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Abstract

Integrated photonics has been a promising platform for analog quantum simulation of condensed

matter phenomena in strongly correlated systems. To that end, we explore the implementation of

all-photonic quantum simulators in coupled cavity arrays with integrated ensembles of spectrally

disordered emitters. Our model is reflective of color center ensembles integrated into photonic

crystal cavity arrays. Using the Quantum Master Equation and the Effective Hamiltonian ap-

proaches, we study energy band formation and wavefunction properties in the open quantum Tavis-

Cummings-Hubbard framework. We find conditions for polariton creation and (de)localization un-

der experimentally relevant values of disorder in emitter frequencies, cavity resonance frequencies,

and emitter-cavity coupling rates. To quantify these properties, we introduce two metrics, the

polaritonic and nodal participation ratios, that characterize the light-matter hybridization and the

node delocalization of the wavefunction, respectively. These new metrics combined with the Ef-

fective Hamiltonian approach prove to be a powerful toolbox for cavity quantum electrodynamical

engineering of solid-state systems.

I. INTRODUCTION

Quantum simulation has attracted scientific attention since the early 1980s ignited by

Richard Feynman’s vision of the necessity of quantum mechanics in the modeling of natural

phenomena [1]. Proposed implementations have included atomic, trapped ion, supercon-

ducting and photonic platforms [2–8]. Here we focus on solid-state optical systems due to

their potential for growth into large-scale commercial quantum simulators [9–13].

Nanophotonic cavities with integrated quantum emitters have served as a rich playground

for exploring quantum optics phenomena in solid-state systems. This includes demonstra-

tions of weak [14] and strong [15] cavity quantum electrodynamical (QED) coupling, photon

blockade and photon-induced tunneling [16], ultra-fast modulation of optical signals [17],

and more. The large dipole moment of quantum emitters, paired with (sub)wavelength

scale optical mode volumes in photonic crystal cavities, give rise to high optical nonlinear-

ities and light-matter state hybridization that creates polaritons. Polaritonic interactions
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in nanophotonic systems can be several orders of magnitude higher than those achieved

in atomic systems. Such strong interaction has been at the core of theoretical proposals

for quantum state transfer [18, 19], as well as for the photonic simulation [20, 21] of Bose-

Hubbard and fractional quantum Hall physics. Here, the system is made of an array of

coupled cavities, each in the strong coupling regime of cavity QED, and described by the

Jaynes-Cummings-Hubbard model. However, this model has been experimentally hard to

achieve.

While progress toward the realization of coupled cavity arrays (CCAs) with embedded

emitters has been made with quantum dots [22, 23], the spectral disorder of these emitters

has been a major roadblock to developing a large-scale resonant system. This problem is

not present to such an extent with color center emitters, which are atomic defects in wide

band gap materials. Recently, color center integration with nanocavities in diamond [24, 25]

and silicon carbide [26, 27] has been demonstrated in the weak cavity QED coupling regime.

Though this regime is unsuitable for studies of polaritonic physics, proposals to demonstrate

strong cavity QED regime have been presented with cavities integrating several (M) emitters,

as opposed to a single emitter. Additionally, there has been renewed interest in disordered

cavity QED systems with the discovery of phenomena like collectively induced transparency

[28]. Such systems are described by the Tavis-Cummings, rather than the Jaynes-Cummings

model. Here, the collective coupling of emitters to the cavity effectively boosts the light-

matter interaction rate by a factor of
√
M . Due to the small, but nonzero, spectral disorder

of color centers, the collective strong coupling is possible within the cavity protection regime,

if its rate overcomes the spectral disorder ∆ of color centers [29, 30], i.e. ∆ < g
√
M . Such

disordered multi-emitter cavity systems have been explored for applications in quantum light

generation [31–33].

Here, we explore how all-photonic quantum simulators based on coupled cavity arrays

can benefit from an increased interaction rate established in multi-emitter cavity QED.

We expand the Jaynes-Cummings-Hubbard approach to the spectrally disordered Tavis-

Cummings-Hubbard model (TCHM) [34] and define conditions for polariton creation utilized

in all-photonic quantum simulation, aided by the introduction of new localization metrics

inspired by condensed matter approaches. Our model targets applications in technologically

mature solid-state platforms and is reflective of the state-of-the-art parameters achieved in

silicon carbide and diamond color center hosts. We find system limits that can be guiding for
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future experiments with polaritons in coupled cavity arrays: 1) polaritonic states are easier

to create in systems where emitter/cavity interaction exceeds cavity hopping; 2) polariton

creation in an array of lossy cavities can be achieved via integration of an increased number of

emitters per cavity even in disordered ensembles; 3) as in single cavities, disordered emitter

ensembles in coupled cavity arrays can create polaritons by increasing the number of emitters

per cavity to reach the cavity protection condition; and 4) disorder in resonances in a coupled

cavity array localizes polaritons if the difference in frequencies between neighboring cavities

exceeds the cavity hopping rate.

