)
be defined as in § 2.4. Then, the following holds.

1 The number of Aut(X/Y,A)-equivalence classes of faces of the cone A°(X/Y) corresponding to

birational contractions or fiber space structures is finite. Moreover, there exists a rational polyhedral
cone 1 which is a fundamental domain for the action of Aut(X/Y,A) on A°(X/Y) in the sense that
a A°(X/Y) = U eau(x/va) 91 and
b IntII N g, Intll = @ unless g, = 1.
2 The number of PsAut(X/Y, A)-equivalence classes of chambers A°(X/Y, ) in M°(X/Y) correspond-
ing to marked small Q-factorial modifications X' =Y of X — 'Y is finite. Equivalently, the number
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of isomorphism classes over Y of small Q-factorial modifications of X over Y (ignoring the bira-
tional identification with X ) is finite. Moreover, there exists a rational polyhedral cone II' which is
a fundamental domain for the action of PsAut(X/Y,A) on M(X/Y).

In the statement of the conjecture, PsAut(X/Y,A) denotes the gorup of pseudo-automorphisms of the
pair (X, A) relative to Y. Here, pseudo-automorphism means a birational automorphism that does not
contract nor extract any divisor. In particular, if X — Y is a Calabi—Yau fiber space as defined in § 2.7, we
have Bir(X/Y) = PsAut(X/Y), see [Kaw97, § 1].

This is a very deep conjecture connecting the birational geometry of a log Calabi—Yau fibration to the
structure of the (birational) automorphism group. The intuition behind such connection is rooted in mirror
symmetry and physics, see, for example [Mor93], but it is still unclear how exactly to determine the existence
of automorphism starting from the geometry of the cone of divisors. Conjecture 2.9 is known to hold just in
very few cases: Totaro proved it in dimension 2 [Tot10], Kawamata proved the relative case (i.e., dimY > 0)
for threefold Calabi—Yau fiber spaces [Kaw97], and there are a few other cases known in dimension > 2.

3. FINITENESS OF MODELS FOR ELLIPTIC CALABI-YAU FIBER SPACES

The results in this section are a higher-dimensional generalization of the results of [Kaw97, § 3], originally
stated for elliptic threefolds. The main subtlety in passing to dimension higher than 3 is that the base of the
elliptic fibration has a more complicated birational geometry: in particular, such base may admit birational
modifications in codimension 2, while in the case of elliptic threefolds the base is a surface and its birational
geometry is completely determined by the set of exceptional divisors in the birational morphisms of interest.

Lemma 3.1. Let f: X — Y be a Calabi-Yau fiber space of relative dimension 1. Let (f': X' — Y, ) be a
marked minimal model of f. Let
f/

x Loy My

be a factorization of f satisfying the conclusions of Lemma 2.16. Then, the following hold:
(1) given any marked minimal model (f: X — Y, @) of f, there exists a uniquely determined factorization
f

(3.1) X .y ly,

where G is a Calabi-Yau fiber space of relative dimension 1 and h is a projective birational morphism
which satisfies the following mazimality property: any other factorization X TV Moy with
g a Calabi-Yau fiber space of relative dimension 1 and h' a projective birational morphism factors

through G, i.e., there exists a projective birational morphism 1:' Y — Y and a factorization

r
m

g 7 l 7/ h

\/

X Y.
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f//

In particular, any factorization X" —2—Y" oy of a marked minimal model (f": X" =Y, a’)

of f satisfying the conclusions of Lemma 2.16 also satisfies the mazimality property just described;
(2) there exists a birational contraction 3: Y' --+Y making the following diagram commute

where X —2=Y is as in (3.1). Furthermore, up to replacing g': X' — Y’ with another Calabi-
Yau fiber space " : X" — Y satisfying the same properties and assumptions of the lemma, and
such that X" (resp. Y'"') is isomorphic in codimension 1 to X' (resp. Y'), then we can assume the
map B above is a morphism;
f

(3) let (f: X = Y, &) be a marked minimal model of f admitting a factorization X 2oy Itly
satisfying the conclusions of Lemma 2.16. Then Y and Y’ are isomorphic in codimensiton 1. In
particular, they are connected by a sequence of flops over Y with respect to any kit pair (Y', A’)
(resp. (SN/,E)) induced by the canonical bundle formula for f' (resp. f); and,

(4) if D' is a g'-vertical prime divisor and [D'] # 0 € NL(X'/Y"), then D' is the exceptional divisor of
a birational contraction of X' over Y.

Proof. (1) Since f: X — Y is a Calabi-Yau fiber space of relative dimension 1, a divisor is f-semi-ample

if and only if it is f-nef and f-effective. Furthermore, if two f-semi-ample divisors are not f-big,
neither is their sum, as f-bigness is characterized by the intersection with a general fiber. Thus, if
D1, Dy are f—semi—ample divisors that are not f-big, then so is D1 + Dy. Thus, Dy + D5 induces
a factorization that dominates the ones induced by D; and Ds, respectively. In particular, any

two factorizations X —=Y; ——=Y and X ——= Yy, ——=Y , where Y; is birational to Y, for

i = 1,2, are dominated by a third factorization X —— Y3 ——Y . This shows the uniqueness
of the maximal element. Assuming that

X Y, Ys Y

is a non-trivial factorization of f, where Y, ——= Y5 —=Y is a composition of birational mor-
phisms, then p(X/Y,) < p(X/Y5) < p(X/Y). Since the relative Picard number is a positive integer,
a maximal element must exist.

.f//

To show that any factorization X" —~— Y ¥V of a marked minimal model (f": X" —

Y,a') of f satisfying the conclusions of Lemma 2.16 also satisfies the maximality property intro-
duced in the statement of the lemma, it suffices to notice that Lemma 2.16 implies that any g”-
vertical divisor dominates a divisor on Y. Then, if there was a further factorization of the form
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f//
X ym R , since Y is Q-factorial, h,, would have to contract a prime divisor

D,, and then D" := g '(D,,) would be a g”-vertical divisor such that ¢g”(D”) has codimension at
least 2 in Y.

(2) Let H be a relatively ample divisor on 7 over Y. Setting M = (&~ ! o) 'g*H, then M is movable
over Y, as g*H is semi-ample and (@' o @) is a small birational map; a fortlorl M is movable also
over Y/, see Lemma 2.2. Therefore, there is a sequence of flops v: X' --» X over Y’, making the
strict transform M of M on X nef over Y. Thus, M is semi-ample over Y’. Let XY 5Y be
the corresponding morphism. Since every divisor that is vertical for X’ — Y’ dominates a divisor
in Y’, and since v is a small birational map, then any divisor that is vertical for X — Y’ must also
dominate a divisor on Y’. Thus, for dimensional reasons, the morphism Y — Y’ cannot contract
any divisor, that is, Y — Y” is a small birational morphism. Since Y’ is Q-factorial by assumption,
see Lemma 2.16, then Y — Y’ is an isomorphism. But then M = (¢/)*H’ holds for some divisor
H' on Y’'. As M is movable over Y, the same holds for H'. Let (Y’, A’) be a klt pair induced by
the canonical bundle formula for ¢’: X’ — Y”; in particular Ky + A’ ~gy 0. As H' is movable
over Y, running a relative (Ky: + A’ + eH’)-MMP, for 0 < € < 1, over Y, we obtain a sequence of
(Kyr + A")-flops Y’ --» Y over Y such that the strict transform H” of H on Y is semi-ample
over Y. In particular, Y’ --» Y is a birational contraction. By construction, taking the relatively
ample model of H"” over Y induces a morphism Y =Y.

Furthermore, by repeatedly applying [Fil20, Proposition 2.9], there exists a Q-factorial Calabi—Yau
fiber space g"”’: X" — Y such that X" is isomorphic to X’ in codimension 1.

(3) By Lemma 2.16, Y’ and Y are Q-factorial. Moreover, as both Y’ and Y satisfy the assumptions
of part (2), there exist birational contractions ¥ --» ¥ and ¥ --» ¥ which implies that they are
isomorphic in codimension 1. If (Y’, A’) (resp. (Y, A)) is induced by the canonical bundle formula
for f' (vesp. f), then K% + A’ ~qg,y 0 (resp. Ky + A ~gy 0) holds, and Y’ and Y are connected
by a sequence of (Ky + A’)-flops (resp. (Ky + A)-flops).

(4) Let D’ be a prime and g'-vertical divisor such that [D’] # 0 € N§(X'/Y’). Then, ¢'(D') = D is a
divisor on Y and D’ # Af*D for any A € R. Thus, we may assume that D’ + D" = \of*D, where
Mo € Ry, D/, D” > 0 and they do not have components in common. Moreover, every component
of D" dominates D. Then, D’ is g’-very exceptional in the sense of [Birl2, Definition 3.1] and it is
contracted by running a (Kx: + eD’)-MMP over Y, for 0 < e < 1, since Kx/ + €D’ ~qy+ €D’

O

Remark 3.2. We use the setup and the notation of Lemma 3.1. Proposition 2.9 implies that there ex-

ist only finitely many marked birational models Y "~ Y that appear in a factorization of the form

X 7. Y b Y , where ho §: X Yisa relatively minimal model of f.

Given an elliptic fibration f: X — Y, and a class z € N}(X/Y), we define deg(z) € R to be the
intersection number D - F' where D is a R-Cartier divisor such that [D] = 2 € N4(X/Y) and F is a smooth
fiber of f.

Lemma 3.3. Let X be a terminal Q-factorial variety, and let f: X — Y be a Calabi—Yau fiber space of
relative dimension 1. Let o: Bir(X/Y) — GL(NL(X/Y),Z) be the induced representation. Then, the image
of o contains an Abelian subgroup G(X/Y) which is the image of a finite index subgroup of H < Bir(X/Y)



20 S. FILIPAZZI, C.D. HACON, AND R. SVALDI

that acts on the affine space W (X/Y) = {z € NL(X/Y)/V(X/Y)|deg(z) = 1} as a group of translations.
Moreover, the quotient space W(X/Y)/G(X/Y) is a real torus.

Proof. We follow the strategy of proof of [Kaw97, Lemma 3.5].

Let n € Y be the generic point. For a Weil divisor D on X, we shall denote by D, its restriction
to the schematic fiber X, of X over . Since Bir(X/Y) = Aut(X,), the degree of any divisor on X is
preserved under the push-forward by elements of Bir(X/Y"). Similarly, the subspace V(X/Y) is fixed by the
push-forward action by elements of Bir(X/Y).

Case 1. We prove the lemma under the additional assumption that f has a rational section.

Fix such a section Dy, which will serve as the origin for X;,. By the structure of the automorphism group
of an elliptic curve, the group of rational sections M, known as the Mordell-Weil group, can be identified as
a subgroup H of finite index of Aut(X,) and hence of Bir(X/Y") that acts via translations.

Let 6 € Bir(X/Y) be an element corresponding to a rational section D1 = 6,Dy. For a K-divisor D with
deg(D) =1, 0.D,) — Dy, ~x D1, — Do, on X,,. Thus, § acts on W(X/Y) as the translation by [D; — Dy].
We define the map

o' M —— (ang(X/Y)/V(X/Y))O
Dy ——[D1 — D],

where
(Ng(X/Y)/V(X/Y))o = {7 € Np(X/Y)/V(X/Y) | deg(v) =0}
It is immediate from its definition that dim(NL(X/Y)/V(X/Y))o = p(X/Y) —v(X/Y) — 1.

Claim. Under the assumption that Dy corresponds to the identity of M, ¢’ is a homomorphism of Abelian
groups and its image G(X/Y) is a finitely generated subgroup.

Proof of the Claim. Let Dy and Dy be two rational sections, and let 81 and 65 be the corresponding birational
automorphisms. To avoid confusion with the summation between divisors, we denote by D; * D2 the sum
of the two sections in the Mordell-Weil group of f, that is, the group law of the elliptic curve X,. Since we
have fixed DO,n as the identity of X77’ then D1 * DQ ~ (Dl — DO)n + (DQ — DO)n + DO,n = (Dl + D2 — DO)n-
Thus

D1 % Dy ~ (D1 + Dy — Do)y,
or, equivalently,
(32) (Dl *DQ) — DO,n ~ (Dl — DO)n + (DQ — DO)n-

Since the linear equivalence in (3.2) holds over an open subset of Y, and since we are considering the vector
space NL(X/Y)/V(X/Y), that is vertical divisors are negligible, then

[(D1 % D2) — Do) = [D1 — Do] + [D2 — Do) € (Ng(X/Y)/V(X/Y))o.

It just remains to show that G is finitely generated. Since X is Q-factorial and by definition of numerical
equivalence, the relative (over Y') first Chern class map is well defined on C1(X) with values in N(X/Y)
and its image G is a full rank lattice. Moreover, the degree function also yields a group homorphism
deg: ClI(X) — Z. We denote by Cl(X)o its kernel. Let us also notice that, by its definition, V(X/Y) is
spanned over R by classes of Weil divisors that have degree 0. Thus, the image G2 of Cl(X)y via the first
Chern class map into the quotient (N} (X/Y)/V(X/Y))o yields in turn a full rank lattice. By the definition
of ¢/ then G(X/Y) :=Im(o’) is a subgroup contained in G2. Thus, G is finitely generated. O
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For any Weil divisor D on X, we define Dgeg—1 = D — (deg(D) — 1)Dy. Then, deg(Dgeg—1) = 1 and
f+Ox (Dgeg=1) is a torsion free sheaf of rank 1 on Y. In particular, by Riemann-Roch on X, there exists
a rational section Sp,.,_, such that [Daeg—1] = [Spy.,_,] € NR(X/Y)/V(X/Y). Thus, [Dgeg—1 — Do] =
[SDyey—r — Do] € G. Since we are free to choose D to be any Weil divisor on X, it follows that G(X/Y) is a
Z-module of maximal rank in (N}(X/Y)/V(X/Y))o, i.e., rankIm(o’) = p(X/Y) — v(X/Y) — 1. Therefore,
as W(X/Y) is an affine space under the (fully faithful) action of (N4(X/Y)/V(X/Y))o, the statement of
the lemma follows.

Case 2. We prove the lemma without assuming the existence of a section.

