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Controlling the dynamics of quantum systems is a crucial task in quantum science

and technology. Obtaining the driving field that transforms the quantum systems to

its objective is a typical control task. This task is hard, scaling unfavorably with the

size of Hilbert space. To tackle this issue we employ typicality to assist in finding

the control field for such systems. To demonstrate the method we choose the control

task of cooling the fine structure states of the AlF molecule, from relatively high

temperatures which results in large Hilbert space. Using quantum typicality, we

demonstrate that we can simulate an ensemble of states, enabling a control task

addressing simultaneously many states. We employ this method to find a control

field for cooling molecules with large number of internal sates, corresponding to high

initial temperatures.

I. INTRODUCTION

Controlling quantum phenomena has been a goal in quantum physics and chemistry.

Quantum control theory addresses this topic and has evolved rapidly over the last three

decades [1]. One of the main goals of quantum control theory is to establish a series of

systematic methods to manipulate and control quantum systems. Quantum control theory

has been implemented in physical chemistry, atomic and molecular physics, and quantum

optics. In much of quantum control theory, the controllability of quantum systems is a

fundamental issue [2]. Controllability concerns the existence of a control solution for a

specific task. This problem has practical importance since it closely connects with the

universality of quantum computation and the possibility of achieving atomic or molecular

scale transformations. For finite-dimensional quantum systems, the controllability criteria

may be expressed in terms of the structure and rank of corresponding Lie groups and Lie

algebras [3, 4]. This method allows for a mathematical treatment of the problem in the case

of closed quantum systems.

The existence of a controllable task does not hint at how to obtain the control field.

http://arxiv.org/abs/2201.00160v1
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Iterative schemes have been developed based on constrained optimization has been developed

[5–11]. Controlling systems with Large Hilbert space is a challenging problem mainly due

to its computational complexity.

The computational effort measures the complexity of the problem we are trying to solve.

In our case, the problem is twofold; our primary step requires solving the time-dependent

Schrödinger equation for each state. The complexity scales betweenM×N logN andM×N2

where N is the size of Hilbert space of our system and M the number of time-steps which

in turn scale as M ∝ O(∆E × t) where t is the time interval and ∆E the energy range [12].

The number of iterations for solving a unitary control problem scales like K! where K is the

size of the transformation [7]. The complexity class of the cooling transformation, which

addresses K states simultaneously, is not known and could be between polynomial in K and

factorial K!. Altogether the control problem is computationally highly complex [13].

This issue requires establishing methods that reduce the number of states K needed for

optimization and the complexity. To achieve this task, we will employ the properties of

quantum typicality.

Quantum typicality states that a single quantum state can typically well describe local ex-

pectation values of a quantum system. This statement applies to Schrödinger type dynamics

in high dimensional Hilbert spaces. As a consequence, individual dynamics of expectation

values converge to the ensemble’s average [14]. We will employ quantum typicality by using

random phase wavefunctions for control problems.

The random phase wave function method uses an ensemble of pure states, which creates

an efficient representation of the mixed state of the entire system. The convergence of the

RPWF method becomes faster as the size of the Hilbert space (and the number of random

phases) increases, namely with the rise of initial temperature.

The present study aims to develop an optimal control algorithm to cool the molecular

internal degrees of freedom, a multi-state control task. The control objective is to increase

the system’s purity P = Tr{ρ̂2}. Alternatively, cooling can be defined as lowering the

effective temperature Teff defined by the von Neumann entropy of the ensemble [15]. Teff

is the temperature of a passive Gibbs state with the same von Neumann entropy [16].

The field of cold and ultra-cold molecules has rapidly grown in the last decade. Cold

molecules have an essential role in many active areas in science amongst tests of fundamental

physics, cold chemistry, quantum technologies (QT), and quantum information (QI)[17–21].
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There are many ways of cooling particles; one of the most effective is radiative cooling.

The basic technique is to locate a closed loop of stimulated excitation and spontaneous emis-

sion. The cooling is achieved by entropy removal by spontaneous emission. This technique

has been employed to reduce the temperature of translational as well as internal degrees of

freedom of atomic and molecular species [22–24].

A crucial consideration in cooling internal degrees of freedom in molecules is enforcing

a close transition cycle. Excitation may result in the molecule ending in a different state

outside the closed-loop after decay; thus, cooling molecules by laser excitation is complicated,

and only a few examples exist. However, the molecular complexity makes cold molecules

applicable for a broader range than atoms.