FIG. 1. The eigenspectra of non-disordered coupled cavity arrays. (Left) One cavity with M

emitters has two polariton states and M − 1 subradiant states. (Middle) CCA of N cavities with

no emitters has one CCA band of N states. (Right) CCA of N cavities and M emitters per cavity

has two polariton bands, upper and lower, of N states each and N(M − 1) subradiant states.

II. THE CCA QED MODEL

Our CCA QED model captures the single-excitation regime of the spectrally disordered

TCHM comprised of emitter-cavity localizing interactions and cavity-cavity delocalizing

interactions:

HTCHM =
N∑

n=1

{
ωc,na

†
nan +

Mn∑

m=1

[
ωe,n,mσ

+
n,mσ

−
n,m

+ gn,m(a
†
nσ

−
n,m + σ+

n,man )
]
− Jn,n+1(a

†
nan+1 + a†n+1an)

}
,

(1)
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where N is the number of cavities in the array, Mn is the number of emitters in the n-th

cavity, ωc,n and an represent the angular frequency and the annihilation operator of the n-th

cavity, ωe,n,m, σ
−
n,m and gn,m correspond to the angular frequency, the lowering operator and

the emitter-cavity coupling rate of the m-th emitter in the n-th cavity, Jn,n+1 is the photon

hopping rate between the enumerated neighboring cavities. In this work we will assume

Jn,n+1 = J as those parameters are set by the cavity design that is experimentally more

controllable than the other parameters of the model [35].

A. Non-disordered CCA QED model

Before examining the spectral disorder effects in CCA QED, let us first address the

energy spectrum in the fully resonant system of a linear array of coupled cavities with

identical emitters. Here, the eigenenergy spectrum features two CCA polariton bands with

N states, each, and a degenerate set of N(M − 1) subradiant states as illustrated in Figure

1. The polariton band states are parameterized by discrete momenta k = kp = πp/(N + 1),

(p = 1, 2, 3, .., N) as

E(k) = ωc − J cos k ±
√
J2 cos2 k +Mg2 . (2)

Further discussion of the derivation of these equations for the fully resonant case is

presented in Section 1 of the Supplementary Information. The origin of these spectral

features can be decomposed to the QED and the CCA components. The resonant Tavis-

Cummings model of M emitters in N = 1 cavity has the spectrum of two polaritons and

M − 1 degenerate subradiant states, while a CCA of N > 1,M = 0 cavities has a single

spectral band of N photonic states. The spectrum of the resonant TCHM is a product of

these components as seen in Figure 1. This model has close analogs to the condensed matter

models it aims to simulate.

B. Condensed matter analogs of TCHM

A more thorough discussion of these analogs and their limitations is available in the

Supplementary Information, but we can begin by looking at the TCHM system with iden-

tical emitters (ωe,n,m = ωe). Much of the derivation of eigenstates precisely parallels the
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calculation of the band structure of tight binding Hamiltonians commonly studied in con-

densed matter physics. For example, the case of no emitters (Mn = 0) corresponds to the

d = 1 (Bose) Hubbard Model (HM)[36], and the case with a single emitter in each cavity

(Mn = 1) to the Periodic Anderson Model (PAM)[37]: the hopping of photons between

cavities is analogous to the conduction electrons which hybridize between different sites,

and the photon-emitter coupling maps onto the hopping between the conduction electrons

and localized orbitals which, like the emitters, do not have a direct intersite (intercavity)

overlap. Thus, in the single excitation sector, and for one emitter per cavity, the models are

identical. In practice, the polaritonicity (degree of light-matter hybridization) upon which

we focus in the sections to follow, holds lessons for singlet formation in which local and

itinerant electrons become tightly intertwined in the PAM and Kondo Lattice Model.

C. Experimentally-informed TCHM simulation parameters

The parameters of our model have been selected as representative of silicon carbide and

diamond color center platforms. Recent demonstrations of emitter-cavity interaction in

photonic crystal cavities support rates of approximately g/2π ∼ 2-7.3 GHz [26, 38], therefore,

we chose a constant value of g/2π = 5 GHz. While a variation in the coupling rate g among

emitters is likely to occur due to their variable positioning inside the electromagnetic mode,

our prior work indicates that the collective emitter-cavity coupling still takes place [29] at

a well defined rate of gM =
√∑M

m=1 g
2
m. Therefore, keeping g constant among the emitters

should not take away from the overall phenomenology studied here.

The experimentally demonstrated cavity loss rates reach as low as κ/2π ∼ 15-50 GHz

[26, 38], while recent modeled designs could reduce these values by at least an order of

magnitude [35]. With a slight optimism, we chose cavity loss rate of κ/2π = 10 GHz. Our

recent designs of photonic crystal molecules indicate that coupled cavity hopping rates can

be straightforwardly designed in the range 1 GHz < J/2π < 200 GHz [35], thus spanning

systems from the dominant cavity QED to the dominant photonic interaction character,

represented in our choice of values J/g = 0.1, 1, 10.