Let d be the minimal positive integer such that X, has a divisor of degree d defined over k(Y). Fix Dy
a horizontal divisor on X such that Dy, has degree d. Let J,, denote the Jacobian of X,. As before, we
will denote by M the group of k(Y')-rational points of J,. Since M acts on X, as a group of translation,
M naturally embeds in Bir(X/Y) and its image H C Bir(X/Y) has finite index. Let 8 € M and let
D be a divisor with deg(D) = d. Then, 6.D, — D, ~ 0,Dy,, — Do, on X,. Hence, dividing by d, we
deduce that 6 acts as a translation by %[0.Dg — Do] on W(X/Y). As in Case 1, we define the morphism
o't M — (NL(X/Y)/V(X/Y))o by o/ (0) := 1[0, Dy — Do]. As in Case 1, 0’ is a group homomorphism and
its image G(X/Y) C (NL(X/Y)/V(X/Y))o is a full rank lattice. Let us consider the group homomorphism
¢py.,: Jy — Jy defined by ¢ép,, () = 7:(Doy) — Doy, where 7, denotes the translation by = € J,.
Then, ¢p,, is an étale morphism of degree d?, by the Theorem of the square for Abelian varieties, see
[Mum70, p. 59]. For every (integral) divisor D on X, we define Q-divisor Daeg—q = D — (4 deg(D) — 1) Dy.
Then, deg(Ddeg=d) = d and, by the minimality of d, d|deg(D), so that Dgeg—q is actually a Weil divisor.
Again, by Riemann-Roch on X, and the minimality of d, the class [Dgeg—q] € N&(X/Y)/V(X/Y) can be
represented by a prime divisor Sp,,,_, on X. We regard the degree 0 Weil divisor Sp,,,_,.n — Do, on X;, as
a k(Y)-rational point PSpyuy_gn—Doy € Jy- The fiber F, = ¢Bi,n (pSDdeg:dm*DD,n) is a 0-dimensional scheme

defined over k(Y') of length d*. In J; == J, Xgpec k(v) Spec k(Y), where k(Y) is the algebraic closure of

k(Y), Fp Xspec k(v) Spec k(Y) is an effective divisor of degree d?. On the other hand, since F, is defined
over k(Y), the sum in Jyof these d* points is in turn a closed point of J;; defined over k(Y), that is, it
is a k(Y')-rational point of J,, which we denote by p’. The point p’ is by definition an element of M. By
definition, 7,/ (Do) — Do,y ~ d*(SDyey_an — Do,y)- As 7 (Do) — Doy = do’ (p'), then one can now conclude
exactly as at the end of Case 1. 0

Theorem 3.4. Let f: X — Y be a Calabi-Yau fiber space of relative dimension 1. Then, there are only
finitely many orbits for the action of Bir(X/Y) on:
(1) the set of chambers of M¢(X/Y):
{A¢(X)Y,a) | (f': X" = Y,a) is a marked minimal model of f}; and,
(2) the set of extremal faces of M¢(X/Y) induced by non-trivial factorizations of marked minimal models
of f:
f/
a(g)* ANz )Y) | X' =—=2Z' — Y is a non-trivial factorization
g
of a marked minimal model (f': X' =Y, «) of f
Proof. For the reader’s convenience, we divide the proof into several steps.
We observe that:

e replacing f with a marked relatively minimal model of f does not affect the conclusions of the
theorem, cf. § 2.7;
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e since f is a contraction of relative dimension 1, the only contractions that can factor f are either
birational models of X or birational models of Y.

Step 0. In this step, we make a first reduction and then we introduce the strategy of proof.
By Lemma 2.16, up to replacing f with a relatively minimal model, we can assume that f factors as

s
— o, T
(3.3) X — Y’ — Y,

where every divisor that is g-vertical dominates a divisor in Y’, h is birational, and Y’ is Q-factorial. To
keep the notation light, we define

ve=v(X/Y), p=pX/Y), and k:=pY'/Y).
By Lemma 2.5, g*N&(Y'/Y) C V(X/Y). If

!

o T
XH/YHTY,

g

is another factorization of f satisfying the same properties as the one in (3.3), then by Lemma 2.18 and
Lemma 3.1.3, Y', Y are isomorphic in codimension 1 and ¢g*NL(Y'/Y) = (¢/)*NL(Y”/Y) in N} (X/Y). In
particular, g*NL(Y’/Y) is an intrinsically defined k-dimensional subspace of V(X/Y). Let (y1,...,yx) be
a basis of g*NL(Y'/Y). Then, we may complete it to a basis (y1, ..., Yk, Yk+1, - --»Yp) of V(X/Y). In turn,
we complete this basis to a basis (Y1,. .., ks Yk+1,- - Yvs Yot+1s---5Yp) Of N]}Q(X/Y).

By Corollary 2.19, there exist only finitely many extremal faces of M¢(X/Y") corresponding to fiber space
structures of a marked minimal model of f: that proves the finiteness of the extremal faces of M¢(X/Y)
corresponding to a factorization of a marked minimal model of f which lie on the boundary of the big cone.
Thus, in the remainder of the proof, we will focus on the extremal faces of M¢(X/Y) corresponding to a
birational contraction factoring f, that is, those extremal faces that intersect B(X/Y).

Our strategy for the proof of the theorem is to now proceed by induction on v. Let us recall that in
Lemma 3.3 we defined W(X/Y) = {z € N4(X/Y)/V(X/Y)|deg(z) = 1}.

Step 1. In this step, we prove the base case of the induction, that is, the case where v = 0.
If v =0, then W(X/Y) = {z € N}(X/Y)|degz = 1}. We then prove the following claim.

Claim 1. If v = 0, then W(X/Y) C M¢(X/Y)NB(X/Y).

Proof of Claim 1. Let z € W(X/Y). As degz =1 > 0, then z € B(X/Y), thus its class can be represented
by an effective Q-divisor D, that is, z = [D] € B*(X/Y).

Now, let D be a divisor with deg D > 0. If F' is a component of the relative stable base locus of D over
Y, then F' is a vertical divisor. As v = 0, all vertical divisors are movable over Y, since they are numerically
equivalent to the pull-back of a divisor on Y. It then follows easily that D itself is movable over Y. O

To prove the statement of this step, as W(X/Y)/G(X/Y) is compact, it suffices to invoke Lemma 2.15.

We will now proceed to prove the inductive step: we assume that v > 0 and that the inductive hypothesis
holds. We define I(X/Y) to be the collection of all cones in M°(X/Y) of the form a.(gzA(Z/Y)) for a
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marked minimal model (f X - Y, ) of f factoring as

(3.4) X Z Y Y,

where Y — Y is a birational contraction that is not an isomorphism, whereas X — Z is a birational
morphism, where, in this last case, an isomorphism is also allowed. If X > Z is an isomorphism, then
a(gzA (Z]Y)) = A(X/Y, ) which is the interior of a chamber of M¢(X/Y). If X — Z is not an isomor-

phism, then the cone a*(g%A(Z/Y)) is the relative interior of an extremal face of M¢(X/Y) corresponding
to a birational contraction, that is, the extremal face intersects B(X/Y).

Step 2. In this step, we show that the theorem holds for those chambers and extremal faces of M€(X/Y)
belonging to the collection I(X/Y).

Let (f X oY, «) be a marked minimal model together with a factorization of f asin (3.4). Then, the
cone a*(ng(Z/Y)) belongs to I(X/Y). By Lemma 2.5, v(X/Y) < v(X/Y) = v. Thus, we can apply the
inductive hypothesis to the morphism XY, T hen, there are only finitely many orbits for the action of
Bir(X/Y) on:

(i) the chambers of M¢(X/Y); and
(i) the extremal faces of M°(X/Y) induced by factorizations of a marked minimal model of X — Y.
By the inductive hypothesis and since
« is an isom. in codim. 1
Bir(X/Y) = Bir(X/Y) = Bir(X/Y),

by Lemma 2.1

then there are only finitely many orbits in (i-ii) also for the action of Bir(X/Y’) on N} (X/Y). Hence, up to

this action, there are finitely many marked minimal models (f;: X; — Y, a;), i = 1,...,s of f admitting a
factorization
fi
m

Xi—>Y—~>Y.

Y

Since by Lemma 2.8 there exist only finitely many birational models hg : Y — Y that may appear in a
factorization of marked minimal models of f, then there are finitely many orbits of the action of Bir(X/Y)
on

(i’) the chambers of M¢(X/Y) corresponding to marked minimal models of f admitting a non-trivial

factorization through a higher birational model of Y'; and

(ii") the extremal faces of M¢(X/Y") induced by factorizations of a marked minimal model as in (3.4).
By Remark 3.2, we may restrict our attention to the chambers and the faces thereof not corresponding to
fiber space structures.

To conclude the proof, we study orbits the of Bir(X/Y') on the extremal faces and chambers of M°¢(X/Y)
not contained in I(X/Y). To this end, we define I(X/Y) C N§(X/Y) to be the union of all the cones that
are contained in I(X/Y’), that is, of all the cones of the form . (93A(Z/Y)), where (f: X — Y,a) is a
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marked minimal model of f admitting a factorization as in (3.4). Moreover, we define
J(X)Y) = {z € NL(X/Y)|deg(z) =1, z € M*(X/Y)\ I(X/Y)}.

Step 3. In this step, we show that J(X/Y) is closed in NL(X/Y).

The condition deg(z) = 1 is clearly a closed one. The set {z € M¢(X/Y)|deg(z) = 1} is also closed, as
every element is big over Y and hence R-linearly equivalent to an effective divisor over Y.

Let z be a point in the closure of J(X/Y): we will show that z ¢ I(X/Y). To this end, we assume that
z € I(X/Y) and we shall proceed to obtain a contradiction.

By Lemma 2.15, in a neighborhood U of z, M¢(X/Y) decomposes as a finite union of chambers

=

UNM¢X/)Y) = U “(X]Y, ).

Let us fix one of the chambers appearing in the decomposition above, which we denote by A°(X/Y, ay). If
z is in the interior of A°(X/Y, ay), then A(X/Y, «;) is one of the cones in I(X/Y), since z € I(X/Y). 1
particular, z belongs to the interior of I(X/Y") and we immediately obtain the sought contradiction, as z is

a limit point for J(X/Y). Thus, z must belong to the relative interior of a face of the form a.lfA(X"/Y) C

A°(X'/Y, ) induced by a factorization of the form X’ hoxr By , where [; is a birational morphism

which is not the identity. As X’ — Y is a Calabi—Yau fiber space of relatlve dimension 1, then by [BCHM10],
X" can be constructed as the relatively ample model of the relatively big and movable class z. But then,
as z € I(X/Y), we have that the cone a,lfA(X"/Y) is an element of I(X/Y), and X” — Y admits a
non-trivial factorization X" — Y” — Y, which in turn induces a non-trivial factorization X’ — YY" — Y.
Thus, in a neighborhood of z, we have A°(X'/Y,a) C :f(X/Y) Since the same reasoning can be used for
any other chamber A°(X/Y,a) arising from the decomposition claimed in Lemma 2.15, then z must be in
the interior of I(X/Y), thus reaching the sought contradiction.

Let us underline here that, in the definition of I(X/Y), we must use cones of the form A(Z/Y) and not
of the form A¢(Z/Y): indeed, if we chose instead to work with A¢(Z/Y), it would not be true that the set
J(X/Y) is closed in N}(X/Y). In fact, to define J(X/Y), we wish to consider all birational models of X
over Y for which the structure morphism to Y does not admit a factorization through a higher birational
model of Y. If I(X/Y") contained cones of the form a*(g%Ae(Z/Y)), where Z is part of a factorization as
n (3.4), it may happen that the boundary of such cone contains as an extremal face the nef cone of another
birational model Z’ of X over Y which instead cannot be factorized in any way.

Step 4. In this step, we show that, in order to prove the theorem, it suffices to show that the map
p: J(X/Y) = W(X/Y) is proper.

By Lemma 3.3, there exists a finite index subgroup H < Bir(X/Y) such that the image G(X/Y) of
H under the natural representation o: Bir(X/Y) — GL(NL(X/Y),Z) acts on W(X/Y) as a group of
translations and W(X/Y)/G(X/Y) is a compact torus. Thus, G(X/Y) acts also on J(X/Y): indeed, the
action of Bir(X/Y) on NL(X/Y') preserves

e the degree of a divisor on the generic fiber of f; and
e the property that a marked minimal model (f X oY, «) of f admits a non-trivial factorization of
f.
Thus, there exists a natural morphism J(X/Y)/G(X/Y) — W(X/Y)/G(X/Y), where the latter is compact.
The properness of of the map p: J(X/Y) — W(X/Y), in turn, implies the properness of J(X/Y)/G(X/Y) —
W(X/Y)/G(X/Y), and, in particular, the compactness of J(X/Y)/G(X/Y). Then, the claim follows by
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combining the local finiteness of the movable cone inside the big cone and the compactness of J(X/Y)/G(X/Y).
In particular, the claim follows from Lemma 2.15: indeed, the faces on the boundary of the big cone are
taken care of by Corollary 2.19.

Step 5. In this step, we verify the properness of the map p.

Since the topological spaces of interest have the Heine-Borel property, we can check the properness of
p: J(X/Y) = W(X/Y) using sequences. Arguing by contradiction, we assume that there exists a sequence
(zn)nen C J(X/Y) such that the sequence (p(zn))nen converges in W(X/Y) whereas (z,)nen does not
admit any convergent subsequence. Both of these conditions are not affected by passing to a subsequence of
(zn)nen and of (p(zp))nen relative to the same subset of indeces.

For all n € N, we write z,, = > ¢_, a’,y; and we set

k P P
Wy, = E ayyi, Ly = E ayyi, and t,:= E ayYi-
i=1

i=k+1 i=v+1

For alln € N, z, = x,, + Wy, 2n, tn, and x, are big over Y, as well as over any birational model Y =Y of
Y. By construction, span(y,+1,. . .,¥,) maps isomorphically onto Nj(X/Y)/V(X/Y).

Step 5.1. In this step, we show that the sequence (T )nen contains a converging subsequence.

Let Y’ be the higher model of Y defined in Step 0. For all n € N, [z,,] € M¢(X/Y’) C N§(X/Y’) =
NL(X/Y)/NL(Y'/Y), by Lemma 2.2. Here [—] indicates the equivalence class in the quotient. As (yi,...,yx)
is a basis of NL(Y'/Y), [za] = [zn] € NE(X/Y’). Thus, ([2n])nen C NL(X/Y’) contains a converging
subsequence if and only if (z,,)nen does.

We then argue as in [Kaw97, proof of Theorem 3.6] and look at the intersection numbers with the general
fibers of the g-exceptional divisors over their images in Y. By Lemma 2.3, this can be reduced to a lower-
dimensional question by considering a very general hyperplane section of Y’. Thus, proceeding inductively,
we can reduce to the case when Y’ is a surface and X a threefold, which is treated in [Kaw97, proof of
Theorem 3.6]. Thus, (2, )nen admits a converging subsequence.

Since we are assuming that (z,),en contains no convergent subsequence, by Step 5.1, the same must hold
for (wn)nen, in view of the discussion above. As both of these conditions are not affected by passing to a
subsequence, then we pass to the subsequence of (z,,),cn Whose existence was shown in Step 5.1 and we also
pass to the subsequences of (2, )nen, (Wn)nen corresponding to the same indices. Hence, we can assume that
(Zn)nen is converging, while (2, )nen, (Wn)nen do not contain any convergent subsequence.

