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Abstract

We explicitly prove that the transfer matrix of a finite layered PT -symmetric system of fix
length L consisting of N units of the potential system ‘+iV ’ and ‘−iV ’ of equal thickness
becomes a unit matrix in the limit N → ∞. This result is true for waves of arbitrary
wave vector k. This shows that in this limit, the transmission coefficient is always unity
while the reflection amplitude is zero for all waves traversing this length L. Therefore, a
free space of finite length L can be represented as a PT -symmetric medium.
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1 Introduction

Around two decades ago, it was discovered that certain class of non-Hermitian Hamil-
tonian can support real energy eigen values provided the Hamiltonian is invariant under
a combine parity (P) and time-reversal (T) operation [1]. It was also noted that that a
fully consistent quantum theory can be developed for non-Hermitian system in a modi-
fied Hilbert space through the modification of inner product which restore the equivalent
Hermiticity and the unitary time evolution of the system[2, 3]. Since then a new dimen-
sion in quantum mechanics has emerged known as PT -symmetric quantum mechanics [4].
The non-Hermitian Hamiltonian display several new features which are originally absent
in Hermitian Hamiltonians. The important features are exceptional points (EPs) [5, 6],
spectral singularity (SS) [7]-[10], coherent perfect absorption (CPA) [10]-[15], critical cou-
pling (CC) [16]-[19] and CPA-laser [20]. Others notable features are invisibility [21, 22, 23]
and reciprocity [24]. CPA and SS have also been studied in the context of non-Hermitian
space fractional quantum mechanics [25]. Phenomena of SS have also been studied in the
domain of quaternionic quantum mechanics [26].

A quantum vacuum has fluctuations due to particle and anti-particle creations and
annihilations in such a way that creations and annihilations balances each other to keep
the net charge neutrality of the vacuum. In a sufficiently small time interval, a snap
shot of the vacuum will contain equal number of particle/anti-particles pairs or waves of
complex frequencies having positive and negatives components of imaginary part. If the
creation and annihilation of the particles are respectively ‘gain’ and ‘loss’ component for
the vacuum system (and vice-versa for anti-particles), then the snap shot of the vacuum
will be a PT -symmetric system. In other words quantum vacuum is stable under PT -
symmetry.

Our motivation for the present work arises due to the arguments presented in the
above paragraph. In order to check that whether vacuum can be represented as PT -
symmetric system, we consider a finite layered PT -symmetric system of fix length L
consisting of N units of the potential systems ‘+iV ’ and ‘−iV ’ of equal thickness ‘b’
without any intervening gap between the individual potential systems. It is shown that
in the limit N →∞ such that 2Nb = L, the entire PT -symmetric system of finite length
L is equivalent to an empty space of length L in all aspect. We prove this by showing
that the transfer matrix of our PT -symmetric system of length L is a unit matrix in the
above limiting case for particles of any wave vector k incident on this system.

We organize the paper as follows: In section 2 we briefly discuss the transfer matrix for
one dimensional scattering. In section 3 we calculate the transfer matrix for our layered
PT -symmetric system and evaluate the limiting case N → ∞ of the finite length PT -
symmetric medium in section 4. We present results and associated discussion in section
5.
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2 Transfer matrix

The Hamiltonian operator in one dimension for a non-relativistic particle is (in the unit
~ = 1 and 2m = 1)

H = − d2

dx2
+ V (x), (1)

where V (x) ∈ C . V (x) → 0 as x → ±∞. If
∫
U(x)dx, where U(x) = (1 + |x|)V (x) is

finite over all x, then the Hamiltonian given above admits a scattering solution with the
following asymptotic values

ψ(k, x→ +∞) = A+(k)eikx +B+(k)e−ikx, (2)

ψ(k, x→ −∞) = A−(k)eikx +B−(k)e−ikx. (3)

The coefficients A±, B± are connected through a 2×2 matrix M , called as transfer matrix
as given below, (

A+(k)
B+(k)

)
= M(k)

(
A−(k)
B−(k)

)
. (4)

Where,

M(k) =

(
M11(k) M12(k)
M21(k) M22(k)