Fabrication imperfections may yield drifts in cavity resonant frequencies and hopping

rates. The effect of this issue was studied in another platform where GaAs coupled cavity

arrays were integrated with quantum dots [23] and indicates that the coupling strength is
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an order of magnitude higher than the frequency and hopping rate perturbations. We apply

this assumption in our model, maintaining that all cavities are mutually resonant and all

rates J are constant.

The spectral inhomogeneity of emitters in fabricated devices, the main study of our

model, has been characterized as ∆ ∼ 10 GHz for a variety of emitters in silicon carbide

and diamond [39, 40]. We represent this parameter through its relation to the collective

coupling rate g
√
M in a cavity, spanning the spectral inhomogeneity across a range of

values. The spectral disorder is implemented by sampling emitter angular frequency, ωe,

from a Gaussian distribution P (ωe) =
1√
2πσ

exp{− (ωe−ωc)2

2σ2 } centered at ωc with a width of

∆ = 2σ. It is worth noting that the vibronic resonances are three orders of magnitude larger

than the inhomogeneous broadening, for example 8.7 THz for the silicon vacancy in 4H-SiC

[41, 42], therefore the phonon side band is not expected to play a part in the collective

emitter-cavity coupling process. Emitter lifetime in color centers is usually in the 1-15 ns

range [43], we select the value of the spontaneous emission from the color center, γ/2π =

1/5.8 GHz, as representative. Due to γ being the lowest rate in a color center-based cQED

system, its minimal variations among emitters of the same species [40] affect the system only

marginally, therefore we assume it has a constant value; this is representative of systems like

atoms and color centers.

Lifetime- and nearly lifetime-limited emission of color centers has been demonstrated

upon photonic integration [40, 44, 45]. Due to this experimental advance, our model does

not consider the dephasing terms, though such analysis may prove valuable with further

development of integrated coupled cavity arrays.

With these experimental constraints in mind, we believe our simulations will be directly

relevant to future fabricated multi-emitter photonic crystal cavity chains.

III. EFFECTS OF DISORDER ON POLARITON FORMATION

It is in general computationally expensive to solve the Lindbladian master equation to

obtain exact simulation results [46]. As such, we are restricted to simulating only very small

scale systems (∼ 6 elements total, an element being a single cavity or emitter) even in the

low excitation regime. The results of these exact simulations are available in Sections 3

and 4 of the Supplementary Information; the matrix form of the Hamiltonian that describes
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the system simulated is available in Section 2 of the Supplementary Information. On the

other hand, the effective Hamiltonian (HEFF) uses the established non-hermitian effective

approach to modeling Hamiltonians that are too resource intensive for the current state of

the art classical computers to solve. Its approximation effectiveness is limited to the single-

excitation regime, which is suitable for our exploration. Taking the effective Hamiltonian

approach a step further, we also introduce the nodal and polaritonic participation ratios

(PN and PP , respectively). This method is derived from the condensed matter participation

ratio metrics [47] used to quantify a system’s localization properties. The PN and PP

metrics are applied to eigenstates of the HEFF to quantify the delocalization and light-matter

hybridization of the wavefunction, respectively.

To access modeling of larger systems we develop a software package in Python [48] that

diagonalizes the Effective Hamiltonian in the approximate single-excitation regime

HEFF = HTCHM − i

2

N∑

n=1

{
κna

†
nan +

Mn∑

m=1

γn,mσ
+
n,mσ

−
n,m

}
, (3)

thus reducing the computational complexity from exponential to polynomial (cubic) in N ×
(M + 1) for the single-excitation regime. With this approximate method we numerically

solve systems with hundreds of elements compared to the several using the exact QME

approach. Note that, in contrast to QME, this method does not contain a pump term,

meaning it is agnostic to the starting cavity and its diagonalization will provide all possible

states, regardless of their wavelength overlap with the initial cavity.

A. The Participation Ratio Approach: Metrics for characterizing disorder

The node-by-node and element-by-element analysis required to examine each of the eigen-

states found using HEFF in the previous sections is lengthy and not suitable for the much

larger systems we will be exploring. In order to efficiently analyze these much larger sys-

tems, we develop new metrics for the characterization of TCHM wavefunctions, inspired

by practices in Condensed Matter Physics. The phenomenon of Anderson localization de-

scribes the loss of mobility of quantum particles due to randomness [49]. Originally studied

in the context of non-interacting electrons hopping on a lattice with disordered site-energies,

where all eigenstates were shown to be localized in spatial dimension less than or equal to

two [50, 51], Anderson localization has subsequently been extensively investigated in many
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further contexts, including the effect of interactions [52], correlations in the disorder [53],

and importantly, new experimental realizations from cold atomic gases [54, 55] to transport

in photonic lattices [56].