For all n € N, we set w/, to be the unique element of N}(Y’/Y) such that g*(w},) = wy,. As (wy)nen does
not contain any convergent subsequence, also (w/,),en shall not contain any convergent subsequence.

Step 5.2 In this step, we show that there exists a birational contraction Y' --+ Yy over Y which is the
outcome of a run of the MMP for a suitable subsequence of (w),)nen-
Since Ky + A’ ~gy 0, (Y’,A’) is klt, and Y’ — Y is birational, for any divisor class in NL(Y'/Y) we
can run a relative MMP over Y, by [BCHM10, Corollary 1.3.2]. Hence, for all n € N, the w/-MMP over YV
can be run and it must terminate with a relatively minimal model for w/,. By Lemma 2.8, there are just
finitely many marked birational models of Y that can appear in those runs of the MMP. Furthermore, by
the negativity lemma, for a fixed n € N no model can appear more than once in the w]-MMP. Thus, up
to passing to a subsequence (w;, )ren C (w),)nen, We may assume that there exists a sequence of divisorial
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contractions and isomorphisms in codimension 1

(3.5) Y =Y sy - IR YN gy Yn
which yields, for any k£ € N, a run of the w;, -MMP over Y. In particular, for all k € N, (¢y_10---0g).wy,,
is nef over Y. Moreover, for all i = 1,..., N, by [DCS21, Propostion 2.26], there exists a marked minimal

model (f;: X; = Y, ;) of f together with a factorization
fi
/\
x, iy, vy
such that the induced diagram
X - o oS > Xit1

isom. in codim. 1

lli lli+1

is commutative. Finally, passing to a suitable subsequence (w;% )jen C (w),)nen, we can assume that, for

all j € N, the w;lk‘ all have the same ample model ¥ : Yy — Yy over Y.

J

We pass to the subsequence of (w])neny whose existence was shown in Step 5.2; we also pass to the
subsequences of all the other sequences involved in the proof corresponding to the same indices.

We set wy, o = wn, Wy, g = Wy, 2n,0 = 2n, and T, o = z,. We define inductively for i =0,..., N — 1,
(3:6)  Na(Xit1/Y) 3 znjit1 = (6i)wzn,is N (Yis1/Y) 3wy i1 = ($0)wy,
Ng(Xit1/Y) 3 wnjig1 =1 w), 41, NE(Xix1/Y) 3 @piv1 = (01)(Tni + Wn i) — Wnit1-
With these definitions, since [z, 0] = [xn0] € N&(X/Y”), then, for all i =0,1,..., N,
(3.7) Tni = Znyi — Wni and [2n,i] = [Tn,i] € NR(X/Y3).

/
no

As Yy is the ample model for the w
wy, y = PNw;, yiq; thus, we have

we define w/, y, to be the only element of N (Yx1/Y) such that

[zn.8] = [Zn.n] € NR(X/ Y1)

Step 5.3. In this step, we show that for all ¢ = 0,1,...,N, there exits a converging subsequence
(Tny.i)keN C (Tn,i)nen which can be chosen independently of i.

We proceed to prove the claim by induction on ¢ =0,..., N.

By Step 5.1, the claim is true for ¢ = 0 as x,, 0 = x,. Hence, we can assume that ¢ > 0 and that we have
converging subsequences (Zn, 1 )ken for all 1 =0, ...,7 — 1, corresponding to the same set of indices.

If i < N and ¢,;—1 in (3.5) is a flip, there is nothing to prove, as ., ; = (¢;—1)«Zn i—1, by definition, in (3.6),
and since (¢;_1). descends to an isomorphism between Ni (X;_1/Y;_1) and N}(X;/Y), cf. Lemma 2.18.

If i < N and t;—1 in (3.5) is a divisorial contraction, denoting E;_; its exceptional divisor, then
wiz,i—l — 1/);‘10;171- = Cnyifl[Eifl] S Nﬂlg(}/ifl/Y), Cn,i—1 > 0. Since Cn,i—1 > 0, by Lemma 2.11 CnyiflEifl €
M }/,Lfl/}/l) On the other hand, setting Fi*l = (1/)1',2 o:---0 ’l/}l [9) ‘g)>'<E1,L',17 [Z'n,] = [$n71] = [.Inﬂ'fl +
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Cnyi—1F;—1] € NR(X/Y;). By Lemma 2.2, [z, ;1 +¢pi—1Fj—1] € M(X/Y;). Since (Tn,i—1)ken C (Tn,i—1)nen
is a convergent subsequence (independent of ) and ¢, ;—1F;—1 is not movable, then (¢, i—1)ken must be
a sequence of positive real numbers bounded from above: hence, it contains a converging subsequence

(an]. i—1)jen. Hence, taking the subsequences (xnkj 1ken foralll =0, ..., proves the inductive step in this
case.
We pass to the subsequences of (%, ;)nen, ¢ = 0,..., N whose existence was shown in Step 5.3; we also

pass, for all 7, to the subsequences of (2p,i)nen, (Wn,i)nen, (W}, ;)nen, corresponding to the same indices. Since
for all 4, (¢h).: NE(X:/Y) — NE(Xi+1/Y) is an isomorphism, then for all 4, (2i)nen, (tesp. (wn i)nen,
(wy, ;)nen) does not contain any converging subsequence.

Step 5.4. In this step, we show that Yyy1 — Y is not an isomorphism.
As (xn,N)nen is convergent, and z, Ny = Tpn N + wp N, cf. (3.7), then Yyy1 — Y is not an isomorphism:
otherwise, 2z, Ny = T N € N§(Xn/Y) and (2,,n)nen would be convergent.

Step 5.5. In this step, we show that there exists a marked minimal model (fni1: Xny1 — Y,any1) of
f together with a factorization

fN+1
XN+1 7 YNt Y
N+1
such that for infinitely many n € N, [z, n11] is nef over Yyy1, where ¢y = a;vlﬂ ocan and Ty N41 =

((ZSN)*xn,N .

Since (Zn, N )nen is convergent, calling Ty € N§(Xx/Y) its limit, then, by construction Ty, x, y are big
over both Y, Yy41, for all n € N. Hence, Lemma 2.15 applied to Xy — Yn41, implies that there exists a
subsequence (zn, N)ken C (Zn,N)nen and an isomorphism in codimension 1 ¢n: Xy --+ Xny1 such that
(¢N)xn,, N is nef for all k € N.

We pass to the subsequence (Zn, N+1)ken C (Tn,N+1)nen just defined; we also pass to the subsequences
of all the other sequences involved in the proof corresponding to the same indices. We define for all n € N,

. . /
Zn,N+1 = (QbN)*Zn,N; Wn, N+1 = l}k\]+1wn7]v+1-

Step 5.6. In this step, we show that there exists a positive real number €ny1 such that for any curve
C C Xn41 contained in the fiber of fni1, Tont1 - C > %

By Step 5.3 and Lemma 2.4 applied to fny41, there exist effective divisors D,, ny+1, n € N big over Y such
that z, v+1 = [Dn,nt+1] € Ng(Xn11/Y) and 0 < en41 < 1 (independent of n) such that for all n € N,
(XN+1,€N+1Dn,nv41) is klt. Hence, the conclusion follows by the Cone Theorem.

2d1mXN+1

We fix an integer Ty 41 > 2 , and fix a Cartier divisor Hy 41 on Yy41 ample over Y.

Step 5.7. In this step, we show that for infinitely many n € N, z,, € IA(X/Y) This prompts the desired
contradiction, since z, € J(X/Y) and hence it cannot be an element of I(X]Y) and, hence, concludes the
proof.

We must distinguish two separate cases at this point.

Case 5.7.a. In this case we assume that there exists a subsequence (w;, ny1)keN C (W), ny1)nen such
that for all k € N, w;hNH —Tny1Hyy1 is nef over Y.
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Since Hy 1 is ample over Y and Cartier, then for any irreducible curve C' C Yy in the fibers of the
structure morphism Yyi11 — Y, Hyy1-C’ is a positive integer. In turn, the assumption in Case 5.7.a implies
that for any irreducible curve C’ C Yy 41 in the fibers of Yy1 — Y, w;k7N+1 -C" > Tn41 holds. Therefore,
for any irreducible curve C' C X 41 in the fibers of fnx41, wn, n+1-C’ is either 0 or > Tiv11. As X1 has
been chosen so that x,, ny11 is nef over Yy 1, cf. Step 5.5, then, by Step 5.6, z,, N1+ %wnhNH is nef over
Y. In turn, zp, N+1 = Zn, ,N+1 + Wn,,N+1 is nef and big over Y, and hence it is relatively semi-ample over
Y. Let fon,: Xan, — Y denote its relatively ample model over Y. We claim that it admits a factorization
of the form

fN+1

//—\
(3.8) Xy > Xam Y1 Y .

To show that the claim holds it suffices to show that for any curve C§v+1 C Xn41 contracted by 7, , then
W,y N+1 -C}VH = 0, as that would imply that w,, n+1 descends to X, ,, and thus it must induce a morphism
Xan, = Yn41 inducing the desired factorization, by definition of w,,, n+1. By contradiction, let us assume
that wy, n11-Clyqy # 0, then wy,, ni1 - Cly; must be positive, since wy, ny1 is nef over Y. As Cjy; is
contracted by ry, , then z,, - C{ = 0 holds. But then these two observations imply (2, + $wn,)-Ch 1 <0,
which is impossible, since z,, + %wnk is nef over Y.

By definition, cf. the end of Step 2, and by the fact that Yy+1 — Y is not an isomorphism, cf. Step 5.4,
the factorization in (3.8) implies that for all k € N, z,, C I(X/Y), which contradicts our initial choice of
the sequence which required (z,)neny C J(X/Y) and concludes the proof.

Case 5.7.b. Now we deal with the case where the assumption of Case 5.7.a is not satisfied.
For all n € N, we set

A =inf {A €R ‘ wy, ny1 + (A= 1)Tn 1 Hy 1 is nef over Y},

and we fix an extremal contraction ¢, y4+1: Yn41 — Y, n42 over Y contracting an extremal ray R, C
NE(Yn4+1/Y) such that R, - (w;LNH + (A = 1)Tn41HpN+1) = 0. In particular, there exists a subsequence
(wy,, n+1)ken C (W;, nyq)nen such that for all k € N,

(a) Yn, N+1 and Yy, n42 are the same, by Lemma 2.8; and
(b) (A, )ken converges, since for all n € N, A, € [0, 1] holds.

To simplify the notation, we pass to the subsequence (w;,, Jren C (W, )nen (resp. (An, )ren C (An)nen) just
defined; we also pass to the subsequences of all the other sequences involved in the proof corresponding to
the same indices. We also define Y2 to be the variety from property (a) above and ¥n41: Yni1 — Yn4o
be the induced morphism. We set ;C;l)N_H = TnNt1 + (1 = )y 1 TN HN g in NL(Xn41/Y). Thus,
(x%,NH)nEN converges and for all n € N. Moreover, for alln € N, wy, ny1— (1=l (TN 1 HN 11 Sy, 0.
Hence, [zn,N4+1] = [x;1N+1] € N]}Q(XNH/YN“) which implies that Yyy2 — Y is not an isomorphism, as
otherwise (z,,)nen would be convergent, which contradicts the assumption made before Step 5.2.
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At this point, we iterate this procedure. Exactly the same proof as in Step 5.5 shows that there exist a
marked minimal model (fy42: Xy12 = Y, an) and a commutative diagram

XNp1———————————~— > X N2
ll}\H,l llN+2
PYN+1
YNt YNt2
Y

such that, defining @, .o = (dN+1)«T), Ny, DY construction (z;, o) is nef over Yy o for a suitable
subsequence (a:;zk ~Ny2)keN C (2], nyo)nen. Proceeding as in Step 5.6, there exists eny2 > 0 such that for
any curve C' C X 41 contained in the fiber of fxy1, xp nt2 - C > _%' We fix an integer T2 >
%ﬁ;\’“) and a Cartier divisor Hyy2 on Yyio ample over Y and we set w;)NH = (z/JNH)*w;)N_H +

(M — D)Tn41Hpy 41 for all n € N. If there exists a subsequence (w;k,Nu)keN - (w;7N+2)neN such that for
all k € N, w;k)NH — Tn42Hn 42 is nef over Y, we apply Case 5.7.a and reach a contradiction. Otherwise,
we repeat the procedure of Step 5.7.b.

This procedure must stop after finitely many steps. In fact, our construction yields a commutative diagram
of birational morphisms

YN+1 PN +2 VN +3 YN+1— YN +1 YN+I+1
Y1 —=Yny2 Ynis e Yt Ynjigr —— ...

N L

Y

such that for all ¢ > 1 morphism Yx4; — Y is not an isomorphism. Hence, the finiteness of the diagram
follows from Lemma 2.8. But this means that on the last step of this procedure, we must be in the situation
of case 5.7.a and again we reach a contradiction. O

4. DEFORMING DIVISORS IN A FAMILY

In this section, we study how divisor classes deform in families of certain types of K-trivial varieties.
We start with the following generalization of [Tot12, Theorem 4.1]. The proof has been kindly suggested
by Totaro.

Theorem 4.1. Let X be a projective variety with rational singularities. Assume that H'(Xg,Ox,) =
H?(Xo,0x,) =0, and that X is smooth in codimension 2 and Q-factorial in codimension 3. Then, given
a deformation X — (T,0) of Xo over a smooth variety T, there is an étale morphism (T',0) — (T,0) such
that the class group of X1 maps split surjectively to the class group of C1(X;) for allt € T', and all these
surjections have the same kernel.

We summarize the property proven in Theorem 4.1 by saying that the divisor class group is unchanged
under nearby deformations of Xj.

Proof. Let X — T be a deformation of Xy as in the statement. Under these assumptions, we can apply
[Tot12, Theorem 3.1] showing that Cl(X;) — Ha,—2(X, Z) is an isomorphism for ¢ € T, where n = dim(Xj).
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By Grothendieck’s six functor formalism, these homology groups form a constructible® sheaf of Abelian
groups on I'. Thus, T is stratified by a union of finitely many locally closed algebraic subsets T' = U}, T;
such that Cl(X;) is locally constant on each of the T;. Hence, if there is just one stratum near 0 € T', then
the claim follows by the definition of locally constant sheaf.

