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Neutral excitations in fractional quantum Hall (FQH) fluids define the incompressibility of topo-
logical phases, a species of which can show graviton-like behaviors and are thus called the graviton
modes (GMs). Here, we develop the microscopic theory for multiple GMs in FQH fluids and show
explicitly that they are associated with the geometric fluctuation of well-defined conformal Hilbert
spaces (CHSs), which are hierarchical subspaces within a single Landau level, each with emergent
conformal symmetry and continuously parameterized by a unimodular metric. This leads to several
statements about the number and the merging/splitting of GMs, which are verified numerically
with both model and realistic interactions. We also discuss how the microscopic theory can serve
as the basis for the additional Haldane modes in the effective field theory description and their
experimental relevance to realistic electron-electron interactions.

INTRODUCTION

Our universe has two important fundamental con-
stants: the speed of light ¢, which parametrizes the
Lorentz invariance (from the theory of relativity), and
Planck’s constant A, which parametrizes the quantum
fluctuation. It turns out that in a two-dimensional “uni-
verse” realized by the quantum Hall effect, we also have
two analogous “fundamental constants”: The Fermi ve-
locity of the chiral Luttinger liquid of the edge transport
is analogous to ¢, while the magnetic length is analo-
gous to h. Furthermore, in such a microscopic universe,
these two parameters can be tuned experimentally [1].
This leads to rich physics from the interplay of geome-
try, topology, and emergent symmetry due to strong in-
teractions [2], which can even induce the emergence of
the quasiparticles analogous to those theoretically pro-
posed at high energy but have yet been observed in na-
ture. One intriguing example is the gravitons, which
are the hypothetical spin-2 bosons from the quantiza-
tion of gravitational field [3, 4]. There also exist the
analogous graviton modes (GMs) in a fractional quan-
tum Hall (FQH) fluid [5-7] is a two-dimensional quantum
fluid of electrons subject to a strong magnetic field at low
temperatures. These modes are the quadrupole gapped
excitations of the quantum Hall effect that emerge from
the geometric fluctuation of the topological ground state,
encoding topological information about their respective
FQH phases. Their dynamics leads to rich physics rang-
ing from ground state incompressibility to the dynamical
phase transitions of the low-lying excitations [8, 9].

The effective field theory studying these modes has
been proposed using the Newton-Cartan formalism, and
various experimental proposals for the observation of
these modes have been put forward [10-19]. The stan-
dard technique in probing neutral excitations is to use
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the inelastic photon scattering [20-24]. The coupling be-
tween the GMs and the acoustic waves can also be used
to simulate the behavior of gravitons interacting with the
gravitational waves [25]. Meanwhile, the microscopic the-
ory of the GMs with model Hamiltonians has also been
established to provide insights for the experiments, where
model Hamiltonians for the GMs have been constructed
for FQH fluids at different filling factors [9, 26]. Recently
numerical results have implied the signature of multiple
GMs in FQH states, the microscopic understanding of
which is under development [27, 28]. Given that most
of the research on GMs is based on effective field the-
ories and numerical analysis with model wavefunctions
[28], a detailed microscopic theory is needed for a com-
plete characterization of the emergence and interaction
between different GMs.

In this work, we show analytically that multiple GMs
are a generic feature of FQH fluids, from the splitting
of the long wavelength limit of the Girvin-MacDonald-
Platzman (GMP) mode [5] in different subspaces in a
single Landau level (LL). Using the analytic tools we
developed earlier [9], we demonstrate that the number
of observable GMs is dynamical in nature and is only
meaningful when referring to specific interaction Hamil-
tonians. Each GM can be interpreted as the metric fluc-
tuation of a conformal Hilbert space (or the null spaces
of model Hamiltonians, as explained later) within a sin-
gle LL. For short-range two-body interactions, we show
all non-Laughlin FQH states around the filling factor
v = 1/(2n) with n > 1, including the interacting com-
posite fermion (CF) states, have at least two GMs. In
particular, the Jain states at v = N/ (2nN £1) and
the Pfaffian states at v = 1/(2n) all have two GMs if
n, N > 1. The Laughlin states (N = 1) and the Jain
states with n = 1 all have a single GM. This agrees with
the special cases studied numerically in both [27, 28] at
v =2/7,2/9,1/4, at the same time providing an analytic
explanation and geometric interpretation to their numer-
ical observations. Furthermore, the microscopic theory
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can easily predict the chirality of the gravitons [19] with-
out numerical computations.

This work is organized as follows: Sec. I-II concep-
tually introduces the geometrical origin of the GMs and
the hierarchical structure of the conformal Hilbert spaces
(CHSs) as the null spaces of model Hamiltonians, the
combination of which leads to the microscopic explana-
tion of the emergence of multiple GMs, with the spectral
function calculated from the single-mode approximation
wave function to distinguish these GMs in the Hilbert
space as explained in Sec.III. We focus on the GMs in the
CHSs defined by short-range two-body interactions and
non-Abelian three-body interactions, where both analyt-
ical and numerical evidence shows the signature of multi-
ple GMs; As illustrated in Sec.IV, this adds yet another
tool for the experimental probing of topological orders
in low-temperature, two-dimensional electronic systems
where the Coulomb interaction can be slightly tuned and
how such orders are affected by the conformal symmetry
that may or may not be fully realized in experiments;
How our theory serves as the basis for the effective field
theory is explained with more technical details in the last
section, where we show the necessity of additional Hal-
dane modes depends on the proper identification of the
base space of such theories.