A useful metric for quantifying the localization of a wavefunction vp, employed in these

studies, is the participation ratio, P =
[∑

p |vp|4
]−1

[57] and its generalizations [58].

Instead of measuring the participation ratio among all N(M +1) vector components, we

adapt P to two new metrics that measure the participation among N nodes (cavity-emitter

sets), and two cavity- and emitter-like components. We define the nodal participation ratio,

PN =

[
N∑

n=1

(
⟨Nph,n⟩+ ⟨Ne,n⟩

)2
]−1

, (4)

where Nph,n = a†nan and Ne,n =
∑Mn

m=1 σ
+
n,mσ

−
n,m are the usual number operators for each

state vp representing cavity excitation and the sum of all emitter excitation in a cavity. Like

the classic participation ratio, PN is at a minimum (maximum) when the wavefunction is

localized (delocalized). Next, we define the polaritonic participation ratio, or polaritonicity,

PP =



(

N∑

n=1

⟨Nph,n⟩
)2

+

(
N∑

n=1

⟨Ne,n⟩
)2


−1

, (5)

which is minimized when the wavefunction has completely cavity-like or completely emitter-

like character and is maximized for an equal superposition of cavity- and emitter-like com-

ponents. Here we assume the character is polaritonic when there is any type of light-matter

hybridization whether or not it is coming from the same node and therefore note that a

wavefunction can be polaritonic even when the cavity and emitter excitations do not belong

to the same node.

These two new metrics allow us to seamlessly characterize multi-emitter CCAs. We

normalize the metrics to 1 for easy comparison between the different model parameter cases.

To avoid numerical divide by zero errors, we set the identical emitter case of the leftmost

column to have a small but nonzero value (∆ = ϵ ≈ 10−7). [59]

B. Polaritonicity and localization as a function of the spectral disorder of the

emitter ensemble

We investigate the effects of spectral disorder on large-scale TCHM systems with an open

array of N = 5 cavities with M = 3 emitters per cavity on the localization and polaritonicity
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FIG. 2. Effects of increasing disorder, ∆, on the eigenstates of a system of N = 5 cavities and

M = 3 emitters per cavity with J/g = 0.1. (Top) Energy eigenvalues and (bottom) participation

ratios PN , PP . Increasing ∆ lifts the degeneracy of the subradiant states (flat middle band)

decreasing the gap between the polaritonic bands and the subradiant states. Increasing ∆ also

causes an Anderson-like node localization in the polariton bands as shown by PN decreasing, but

the polaritonic states remain mostly polaritonic. Mean of 100 random realizations; error bars are

one standard deviation. g, κ, γ are detailed in Section IIC.

of the eigenstates of Eq. 3. In this section we set ωc,n = ωc and gn,m = g. Figure 2 explores

the regime where cavity QED dominates the photon hopping J/g = 0.1. For vanishing

spectral disorder, ϵ, the eigenspectrum has the shape resembling the features of Figure 1:

two highly polaritonic delocalized CCA bands with N = 5 states and N(M −1) = 10 highly

localized subradiant states, suitably characterized by the polaritonic and nodal participation

ratio values. For moderate disorder, the polaritonic properties of eigenstates are maintained,

while the nodal localization somewhat increases for polaritonic band states. The degeneracy

of the subradiant states is lifted and the spectral gaps diminish as we move into the strong

disorder regime wherein ∆ ≈ gM , which is usually considered a cutoff for cavity protection.

Most states become highly localized, demonstrated by the significant drop in PN value and
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the subradiant states gain a cavity component, as quantified by the increase of the PP

value. While similar trends can be observed, the main difference is seen in the reduction

of the number of polaritonic states in the CCA bands as the wavefunction obtains a higher

cavity-like character.

This brings us to look into the formation of a polaritonic state in spectrally disordered

CCA QED as a function of an increasing J/g ratio. Figure 3 shows the polaritonicity and

localization of the lowest energy eigenstate.

When the photonic nature of the interaction increases, so does the cavity-like character

of the wavefunction, reducing its level of polaritonicity. While this holds true for low and

moderate values of disorder, in the case of high disorder, we observe an increase of PP , before

the decline. This is an artifact of the disorder which randomly modifies the nature of the

lowest eigenstate in the system to be more emitter-like, until the interaction value increases

to a level that offsets the issue. This trend is paired with the increase in the delocalization

metric PN as the wavefunction loses the dominant emitter-like characteristic.

FIG. 3. The nodal and the polaritonic participation ratios for the lowest energy eigenstate of a

CCA with N = 5 and M = 3 for increasing J/g. A small amount of disorder causes the state

to node localize for small J/g. Mean of 100 random realizations; error bars are one standard

deviation. N = 5, M = 3; g, κ, γ are detailed in Section IIC.