Let us assume by contradiction that there is more than one stratum near 0 € T'. Then, there is a smooth
curve C through 0 that crosses a stratum exactly at 0 € T. Thus, the groups Cl(X;) would not be locally
constant around 0 € C, contradicting [Tot12, Theorem 4.1]. O

Theorem 4.2. Let Xg be a terminal Q-factorial variety. Assume that Kx, = 0, H'(X(,0x,) = 0 and
H?(X0,0,) = 0. Given a deformation X — (T,0) of Xo over a smooth variety T, then X is terminal
Q-factorial, Kx ~q,r 0 over a neighborhood of 0 € T'. Furthermore, after an étale base change, the following
facts hold:

(1) A(X,) D A(Xo), where the inclusion is possibly strict;

(2) B(X/T) C B(Xo), where the inclusion is possibly strict; and

(3) M(X/T) D> M(Xo), where the inclusion is possibly strict.

The inclusion in (2) in Theorem 4.2 can be strict, see Section 5 and, in particular, Lemma 5.5 for an
example of such phenomenon.

Proof. (1) By repeatedly applying [dFH11, Corollary 3.2 and Proposition 3.5], it follows that X is Q-
factorial and terminal. Since K, is nef, then so is £Kx, , where n € T denotes the generic point
of T'. Thus, passing to the algebraic closure 7, Kx, ~g 0, by [Gonl3], and hence also K, ~q 0.
Therefore, there is an open neighborhood T° C T such that Kx_ ., ~gro 0. By [Birl2, Theorem 1.5],
0 € Ty. By Theorem 4.1, after an étale base change T/ — T°, we may assume that the class group of
Cl(X%) is constant for all ¢ € T'. To simplify the notation, we replace X — T by X7 — T’. Hence,
if D|x, is ample then so is D|x,. On the other hand, Wilson’s example [Wil92, Example 4.6] shows
that we could have a strict inclusion.

(2) Let B(X/T) be the relative pseudo-effective cone and B(Xj) be the pseudo-effective cone of the
central fiber. By Theorem 4.1, There is a natural restriction map r: B(X/T) — N&(Xp) and, by
semicontinuity [Har77, Theorem II1.12.8], the inclusion B(X/T) C B(Xj) is clear. The inclusion
could be strict by the example discussed in § 5.

(3) Note that by (1), A(Xo) C A(X,) C B(X,). Therefore, r(B(X/T)) N M(Xo) contains an open
subset. Indeed, we may consider a rational polyhedral cone IT C A(Xj), and, up to shrinking T
around 0, every non-zero divisor class in IT lifts to a class in A(X/T).

First, we claim that r(B(X/T)) D M(Xo). Assume by contradiction that this is not true. Then,
as these are full dimensional cones with a non-empty and full-dimensional intersection, we may pick
a divisor D in the boundary of B(X/T) such that Dy = D|x, is in the interior of M(X,) and in
particular vol(Dg) > 0. We will show that vol(D;) > vol(Dg) > 0 for every t € T. This contradicts
the assumption that D is in the boundary of B(X/T) and so r(B(X/T)) D M(X).

To see the claim we proceed as follows. First, as our goal is to show that vol(D;) > vol(Dg) > 0
for every t € T, we may assume that T is a smooth affine curve, as any point in ¢ can be joined
to 0 with a smooth curve. Let D; be a sequence of Q-divisors contained in the interior of B(X/T)
such that lim D; = D. For any ¢, we may choose Q-divisors B; and rational numbers 3; > 0 such
that D; ~q 8;B; and (X, Xo + B;) is plt and (Xo, Bi|x,) is terminal. Since B; is big over T, there
is a minimal model ¢: X --» X’ over T. Since Dy = D|y, is in the interior of M (Xy), then so is

3In this context, we only mean that the sheaf is locally constant on a suitable stratification, while we do not require that
the stalks are finite.
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D,|x, for i > 0. Thus, since the stable base locus of D;|x, contains no divisors, each step of this
minimal model program is an isomorphism at codimension 1 points of X. It follows that ¢ is an
isomorphism on a neighborhood of each codimension 1 point in Xy. Since (Xy, B;|x,) is terminal,
it follows easily that ¢o: Xo --» X|) extracts no divisors and so ¢ is a small birational map. Let
B} = ¢.B;, then (¢0)«(Bilx,) = Bj|x;. Since B; is nef over T', the volume of its restriction to any
fiber is computed by self intersection. Thus, it follows that

VOl(Xn, Bilxn) = VOI(X;I, B;lxé) = VOI(X(/J, BZI|X[/)) = VO].(XQ, Bilxo)v

where the last equality follows from the fact that ¢g is an isomorphism in codimension 1.
Thus, we have the following chain of equalities

vol(X,,, Di|x,) = B vol(X,, Bi|x,) = B¢ vol(Xo, Bi| x,) = vol(Xo, Di|x,),
where d = dim(Xp). As the volume function is a continuous function on the pseudo-effective cone,
it follows that
VOl(Xn, D|Xn) = VOl(Xo, Do) > 0.
By upper-semicontinuity of the volume function, it follows that
VOl(Xt, D|Xt) > VOl(XQ, DQ) >0

for every t, which is the sought contradiction.
Now assume by contradiction that (3) does not hold. Then, we may find a divisor D that is not in
M (X/T) and Dy is in the interior of M (Xy). Since Dy is in the interior of M (Xj), it follows that D
is in the interior of B(X/T). Proceeding as above, there is a D minimal model ¢: X --» X’ over T
such that ¢g: Xo --» X is a small birational map. In particular ¢y contracts no divisors and hence
by semicontinuity of the fiber dimension, ¢ also contracts no divisors over a neighborhood of 0 € T'.
Therefore, there cannot be a divisorial component of Bs(D/T) dominating T. Thus D € M(X/T)
which is the required contradiction, and (3) follows. Wilson’s example [Wil92, Example 4.6] shows
that we could have a strict inclusion.
O

Remark 4.3. The proof of part (3) of Theorem 4.2 can be adapted to show the following: if Dy is in the
interior of M(Xy), then for m > 0 sufficiently divisible the natural morphism H°(X,mD) — H°(Xo, mDy)
is surjective. Indeed, working on the model X’ constructed in the proof of (3), we can apply the relative
Kawamata—Viehweg vanishing theorem on X’ to argue that the Euler characteristic x(X{, mD}), which is
constant by flatness, is given by h%(X/, mDj}).

5. INTERLUDIUM: AN EXAMPLE

This section aims to study the behavior of the different cones of divisors in a family of Calabi-Yau
threefolds. We will study the following example in the category of smooth Calabi-Yau threefolds which
first appeared in Wilson'’s work, cf. [Wil92]. The example that we explain in this section is an analog for
1-parameter families of Calabi—Yau threefolds of the Atiyah flop that naturally appears in families of K3
surfaces, see, for example, [Huy16, § 6.5 and § 7.5].

5.1. Setup. Let f: X — C be a family of smooth Calabi—Yau threefolds. In particular, for any ¢ € C, the
log pair (X, X;) is plt and X; is terminal. Let 0 € C be a closed point and X the corresponding fiber. We
assume that X, contains an elliptic ruled surface, that is, Fy — Gy is a minimal ruled surface over the elliptic
curve Gy. In [Wil92], Wilson showed that it is possible to construct families X — C' in which Fj is rigid,
that is, Ey does not deform in the family. Up to shrinking C around 0, we can identify the cohomology of X
with the cohomology of any fiber, via restriction to Xy. Furthermore, up to an étale base change centered
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at 0 € C, we may assume that the conclusions of Theorem 4.1 are satisfied. Under these assumptions, We
shall show that the pseudo-effective cone cannot be constant in the fibers of this family.

Lemma 5.1. The surface Ey can be contracted on Xo by means of a (Kx, + Eo)-extremal contraction
mo: Xo — Yy to an elliptic curve isomorphic to Gy.

Proof. By assumption, Fg|g, = Kg, and Kg, - R = —2, where R is a fiber of the projective bundle structure
on Ey. As R? = 0 as a divisor on Ejp, then R is an extremal ray both in the nef and the pseudo-effective
cones of Fy. Since Ey is a minimal ruled surface, then Ny r(Ep) = R[R] @ R[Kg,]. Since Kx, + Ej is not
nef, we may consider a (Kx, + Ep)-extremal contraction 7y: Xo — Yp.

Claim. The embedding i: Ey — X, induces an embedding i.: Ny r(Eo) — Ny r(Xo) and mo|g, is the
contraction Fy — Gp.

Proof. Indeed, we may consider the plt pair (Xg, Ey). By adjunction, (Kx, + Ep) - R < 0, and all the
(Kx, + Eo)-negative curves are Fy-negative, hence, contained in Fy. By adjunction and the fact that
R? = 0 inside FEy, we have (Kx, + Fo) - R = —2. Now, let Go be the section of Ey — Gy of minimal
self-intersection. To show that i.: Ny g(Fo) — Njg(Xo) is an embedding, we will show that Gy is not
numerically equivalent to R in Ny r(Xo). By the classification of ruled surfaces over an elliptic curve, see
[Har77, § V.2], we either have G3 < 0 or G = 1. In the former case, since g(Go) = 1, then deg(Kg ) =0
and, by adjunction
(Kx + Ey)-Go = Kg, - Go = —G2 > 0.

Thus, R and Gy are linearly independent in N1 r(Xo). Now, assume that G% = 1. In this case, we have that
(Kx+Ey)-Go=—1. As (Kx+ FEp)-R = —2, to conclude, it suffices to rule out that [R] = 2[Go] in Ny g (Xo).
Now, let L be an ample divisor on Xy. Then, by [Har77, Proposition V.2.21], up to rescaling the numerical
class of L, we have that L|g, = Go 4+ bR with b > —2. Thus, we have L - Go = (Go +bR) -Gy = 1 +b,
and L-R = (Go + bR) - R = 1. Thus, we have [R] # 2[Gq¢], as b # —2. Hence, we conclude that
ix: N1 r(Eo) — N1 r(Xo) is an embedding. Now, since any (K x, + Ep)-negative extremal ray is spanned by
the class of a rational curve in Fy and since Ey is ruled over a curve of positive genus, it follows that the
only possible ray is R>o[R]. Now, as we showed that Go is not in R>o[R], Gy cannot be contracted by g
and no irreducible curve C C Ey horizontal over Gy can be contracted, as this would force Ey and hence
also Gy to be contracted. Thus, Ey cannot be contracted to a point by a (Kx, + Eop)-extremal contraction,
as otherwise dimi*(N§(Xo)) = 1. O

As all rational curves in Ey are vertical above the elliptic base, they must all be numerically equivalent to R.
Thus, R is a (Kx, + Ep)-extremal curve, and its contraction 7 is a divisorial contraction that maps Ey to
a curve. The conclusion on the image of Ej follows from the fact that Ey is the projectivization of a vector
bundle over Gy and we are contracting the fibers of this bundle. O

5.2. Goal. The primitive contraction mo: Xo — Yj is the first (and only) step in the Eo-MMP on Xy. Let
Hy be a big and nef Cartier divisor in the relative interior of the facet of A(Xy) given by 74 (A(Yp)). As
mo is divisorial, then Y{ is canonical, and it contains an elliptic curve Gy of canonical singularities. As the
conclusions of Theorem 4.1 are met for X — C, any divisor class on Xy comes from the ambient space X.
We denote by H, E the corresponding cohomology classes on X restricting to Hp, Fg on Xy. Up to replacing
Hy with a multiple, we may and shall assume that H is a Cartier divisor on X.

Our goal is now to understand the models that appear on X when moving along the segment [H, E] in
N4 (X/C). In [Wil92, Proposition 4.4], Wilson showed that Hy is big and nef but not ample, while H; := H|x,
is ample for any ¢ # 0. In view of this, by Kawamata—Viehweg vanishing, for all ¢ € C, for all m > 0 and
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all i > 0, H'(X;,mH;) = 0. Thus, by cohomology and base change, since X — C is flat by construction,
it follows that for all i > 0 and all m > 0, R'f.Ox(mH) = 0, which in turn implies that for all m > 0,
f+«Ox(mH) is a vector bundle over C, or, equivalently, that the restriction map

HY(X,mH) — H°(X;, mH,)

is surjective for any ¢ € C' and for any m > 0. Hence, the natural morphism 7: X — Y over C' induced by
H lifts mp. For 0 < € < 1, the divisor H + €F is relatively big over C' and relatively ample over C \ {0}.
Therefore, the relative stable base locus of H 4 e¢FE is a proper subset of Xy, and it follows that H + ¢E
is relatively movable over C. Now, fix 0 < A ~g H + €E. For 0 < § < 1, the log pair (X, Xy + JA) is
plt, and the log pair obtained by adjunction (Xo,dAp) is terminal. Thus, we can interpret the contraction
m: X =Y as astep of a (Kx + X0+ dA)-MMP over C, that is, 7 is a flipping contraction for such MMP,
as its exceptional locus is small, and the flip

of m exists. We shall denote the strict transform of a Weil divisor M on X by M+ on XT.
Lemma 5.2. X, is isomorphic to Xgr.

Proof. The map v is a step of the (Kx + Xo + 6A)-MMP over C, (X, Xy + dA) is plt, and (Xo,dA¢) is
terminal. Then, (X, X;” + 0A™) is plt as well; similarly, (X, JAJ) is terminal. Thus, 74 : X7 — Yj is a
terminalization of Yj. Since Kx+ =0, as v is an isomorphism in codimension 1, then KXJ = 0. So, Xy and
XJ are isomorphic in codimension 1, as they are both terminal and minimal, see [KM98, Corollary 3.54].
Since Xg is Q-factorial and 7y is an extremal divisorial contraction, then also Yy is Q-factorial. Then, as
also 7r(')Ir is extremal, it follows that XJ is Q-factorial as well. In particular, as Xy and Xgr are Q-factorial,

terminal, and minimal, they are connected by a sequence of flops

Thus, also war is a divisorial contraction; we shall denote by Ey its exceptional divisor which is contracted

by war to the curve Gy C Y.

Let R* denote the class of the curves contracted by 7. As mj is an isomorphism outside Ep, the first
flop in the chain of flops connecting X, to X must flop a rational curve in Ey. The only rational curves
here are the fibers of the projective bundle structure Ey — G and they are all contained in a 1-dimensional
family. Hence, they cannot be possibly flopped. This shows that Xy and XJ are isomorphic. In particular,
Ey-Rt = -2 O

Abusing notation, we denote by 1g: Xg — Xar the isomorphism whose existence is demonstrated in the
proof of Lemma 5.2. Given that N} (X) (resp., NL(X)) comes equipped with a natural marking given by
the identification with N&(X), the two markings cannot possibly be identified by ¢: in fact, for example,
(H + €E)|x, is not ample on Xy for 0 < € < 1, while the corresponding class (H™ + eE+)|X0+ is ample on

XJ . Hence, under such markings, the nef cones are not even identified.