RESULTS
The cyclotron and guiding center metric

It is useful to consider the simple case of the inte-
ger quantum Hall effect (IQHE), which are topological
phases from fully filled LLs. We are dealing with the
following full Hamiltonian:

N,
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H=> 50 P%iaFib + Ving (1)
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Here 7;, = Piq + €A;q denotes the dynamical momen-
tum operator of the i-th electron (p; is the canonical mo-
mentum and A; is the external vector potential), with
the commutation rules [#;q, 7jp] = i0;j€q5/¢%. The mag-
netic field is B = €9, A;, and the magnetic length is
lp = y/1/eB. We assume the cyclotron energy is the
dominant energy scale, so any LL mixing induced by
electron-electron interaction can be perturbatively cap-
tured by few-body interaction of the second term Viy,
which now describes the dynamics only within a single
LL [29-33]. The important note here is that the Hilbert
space of a single LL, which we will refer to as the lowest
LL (LLL) without loss of generality, is parametrized by
the unimodular metric §*° in Eq. (1), which is physically
the effective mass tensor. Quantum fluctuations around
this metric thus lead to density modes in higher LLs,
which we can term “cyclotron gravitons”. The energy of
this GM is very high, with a large magnetic field. It is
the only GM for the IQHE since the LLL is fully filled.

Rf Guiding center operator

Pa Guiding center density operator

6pq Regularized guiding center density operator

Tia Dynamical momentum operator
g’ Guiding center metric

g Cyclotron metric

gab Guiding center metric of CHS H,

Sq Regularised guiding center structure factor

P bdy k-body pseudopotential

VEPAY Model Hamiltonian defined by Sy A\ VP
HEPDY CHS determined by VP

TABLE I. Definition of various symbols used in the
text. Note that due to fermionic statistics, the constant co-
efficients \; in VFPY might vanish. For example, f/;bdy =
MVEPY 4\ VFPY with Ap = 0.

For FQHE in a partially filled LL, the dynamics is de-
termined entirely by the guiding center coordinates R* =

74 — €®7,0% with the commutation rules [R“,Rb} =
il%e, [R“,Rb] = —il%e, [R“,Rb} = 0, where we de-
fine R* = (%¢* 7, as shown in Table 1. This implies the
interaction energy Viy is a functional of R; only and

commutes with the kinetic energy. It can be explicitly
expressed as:

Vi = [ daVigpap-a ©)
where pq =3, e’ Ri is the guiding center density oper-
ator. For rotationally invariant systems, we have a new
unimodular metric g% defining distance in the momen-
tum space |q| = \/§**q.qp, which is physically indepen-
dent of §*. We illustrate a complete analogy to the
“cyclotron graviton” in the IQHE by using the simple
example of Vint = ‘A/lgbdy, or the model Hamiltonian for
the Laughlin v = 1/3 state. Just like the LLL, which is
the null space of the kinetic energy parameterized by §,
the null space of Vfbdy (spanned by the Laughlin ground
state and quasiholes) is parametrized by g*°. The quan-
tum fluctuation around §°° gives the “cyclotron gravi-
ton” outside of LLL, while that of g* gives the well-
known graviton or quadrupole mode (the long wavelength

limit of the GMP mode) outside of the Vfbdy null space
[7].

We want to emphasize that the arguments above apply
to any Vi, with an incompressible ground state. Thus,
generally speaking, all FQH states have at least two GMs
due to the structure of the full Hamiltonian: the cy-
clotron GM residing in higher LLs (which has very high
energy due to the large magnetic field) and at least one
guiding center GM within the LLL. Although for the rest
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FIG. 1. Intrinsic metrics in FQH states. The left panel
shows that the fluctuations of the cyclotron metric gqs orig-
inate from the LL mixing. The right panel shows the hi-
erarchical structure of the CHSs (denoted by dashed circles
with different colors) of the corresponding model Hamilto-
nians (more details can be found in Table II) in the lowest
Landau level. Each of these spaces can have its own metric
¢2%, the fluctuation around which can potentially lead to mul-
tiple GMs in a single Landau level.

CHS Model Hamiltonian
HFibonacci ‘764bdy
Hum P 3bdy
Hcaftmian M VP A, vy
Hitainian A1V l® 4 Ao VEPY 4 2\ V3P
HLaughlin-1/3 |

~2bdy ~2hdy
HLaughlin-1/5 V7Y 4+ AV

TABLE II. The CHSs are defined as the null spaces of the
corresponding model Hamiltonians. Here A; can be any con-
stant coefficient.

of this work, we will ignore the cyclotron GMs and fo-
cus on the dynamics within the LLL, we can use the cy-
clotron GMs as examples to understand the emergence
of multiple guiding center GMs from Vjy;.