A decrease in polaritonicity and delocalization of the wavefunction take place for a range

of system parameters. At low J/g there is less variance in PP for a larger ∆ compared to a

higher photon hopping rate, suggesting that, as in the single node Tavis-Cummings model

[29], the stronger cavity-emitter coupling compared to combined cavity losses (in the TCHM

this includes cavity-cavity coupling) provides better cavity protection against the disorder
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in the TCHM.

FIG. 4. The nodal and polaritonic participation values for the lowest energy eigenstate of a CCA

with N = 5 and M = 10 showing for increasing J/g and increasing values of disorder in g (top) and

ωc (bottom). Means of 100 runs; error bars are one standard deviation. In the top plots, gi/2π of

each emitter is randomly taken from a Gaussian centered at 5 MHz with standard deviation ∆g/2

In the top plot, the coupling strength, g/2π, of each emitter is randomly taken from a Gaussian

centered at 5 MHz with FWHM ∆g that is limited to values between zero and ten. In the bottom

plots ωc/2π of each cavity is pulled from a Gaussian centered at 0MHz = ωe with standard deviation

∆c/2. The nodal localization effects of increasing ∆g and ∆c are comparably less than those seen

in Figure 3 for increasing ∆e.

C. Other experimentally relevant forms of disorder

While we expect disorder due to spectral inhomogeneity of the emitters to dominate the

creation of polaritons in the TCHM, we explore the effects of other potential sources of

disorder that will arise in experimental implementations of these systems.

One potential source is the disorder of the emitter-cavity coupling rate, ∆g. This disorder

is important experimentally to consider since the dipole direction and the exact placement
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FIG. 5. Plot (a) shows the average PN and PP for the lower energy eigenstate over 100 runs for

systems with increasing ∆c. Plot (b) shows the same but for increasing ∆g. Parameters are the

same as those reported in Figure 4. Various values of J/g are denoted by the different plot markers

in each plot.

and number of color centers relative to the cavity electromagnetic field distribution cannot be

precisely controlled in implantation. Effectively, collective coupling, Gn =
√∑Mn

m=1 |gn,m|2

[29], at each node can vary according to the statistically varying number of emitters or their

positioning within the mode. Figure 4a (top) suggests that increasing ∆g leads to states

becoming localized (i.e. PN decreases) as seen in the global decrease of PN as ∆g increases.

This is born out in Figure 5b (bottom) in which, for moderate values of J , PN decreases as

∆g increases. Not surprisingly, this localization effect is counteracted by large values of J

as shown by the modest upward trend in PN as J/g approaches 2. Potentially surprising,

however, is the trend seen most clearly in Figure 5b (bottom); the polaritonicity of the

lowest energy eigenstate does not change as ∆g is increased, but instead remains constant

for a fixed value of J .

A second experimentally significant source of disorder is the variation in the cavity fre-

quency from one cavity to the next, ∆c. Any minor variance in nanofabrication from one

cavity to the next will alter ωc [13]. The decrease in PN as disorder in ωc increases in Figure

4b (top) suggests that for an increasing cavity frequency disorder, the lowest energy eigen-
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states become more localized. In fact, Figure 5a (top) suggests that there will always be a

drop in PN as ∆c increases and that regardless of the strength of the cavity-cavity coupling,

the rate at which PN decreases is the same. On the other hand, Figure 5b (bottom), like

Figure 5a (bottom), suggests that the polaritonicity of the system is fairly tolerant of cavity

fabrication errors.

Both ∆c and ∆g have similar effects on PP , the scale of which is set by the value of J . In

contrast to variations in ωe that effect both PP and PN , variations in ωc and g affect only

the localization properties of polaritons. In practice, this means that if neighboring cavities

in the CCA have sudden jumps in ωc or g it can effectively cut the CCA into two smaller

CCAs with independent TCHM physics from one another.

IV. DISCUSSION

In this work we characterize the CCA QED eigenstates described by the Tavis-Cummings-

Hubbard model. Our goal is to provide a guiding tool for experimental implementations

through the engineering of the CCA parameters.

Using the new participation ratio metrics, inspired by condensed matter physics studies

of localization and band mixing, we confirm that highly polaritonic states can be formed

in coupled cavity arrays despite the presence of spectral disorder in emitter ensembles and

quantify the cavity protection effect. While the systems with a dominant cavity QED inter-

action, relative to the photon hopping rate, support creation of numerous polaritonic states,

we find that other parts of the parameter space can also be utilized to study polaritonic

physics.

We suggested approximate analogies between the case of Mn = 1 emitter in each cavity

with the periodic Anderson model where a single f orbital on each site hybridizes with a

conduction band, and the Kondo lattice model where the local degree of freedom is spin-

1/2. Condensed matter systems which connect to the multi-emitter case Mn > 1 also have a

long history, both in the investigation of multi-band materials and also as a theoretical tool

providing an analytically tractable large-N limit [60, 61]. Indeed, large-N systems, realized

for example by alkaline earth atoms in optical lattices, are also at the forefront of recent

work in the atomic, molecular and optical physics community [62–64]. In short, the TCHM

offers a context to explore intertwined local and itinerant quantum degrees of freedom which,
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while distinct from condensed matter models, might still offer insight into their behavior.