)
. (5)

With the knowledge of the transfer matrix M(k), the transmission and reflection coeffi-
cient are obtained as,

tl(k) =
1

M22(k)
= tr(k), rl(k) = − M12

M22(k)
, rr(k) =

M21

M22(k)
. (6)

The transfer matrix shows composition property. If the transfer matrix for two non-
overlapping finite scattering regions V1 and V2 , where V1 is to the left of V2, are M1 and
M2 respectively, then the net transfer matrix Mnet of the whole system (V1 and V2) is

Mnet = M2.M1 . (7)

The composition result can be generalized for arbitrary numbers of non-overlapping fi-
nite scattering regions. Knowing the transfer matrix, one easily compute the scattering
coefficients by using Eq. 6. From Eq. 6, it is also seen that if the diagonal elements
are unity and off-diagonal elements are zero, then we always have tl(k) = 1 = tr(k) and
rl(k) = 0 = rr(k). This case of transfer matrix represent empty space.

3 Transfer matrix of layered PT -symmetric system

Fig 2 shows the layered PT -symmetric system which is made by periodic repetitions of
‘unit cell’ PT -symmetric system shown in Fig 1. It can be shown that the transfer matrix
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Figure 1: A PT -symmetric ‘unit cell’ consisting of a pair of complex conjugate barrier.
y-axis represent the imaginary height of the potential.

Figure 2: A periodic PT -symmetric potential made by the periodic repetition of the ‘unit
cell’ potential shown in Fig 1. y-axis represent the imaginary height of the potential.
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of the ‘unit cell’ system is

M(k) =

(
(ξ + iχ)e−2ikb i(η − τ)e−2ikb

i(η + τ)e2ikb (ξ − iχ)e2ikb

)
. (8)

ξ =
1

2
(cos 2α + cosh 2β)− cos 2φ(cosh2 β sin2 α + cos2 α sinh2 β), (9)

χ =
1

2
(U+ cosφ sin 2α + U− sinφ sinh 2β). (10)

η =
1

2
(cosh 2β − cos 2α) sin 2φ. (11)

τ =
1

2
(U+ sinφ sinh 2β + U− cosφ sin 2α). (12)

In the above equations, U± = k
ρ
± ρ

k
, α = bρ cosφ, β = bρ sinφ. ρ and φ are the

modulus and phase of k2 =
√
k2 + iV = ρeiφ respectively such that ρ = (k4 + V 2)

1
4 and

φ = 1
2

tan−1
(
V
k2

)
. It can be noted that k1 = ρe−iφ. From the knowledge of transfer matrix

of a ‘unit cell’ potential, one can find the transfer matrix for the corresponding locally
periodic potential consisting N such cells [28]. Using the approach outlined in [28, 29], we
obtain the following transfer matrix for the layered PT -symmetric system,

Ω(k) =

(
[TN(ξ) + iχUN−1(ξ)]e

−ikL i(η − τ)UN−1(ξ)e
−ikL

i(η + τ)UN−1(ξ)e
ikL [TN(ξ)− iχUN−1(ξ)]eikL

)
. (13)

TN(ξ) and UN(ξ) are the Chebyshev polynomials of first and second kind respectively.
L = 2Nb is the net spatial extent of the layered PT -symmetric system.

4 Special case of layered PT -symmetric medium

In this section we show that a finite length L of our layered PT -symmetric system con-
sisting infinitely many cells is analogous to an empty one dimensional space of length L.
To show this we take limiting case N → ∞ of each elements of transfer matrix 24 such
that b = L

2N
where L is fixed (and is finite). Various steps of the calculations are discussed

below.

The limiting of case of ξ and χ in the leading order of L can be shown to be,

lim
N→∞

ξ = 1− (kL)2

2N2
, lim

N→∞
χ =

kL

N
(14)

In arriving at the above limit, we have used b = L
2N

. We also observe limN→∞ ξ < 1.
With the above limiting value of ξ, we also evaluate

lim
N→∞

cos−1 ξ =
kL

N
. (15)
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It is further known that for |ε| < 1, one can express TN(ε) = cos (N cos−1 ε). Therefore,

lim
N→∞

TN(ξ) = cos (N cos−1 ξ).