The hierarchy of conformal Hilbert spaces

Given the rich algebraic structure of the Hilbert spaces
like the LLL and the Vfbdy null space, we term them as
conformal Hilbert spaces (CHSs) because they are be-
lieved to be generated by the conformal operators (i.e.,
the Virasoro algebra) [34, 35]. In many cases, such
Hilbert spaces are spanned by degenerate (zero energy)
many-body states of special local Hamiltonians, includ-
ing the well-known generalized pseudopotentials, that
physically project into the angular momentum sectors
of a cluster of electrons [36, 37]. The null spaces of these
Hamiltonians have conformal symmetry in the thermo-
dynamic limit. Those zero energy states are the ground
states and quasiholes of a particular FQH phase (though

some are believed to be gapless phases) [38, 39]. More
importantly, like the Hilbert space of the LLL (or any
other single LL), such CHSs are built up with quasipar-
ticles, which are emergent particles from LL projection
and strong interaction. In the LLL, the quasiparticles
are simply electrons projected into a single LL, while in
other CHSs, they can be abelian or non-abelian anyons
[40—46].

Let Ho be one of these CHSs, and the null space of
the corresponding model Hamiltonian V,. Just like in
Eq. (2), V,, contains a guiding center metric g2°, and H,
continuously depends on it. This is the geometric as-
pect we would like to introduce to the CHSs, and each
of them can be completely characterized by a triplet of
{Ha, Ve, g}, For the special case where H, = HirL,
the entire Hilbert space of the LLL, V., is the kinetic en-
ergy Hamiltonian and g2® = 2 is the cyclotron metric or
the effective mass tensor. All other CHSs are subspaces
of HLLL~

In Fig. 1, we illustrate a hierarchical structure of dif-
ferent H,, in the LLL [9]. For a given H,, it is possible to
find another Hg C H,. If we fix g2°, we can still define a
‘Hp freely parametrized by ggb that is entirely within H,,.
Since the cyclotron coordinates and guiding center coor-
dinates commute, this is straightforward for H, = HyLL-
For other pairs of CHSs, such geometric tuning can only
be realized with the following Hamiltonian:

Vint = /\ava + A,B‘A/,B (3)

with Ay > Ag > 0 (the metric dependence of ‘7@,6 is
implicit). For any ground state |¢g) C Hg of Eq. (3) we
can thus define two types of area-preserving deformation:

|¢i<> ~ lim Paﬁ (X) W]O> ~ lim pa5ﬁq|¢0> (4)
Ix|—0 lal—0

03) = (1= 2aU (0)) o) (5)

where U (x) = eixavA™ g the unitary operator inducing
the squeezing and rotation of the guiding center metric
[7, 47, with A®® = é > {R¢, R}, and the determinant
of the symmetric tensor |x| parametrize the squeezing;
dpq = Pq — (Yolpql|to) is the regularised guiding center
density operator, and Eq. (4) has been established in [6].
Here P, is the projection into H, so that V|¢)) = 0,
and [¢)) is associated with the geometric deformation of
Hp. Eq. () is entirely outside of H,, and in some cases,
it will vanish, as we will see later. If it is non-vanishing,
then [¢)%) is associated with the geometric deformation
of H,. This geometric description forms the basis of
possible multiple GMs in different FQH phases, dictated
by “model Hamiltonians” in the form of Eq. (3). It can
be resolved by realistic Hamiltonians close to those model
Hamiltonians.
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FIG. 2. Multiple graviton modes and composite fermionization. a An illustration of the hierarchical structure of three
CHSs and the ground state [1o) within Hir (red sphere) in the Hilbert space. The corresponding GMP mode |1)4) is outside
H: so one can imagine the regularised guiding center density operator acting on the ground state goes through three CHSs,
leading to three emergent GMs because of the fluctuation around the metric of each of the CHSs. b PH conjugate of Laughlin
states within different CHSs. Here C; denotes the PH conjugate within H?*Y and C denotes the PH conjugate within a single

i

LL or a single CF level. Arrows represent magnetic fluxes, and the CF's denoted by cf}«, consisted of one electron and n fluxes,
form a CF FQH state at v*. Note that the red (cfi/s) and the yellow (cf;,3) CFs are anti-CFs with the fluxes opposite to the

external field.

Emergence of multiple GMs

Within this framework, let us start with a collection of
CHSs, {Hk, Vi, gi’}. We will ignore the cyclotron GM,
so all these are subspaces of the LLL, and also with a hi-
erarchical structure Hy1 C Hy. The model Hamiltonian
for understanding the GMs is given by:

Vi = > MVi, e > Apg1 (6)
k=1

All metrics ¢g¢° in the Hamiltonian are arbitrary, and
without loss of generality, we can set them as ggb = I,
since the GMs are quantum fluctuations around these
fixed metrics. Let the ground state of Eq. (6) be |¢g) €
H.n, so the quadrupole excitation is obtained from the
long wavelength limit of the GMP mode or single mode
approximation defined as follows [5, 6]:

) 1
lthg) = qlllg}) \/T—q

Note that |¢4) and |¢)g) are orthogonal, and Sq is the reg-
ularised guiding center structure factor with limq—,9 Sq ~
ns|al*, which is fully determined by [1). The Haldane
bound dictates that the value of 7 gives the upper bound
to the topological shift of |¢g) [47].

The important question here is which CHS does [¢,)
reside. If |¢pg) € Hy and [vy) ¢ Hi41, then obviously
there is no GM associated with the quantum fluctuation
around ggb since such fluctuation will bring us out of Hy.
However, |t4) can be decomposed into multiple modes,
each within Hys >y but outside of the Hys 11, associated
with the quantum fluctuation around g&} '\1, as long as
[tho) € Hysy1. This is most easily seen by computing the

dpaltho) (7)

spectral function defined below:

I(B) =) [(¥nltyg)|* § (B — En) (8)

n

where |¢,), E, are eigenstates and eigenenergies of
Eq. (6). Given that Ay > Agt1, we will see m — k dis-
tinct peaks well separated in energy, corresponding to
m — k GMs, each with transparent geometric interpreta-
tion as illustrated in Fig. 2a. The spectral sum rule for
the guiding center structure factor will be satisfied from
all the contributions of these GMs, as long as [¢)4) lives
completely within Hy.