Lemma 5.3. Let Eg be the exceptional divisor of the morphism 71'(')". For any class Dy € N} (Yo),

E¢ - ((m§ )" Do)*> = 0= Eq - (w3 )*Do)* = 0 = Ey - (w5 Do)?.
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Proof. As Ey is contracted by war to a curve, for any general ample divisors Jy and Jj on Yy, we have
Eo - (nd*Jo) - (ng* J§) = 0, as we may assume that the intersection Jy N Jj) avoids Go. As the Néron—Severi
group is generated by ample divisors, the conclusion of the lemma follows for Ey.

The same reasoning shows also that the conclusion holds for Ey on X, as Ey is contracted by mg.

Let V C NE(X/C) be the subspace that is generated by the classes that restrict to 7§ (Ng(Yp)) on Xo. By
the conclusion of the lemma for Fy and the deformation invariance of intersection products, it follows that,
for any t € C and any L € V, we have E; - (L;)?> = 0. However, when we apply %, as nothing happens on
X\ {Xo}, then E;" - (L;7)? = 0 for t # 0. This also implies, by the constancy of the intersection numbers in
the family, that E; - (HJ)? = 0. O

Remark 5.4. (1) We observe that Yj is a local complete intersection. Indeed, as observed by Wilson
[Wil92, p. 567], Yy has cDV singularities. Thus, Yj has locally analytically hypersurface singularities.
Hence, by [TS21, Tag 09PY], Yy is a local complete intersection. In particular, cf. [Laz04, Remark
3.1.34], the Lefschetz hyperplane theorem can be applied to Y.
(2) Let

N (Yo) ®@r N& (Yo) — Ny r(Y0)

aQpr——>a-f

be the morphism induced by the intersection pairing on Yy. Let My C Ny r(Yp) be the image of this
morphism. We claim that My = Nj g(Yp), or, equivalently, that Mg~ = {0}, where Mg~ C NL(Yp).
Let us assume that that is not case, i.e., that there is an element 0 # v € N&(Yp) such that v-h-h' =0
for any divisors classes h, h’ € NL(Yp). Taking h = [H], where H is a general very ample divisor and
hence a surface with canonical singularities, then, v-h-h' = v|g - h'|g = 0. By the previous part of
this remark, the morphism H?(Yy,Z) — H?(H,Z) is injective, and therefore v|gz # 0. Now, assume
that b’ is an ample class. Then, since v|g - h'|g = 0, by the Hodge index theorem and the fact that
v|lg # 0, it follows that v|g - v|g < 0. Thus, we reach the required contradiction, as v - v - h # 0.

We will denote by E the class in N&(X+/C) whose restriction to X is F.
Lemma 5.5. There exists a negative real number \ such that [E*] = A[E] in N&(X ).

Proof. By Lemma 5.3, we know that Ef, Fo € (m5Mo)*t. As dim7iNi(Yy) = dim N (X)) — 1 and
mENE (Yo) N (Mo)+ = {0}, then (7§ M)~ is a line generated by either one of the divisors Ej , Eg. Let RT be
the class contracted by 7+ (R™ is just the class of any curve in the ruling of Fy). Hence, as already observed
at the end of the proof of Lemma 5.2, Eo - Rt < 0. On the other hand, by construction, Ef - Rt > 0, as
ET is the strict transform of E through the flip. O

Remark 5.6. Lemma 5.5 provides an instance in which the inclusion (2) in Theorem 4.2 is strict. Indeed,
using the notation of § 5, if E were pseudo-effective, then so would E* be. Yet, this would imply that E;
is pseudo-effective. Then, by Lemma 5.5, B(X/C) would contain a line, which is impossible.

The conclusions of Lemma 5.5 are consistent with the observations made by Wilson in [Wil92, § 5].
Indeed, Wilson showed that the transformation induced on N} (Xo) by the flip is a reflection through the
plane generated by pull-back of classes from Yy which sends Ejy to its negative. In particular, the coefficient
Ain Lemma 5.5 is A = —1.

6. ELLIPTIC THREEFOLDS

We recall that, by the notation set in § 2.8, a Calabi—Yau threefold X is a normal projective threefold
with Q-factorial terminal singularities such that Kx ~ 0 and h'(X,Ox) = h*(X,0x) = 0.



BOUNDEDNESS OF ELLIPTIC CALABI-YAU THREEFOLDS 35

6.1. Elliptic Calabi—Yau threefolds and their bases. If f: X — S is an elliptic Calabi—Yau threefold,
the base S is either rational, or it is a surface with Du Val singularities whose minimal resolution is an
Enriques surface, see [Gra91].

Remark 6.1. Let X be a kit variety with Kx ~g 0. Assume that X is endowed with an elliptic fibration
f: X — S. Then, by the canonical bundle formula, cf. Proposition 2.9, there exists a generalized pair
structure (S, Bs + Mg) on S such that Kx ~ f*(Ks + Bs + Mg). By [FMO00], the coefficients of Bg
lie in the set {1 — % | ne N>0} U {%, %, %}, and , by Kodaira’s canonical bundle formula, we can find
an effective and integral divisor D such that %D ~g Mg, and (S,Ag) is klt, where Ag = Bg + %D,
cf. [PS09, Example 7.16]. In particular, coeff(Ag) C {1 — % |neNso}pU {%, %, %, %}

We will denote the set {1 — % | ne N>0} U {%, i, %, 11—2} by Cey.

In order to prove the boundedness of the elliptic Calabi-Yau threefolds, one first needs to address the
boundedness of the bases of the corresponding elliptic fibrations.

The set of possible rational bases is bounded by work of Alexeev [Ale94].

Proposition 6.2. The set of log pairs

%Q,Ce” L (S A ) dim S = 2, COGH(As) C Cept, Ks+ Ag ~Q 0,
LCY, RC ™ 128 S is rationally connected, and (S, Ag) is projective kit
is log bounded.

Proof. Fix (S,Ag) € %i&}l re- By [PS09, Corollary 1.11], there exists N € N, only depending on the data
of our problem such that N(Kg+Ag) ~ 0. Since (S, Ag) is klt, this implies that it is %—log canonical. Then,

by [Ale94, Theorem 6.9], the surface S belongs to a bounded family. The statement about the boundary
follows from [CDCH™'21, Theorem 4.1]. O

On the other hand, we could not find in the literature a result showing the boundedness of singular models
of Enriques surfaces. The following statement fills this gap. We deduce the boundedness of these varieties
from the boundedness of Enriques surfaces and the Kawamata—Morrison cone conjecture.

Theorem 6.3. The set of varieties

%QE oy = { g S is a projective surface with at worst Du Val singularities }
nr, .

and its minimal resolution is an Enriques surface

is bounded.

Proof. Tt is well known that Enriques surfaces form a bounded family. For instance, by [Cos85, Theorem
1], every Enriques surface admits a birational morphism onto a (possibly singular) projective surface of
degree 10 in P°. Projective surfaces of degree 10 in P° form a bounded family — it suffices to consider their
Hilbert scheme in P?. Then, also the set given by their resolutions forms a bounded family, thus proving the
boundedness of Enriques surfaces.

Now, we need to show the boundedness of the set of surfaces admitting Du Val singularities whose minimal
resolution is Enriques. Let X — T be a family that bounds the set of Enriques surfaces. Up to replacing
this family, we may assume that the conclusions of Theorem 4.1 and Theorem 4.2 hold. As there are finitely
many of these components, in the following we focus on a single one, with the understanding that the same
argument has to be repeated on each one of them individually.

Let n € T be the generic point. By [Kaw97, Remark 2.2], there is a rational polyhedral cone II,, C Z(Xn)
that serves as fundamental domain of the action of Aut(X,) on A°(X,) = A(X,), where we use the fact that
every nef Cartier divisor on an Enriques surface is semi-ample. Then, the semi-group of lattice points of II,, is
finitely generated. Let M%, ceey M,’f be a set of generators of this semi-group. We denote by M, ..., MF¥ the



36 S. FILIPAZZI, C.D. HACON, AND R. SVALDI

corresponding classes in Ni (X /T) given by the identification of N} (X,) and N} (X /T). Since any integral
nef divisor on an Enriques surface is semi-ample, each M,ZI spreads out to a divisor that is relatively semi-
ample over a non-empty open subset of 7. Thus, up to shrinking 7" finitely many times (this is allowed by
Noetherian induction), we may assume that each M? is relatively semi-ample.

Let L, be a divisor in II,, and let L € N} (X/T) be the corresponding divisor class. Then, we claim that
L is semi-ample over T'. Indeed, as II, is a rational polyhedral cone and M%, e ,M,’f generate its lattice
points over Zx, then M, ..., M} generate II, over R>o. Thus, L = Ele a;M*, where each a; > 0. Since
each M? is semi-ample over T, then so is L.

We will now show that, under the assumptions of the previous reductions, A(X;) = M (X/T), where we
identify the vector spaces N} (&;,) and N&(X/T). Clearly, we have M(X/T) C A(X,), as any relatively
movable divisor restricts to a movable divisor on the generic fiber, and movable divisors are nef on surfaces.
Now, let D, € A(X,), and let D be the corresponding divisor class in N}(X/T). By assumption, there
is an automorphism ¢ € Aut(&;) and a divisor L, € II, such that ¢,D, = L,. Then, by regarding ¢ as
an element of Bir(X/T'), we have ¢, D = L. Since X is smooth and relatively minimal over T', ¢ does not
contract nor extract any divisor. Thus, ¢, preserves linear equivalence. Thus, as L is semi-ample and the
indeterminacy loci of ¢ and ¢! are small, it follows that the relative stable base locus of D over T does not
contain any divisor. In particular, D € M (X /T).

In particular, we have that II, is a fundamental domain for the action of Aut(&x,) = Bir(X'/T) on
A(X,) = M(X/T). Since I1, is rational polyhedral, it follows that the cone conjecture holds in this particular
setup. Thus, there are only finitely many chambers for the marked minimal models of X — T" and finitely
many faces of them up to the action of Bir(X/T). In particular, there are finitely many varieties Y7, ...,Y]
over T such that, for every divisor D € M (X /T), the ample model of D over T is isomorphic over 7' to some
Y, fori=1,... 1.

Now, let Sy be a surface with Du Val singularities whose minimal resolution is f: Xy — S for some 0 € T'.
Let Hy be the pull-back via f of an ample divisor on Sy. Also, let H be the corresponding divisor class in
NL(X/T). By Proposition 4.2, H € A(X,). Let Y; be the distinguished model that is isomorphic over T
to the relative ample model of H. Then, by construction, we have that the fiber of Y; — T over 0 € T is
isomorphic to Sy. In particular, the Du Val models of the Enriques surfaces appearing as fibers of X — T
are bounded, as they all appear as fibers of some Y; — T'.

By iteration of this argument on all the finitely many components of 7' and by Noetherian induction on
the closed subsets of T removed in the construction, this shows the claim. ]

6.2. Elliptic Calabi—Yau threefolds with a rational base. In [Gro94, Theorem 1], Gross proved the
following result showing that minimal terminal elliptic Calabi-Yau threefolds with rational base are bira-
tionally bounded. Recall that, in this work, a Calabi—Yau threefold X is a Q-factorial, terminal threefold
with Kx ~ 0, and hl(X, Ox) = h2(X, Ox) =0.

Theorem 6.4 ([Gro94, Theorem 1]). The set of triples
3ty etl, rat = {(X,8,h) | h: X — S is an elliptic Calabi—Yau threefold and S is normal and rational}

is birationally bounded.
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By the above theorem, together with Definition 2.7, passing to a resolution of a bounding family of
fibrations, we can assume that there exist quasi-projective varieties X', S, T and a commutative diagram

of projective morphisms satisfying the following properties:
(1) 7 and g are smooth;
(2) for every ¢t € T, X, is birational to a Calabi-Yau threefold, S; is a smooth rational surface and the
general fiber of f; is an elliptic curve; and
(3) if h: X — S'is an elliptic Calabi—Yau threefold over a rational surface S, then X — S is birationally
equivalent to X} — S; for some ¢ € T', that is, there exists a commutative diagram

(6.2) X2 __
ht lft
S—o YL

where the horizontal arrows are birational maps.

Using techniques of the MMP, up to stratifying the base T, we can modify birationally the family in (6.1)
to obtain a new family of elliptic fibrations

X r s
T

such that, for every t € T, X, and &/ (resp. S; and S;) are birationally equivalent, and &} is a minimal
model for A; (in particular, X} is terminal and Q-factorial, but not necessarily smooth). In particular, this
implies that S%Y, ell, rat 18 10g bounded in codimension 1 since the rational map ¢: X --» X} is a sequence of
K x-flops, cf. Definition 2.7.3. On the other hand, the rational contraction fio¢: X --» S} is not necessarily a
morphism, as the birational map S --+ §; may extract some divisor. Hence, the sequence of flops connecting
X and X} is not necessarily a sequence of flops relative to a 2-dimensional base.

To remedy this issue, we can prove the following more precise version of the boundedness in codimension
1 of elliptic Calabi—Yau threefolds.

(6.3)

Proposition 6.5. There exist quasi-projective varieties X, S,T and a commutative diagram

of projective morphisms satisfying the following properties:
(1) 7 is a flat family of threefolds and g is a flat family of surfaces;
(2) for everyt € T, X; is a Calabi—Yau threefold. In particular, X; has terminal Q-factorial singularities;
and
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(3) for every terminal elliptic Calabi—Yau threefold with rational base h: X — S, there exists t € T
together with an isomorphism in codimension 1 ¢: X --+ Xy such that S; and S are isomorphic and
¢ is a birational morphism over S.

The main feature of the statement of Proposition 6.5 is given by property (3), i.e., by the fact that the
family will contain every base of an elliptic fibration. This will be a useful feature when trying to prove the
boundedness of elliptic fibrations.

To do so, we will apply Theorem 3.4 which allows controlling the number of birational models of an elliptic
fibration with a fixed base. As the statement of Theorem 3.4 works for any Calabi—Yau fiber space of relative
dimension 1, it can also be applied to control the birational models of a given family of elliptic fibrations.
We utilize Theorem 3.4 to turn the statement of Proposition 6.5 on boundedness in codimension 1 of elliptic
Calabi—Yau threefolds into a full boundedness statement. In order to use Theorem 3.4 effectively, we need
to guarantee that in the above sketch, the birational map S --+ S is an isomorphism, that is, that all bases
of elliptic Calabi—Yau varieties appear in a bounding family such as the one in (6.3). One possible way to
achieve this would be to adapt the proof of Theorem 6.4 to start from the families of surfaces guaranteed
by Proposition 6.2, rather than considering suitable smooth models of such surfaces as in [Gro94]. A more
direct approach, which still relies on the ideas of [Gro94], is given by the results of [Fil20].