Using Eq. 15 in the above, we find

lim
N→∞

TN(ξ) = cos kL. (16)

Next we evaluate the limiting value of Chebyshev polynomial of second kind for the
present problem. We use the following identity,

UN−1(ξ) =
sin (N cos−1 ξ)

sin (cos−1 ξ)
.

Using Eq. 15 in the above, the limiting value is given by,

lim
N→∞

UN−1(ξ) =
sin kL

sin kL
N

. (17)

From the above result, we arrive at

lim
N→∞

χUN−1(ξ) = sin kL. (18)

In the above we have used limN→∞ sin kL
N

= kL
N

Combining the limiting values of Eq. 16
and Eq. 18 we have the following results,

lim
N→∞

TN(ξ)± iχUN−1(ξ) = e±ikL. (19)

Using Eq. 19 in the diagonal values of transfer matrix (Eq. 24) we obtain

lim
N→∞

Ω11 = 1 = lim
N→∞

Ω22, (20)

i.e. the diagonal elements are unity in the limit N →∞ provided the support L is finite.
Now we evaluate the limiting values of off-diagonal terms of the transfer matrix. The
limiting value of η ± τ in the leading order of b is,

lim
N→∞

(η ± τ) = V b2. (21)

Using Eq.17 it can be easily shown that,

lim
N→∞

(η ± τ)UN−1(ξ) =
V b

2k
sin kL = 0. (22)

Therefore, the off-diagonal terms of the transfer matrix (Eq. 24) are zero, i.e.,

lim
N→∞

Ω12 = 0 = lim
N→∞

Ω21, (23)
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Figure 3: Plot of transmission amplitude T (N, k) as a function of N and k for V = 40
and L = 1. It is observed that the transmission is unity for large N . For a better clarity,
the plot range of T is chosen in the range from 0.9995 to 1.0005.

for finite support L. Thus it is proved that for all k,

lim
N→∞

(
[TN(ξ) + iχUN−1(ξ)]e

−ikL i(η − τ)UN−1(ξ)e
−ikL

i(η + τ)UN−1(ξ)e
ikL [TN(ξ)− iχUN−1(ξ)]eikL

)
=

(
1 0
0 1

)
, (24)

and therefore transmission coefficient is always unity and reflection coefficient is always
zero for all wave number k in the limit N →∞. Fig 3 shows the plot of transmission
amplitude T (N, k) as a function of N and k for V = 40 and L = 1. It is seen from the
figure that transmission amplitude is unity for large N as proven theoretically. The range
of N in the figure is taken from 500 to 2000.

This is to be noted that when PT -symmetry is not respected, the vacuum configuration
is not obtained. If one take the general case where the potential +iV is replaced by V1+iV2
and potential −iV with V1 − iεV2, {V1, V2} ∈ R, the net configuration of length L in the
limit N → ∞ corresponds to a barrier potential of height V1 + i(1 − ε)V2 and length L.
When PT -symmetry is respected (ε = 1), the limiting case N →∞ correspond to a real
barrier of height V1 and length L. The case presented in this letter is the special case
V1 = 0, ε = 1. The calculations for the more general case is much lengthy and is planned
to be reported elsewhere.
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5 Results and Discussions

We have shown that a finite layered PT -symmetric system of fix length L consisting of
N units of adjacently arranged ‘unit cell’ PT -symmetric system represent a free space
of length L in the limit N → ∞ at all wave number k. The ‘unit cell’ PT -symmetric
system is made by potential ‘+iV ’ and ‘−iV ’ ( V ∈ R+ ), of same thickness and arranged
adjacently without an intervening gap. This is proven by showing that the transfer matrix
of such a layered PT -symmetric system over fix length L is a unity matrix at all wave
number k for large number of unit cells. Therefore for such a system in this limit, the
transmission coefficient is always unity while the reflection coefficient is always zero. Thus
a free space of finite length L can be represented as PT -symmetric medium. The result
is also shown numerically for transmission coefficient.