A number of analytical results have been derived in our
previous works, which are rigorous in the thermodynamic
limit and useful in determining which CHS |[¢),) resides
in [9]. Let us first take Vi in Eq. (6) as a sum of short-
range two-body interactions as follows:

Vi = D AiVa Y (9)
i=1

with V2>% as the (2i — 1) Haldane pseudopotentials
(PPs), where fermionic statistics has been considered.
Thus the corresponding null spaces H2P4Y is spanned
by the Laughlin ground state and quasiholes at v =
1/(2n+1). Here we can prove analytically [9] that
|thg) of the Laughlin phase at v = 1/(2n + 1) resides
within H2"% but completely outside of H2>% (we take

Hgbdy = Hi11), which is saturated by the ground state
and quasiholes. Thus there can only be one GM and one
peak in the spectral function associated with the metric
fluctuation of g2°. There are, however, many other FQH
states that are incompressible with Eq. (6) but not in
H2bdY . These include the Jain states at v = N/(2nN+1),
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FIG. 3. Spectral functions from exact diagonalization.
a-c Graviton peaks of the FQH states with the filling factor
v = 2/7, 4/13 and 2/11. The GM of the FQH state with
filling factor v is called v-GM for simplicity, followed by the
system size, i.e. N, electrons and N, orbitals denoted by
NceNyo. The blue, the turquoise, and the red region denote
H?,bdy , Hfbdy and the complement of Hfbdy correspondingly,
from which one can clearly see the gaps between different
sectors. A graviton peak can be distinguished by a bunch of
adjacent non-zero stems within a specific sub-Hilbert space,
corresponding to a scattering peak that can be observed in
experiments. For the FQH states with v = 2/7 and 4/13 in
(a) and (b), model Hamiltonians show similar signatures of
two peaks in the spectral functions as Coulomb interactions
(a small VZ"% is added to the Coulomb interaction in (b)
for stabilizing the proper ground state). The corresponding
overlap between the model state and the ground state of the
Coulomb interaction can be found in Table III. Source data
are provided as a Source Data file.

N > 1 and their PH conjugate states (within Hilidf') at

v=N/(2nN —1), N > 1. Note that all these states still
resides within Hilidly , though the ground state and quasi-
holes do not saturate ’Hi‘idf' . One can prove analytically

that their corresponding [¢)4) all satisfies |¢g) € Hi}idg .

While they are again completely outside of H2P% now
they have spectral weights within H2PYY  Thus each of

n—1
those states will have two GMs with respect to Eq. (6),
a generic result agreeing with some special cases studied
before [27, 28]. These two GMs are associated with the
fluctuation of the metric g2%, g2 |, and they can also be
understood via clustering properties in parton construc-
tions [28].

Non-abelian FQH states are fascinating in strongly cor-
related topological systems. Their GMs can also be pre-
dicted similarly, assuming that they can be stabilized by
realistic interactions adiabatically connected to Eq. (6).
For example, the Pfaffian state at v = 1/(2n) can be un-
derstood as a condensate of paired composite fermions,
each with one electron attached to 2n magnetic fluxes
[48, 49]. The model states of these FQH phases all live

within Hib_dly . For short-range two-body interactions,

they will also all have two GMs, one within #2"%,
the other within HZ"%Y .

It is also interesting to note that with short-range two-
body interaction, all FQH states related to the Laughlin
states by particle-hole (PH) conjugation will have at most
two GMs. There can be multiple well-defined PH con-
jugations for each Laughlin state in different Laughlin
CHSs, not just within LLL (where PH conjugation re-
lates the state at v to 1 — v). This is because the Laugh-
lin state at ¥ = 1/(2n + 1) can also be reinterpreted as
a Laughlin state of CFs with each electron attached to
2k magnetic fluxes (k < n) at the CF fractional filling
factor v* = 1/(2(n — k) + 1) [50, 51] as Fig. 2b shows.
For example, the Laughlin 1/7 state of electrons can be
reinterpreted as a v = 1/5 state of cf?(one electron bound
with two fluxes) within ’H?bdy. We can then take the PH
conjugation within H3*" giving the v = 4/5 state of cf2,
corresponding to the v = 4/13 Jain state (of the electron
filling, in CF theory it is an interacting CF state). An-
other example is the FQH state at v = 2/7 (a v = 2/3
state of cf?), which is the PH conjugate of the Laughlin-
1/5 state (a v = 1/3 state of cf?) within H>°?. Due
to PH conjugation, we know immediately that there are
two GMs with opposite chirality for these two states, as
shown in Fig. 3. FQH states with one PH conjugation
(e.g., v = 2/9) will give all GMs of the same chirality.
The chirality of the GMs can thus be predicted with-
out involving numerical calculations. It is also consis-
tent with Ref. [52], since with PH conjugation, the cor-
responding FQH ground state will not be annihilated by
any local Hamiltonians.