These TCHM systems can ostensibly be realized in a number of photonic frameworks,

from atoms in mirrored cavities, to quantum dots in nanophotonics. It is difficult, however,

to experimentally create atom-based systems that couple multiple cavities together and

to create large numbers of quantum dots that emit within the relatively modest range of

disorder that we have shown will recreate polariton dynamics. As such, the most likely

experimental realization of our systems will be in color center based nanophotonics.
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Supplementary Information

I. CONDENSED MATTER ANALOGIES

The resonant cavity-emitter arrays (ωc,n = ωc, ωe,n,m = ωe, gn,m = g, Jn,n+1 = J), with

periodic boundary conditions have a closed form solution for the eigenvalues and eigenvec-

tors. Much of the derivation precisely parallels the calculation of the band structure of tight

binding Hamiltonians. The case of no emitters (Mn = 0) corresponds to the d = 1 (Bose)

Hubbard Model (HM), and the case with a single emitter in each cavity (Mn = 1) to the

Periodic Anderson Model (PAM). Here we review those results with an emphasis on the

condensed matter analogies.

In the case Mn = 0 one can diagonalize HTCHM by introducing momentum creation and

destruction operators,

a†k =
1√
N

N∑

l=1

eikla†l ak =
1√
N

N∑

l=1

e−iklal (1)

The transformation is canonical. a†k and ak obey the same bosonic commutation relations

as the original real space operators. HTCHM is diagonal,

HTCHM =
∑

k

(
ωc − 2J cos k

)
a†kak (2)

The eigenenergies are,

E(k) = ωc − 2J cos k . (3)

The momenta are discrete, k = kp = 2πp/N with p = 1, 2, 3, · · ·N . In the thermodynamic

limit the E(k) form a continuous band with a density of states that diverges at the band

edges E(k) = ωc ± 2J .

In this no-emitter limit, Eq. 2 actually provides the solution for any number of excita-

tions. The many-excitation energies are just sums of the single particle E(k) subject to

the photon indistinguishability implied by the commutation relations. This solubility of the

many excitation system is unique to the no-emitter limit, as discussed further below.

In the case Mn = M = 1 one can again solve for the eigenvalues of HTCHM by going to

momentum space, but only in the single excitation sector. The reason is that the photon
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and emitter operators do not obey a consistent set of commutation relations. Thus, even

though it might appear that HTCHM is soluble since it is quadratic in the operators, it is

therefore not possible to do the same sort of canonical transformation to diagonalize. It is

most straightforward to define a set of single excitation states which form a basis for the

space, and then examine the matrix which arises from the application of HTCHM to each

one. For simplicity, we focus on the resonant case where ωc = ωe ≡ ω0, but the formulae

are straightforward to generalize. The energy eigenvalues are

E(k) = ω0 − J cos k ±
√
J2 cos2 k + g2 . (4)

The (unnormalized) eigenvectors are,

Ψ±(k) =




g

Jcos k ∓
√
J2 cos2 k + g2


 (5)

so that, while all states are polaritons in the sense of mixing photon and emitter components,

the relative weights depend on momentum k and band index ±.

This Mn = M = 1 case easily generalizes to larger M . There are again two polariton

bands, but with an enhanced photon-emitter hybridization
√
Mg,

E(k) = ω0 − J cos k ±
√

J2 cos2 k +Mg2 . (6)

with a similar g2 → Mg2 change to the eigenvectors of Eq. 5. The remaining M − 1 bands

have purely emitter components, and are dispersionless, E(k) = ω0.

A useful approximate visualization of the eigenvalues and eigenvector weights is provided

by drawing the bands as in Figure 1. For g = 0 the photons have E(k) = ω0 − 2J cosk

and the emitters E(k) = ω0. When these two energy levels are hybridized by g there is a

level repulsion at their crossing point at k = ±π
2
and an energy gap ∆ = 2g opens. The

relative photon-emitter compositions of the states can be inferred from the degree to which

the polariton energy matches one of the initial (g = 0) photon or emitter bands. Polariton

energies which are close to the original flat E(k) = ω0 emitter band are dominantly made

up of emitter excitations, while those close to the original dispersing ω0 − 2J cosk photon

band are dominantly cavity excitations.
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FIG. 1. The two polariton bands of a cavity-emitter system for representative parameters ωc =

ωe ≡ ω0 = 4, cavity hopping J = 1, and cavity-emitter coupling g = 0.2. If the number of emitters

M > 1 the gap between the two bands is enhanced from ∆ = 2g to ∆ = 2
√
Mg and there are

M − 1 additional flat emitter bands at Eα(k) = ω0 in the gap between the two polariton bands.