It is to be noted that in the present case of the layered PT -symmetric system, the
effect of gain (+iV ) and loss part (−iV ) cancel each other in the limit b → 0 (or N →
∞ for the present problem) as the wave traverses through it. This case is different
than considering vanishing strength of balanced gain and loss component of the non-
Hermitian potential. The present results shows that vacuum can be represented as the
special case of PT -symmetric medium. More investigations are needed to understand the
significant of this result. This finite PT -symmetric system for large L is also invisible for
left and right incidence. If particle production is represented as +iV (the gain part) and
particle annihilation is represented as −iV (the lossy part), then the present limiting case
of layered PT -symmetric medium represent the static snap shot of vacuum fluctuation.
However it will be worth investigating the nature of transfer matrix when the height
of each ‘unit cell’ is oscillatory in nature where frequency of oscillation is different for
different cells. This may represent a more realistic picture of vacuum fluctuation when
represented in non-Hermitian quantum mechanics.

Acknowledgements:
MH acknowledges supports from Director-SPO and Scientific Secretary, ISRO for the
encouragement of research activities. BPM acknowledges the Research Grant for Faculty
under IoE Scheme (number 6031).

References

[1] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).

[2] A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys. 7, 1191(2010) and references
therein.

[3] C.M. Bender, Rep. Progr. Phys. 70 947 (2007) and references therein.

[4] PT Symmetry in Quantum and Classical Physics, C. M. Bender, World Scientific
(2019) and references therein.

8



[5] M. V. Berry, Czech. J. Phys. 54, 1039 (2004).

[6] W. D. Heiss, Phys. Rep. 242, 443 (1994).

[7] A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009).

[8] A. Mostafazadeh, M. Sarisaman, Phys. Lett. A 375, 3387 (2011).

[9] A. Ghatak, R. D. Ray Mandal, B. P. Mandal, Ann. of Phys. 336, 540 (2013).

[10] M. Hasan, A. Ghatak, B. P. Mandal Ann. of Phys. 344, (2014)

[11] C. F. Gmachl, Nature 467, 37 (2010).

[12] W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, H. Cao, Science 331, 889 (2011).

[13] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342
(2010).

[14] H. Noh, Y. Chong, A. Douglas Stone, and Hui Cao, Phys. Rev. Lett. 108, 6805
(2011).

[15] A. Mostafazadeh and M. Sarisaman, Proc. R. Soc. A 468, 3224 (2012).

[16] M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).

[17] J. R. Tischler, M. S. Bradley, and V. Bulovic, Opt. Lett. 31, 2045 (2006)

[18] S. Dutta Gupta, Opt. Lett. 32, 1483 (2007).

[19] S. Balci, C. Kocabas, and A. Aydinli, Opt. Lett. 36, 2770 (2011).

[20] A. Mostafazadeh, Ann of Physics 375, 265 (2016).

[21] S. Longhi, J. Phys. A: Math. Theor. 44, 485302 (2011).

[22] A. Mostafazadeh, Phys. Rev. A 87, 012103 (2013).

[23] F. Loran, Opt. Lett. 42, 5250 (2017).

[24] L. Deak, T. Fulop, Ann. of Phys. 327, 1050 (2012).

[25] M. Hasan, B. P. Mandal, Ann. of Phys. , 396, 371 (2018).

[26] M. Hasan, B. P. Mandal, J. Math. Phys. ,61, 032104 (2020).

[27] Elements of Quantum Mechanics, B. Dutta Roy, New Age Science Ltd. (2009).

[28] D. J. Griffiths and C. A. Steinkea, Am. J. Phys. 69 (2), 137,(2001).

[29] M. Hasan, V.N. Singh, B. P. Mandal, Eur. Phys. J. Plus , 135, 640 (2020).

[30] M. Hasan and B.P. Mandal, Ann. of Phys., 391, 240 (2018).

9


	1 Introduction
	2 Transfer matrix
	3 Transfer matrix of layered PT-symmetric system 
	4 Special case of layered PT-symmetric medium
	5 Results and Discussions