We can thus rigorously define the PH conjugate of CFs
within ’Hibdy, at the CF filling factor of v* = 2(n —
k)/(2(n — k) + 1), corresponding to the interacting CF
states at electron filling factor v = 2(n—k)/(2(n—k)(2k+
1) +1). Each Laughlin state at v = 1/(2n+ 1) thus have
n PH conjugate state with £k =0,2,---n —1, with k=0
the usual PH conjugate state in LLL at v = 2n/(2n+1).
Since the v =2(n —k)/(2(n — k)(2k + 1) + 1) state lives
entirely within Hibdy and entirely outside of Hi]j_dly, one

and



2/7(8e) 4/13(8e) 2/11(6e) 2/9(8e) 1/4(8e)

0.953(3a) 0.986(3b) 0.957(3c) 0.993(4a); 0.989(4b) 0.908(5)

TABLE III. The overlap between the ground states with dif-
ferent filling factors (first row) of the corresponding model
Hamiltonian and the Coulomb interaction. The correspond-
ing electron numbers and figure indices have been included.

can rigorously show [9] its GM lives entirely within 'Hitidly

for £ > 0, leading to two GMs. These two GMs come
from the fluctuation of g, as well as the fluctuation
of the metric defining the CHS of v = 2(n — k)/(2(n —
k)(2k 4+ 1) + 1). Since we are taking the PH conjugate
within ’Hibdy, the GM within Hibdy will also have the
opposite chirality as the one outside of it. For k = 0,
the anti-Laughlin state at v = 2n/(2n + 1) only has one
GM since there is no additional CHS defined by the two-
body interaction within LLL that also contains the CHS
of v=2n/(2n+1).

We now illustrate that the number of GMs is a dynamic
property strongly dependent on the interaction. Let us
first look at the Jain state at v = 2/9, corresponding to
the v* = 2 state of the CFs with each electron bound
to four magnetic fluxes, or the v* = 2/5 state of the
CFs with each electron bound to two magnetic fluxes.
We have argued before that with short-range two-body
interactions; this FQH state has two GMs. It is impor-
tant to note, however, while the CHS of this FQH state
is well-defined from the CF construction, such construc-
tion does not allow an exact model Hamiltonian within
the LLL. The two-body interaction only defines its CHS
approximately, though to a very good level of accuracy.
A better microscopic Hamiltonian is given as follows:

Vi = D307 = 3 g (10
=3

where Vigbdy are the three-body PPs [37]. Note there is

~ 3bd .. .. "r2bdy vr3bd
no V;””% due to fermionic statistics, and Vg, V;7° are

doubly degenerate, so here we take them as an arbitrary
linear combination (the CHS is invariant). The unique
highest density ground state of Eq. (10) with n = 11 has
a very high overlap with the Jain v = 2/9 state (~ 0.99
for eight electrons). While its quasihole counting is non-
Abelian, one could conjecture that the ground state is
topologically equivalent to the Jain state, in analogy to
the Gaffnian state and the Jain v = 2/5 state that has
been studied before [35, 53].

While important by themselves, such subtleties do
not really affect our discussions about GMs, which are
gapped excitations. The main message here is that
the null spaces of V3P4 give a family of CHSs beyond
the Laughlin CHSs discussed before. The Moore-Read,
Gaffnian, and Haffnian CHSs are illustrated in Fig. 1,
corresponding to the case of n = 3,5, 6, respectively. Let
the null space of V3P4Y be H3PdY and it is easy to check
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that H3PY < H3*Y < H"Y. Note that the ground

state of v = 2/9 resides in ’H:flfdy, and it has very high
V2bdy

overlap with the ground state of V3;~7. We can thus
construct the following Hamiltonian:

‘A/int _ )\1‘712bdy + )\2‘”/93bdy + ‘732bdy (11)

with A\; > Ay > 1. In addition to the original two GMs
(one from the metric fluctuation of 3%, or the CHS of
the v = 2/9 phase, and the other from the metric fluctu-

ation of H3"%), there will be a third GM from the metric
3bdy

fluctuation of Hy ™, easily observable from the spectral
function. Suppose we tune Ay to zero. In that case, the
two peaks corresponding to the GMs of the lower ener-
gies will gradually merge to become a single peak within
H%bdy , accounting only for the metric fluctuation of the
CHS of the v = 2/9 as shown in Fig. 4. Such dynam-
ical behaviors physically correspond to the energies of
the gravitons in the spectral function, and can be cap-
tured by the merging and splitting of resonance peaks
in the inelastic photon scattering measurements [22, 54—
56]. Furthermore, merging and splitting GMs can also be
expected for the non-Abelian Pfaffian state at v = 1/4,
which similarly has an exact three-body model Hamilto-
nian [57-59]. In both cases, the GMs are of the same
chirality. For gravitons with opposite chiralities, even
if their energies merge, the multiple gravitons can still
be distinguished by circularly polarised light [14, 15, 18].
We will discuss this in more detail next with numerical
computations.