II. MATRIX FORM OF HTCHM

As an illustrative example, the Hamiltonian of the largest system simulable on an M2

Macbook Pro with 32 GB of memory using the quantum master equation approach (2

cavities with 2 emitters in each cavity) is presented in matrix form:




ωc,1 g1,1 g1,2 J1,2 0 0

g1,1 ωe,1,1 0 0 0 0

g1,2 0 ωe,1,2 0 0 0

J1,2 0 0 ωc,2 g2,1 g2,2

0 0 0 g2,1 ωe,2,1 0

0 0 0 g2,2 0 ωe,2,2




(7)
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For convenience the equation form is reproduced here:

HTCHM =
N∑

n=1

{
ωc,na

†
nan +

Mn∑

m=1

[
ωe,n,mσ

+
n,mσ

−
n,m

+ gn,m(a
†
nσ

−
n,m + σ+

n,man )
]
− Jn,n+1(a

†
nan+1 + a†n+1an)

}
,

(8)

The ωc,na
†
nan term gives the energy of the nth cavity, similarly the ωe,n,mσ

†
n,mσn,m term gives

the energy of the mth emitter in the nth cavity. The interaction between this emitter and

cavity is described by the coupling term: gn,m
(
a†nσn,m + σ†

n,ma
)
. Finally, the interaction

between nearest neighbor cavities is given by the last term, Jn+1,n

(
a†n+1an + a†nan+1

)
.

III. EXACT SIMULATION RESULTS

We have developed a software package [1] that solves the Quantum Master Equation

(QME). Our code uses the Quantum Toolbox in Python (QuTiP) [2] which solves the Lind-

bladian

Lρ(t) = −i
[
HTCH, ρ(t)

]

+
N∑

n=1

{κn

2
D [an] ρ(t) +

M∑

m=1

γn,m
2

D
[
σ−
n,m

]
ρ(t)

}

+ PD
[
a†1

]
ρ(t) (9)

where D [c] ρ(t) = 2cρ(t)c† − c†cρ(t) − ρ(t)c†c, κn = κ is the cavity linewidth of the n-th

cavity, γn,m = γ is the emission rate of the m-th emitter in the n-th cavity, and P is the

optical (laser) pumping term. The spectral intensity reported in Figure 2 is calculated as

the Fourier Transform of the correlation function ⟨A†(t+ τ)A(t)⟩:

S(ω) =

∫ ∞

−∞
lim
t→∞

⟨A†(t+ τ)A(t)⟩e−iωτ dτ, (10)

where A is replaced by the cavity annihilation and the emitter lowering operators, an and

σ−
n,m.

The QME requires the use of the full density operator because of the non-number con-

serving term 2cρ(t)c†.

The density operator requirement makes solving this system highly resource-intensive

(exponential in N × M), as such we have restricted our exact calculations to small sys-

tems of six elements, or two coupled cavities with two emitters per cavity. Systems with
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FIG. 2. The top plots show the pump operator acting on Cavity 1 and the bottom set show the

pump term acting on Cavity 2. Each line within a subplot refers to the transmission spectrum

acquired by probing a particular element of the systems, either Cavities or any of the Emitters.

Cavity 1 (blue) is coupled to Emitters 1,1 and 1,2 (green and red respectively). Cavity 2 is

coupled to Emitters 2,1 and 2,2 (purple and brown respectively). The rows correspond to different

cavity-cavity to cavity-emitter coupling ratios, with J/g = 0.1 (top row) having the least coupling

between cavities, and J/g = 10 (bottom row) having the most. Moving from left to right increases

the amount of disorder introduced via emitter emission wavelength detuning from a nominally zero

amount (ϵ), to detuning approximately equal to the cavity-emitter coupling (g).

more processing power may be able to simulate larger systems. Quantum trajectory theory

is another potential method that may simulate larger systems using the quantum master

equation approach.

We numerically solve the quantum master equation for a coupled 2 cavity system with

each cavity also coupling to two emitters each. The results are shown in Figure 2. Along the

top row, which shows the smallest inter-cavity coupling simulations, we see the most nodal

localization regardless of emitter dispersion, as shown by only having peaks in Cavity 1 and

Emitters 1 and 2 when pumping Cavity 1 and only having peaks in Cavity 2 and Emitters

3 and 4 when pumping Cavity 2. We can also see that the small inter-cavity coupling

leads to highly polaritonic systems by comparing the peak heights of each cavity to those

5



FIG. 3. Node occupancy of the lowest energy eigenstate of a system with N = 2 cavities and

M = 2 emitters per cavity with random ωe sampled from a Gaussian distribution of width ∆.

Single random realization for each ∆. g, κ, γ, and emitter frequencies are the same as those in

Figure 2.

of its emitters and finding the ratios are close to unity (0.78 - 0.9). The largest inter-cavity

coupling, J/g = 10 is heavily cavity-like as shown by cavity peak to emitter peak ratios of

around 50. The middle row, J/g = 1 is partially polaritonic and partially photonic with

peak ratios in the range 0.3-0.6. By introducing nonzero emitter detuning, we are able to
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access subradiant states for each of the three detuning values. These states are identified by

the zero-width peaks found between the polariton peaks. Subradiant states are states that

decay much slower than the polariton peaks and a number of proposals exist for their use in

quantum information technologies including, light storage [3] and quantum light generation

[4].