Proof of Proposition 6.5. Let h: X — S be an elliptic Calabi—Yau threefold with rational base. By Propo-
sition 6.2, S belongs to a bounded family. Therefore, there exist v € N (independent of S) and a very ample
divisor Hg on S such that H?> < v and (S, £Hg) is klt. By Theorem 6.4, (X, S,h) € Sy, e, rar and the
latter is birationally bounded. In particular, h admits a rational d-section, for some d € Z~ bounded from
above. Then, the claim follows by applying [Fil20, Theorem 1.1] to the log pair (X, %h*HS). Finally, the
fact that we may assume that every fiber X; is a Calabi—Yau threefold follows readily from Theorem 4.2. [

6.3. Elliptic Calabi—Yau threefolds with non-rational base. Let f: X — S be an elliptic Calabi—Yau
threefold such that S is a surface with at worst Du Val singularities whose minimal resolution is an Enriques
surface. Then, the fibration f is isotrivial. Furthermore, by [KL09, Theorem 14], after a quasi-étale cover, X
splits as the product E x Y, where E is an elliptic curve and Y is either a K3 surface or an Abelian surface.
Thus, the structure of such elliptic Calabi—Yau varieties is rather clear. On the other hand, the boundedness
of these varieties has not been addressed before. For this purpose, we perform an analysis of this case that
is similar to the one carried out by Gross in [Gro94] for rational bases.

First, we start by analyzing Jacobian fibrations. Given an elliptic fibration f: X — Y, the generic fiber
X, is a smooth curve of genus 1; we denote by J(X), its Jacobian, which is then a smooth curve defined
over C(Y") of genus 1 with a C(Y)-rational point. Then, the Jacobian fibration of f is defined birationally as
any elliptic fibration j: J(X) — Y such that the generic fiber of j is J(X),, cf. [Gro94, Definition 1.4]. In
general, we may assume that j is relatively minimal over Y: indeed, by passing to a log resolution, we may
first assume J(X) is smooth; then, we may run a relative minimal model program over Y, which terminates
with a good minimal model by [HX13, Theorem 1.1]. Thus, in general, we may choose a representative
J: J(X) = Y for the Jacobian fibration of f such that J(X) is terminal, Q-factorial, and K ;(x) is semi-
ample over Y. In particular, for m > 1, the relative linear system |[mK;x)/Y| induces a factorization
J(X) =Y =Y, where Y/ — Y is birational.

If the base Y is a curve, then the Jacobian fibration is an elliptic fibration with a section, and there is
extensive literature about the Weierstrass models of these fibrations. Furthermore, Weierstrass models for
elliptic fibrations with a rational section still exist if the base is a smooth surface, see [DG94, Proposition
2.4]. In particular, if j: J(X) — S is a Jacobian fibration over a surface and S’ is any smooth birational
model of S mapping to S, we may construct a Weierstrass model of j with base S’. Then, by further blowing
up the discriminant locus of the fibration in S’, we may further improve the geometry of the fibration to
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guarantee that the total space of the Weierstrass model is smooth and the corresponding morphism is flat,
see [Gro94, p. 276]. These special models are called Miranda models, see Definition 6.6.

Definition 6.6. Let f: X — S be an elliptic fibration. A Miranda model of f is an elliptic fibration
f'+ X' — S’ such that

1 is birationally equivalent to f in the sense of (6.2);

X' and S’ are regular;

f! is flat and it admits a section;

the discriminant locus ¥ = {s € S| X/ is not regular} is simple normal crossing; and

all fibers over the singular points of ¥ have Kodaira type In, + Ins,, Iaay + Iy, 1T+ 1V, 11 + 17,
II+1V* IV + I, or IIT + I

In [Gro94], the singular points of the simple normal crossing divisor ¥ are called collision points. This
terminology reflects the fact that, as ¥ has simple normal crossings, its singularities come from different
components X7 and Yo meeting transversally. Then, by definition, the Kodaira type of the fiber over a point
p € ¥1 N 3o is determined by the type of fiber over the general point of the two components. For instance, if
the general fiber over ¥; has Kodaira type Ips, and the general fiber over ¥ has Kodaira type Iy, we say
that the fiber over p has Kodaira type Ips, + Ins,. Then, all the types of fibers appearing in the last item of
Definition 6.6 are explained analogously.

In this subsection we will analyze the Jacobian fibration of an elliptic Calabi—Yau threefold with Enriques
base to prove the birational boundedness of the latter, cf. Theorem 6.12. We start our analysis by showing
that the Jacobian of such an elliptic Calabi—Yau variety is Calabi—Yau as well, cf. [GW22].

Proposition 6.7. Let f: X — S be an elliptic Calabi—Yau threefold. Assume that the minimal resolution
of S is an Enriques surface. Let j: J(X) — S be a relatively minimal model over S of the Jacobian fibration
of f. Then, J(X) is a Calabi-Yau threefold.

Proof. By assumption, J(X) is terminal and Q-factorial, as it is a relatively minimal model of a smooth
variety. By [GW22, Corollary 29], then h%(J(X),K;x)) = 1, s(J(X)) = 0, and h'(J(X),0x)) =
h2(J(X), O;(xy) = 0. Thus, to conclude, it suffices to show that K ;x) ~q 0, i.e., that J(X) is minimal.

Let
J(X)
7N
S’ i S

be the relatively ample model of J(X) over S. By the canonical bundle formula, K ;x) ~q (/)" (Ks: + A7),
where (S’, A’) is a klt pair. Then, Kg-+ A’ is T-ample. By assumption, the canonical bundle formula applied
to the morphism f: X — S induces trivial boundary part and trivial moduli part. Thus, by [Gro94, Lemma
1.6] applied over a big open set of S, it follows that A’ is m-exceptional.

Since S has Du Val singularities, then Kg ~g g E > 0, where E is m-exceptional. Thus, Kg + A’ ~g g
E+ A’, where E + A’ is effective, m-exceptional, and m-ample. The negativity lemma then implies that 7 is
the identity morphism. O

In order to retrieve birational boundedness of the original models f: X — S from the boundedness in
codimension 1 of the Jacobian fibrations j: J(X) — S, we need to understand how many smooth curves of
genus 1 over k(S) admit the same Jacobian J(X),. This association is controlled by the Weil-Chatelet group
WC(J(X)y), see [DGY4]. In particular, WC(J(X),) parametrizes birational equivalence classes of elliptic
firbations over S whose generic fiber has prescribed Jacobian. On the other hand, an elliptic fibration that
arises from a Calabi-Yau variety has very restrictive geometric conditions, which then restrict the class of
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generic fibers that can possibly arise. These fibrations can be parametrized by a much smaller subgroup of
the Weil-Chatelet group, known as the Tate-Shafarevich group Ilgs(J(X),). We refer to [DG94, Gro94] for
a systematic treatment of this topic and for the formal definitions of these groups using étale cohomology.
Here, we limit ourselves to the following geometric characterization of IIlg(J(X),) as a set:

Ms(J(X),) ={C € WC(J(X),)|Xc — S has a rational section étale locally at s for every point s € S},

where X — S is some proper model of the curve C' defined over k(S), see [Gro94, § 3]. Thus, HIg(J(X),)
imposes pretty restrictive conditions on the type of singular fibers that can occur. In particular, as there is
no local obstruction to admitting a rational section, multiple fibers cannot occur over codimension 1 points
of the base. Lastly, we observe that, as in the case of WC(J(X),), Ills(J(X),) parametrizes birational
equivalence classes of elliptic firbations over S.

Remark 6.8. When considering an elliptic Calabi-Yau threefold f: X — S, the morphism f does not
admit multiple fibers over codimension 1 points of the base S, as Kx ~ 0. Thus, f: X — S corresponds
to a class in the Tate-Shafarevich group Iy (J(X),), for a big open subset U C S. For more details, see
[Gro94, p. 276].

A first step towards proving birational boundedness of elliptic Calabi—Yau threefolds with a non-rational
base is to show that their Tate-Shafarevich groups are finite.

Proposition 6.9. Let f: X — S be an elliptic Calabi-Yau threefold. Assume that the minimal resolution
of S is an Enriques surface. Then, X € Ulg\s,,,,(J(X),).

Proof. First, we show that we may assume that f is equidimensional. Let f: X — S be an elliptic Calabi—
Yau threefold and assume that the minimal resolution S’ of S is an Enriques surface. Then, as Kx ~ 0
and Kg ~q 0, in the canonical bundle formula Kx ~ f*(Kg + Bg + Mg) the boundary part Bs = 0 while
the moduli part Mg = 0. Up to flopping X over S, by Lemma 2.16, we may assume that f factors as
X — 8 — S, where f': X — S is equidimensional, and 7: S’ — S is birational. Since Kx ~ 0 and
Kg ~q 0, it follows that S’ — S is a partial resolution. Let {pi,...,px} be the singular locus of S, and
let m be an isomorphism over p; for 1 < 4 <[ for some 1 <[ < k. Then, Sbmg {p1,-- 0L, Q- qm |
where ¢; € Ex(n) for all j. For each i =1+ 1,...k, let E; be the (possibly reducible) m-exceptional curve
mapping to p;. Then, S\ {p1,...,px} = (' \ {p1,...,m}) \ (UX_,,Ei). Then, assuming the claim in the
equidimensional case, X € I_HS/\Séing(J( Jn)- As SGne = {P15- .., P1,q15- -+, @}, it then follows that

Wsn sy, (J(X)n) C M gy, pp\, B0 (T(X)n) = Msys,,,, (T (X))

Thus, in the following, we may assume that f is equidimensional. By [KL09, Theorem 14|, there exists a
commutative diagram

ﬁjz
CDI

X =

to<—><
P
Q

CQ

where 1 is étale in codimension 1, K¢ = 0, and ¢ is a generically finite rational map. As X is terminal,
then so is X. Note then that F is an elliptic curve and S is a smooth surface with Kz ~ 0. From the above
diagram it follows that ¢ is a morphism, étale over the regular locus of S, such that deg(¢) deg(1)). Since
f and g are equidimensional, it follows that ¢ is finite. Since ¢ is étale outside of Sgng and deg(¢) = deg(),
it follows that 1 is étale over the complement of Sgne. In particular, f is a smooth fibration over the
complement of Ssing. Thus, X € lg\g,,, (J(X)y). O
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Miranda models are particularly important for the direct computation of the Tate-Shafarevich group of
an elliptic fibration of a Calabi—Yau threefold.

Proposition 6.10. Let f: X — S be an elliptic Calabi—Yau threefold. Assume that the minimal resolution
of S is an Enriques surface. Let j: j(X) — S be a Miranda model of the Jacobian fibration j: J(X)—= S
of f. Let E be the exceptional locus of the birational morphism S — S with the reduced structure. Then,
X € Mg z(J(X)y), and this group is finite.

Proof. By [DG94, Theorem 2.24], Il 5(J(X),) is an extension of (Q/Z)" by a finite group, where

r=by(J(X)) — p(J(X)) = (b2(S) — p(5)).
By Proposition 6.7, J (X) is a resolution of a Calabi—Yau variety, and the minimal model of S is an Enriques
surface. Thus, it follows that hQ(j(X),Oj(X)) = h%(S,05) = 0. Therefore, by(J(X)) = p(J(X)) and
b2(S) = p(S). In particular, r = 0 and I g(J(X),) is a finite group.

Let S’ denote the minimal resolution of S. Then, S — S factors through S’, as S is smooth. By [DG94,
Proposition 2.4], J(X) admits a model over S’ that is a Weierstrass fibration. Then, by [DG94, proof of
Theorem 2.8], we may assume that S is obtained by blowing up the discriminant locus of the Weierstrass
model. By the proof of Proposition 6.9, J(X) — S is smooth over the complement of Sgng. In particular,
E is the inverse image of Ssng. Then, by Proposition 6.9, X € s\ 51 (J (X)) = g\ 5(J (X))

To conclude, we need to show that Illg z(J(X),) is finite. This follows from the finiteness of Il 5(J (X))
and [Gro94, Proposition 3.2]. O

Since only finitely many birational classes of Calabi—Yau threefolds can admit the same Jacobian fibration,
to prove the boundedness of elliptic Calabi—Yau threefold with base a singular Enriques surface, we need to
show that the assignment “fibration to Jacobian” can be inverted in a family in a finite-to-one way, rather
than just on a fixed model. For this purpose, one needs to arrange for a family of Jacobian fibrations with
some special geometric properties, to guarantee that the Tate—Shafarevich group behaves well in the family.

Proposition 6.11. There exist quasi-projective varieties T, S, T and a commutative diagram

of projective morphisms satisfying the following properties:

(1) 7 is a smooth family of threefolds and § is a smooth family of surfaces;

(2) f admits a section;

(3) for every elliptic Calabi-Yau threefold h: J — S admitting a rational section and for which the
minimal resolution of S is an Enriques surface, there exists a closed point t € T such that T — S
is isomorphic to a Miranda model J — S of J — S as in Proposition 6.10; and

(4) there exists a reduced divisor E C S that is log smooth over T such that any of the isomorphisms
S, — S, whose existence is claimed in (8), maps & (considered with its reduced structure) on the

reduced exceptional locus E of S — S.

Proof. Let h: J — S be an elliptic Calabi—Yau threefold admitting a rational section and for which S is
an Enriques surface. By Theorem 6.3, S belongs to a bounded family. Therefore, there exists C' € N and
a very ample divisor H on S such that H? < C and (S, %H) is klt. By assumption, h admits a rational
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section. Then, we can apply [Fil20, Theorem 1.1] to the log pair (J, %(b*H) — in this case, we are taking
d = 1 with respect to the notation of [Fil20, Theorem 1.1]. Furthermore, since we are considering fibrations
with a rational section, their boundedness in codimension 1 actually follows from [Fil20, Theorem 7.8]. In
particular, by [Fil20, step 6 of proof of Theorem 7.8], also the rational section of J — S is bounded in
codimension 1. Therefore, the fibrations f: J — S are bounded in codimension 1 together with a rational
section. Let J — S — T be the family thus obtained. Then, as the rational section of the fibrations is
bounded as well, it follows that J — S has a rational section which is defined over every t € T'. In particular,
Jn — Sy has a rational section, where 77 denotes the generic point of an irreducible component of T'. The
fact that we may assume that every fiber J; is a Calabi-Yau threefold follows easily from Theorem 4.2. To
prove the statement of the claim, we will stratify and resolve the family thus obtained.

In the following, we will focus on one irreducible component of 7" at a time, and we will possibly stratify
and resolve such a component. Since T is of finite type, by Noetherian induction the following process has to
be repeated only finitely many times. By abusing notation, in the following, we will assume T is irreducible.

Let 1 denote the generic point of T'. Then, the geometric generic fiber J; — Sy admits a Miranda model.
Up to a finite cover of T', then so does J;, —+ S,. Thus, we may assume that J,, — S, has a birational model
j,, — Sn as in Proposition 6.10. We denote by En the exceptional divisor of Sn — S;. Up to shrinking T,
we may assume that the generic fiber spreads out, and we obtain a tower of morphisms J =8 = T, where
J — T and S — T are smooth and £ — T is log smooth. Up to shrinking T', we may also assume that
J — S has a section. Thus, we obtain a family of Miranda models as in Proposition 6.10, and the claim
follows. O

Theorem 6.12. The set of triples

g?)C'Y, ell, Enr = {(Xu Su f)

is birationally bounded.