While the main concepts and predictions of the GMs
have been formulated analytically above, it is also help-
ful to further illustrate the formalism with examples of
numerical calculations. The spectral functions for the
Jain states at v = 2/7,2/9, 1/4 with Coulomb interaction
have been computed [27, 28]. Here we compute the spec-
tral functions of these and additional FQH states with
model Hamiltonians on the sphere to show that two or
even more peaks can be unambiguously resolved and far
separated compared to the realistic interactions. One
can expect similar signatures in experiments if the realis-
tic Hamiltonians were adiabatically close to these model
Hamiltonians. Otherwise, experimental parameters, such
as the sample thickness or the LL mixing, may need to be
carefully tuned. In all cases we have studied, the ground
states of the model Hamiltonians and the realistic Hamil-
tonians at the same filling factor have very high overlaps
(as shown in Table III), showing strong evidence that
they are in the same topological phases.

The first two examples are the Jain state at v = 2/7
(the PH conjugate of the Laughlin v = 1/5 state within

H7"Y) and the interacting CF state at v = 4/13 (the PH

conjugate of the Laughlin v = 1/7 state within H>"%,

with some experimental evidence [60]). In both cases,
the PH conjugate is defined for CFs, each with one elec-
tron attached to two fluxes. The CHS of both phases are
proper subspaces of ’H%bdy, but outside of Hgbdy. Thus
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there will be a non-zero component of the graviton out-
side of ’H%bdy . A short-range two-body interaction with a

very dominant Vl%dy can thus easily resolve the two GMs
as previously predicted (Fig. 3a, 3b). The two GMs can
also be clearly resolved with VLLL since it is dominated
by ‘712bdy.

The Jain state at v = 2/7 also provides an example
to understand gravitons’ dynamics with realistic interac-
tions further. Since the PH conjugation reverses the sign
of all physical quantities that are odd in time-reversal
operations, the two gravitons of this state should have
opposite chiralities. We compute the spectral function
with respect to the Coulomb interaction in the second
LL, where Vfbdy is much less dominant than in the LLL.
The overlap between the ground states is around 0.982,
with the incompressibility gap remaining robust with 8
electrons. One can clearly see the merging of the energies
of the gravitons shown in Fig. 5, which should be highly
relevant in experiments. Thus in the inelastic unpolarised
light scattering experiments, we expect to observe two
resonance peaks in the LLL but only one resonance peak
in the SLL.

With the circularly polarised light, however, one (po-
tentially broadened due to mixing) peak will be observed
at almost the same frequency for each polarization in the
SLL as shown in the subplots in Fig. 5, where the spectral
function of the chiral GMs is given by:

17(B) =" (WS W) 6 (B - E), o= {+,—}
’ (12)

where |17) denotes the GM with the chirality o, i.e.,
[1g) = ZiT co|tpg) and the summation with respect to i
is over all the eigenstates [1)77F) of the Coulomb inter-
action in the SLL at energy F;. [)7) can be calculated
by looking for the components of |1,) within two well-
separated sub-Hilbert spaces H? (denoted by the color
blue/orange in Fig. 5), and ¢, is the corresponding nor-
malization factor. One can thus take |i,) as the super-
position of two chiral GMs, and as shown in Fig. 5, I7(E)
gives the resonance amplitude when a GM of the chirality
o is excited from the ground state.

The Jain state at v = 2/11 offers another interest-
ing example: the PH conjugate of the Laughlin v = 1/7
state within the H2"%, defined for CFs with one elec-
tron attached to four fluxes. The two GMs are within
and outside of H;bdy7 so it can be clearly resolved with a
model Hamiltonian with a dominant V;>"® (and a domi-
nant Vlzbdy to maintain the ground state gap). However,
with Vipr the strength of V;bdy is only slightly larger
than that of V;bdy, and it cannot clearly resolve the two
GMs (Fig. 3c) using the unpolarised light. This is an ex-
ample when reducing the V32bdy of the interaction leads
to the mixing and merging of the two GM energies, while
the ground state is not affected at all since it is in the
null space of V;bdy. Note that the energies of the GMs

for this FQH phase are not affected by the Vfbdy com-
ponent of the two-body interaction. Since the two GMs
have opposite chiralities, two resonance peaks at similar
energies can still be resolved using the circularly polarised
light, as is the case for the v = 2/7 state with Coulomb
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FIG. 5. Spectral functions of the Jain state at v = 2/7
with 8 electrons with respect to the Coulomb interac-
tion in the LLL VX" and the second LL (SLL) VS'L.
In the main plot, the chiralities of the two GMs [¢g) with
respect to VA are denoted as o = + (blue) or — (orange).
Thus the GM with respect to V" (black stems in the main
figure) can be further resolved by taking the overlap with |7 )
as the subplots show, from which one can clearly observe that
some of the eigenstates can be regarded as two GMs with op-
posite chiralities at almost the same energy. Source data are
provided as a Source Data file.

interaction in the SLL.

For the Jain state at v = 2/9, any Vfbdy dominated
interaction (e.g., Virw) will give two GMs, as can be ana-
lytically proven. From numerical studies with eight elec-
trons, the spectral weight of the GM outside H?bdy is
small as compared to other Jain states. It is also another
example where a single GM (here within ’H%bdy) can be
split into two GMSs, this time with the introduction of the
three-body interactions. We can analytically show that

within H?bdy, there is non-zero graviton spectral weight

both within and outside of H3P%

of V;bdy to the microscopic Hamiltonian can lead to the
splitting of the two GMs in total to three GMs, as shown
in Fig. 4. It is worth noting that the GM within g %
dominates, and both the second and the third GM have
spectral weights that are more than one order of mag-
nitude smaller. This could be a finite-size effect since
we can analytically show that the spectral weights of all
three GMs are non-zero for any finite systems. It is still
possible, however, that in the thermodynamic limit, the
weights of the second and even the third GM vanish. We
cannot numerically access system sizes with more than
eight electrons and will leave more detailed discussions
to future works. Moreover, in experiments, there can be
two separated peaks with respect to the Coulomb inter-

action with a properly tuned Vfbdy as shown in Fig. 4c,

. Thus an introduction

where we used Gaussian smoothing to model the signal
broadening due to noises in the experimental measure-
ment.