IV. BENCHMARKING OF THE EFFECTIVE HAMILTONIAN APPROXIMA-

TION AND THE PARTICIPATION RATIO METRICS

To benchmark the approximate Effective Hamiltonian approach against the exact Quan-

tum Master Equation solution, we simulate the systems with same parameters in both

models. Figure 3 shows the lowest energy wavefunction calculated with the Effective Hamil-

tonian approach, corresponding to the excitations of the lowest energy peaks in Figure 2.

The case of the vanishing spectral disorder shows equal contribution of Cavities 1 and 2,

which corresponds to the identical looking plots of the Cavity 1 and Cavity 2 excitations in

the QME spectra when Cavity 1 and Cavity 2 are pumped, respectively. The asymmetry

of the nodal occupations in Figure 3 for non-vanishing disorder (especially for J/g = 0.1)

matches the non-identicality of the Cavity 1/2, as well as Emitter 1.1,1.2 and Emitter 2.1,2.2

spectra in Figure 2. Localization of the wavefunction for an increasing disorder and J/g ≤ 1

follow the exact solution trends described in the previous section.

These parallels are closely described by the nodal PN and the polaritonic PP participation

ratio shown in Figure 4. The value of PN (orange) is maximized for a fully node-delocalized

wavefunction, and reduces as the wavefunction tends to increasingly excite one cavity and

its emitters with an increasing disorder. The value of PP (green) is maximized for the

wavefunctions that have equal excitation distribution between cavities and the emitters,

and reduces with an increasing photonic interaction (high J/g value) as the cavities become

predominantly excited.

We conclude that the Effective Hamiltonian and the participation ratio metrics are suit-

able for studies of the Tavis-Cummings-Hubbard model.
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FIG. 4. Participation ratios of the lowest energy eigenstate for a system with N = 2 cavities and

M = 2 emitters per cavity with random ωe sampled from a Gaussian distribution of width ∆.

Single random realization for each ∆. g = 5, κ = 10, γ = 1/5.8. The emitter frequencies are the

same as those in Figure 2.

V. EFFECTS OF SPECTRAL DISORDER ON THE TCHM ENERGY SPEC-

TRUM

We utilize the Effective Hamiltonian approach to study medium and large TCHM systems

and are especially concerned with the influence of the spectral disorder on the polaritonic and

8



localization properties of the model wavefunctions. The Figure 6 shows the energy spectra

of an N = 5,M = 3 system for various regimes of cavity QED to photon hopping ratios.

For the vanishing disorder, we clearly see the three components of the spectrum illustrated

in Figure ??: two polaritonic bands with N states and a subradiant band with N(M − 1)

degenerate states. When cavity QED interaction is significant, a band gap opens between

the polariton bands and the subradiant states. With an increasing spectral disorder, the

band gap closes and the subradiant state degeneracy is lifted.

Further analysis is provided by the corresponding PN and PP values shown in Figure

6. Here, we observe that the polaritonic properties of the highly hybridized states in the

polariton bands and the emitter-like states in the subradiant band shift significantly only

for the high levels of spectral disorder, defined by the typical cavity protection cutoff ∆ =

g
√
M . The increasing localization trend (decreasing PN) for most polariton band states

with an increasing disorder is evident for all sets of parameters. In contrast, the subradiant

states gain a cavity component with an increasing disorder and become more hybridized and

delocalized.

While the polaritonicity of the lower (as well as the upper) polariton band reduces for most

states with an increasing J/g ratio, the middle state of the band remains highly polaritonic.

This state, labeled the most polaritonic state (MPS) in our study, shows that even the

systems with high hopping ratio can serve as testbeds for polaritonic physics explorations.

VI. A PROPOSED IMPLEMENTATION

A physical implementation of the described coupled cavity array system using atoms

trapped in optical cavities is depicted in Figure 7. In such a system, the excitation photon

would come from a narrow-band tunable laser with low enough power to only target the

first excited rung of the Jaynes-Cumming ladder which is what is studied in this work. The

ability to collect photons from each cavity will give information about state transfer and

localization properties.
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FIG. 5. Effects of an increasing disorder, ∆, on the energy eigenspectrum for 3 different J/g values.

Mean of 100 random realizations; error bars are one standard deviation. N = 5, M = 3; g, κ, γ

same as those in Figure 2

.

[1] V. Norman, Tavis-Cummings-Hubbard open quantum system solver in the quantum master

equation approach, https://github.com/radulaski/Tavis-Cummings-Hubbard-QME (2021).
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in two-emitter-cavity systems, Physical Review A 96, 011801 (2017).

12