X is a Calabi—Yau threefold, h: X — S is an elliptic fibration,
and the minimal resolution of S is an Enriques surface

Proof. By Proposition 6.11, the set of corresponding Jacobian fibrations is birationally bounded by a family
of Miranda models. Then, the claim follows by [Gro94, Theorem 4.3], since the condition on the Tate—
Shafarevich group in [Gro94, Theorem 4.3] is guaranteed to hold by Proposition 6.10. O

We can also prove an analogue of Proposition 6.5 for the elliptic fibrations in S%Y, ell, Enr-

Proposition 6.13. There exist quasi-projective varieties X,S,T and a commutative diagram

of projective morphisms satisfying the following properties:
(1) 7 is a flat family of threefolds and g is a flat family of surfaces;
(2) foreveryt € T, X; is a Calabi—Yau threefold. In particular, X; has terminal Q-factorial singularities;
and
(3) for every terminal elliptic Calabi—Yau threefold with non-rational base h: X — S, there exists t € T
together with an isomorphism in codimension 1 ¢: X --+ Xy such that S; and S are isomorphic and
¢ is a birational morphism over S.

Proof. The proof is identical to the one of Proposition 6.5, where we replace Theorem 6.4 with Theorem 6.12.
O
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6.4. Threefolds of Kodaira dimension 2. The tools developed in § 3 can also be applied to study
the boundedness of birationally bounded elliptic varieties that are not of Calabi—Yau type. In this case,
the difficulty is that dropping the Calabi—Yau condition, it may be difficult to show that flops deform, as
needed in the proof of Theorem 6.18. Here, we consider minimal terminal threefolds of Kodaira dimension 2.
By [Fil20], it is known that these are bounded in codimension 1 under certain natural and necessary geometric
conditions. In order to show the boundedness of these varieties, we rely on work of Kollar and Mori, showing
that the deformation of flops of Q-factorial terminal threefolds is locally unobstructed, see [KM92, § 11].

Theorem 6.14. Let X — T be a flat projective family of minimal terminal Q-factorial threefolds of Kodaira
dimension 2. Then, up to stratifying T into a finite union of locally closed Zariski subsets and taking finite
covers, the following holds:

Let 0 € T be any closed point, and let 1g: Xy --+ XOJF be a K x,-flop. Then, there exists a Kx-flop X --+ XT
over T extending Xy --+ XOJF.

Remark 6.15. After the stratification, T is the disjoint union of finitely many irreducible components.
Thus, the Kx,-flop extends over the irreducible component of T containing the point 0.

Proof. Let
(6.4) Xo—— - o xf
To
Zo

be a K x,-flop associated to the contraction of an extremal ray Ry C NE(Ap). We now divide the rest of the
proof into steps for the reader’s convenience.

Step 0. In this step, we make some reductions.
Up to stratifying T into a union of locally closed subsets, we may assume that T is smooth. By [FM20,
Proposition 2.9] and [Fil20, cf. proof of Theorem 6.1]

(1) X is a terminal Q-factorial variety;
(2) there exists a commutative diagram

!

X——-——>S

NS

T

such that S = Projp R(Kx) and f is the relative litaka fibration X over T'. In particular, Ky = f*Hgs
where Hg is a Q-divisor which is a relatively ample over T

(3) for every t € T', S; = Proj R(Kx,);

(4) if E C A, is a prime f;-very exceptional divisor in the sense of [Birl2, Definition 3.1], then there
exists a prime divisor €& C X horizontal over the connected component T of T’ containing ¢ such that
& = kE for some k > 0; Indeed, up to a finite cover, we may assume that all the divisors that are
very exceptional for the morphism of geometric generic fibers A;; — Sj; is defined over k(T"). Then,
by [Kol13, 4.38], we may assume that any such prime divisor restricts to a prime divisor fiber by
fiber. Lastly, we may shrink 7" around 7 so that, for every t € T, every fi-very exceptional divisor
is the restriction of the closure of one of the divisors that are very exceptional for X, — S,; and,



44 S. FILIPAZZI, C.D. HACON, AND R. SVALDI

(5) the local systems GN''(X/T),GN1(X/T) defined in [KM92, Definitions 12.2.4 and 12.2.7] are con-
stant: indeed, by [KM92, Propositions 12.2.5 and 12.2.8] those have finite monodromy; hence, sub-
stituting T" with a suitable finite cover, we can assume that their monodromy is trivial.

Moreover, let us recall that, for a very general ¢t € T, GN1(X/T)|x, = N1 r(X:), see [KM92, Propositions
12.2.5 and 12.2.8]. Thus, by (5), we may assume that N§(X;) = GN™? (X /T)|x, for a very general ¢ € T
Finally, since T has finitely many irreducible components, restricting to one of these components we may
also assume that T is irreducible, by Noetherian induction.

Step 1. In this step, we show that there exists a polydisk 0 € A* C T over which the flop Xy --» Xd"
deforms (in the analytic topology).
By [KM92, Theorem 11.10], the flop Xy --» X" deforms over a germ of 0 € T in the analytic topology: the
deformation is obtained as base change of a flop of a miniversal deformation space of Xp, cf. [KM92, Theorem
11.10]. More precisely, as T is smooth, there exists a polydisk 0 € A¥ C T over which the flop of &y deforms,
that is, there exists a commutative diagram of analytic spaces

(6.5) Xpp— — = —— =L - X%,
T Ak TX’C
Z
Ak

where Xxr = X x ar AF, and the following properties are satisfied:

(a) the restrictions of the maps in (6.5) to Xy yield the diagram in (6.4);
(b) Vt € A¥, V|4, is an isomorphism in codimension 1; and
(c) Vt € AF, X' is Q-factorial.

For t € A* we shall consider the restriction of the diagram in (6.5) to X;

Xt —————— > X;r
2

where X" = ng o Ve =V, Xy - X" denotes the induced isomorphism in codimension 1 and

= (TAk)|Xt , r;r = (Tzk)‘xt .
Step 2. In this step, we show that
(i) Xt and Z; are projective for t general in (the analytic Zariski topology of ) AF; and
(i) for t € Ay very general, any irreducible curve Cy contracted by r: specializes to a curve in X
contracted by ro; in particular, Cy - Kx, = 0.
Since A* is open in the Euclidean topology, A¥ contains a point ¢ € T, very general in the Zariski topology,
such that GN1(X/T)|x, = N1 r(X}).
(i) By assumption, X", Zy are projective; thus, by [KM92, Theorem 12.2.10], for t € A* general, X,", Z,
are projective.
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(ii) This is just a consequence of the countability of the components the relative Douady space of X over
Z together with the fact that those are proper over Z, cf. [Fuj84].

Step 3. In this step, we construct an effective divisor D on X such that for general v € AF (in the
analytic topology), X, is the ample model of both D, and also of Kx, + €D, for any choice of € > 0. In
particular, X5 is the relatively ample model of Kx, + €D, over S,,.

Let t € AF be a very general point for which properties (i-ii) of Step 2 hold; then, Kx, ~g z, 0, by [KM92,
Proposition 12.1.4]. Hence, Ky, = r; Kz, and KX? = (r])*Kz,, as ¢y is an isomorphism in codimension 1.
In particular, 1, is crepant birational with respect to Ky, and K X is nef. Hence, given an ample divisor
D} on X,", which exists by (i) in Step 2, K xt T eD;" is ample for all positive real numbers e. We define

Dy = (¢, 1)« D; . Choosing 0 < ¢ < 1 and D general in its Q-linear series, then (X;, eD;) is terminal and
¢ is the outcome of the run of a (Kx, + D;)-MMP. As ¢, is crepant birational with respect to Ky, and
Ky, ~q,s, 0, then v, can also be obtained as a run of the relative D;-MMP over S;.

Since N& (X;) = GN' (X /T)|x,, as t is very general, there exists a divisor D on X’ such that the numerical
class of D restricts to D; on X;. Furthermore, as the identification N§(X;) = GN'(X/T)|x, relies on the
relative Hilbert scheme of X over T, cf. [KM92, proof of Proposition 12.2.5], we may assume that D is itself
effective, flat over T, and D|x, = D; as divisors. In particular, we can assume that D does not contain any
fiber. We set Daxr = D|XM' Let ’DZ,c be the strict transform of Daxr on ng; to simplify the notation,
for v € AF, we set D} = DZkL’af‘ For our choice of t € A*, D} = D/. Hence, D; is ample on X;".
As ampleness is an open property, cf. [KM92, proof of Theorem 12.2.10], then, for v € A* general (in the
analytic Zariski topology) D is ample on XF.

Step 4. In this step, we show that

(A) forallveT, D, (resp. Kx, +D,) is big;
(B) there exist a positive real number ey such that for all 0 < e < €y, (Xy,€D,) is terminal for all v € T';
(C) for allv e T, D, is movable over S,.

(A) By Step 3, D, is big for v € A* general in the analytic Zariski topology. By the semi-continuity
theorem [Har77, Theorem I11.12.8], for v € T very general in the Zariski topology, h°(X,,, Ox, (mD,))
is constant for any fixed choice of m € N. Hence, for very general v € T', D, is big; finally, applying
the semi-continuity theorem again, we can conclude that D, is big for all v € T'. The exact same
argument applies to prove the bigness of Ky, + D, for all v € T'.

(B) Asforallt € T, X; is terminal and Q-factorial, and Dy is effective, then the conclusion simply follows
by Noetherian induction on T, thanks to [Kol97, Theorem 4.8] and the fact that being terminal is
an open condition in a family, see [dFH11, Proposition 3.5].

(C) By part (B) of this step and since Ky is Q-linearly equivalent to the pull-back of an ample divisor on
S, cf. Step 0, for all 0 < € < 1, all (Kx + €D)-negative curves are contained in the fibers of X — S.
Hence, we may assume that for all 0 < ¢ < 1, any run of the relative (Kx + ¢D)-MMP over T with
scaling of an ample divisor is also a run of the relative (Kx + ¢D)-MMP over S. Furthermore, with
the same choice of €, (Kx + €D) ~qg,s €D; hence, the way a relative (Kx + ¢D)-MMP is run will
be independent of € for 0 < ¢ < 1. As Ky + €D is big over T for all positive values of €, then any
run of the (Kx + ¢D)-MMP must terminate with a good minimal model, see [BCHM10]. Thus, for
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0<exl,let
P=®,,_10P, _10:--0P10Pg

X=X-->X——sX——>... ——> X 9o——>X,,_ 1 —— > =X’
O‘Po 1 &, 2 n2q>n72 n—1 o n

l

T

be one such run of the relative (Ky + €D)-MMP with scaling of an ample divisor — over T or S,
equivalently. We define D’ := ®,D and ¢; := ®|x,. As D’ is nef and big over S by construction,
then to conclude the proof of (C) it suffices to prove the following claim.

Claim 1. For allv € T, ¢, : X, --+ X/ is an isomorphism in codimension 1.

Proof. Let us assume, by contradiction, that for some v € T, ¢,,: X, --» X} is not an isomorphism
in codimension 1. By Steps 2-3, for any ¢ € A* very general (in the analytic Zariski topology)
(I) &;" is Q-factorial, cf. Step 1, and for every € > 0, er + €D; ample on &;";
(IT) for all 0 < e < 1, (X/,€Dy}) is terminal and Ky, + €D} is big and semi-ample on X/; and,
(I1I) ¢¢: X, --» X/ is an isomorphism in codimension 1, by [HMX18, Lemma 3.2]: indeed, with
reference to the statement of [HMX18, Lemma 3.2], it suffices to take

e X =X, U=T,0=t;

o A:=¢D for 0 < € < 1 such that (X, A) is terminal, the same holds for (X}, A;) so that
property (2) in the statement of the lemma is satisfied. Furthermore, for such choice of
€, the Q-linear system of Ky, + A; is movable by (I), thus property (3) in the statement
of the lemma is satisfied; and

e Dy, ..., Dgimr, dimT sufficiently general effective divisors meeting transversely at 0 .

As the indeterminacy locus of ® is Zariski closed and its exceptional locus is locally closed in the
Zariski topology, it follows that ¢,, must be is an isomorphism in codimension 1 for u € T general. On
the other hand, as ¢, is a birational map over S, any divisor contracted by ¢, is very exceptional
with respect to f,: X, — S,. By condition (4) in Step 0, there exists a prime divisor £ C X
horizontal over T such that & = kFE for some k > 0. It suffices to show that £ must be contained
in the exceptional locus of ® to obtain the sought contradiction. But, if that were not the case,
there would exist an integer ¢ € {0,1,...,n — 1} such that for the extremal contraction &;: X; — Z;
in the i-th step of the (Kx + D)-MMP in (6.6), then dim¢&;(&;): = 2 for ¢ € T general, whereas
dim&(&;), = 1; here, &; is the strict transform of £ on X;. This is clearly impossible, by the upper
semi-continuity of fiber dimension. O

Step 5. In this step, we show that there exists a positive real number €1 such that for all 0 < e < €,
Kx: + €Dy, is big and semi-ample on X, for all v € T, where the model X' is the one constructed in (6.6).
The MMP in (6.6) terminates with a good minimal model X’ over S. Thus, for all u € T, D), is big and
semi-ample over S,. As Ky is the pull-back of a Q-divisor on S ample over T, then Ky, + €D, is big and
semi-ample on X.

Step 6. In this step, we show that DS‘ is ample over Sp.
We first show that D(')" is nef over Sy. Let us assume by contradiction that this is not the case. Thus, there
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must exist a ’Dar -negative curve I‘ar vertical over Sy spanning an extremal ray of the effective cone of curves
on Xy . As ICXJ ~0.5, 0, then T is also a (KXJ + D )-negative curve. Since in Step 4 we showed that

Dy is movable over Sy, then the same conclusion must hold for Dar over Sy, as Yy is an isomorphism in
codimension 1 over Sy, by construction. Hence, the contraction of I'{" gives rise to a relative (K -+ + Df)-
0

flipping contraction pg: X5 — Vo over Sy which is also a relative K Xo+-ﬁop. Then, [KM92, Corollary 11.11]

implies that up to possibly passing to a positive multiple, for very general ¢t € A (in the analytic Zariski
topology) there exists a curve C; C X, specializing to a curve supported on the exceptional locus of yq.
But then, for some irreducible component C} of Cy, D;f - C} < 0: this yields the desired contradiction as D;
is ample for t € T' general by construction, cf. Step 3.