The non-Abelian Pfaffian state at v = 1/4 is the ex-
act ground state of 1}%3 4, Just like the Pfaffian state at
v = 1/2 (believed to be stabilized by second LL Coulomb
interaction) [34, 61], this state can also be stabilized by a
slightly modified Vi, with an overlap of 0.91 for eight
electrons. While this small perturbation may not be eas-
ily realized in experiments, with this Hamiltonian, we
have the clear understanding that there will be two GMs
(one inside, and the other outside of H3"%). It is inter-
esting to note that we have the hierarchical relationship
that Hg"® c HIY < H3"Y and both GMs are within

HY and at the same time outside of Ha %Y. Thus
with the model Hamiltonian consisting of only three-
body PPs, these two GMs will again merge to become a

single GM, in the absence of Vlzbdy, as reflected in Fig. 6.
As a comparison, the anti-Pfaffian state at v = 1/4

(as the particle-hole conjugate partner of the Pfaffian-
1/4 state within ;) has two peaks with opposite chi-
ralities. With a slightly modified Coulomb interaction
when the energies of the two gravitons merge, we can
see only one resonance peak from the inelastic scattering
of the unpolarised light but one resonant peak each for
the two circularly polarised light with the opposite chi-
rality. Furthermore, properly tuning Vfbdy in realistic
interactions can lead to a better resolution of the peaks,
as shown in Fig. 6¢c. For non-Abelian states, there are
additional neutral modes, e.g., the “gravitino” modes at
spin s = 3/2 for Pfaffian [6, 62], that can be considered
as super-partners of the gravitons. We expect multiple
GMs will also lead to multiple gravitino modes and will
leave detailed discussions elsewhere.

DISCUSSION

The experimental detection of the multiple GMs and
their interactions in FQH systems is particularly interest-
ing because of both the topological and geometric aspects
of such neutral excitations. Inelastic scattering experi-
ments can be carried out in the FQH state with phonons
or photons of proper frequency to check the existence of
the GMs and find their energies. To further detect the
chiralities of GMs, one needs to use circularly polarised
light corresponding to the photons with +2 or —2 spin
angular momenta transferred to the system [14-19, 25].
With realistic interactions, different GMs can interact
and mix strongly if their energies are similar, and for
GMs of the same chirality, multiple GMs can merge into
one. For GMs of opposite chiralities, even if their ener-
gies are close, they may still be resolved with circularly
polarised light, so the resonance peaks could be broad-
ened due to mixing and scattering between the GMs and
the multi-roton continuum. The microscopic picture we
developed points to the crucial role of the hierarchy of
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energy scales associated with different CHSs, which re-
alistic interaction must imitate to resolve multiple GMs.
Thus the realization of a robust Hall plateau may not be
enough to detect GMs. The experimental system may
need to be flexible enough to tune the effective electron-
electron interactions to control the dynamics of low-lying
gapped excitations.

For systems when the LL mixing is negligible (e.g.,
with a strong magnetic field), our calculation shows that
short-range interaction (e.g., the Coulomb interaction in
the LLL) can at most resolve two GMs both for abelian
and non-Abelian FQH phases, and we have not found
any exceptions. The universality of such results is due
to the algebraic structure of the Laughlin CHSs. To re-
solve the two GMs clearly, we prefer to have the effective
interaction be as short-range as possible. Formally if we
expand the realistic two-body interaction in the Haldane
PP basis, we should aim to have the ratio consecutive
PP coefficients (i.e., the ratio of the coefficient of V2bdy

over that of Vzbdy) to be large. This can be achieved by
screening electron electron interaction or by increasing
the sample thickness in experiments. In particular, Jain
states at v = N/(2nN + 1) with N > 1, as well as PH
conjugate states at v = 2(n — k)/(2(n — k)(2k + 1) + 1)
with & > 0, will all have two GMs. Numerical calcu-
lations also show that short-range interactions favor the
incompressibility of these FQH states compared to the
bare Coulomb interaction.

The most easily observed second GM in experiments
would be the one outside of the V; null space (i.e., H1),

which requires a dominant Vi interaction and can be
realized with the Coulomb interaction within the LLL

for FQH states around v = 1/4 as discussed in previous
works [9]. For FQH states in the SLL, however, the GM
outside of H; will mix strongly with the ones inside H;
because of the significantly stronger V3 as compared to
LLL Coulomb interaction. It is also important to note
that while the FQH states around v = 1/6 (e.g., the
v = 2/11 state), in principle, have at least two GMs
(except for the Laughlin state at v = 1/7), these GMs
will be hard to observe even with LLL Coulomb inter-
action. This is because such GMs have to be resolved
by a dominant Vi (as compared to V,f:gy), which is
not the case for LLL Coulomb interaction. Thus, in gen-
eral, observing multiple GMs, even for simple two-body
interactions, will require careful tuning of experimental
parameters with Coulomb-based interaction.