The same reasoning, utilizing [KM92, Corollary 11.10], shows that if D(')" is nef, then the effective cone of
curves of Xo+ does not admit a D(J{ -trivial extremal ray over Sy. Hence, D(J{ is ample over Sy.

Step 7. In this step, we show that there exists an analytic Zariski open neighborhood U’ C AF of 0 and
an isomorphism over U’ between the restrictions of X'|y+ and XK,JU/.
As Dy is ample over Sy and KXJ = fyHs,, with Hg, ample, then for all 0 < e < 1, KXJ + €Dy is ample
on X, . By the openness of ampleness, then K x+t+ €D is ample on X for v € AF general (for the analytic

Zariski topology) and XZ,C — AF is projective over an analytic Zariski open neighborhood U C AF of 0.
Hence, over U we have the following commutative diagram

)(/|Uffsz,7>xgk|,] Zu = (V]y) o (D71p).

By Claim 1 and the construction of W, cf. Step 1, EU|X6 is an isomorphism in codimension 1. As

(EU|;(;)*(KXO+ +Dy) = Kx;+Dy, Kx;+7Dy is big and semi-ample on &j, and Xt is Q-factorial, Lemma 6.17

implies that Ky, + D}, is ample and that EU|X(; is an isomorphism. Thus, Ky’ + D’ and K+ + DZ,C are
Ak

both ample over a common analytic Zariski open U’ C U. Hence, (Ey )|y is an isomorphism over U’ since
(EU)*(KX’ —+ D/)|U = (K/sz + DZkHU

Step 8. Conclusion of the proof.
To conclude the proof we just need to show that ® is just given by a Kx-flop over T
As mentioned at the start of [KM92, proof of Theorem 12.2.10], the restriction to Xy induces a natural
injection, cf. [KM92, Proposition 12.2.6],

to: NE(X/T) — NE(Xp).

Recall that 1: Xy --» X is the flop of an extremal ray Ry C NE(Xp). Moreover, [KM92, Corollary 12.3.3]
implies that Ry C I'm(to). We set Ro := t; '(Rp). Then, Ry is an extremal ray in NE(X/T). Moreover, by
specialization, Ky - Ry = 0 and D - Ry < 0. Since Ky + €D is big, by Step 4, then there exists the flop of Ry
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Since to(}N%o) = Ry, then the curves contracted by Xy — Z are all the curves in Ry. By construction then,
denoting so := s|x,, s§ := s|ay so = ro and, by the uniqueness of flops, it follows then also that sf = rg .
Hence, the flop Y in (6.7) yields a flop of X lifting the flop ¢ in (6.4) on Xy as claimed in the statement of
the theorem.

To conclude, we argue that X" = X’ and T = ®. Let D” denote the strict transform of D to X", and let
D{ denote its restriction to XJ'. By construction, we have vg = g = ¢, where vy denotes the restriction of
T to the special fiber. Then, as X" is Q-factorial and ampleness is an open condition, D" is ample over an
open neighborhood of 0. Thus, X" = X’ and T = ® hold true over a non-empty open set of T' containing 0.

By construction, X’ and X" are Q-factorial and isomorphic in codimension 1 to X'. Thus, X’ and X" are
connected by a sequence of flops, which is also a sequence of flips for a suitable pair structure. As X" = X’
holds true generically over the base, these flips are concentrated over a proper closed subset G of T'. Yet, the
results of [KM92, § 11 and § 12] imply that extremal curves deform over the base under our assumptions.
Thus, it follows that G = and X" = X" and T = ®. O

The following is an immediate corollary of Theorem 6.14.

Corollary 6.16. Let X — T be a flat projective family of minimal terminal Q-factorial threefolds with
Kodaira dimension 2. Then, up to stratifying T into a finite union of locally closed Zariski subsets and
taking finite covers, the following holds:

Let 0 € T be any closed point, and let ¥g: Xy --» X0+ be a finite sequence of Kx,-flops. Then, there exists a
finite sequence of Kx-flops X --+ X over T extending Xo --+ X,

In the proof of Theorem 6.14 we used the following easy consequence of [Kaw97, Lemma 1.5].

Lemma 6.17. Let (Y1, D), (Ya, D2) be projective kit pairs. Assume that
(1) Ky, + Dy is ample and Ky, + Dy is nef and big;
(2) Y1 is Q-factorial;
(3) there exists a birational map \: Yy --+ Y3 which is an isomorphism in codimension 1; and
(4) \(Ky, + D1) = Ky, + D>.

Then A is an isomorphism.

Proof. Let 7: Y3 — Y5 be a Q-factorialization of Y3. We set D3 := 7, ! Dy; thus, Ky, + D3 = 7*(Ky, + D2)
so that Ky, + D3 is big and nef. Then, n = 771 o A: Y] --» Y3 is an isomorphism in codimension 1 of
Q-factorial varieties such that n.(Ky, + D1) = Ky, + D3. But then, [Kaw97, Lemma 1.5] implies that 7 is
an isomorphism since the interior of Nef(Y3) and of n.Nef(Y;) have non-empty intersection. Hence, since
A = 7on, then X is a morphism and Ky, + D1 = A*(Ky, + D2). As Ky, + D; is ample on Y7, then X can
only be an isomorphism. g

6.5. Towards progress in higher dimension. The following result is the main technical result in the
proof of the boundedness of elliptic Calabi—Yau threefolds. It shows how the results of § 3 can be used to
prove the boundedness of certain elliptically fibered varieties once we know that they are bounded up to
flops over the base.
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Theorem 6.18. Fiz a positive natural number d. Let § be a set of triples ((X,0),(Y,0), f). Let B =
{Y | AX,Y, f) € F}. Assume that all triples (X,Y, f) € § satisfy the following properties:

e X is a projective terminal Q-factorial variety of dimension d;

[ hl(X, Ox) = h2(X, Ox) = O,’ and

o f: X =Y is a relatively minimal elliptic fibration.
If § is bounded in codimension 1 and B is bounded, then § is bounded.

The assumption h'(X,Ox) = 0 = h?(X, Ox) in Theorem 6.18 is needed to apply the results in § 4, which
allow extending flops from a special fiber to the whole family.

Proof. Let (X,Y, f) € §. As Y belongs to the bounded set 9B, there exist v € N and a very ample divisor
Hy on Y such that HE™Y < v and (Y, %Hy) is klt. Such choice of v is independent of Y € %6B. Up to
replacing Hy with a multiple only depending on §, by the boundedness of the extremal rays, we can assume
that Kx + %f*H is semi-ample with (X, %f*H) = n — 1. Then, arguing as in Step 0 of the proof of
Theorem 6.14, up to a stratification of a family bounding § in codimension 1, we may partition § into a
finite number of classes such that h°(O(m(Kx + 3 f*H))) only depends on m sufficiently divisible for all X
in one of the given classes partitioning F. In particular, as the stratification is finite, vol(X, Kx + % f*H)
can only attain finitely many values. Moreover, since, by assumption, § is birationally bounded, then there
exists a positive integer C, independent of the triple (X, Y, f), such that f admits a rational l-section, for
some d < C. Thus, we can apply [Fil20, Theorem 1.1] to deduce that the set of pairs

{oe gy

is log bounded. Even better, [Fil20, Theorem 1.1] implies that there exist quasi-projective varieties X', Y, T
and a commutative diagram

(X,Y, f) € § and Hy is the very ample divisor on Y constructed above}

(6.8) X - Y

of projective morphisms such that for any triple (X,Y, f) in § there exists a closed point ¢t € T such that
(1) Y~V
(2) X and X; are connected by a sequence of flops over Y = ).

Up to passing to a stratification and an étale base change of the original parameter space T, we may
assume that Theorem 3.4 and Theorem 4.2 apply to the pull-back of the morphisms in (6.8) to each of the
finitely many irreducible components of T'. Furthermore, we may assume that each irreducible component
of T is affine. As there are finitely many of these components, in the following we focus on a single one, with
the understanding that the same argument has to be repeated on each one of them individually. By abusing
notation, we will denote this irreducible component by T

By Theorem 3.4, X — ) admits finitely many minimal models X7,..., X, over ), up to isomorphism
over V. For any (X,Y, f) € §, there exist ¢ € T and an isomorphism in codimension 1 ¢: X --+ X; which
can be factored into a sequence of flops over Y = );. The cones M (X;) and M (X) are naturally identified
by . and the same holds also for M(X;/Y,;) and M(X/Y). Then, there exists a class D; € M(X;) such
that the rational map ¢~ ': X; --» X is a D;-MMP over ),. Furthermore, we may assume that D, lies in
the interior of both M (X;) and of ¥, }(A(X/Y)) in the decomposition of M (X;/Y;). By Theorem 4.2, there
exists D € M(X/T) such that D|x, = D;. Let ®: X --» X’ be a D-MMP over ). By Theorem 3.4, there is
1 < < k such that X’ and X; are isomorphic over ).
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Then, by [HMX18, § 3], the D-MMP & above restricts to a D;-negative birational map ®|x,: X; --» X/ on
the fiber &; which can be factored into a sequence of small K y,-trivial birational maps. By Remark 4.3 and
the fact that Dy is in the interior of M (X}), then, up to rescaling by a positive rational number, there exists
D such that (X, D) and (X:, D;) are both terminal. Thus, X} is itself terminal and it is connected to X; by
a sequence of flops. Since D; € Y. (A(X/Y)) N (P|x,)(A(X!/V:)), and it is in the interior of ¥.(A(X/Y)),
then by [Kaw97, Lemma 1.5] X/ and X are isomorphic. In turn, &A;, and X are also isomorphic and since
there are only finitely many models X7, ..., Xk, the claim follows. O

Remark 6.19. While Theorem 6.18 is stated in the setting of elliptically fibered varieties, its underlying
philosophy is quite general. In fact, as soon as we have boundedness modulo flops for a set of K-trivial
varieties (resp. a set of Calabi-Yau fiber spaces), one could try to prove the Kawamata—Morrison cone
conjecture for that particular situation. If that is successful and one can argue that flops can be extended
from a fiber to the total space, then the corresponding analog of Theorem 6.18 would follow.

As an immediate corollary of Theorem 6.18 we are able to bound a large class of elliptic Calabi—Yau
fibrations in higher dimension.

Corollary 6.20. Fiz positive integers d,C'. Let Sdac, elt, Lr e the set of triples

X is a terminal projective Calabi—Yau variety of dimension d,
g‘é:?/ L e =18 (XY, f) | f: X =Y is an elliptic fibration admitting a rational l-section
of degree | < C, andY is a log Fano variety.

Then Sdcg, o Lp s bounded.

Proof. Let 2% e the set of varieties

log Fano
o { ‘ dimY =d — 1, and there exists an effective divisor A on Y }

d—1,e
o such that (Y, A) is eklt, Ky + Ay ~g 0, A is big

log Fano "™

By [Bir21, Theorem 1.4}, for any fixed real number e > 0, :Diio;lﬁ‘eano is log bounded.
Let (X,Y,f) € gég o1 Lp- By Proposition 2.9 and Remark 6.1, given an elliptic Calabi-Yau variety

f: X =Y, there exists a boundary Ay on Y with coefficients in C,j; such that (Y, Ay ) is klt and Ky +Ay ~g
0. By [HMX14, Theorem 1.5], there exists a positive real number €, such that (Y, Ay) is ep-klt. As Y is log

g d—1,,e0 d—1 ‘L
Fano, then, Ay is big and, hence, Y € Qlog Fano- Hence, the set %log Fano Of varieties

_ d,C
%iioglFano = {Y ‘ H(Xv Y, f) € gCY, ell, LF}

is bounded.
On the other hand, 3?35 o1 Lp is bounded in codimension 1 by [Fil20, Theorem 7.2]. Hence, we can apply
Theorem 6.18 with § = F¢y oy, p and B = B . O

7. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. This follows immediately from Proposition 6.5, Proposition 6.13, and Theorem 6.18.
O

Remark 7.1. Theorem 6.18 can be used to deduce analogs of Theorem 1.1 in higher dimension. So far,
there have been several results addressing the boundedness in codimension 1 of elliptic Calabi—Yau varieties
admitting a rational section in any dimension, see [BDCS20,FS20, DCS21]. Unfortunately, for n > 4, the
current state of the art regarding elliptic Calabi—Yau n-folds f: X — Y can only guarantee that Y is bounded
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in codimension 1. Once we are able to address the actual boundedness of the set of bases Y, the statements
in [BDCS20,DCS21] could be enhanced to full boundedness using the tools here discussed.

Proof of Corollary 1.2. This follows immediately from Theorem 1.1 and Verdier’s generalization of Ehres-
mann’s theorem [Ver76, Corollaire 5.1]. O

Proof of Theorem 1.3. By [Fil20, Theorem 1], Si’i’zc is bounded up to flops. Moreover, by [Fill8, Theo-
rem 1.14] the set of varieties

{s]30x.8.n s}
is bounded, cf. Proposition 2.9. Thus, there exist N € N and a very ample divisor effective Hg on S such
that HZ = Nv and (Y, 1 Hy) is klt. Such choice of N is independent of the triple (X, S, f) € F20C As we

are assuming the existence of a degree C rational section of f, we can apply [Fil20, Theorem 1.1] to deduce
that the set of pairs

1
{(X, §f*Hs) ’(X, S, f) € § and Hy is the very ample divisor on Y constructed above}

is log bounded in codimension 1. Even better, [Fil20, Theorem 1.1] implies that there exist quasi-projective
varieties X, S, T and a commutative diagram of projective morphisms

such that for any (X, S, f) € Si’i’zc there exists ¢t € T such that S = S; and f is birational to ®;: X} — S;
over S for some t € T. Note that X --+ A&} is given by a sequence of flops over S = S;. Moreover, by
[HX15, Proposition 2.4], [dFH11, Proposition 3.5], and [KM92, Theorem 12.1.10], we may assume that X is
Q-factorial and all fibers X; are terminal Q-factorial projective varieties; furthermore, up to an additional
stratification, we may assume that all fibers are varieties of Kodaira dimension 2 and S; 2 Proj(R(Ky,)) for
every t € T, see [Fil20, cf. proof of Theorem 6.1].

By Theorem 3.4, there exist k € Z~¢ and finitely many marked minimal models ¢;: X --+ X over S, for
i €{1,2,...,k}, such that for any Q-divisor D pseudo-effective over S and any minimal model ¢: X --» X"’
over S, there exists 1 < 4 < k for which ¢; is birationally equivalent over S to ¢. In particular, if ¢: X --» X’
is a sequence of flops, then up to isomorphism over S, ¢ = ¢; for some 1 < i < k. Let X € Siﬁéc and
Xy --+ X the sequence of flops mentioned above. By Theorem 6.14, we may assume that this extends to a
sequence of flops X' --» X’ and there exists a birational isomorphism X’ = X; over S for some 1 < i < k,
hence X = X ;. O
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