The short-range two-body interactions do not favor
non-Abelian FQH states, as the compressible composite
Fermi liquid (CFL) states are generally more compet-
itive, for example, at v = 1/(2n) [29, 63-68]. For non-
Abelian FQH states, we generally require longer-range in-
teractions (e.g., Coulomb interaction in the second LL) or
few-body interactions from LL mixing [29, 35, 59]. While
it is hard to predict from finite-size numerical calculations
how realistic interactions can stabilize these exotic states,
these additional ingredients are necessary if we want to
observe more than two GMs. A possible candidate for
three GMs seems to be the Jain state at v = 2/9, where
we have shown that the proper introduction of three-
body interactions can lead to three peaks in the spectral
function. However, we expect one of the peaks resolved
by the three-body interaction to be relatively weak, and
the dominant peak resides at low energies. Our numeri-
cal results are inconclusive for this state due to the small
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FIG. 7. Number of Haldane modes for the Jain states
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2/5. The white point denotes the Laughlin states (N = 1,
n = 1) in the corresponding CHS (blue circle). Because dpq =
dpg, where 6pg is the density operator projected to the CHS
denoted by the gray circle, these states will show the same
behavior as the Laughlin state at 1/3, i.e., one peak with
no Haldane mode required. b n > 1. In this case, a single
Haldane mode is needed in the effective field theory despite
two peaks observed in the spectral function, among which,
given n, the states with NV = 2,7 = —1 can be regarded
as the particle-hole conjugate partner of the corresponding
Laughlin state within some specific CHS (gray circle), and the
states with N > 1,7 = 1 are the states in higher CF levels
as shown in Fig. 2(b). ¢, d More possible CHS structures.
Thus the number of Haldane modes added to the effective
theory cannot be easily reckoned from the number of peaks
in the spectral function I(E), which is instead related to the
microscopic Hamiltonian used.

system sizes accessible, and more work is needed to es-
tablish its behavior from finite size scaling.

For the effective field theory construction, the number
of gravitational fields needed (i.e., the Haldane modes)
for a complete description of the response to the met-
ric fluctuation should be determined by the underly-
ing microscopic theory. It is important first to iden-
tify the physical Hilbert space on which the effective
field theory is based. For example, for the Jain states
near v = 1/(2n), the elementary particles are CFs with
each electron bound to 2n magnetic fluxes (and their
PH conjugates, or CF holes). The Hilbert space is thus
spanned by CF levels (the fully filled ones give the Jain
v = N/(2nN +1) states) and their PH conjugates (giving
Jain states with v = N/(2nN —1)). We can denote it as
the base space of the effective field theory. In particular,
it is the full Hilbert space of LLL for n = 1. For n > 1,
the base space is H2"Y.

To determine if and how many Haldane modes need
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to be added to effective field theory, it all depends on
if the long wavelength limit of the GMP mode lives en-
tirely within the base space. For n = 1, this is definitely
the case since the GMP mode lives entirely within the
LLL, as illustrated in Fig.7a. In particular, the regu-
larised density operator dpq is PH symmetric. For n > 1,
the GMP modes for all the Laughlin states live entirely
within the base space, but dpq is no longer PH symmet-
ric within the base space. One can also show rigorously
from the microscopic point of view that all Jain states at
v = N/(2nN+£1) with N > 1 have GMP modes partially
outside of the base space, thus requiring at least one ad-
ditional Haldane mode to be added to the effective field
theory as illustrated in Fig. 7b.

In principle, we can have multiple CHSs containing
the base space with the hierarchical structure Hpase C
Hq--- C Hyp with £ > 1, and the GMP mode resides in
‘Hji having non-zero weights in all Hy/ <x. We have not
found such cases for Jain states with CHSs defined by
two-body and three-body PPs, but it may be possible for
other FQH states or CHSs defined by few-body PPs in-
volving clusters of more than three electrons. These cases
are illustrated by Fig. 7c, where more than one Haldane
mode is needed for the effective field theory to agree with
microscopic Hamiltonians that can resolve those CHSs in
terms of energy.

Numerical calculations are essential in verifying effec-
tive field theory predictions. Still, it is important to note
that the number of Haldane modes needed for the ef-
fective field theory does not necessarily correspond to
the number of peaks in the graviton spectral function
since the latter depends on the microscopic details of the
Hamiltonian. Fig. 7d is another example that even within
the base space, there can be multiple CHSs, which proper
model Hamiltonians can resolve. With such interactions,
the GM within the base space (the conventional gravi-
ton, not the Haldane modes) can lead to multiple spec-
tral weight peaks well separated in energy. However, the
effective theory captures the total weight by coupling the
composite particles with the Hall manifold metric.

In fact, from an effective theory point of view, we can
always use a single Haldane mode to capture all the GM
weights outside of the base space, while the usual com-
posite particle action can capture all the GM weights
within the base space. While the known Dirac CF de-
scription for the Haldane mode strictly speaking only ap-
plies to the FQH states very close to v = 1/(2n) (i.e.,
for Jain states v = N/(2nN %+ 1) with N — oo, and
does not apply for Laughlin states at N = 1), the gen-
eral arguments here with the relationship between the
GMP modes and the base space should apply to all effec-
tive field theory description, with or without particle-hole
symmetry.
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