We choose optimal control theory to overcome the molecular complexity and enforce

closed-loop solutions. Controlled laser fields are employed to remove frequencies that damage

the required transition. Control can steer a quantum system from its initial state to its

final one (target state). Optimal Control Theory (OCT) was created to do this task with

maximum fidelity (defined by the user).

To control a specific system, we first need to describe the state and its evolution in time.

In our system, we can define the rotational state employing the eigenstates of a rigid rotor

as a complete basis. The state is propagated as an isolated quantum system evolving by a

unitary transformation.

Optimal Control Theory (OCT) is employed for an isolated system to obtain the field

leading to the target state. However, this alone will not lead us into a colder state (pure

state); entropy is invariant under unitary transformation. Therefore cooling requires dissi-

pation that can change the entropy of our quantum system.

Assuming that the target of the process is to reach a pure, single state, any proposed

mechanism for the process has to maintain the population of the single-target state while

allowing the population of all other states to repopulate selectively. However, as was shown

by [25, 26], the specific choice of the precooling transformation is a subtle issue. As implied

by the ergodic theorem [27], for any initial state under multiple cycles of a given field-driven

unitary transformation and subsequent decay, the final state will be the invariant under the

whole transformation. After many excitation-relaxation cycles, the memory of the initial

state will be erased. The entire transformation can be described by the following, let U be

the unitary super operator and D be dissipative super operator; then there is a stationary
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state ρ̂SS that will obey

lim
n→∞

(UD)n ρ̂ = ρ̂ss (1)

where ρ̂ can be any initial state, and U• = Û • Û †. That is, under a given U and D, the

system will finally evolve from any state into the single stationary ρ̂ss. In this way, we look

for a unitary control transformation that under a known dissipator will lead into a purer

state [22].

The ultimate goal of molecular cooling is to reach a large sample of pure state molecules

that can be transformed to a BEC. This task can only be achieved in stages. The initial

sample should be as pure as possible, pure from other isotopes, other quantum states (hotter

ones in our case), etc., is crucial. A crucial intermediate step is to obtain a molecular

Magnetic Optical Trap (MOT). For achieving this step, an ensemble of a single rovibrational

state should be created.

Our control objective is designed to enhance the initial preparation; it can be used as

a purification method to add molecules that are not resonant with MOT transition to be

added and thus increase the number density of the initial ensemble.

Specifically, we choose to cool the AlF molecule rotationally. Spectroscopic measurements

and detailed analysis [28], have shown that such a task is feasible using optimal control

theory. This molecule belongs to a family of which the vibrational manifolds are closed

due to a Frank-Condon coefficient close to one. Our obstacle is the large initial number of

rotational states.

The present theoretical study aims to obtain a high fidelity control task with low com-

putational effort. We have implemented this method on the fine-structure levels of the AlF

molecule with a large total orbital angular momentum at 30K. We will employ optimal

control theory to find broadband-shaped pulses, steering the system into a colder state.

The paper is arranged as follows: Section II describes the model in which we implemented

our tools, in section III describes the theoretical tools used for achieving control. Section IV

presents the results, which are discussed and summarized in the concluding Sec. V.

II. THE MODEL

The model we employ is the rovibrational structure of the AlF molecule. The state of

the systems is defined by the combined density operator of two electronic surfaces:
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ρ̂ = ρ̂g ⊗ P̂g + ρ̂e ⊗ P̂e + ρ̂c ⊗ Ŝ+ + ρ̂∗c ⊗ Ŝ− (2)

Where P̂g/e are the projection operators of the ground and excited electronic state, Ŝ+/−

are the electronic raising and lowering operators, ρg/e are the density operator for the rovi-

brational ensemble within the ground and excited electronic states, and ρ̂c is the density

operator of the nuclear coherence between the surfaces.

For AlF, we assume an initial temperature of ∼ 300K, for which the the population of

the states occupies up to J = 11 (144 sub-levels).

The Liouville von Neumann equation governs the evolution of the system:

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + LD(ρ̂) (3)

The first term is the coherent dynamical part governed by the Hamiltonian and the second

is the dissipative part of the dynamics describing spontaneous emission. This equation

represents the dynamics of an open quantum system.

For optical transitions with multiple pulses, there is a distinct timescale separation be-

tween the light-induced step, which occurs in less than a picosecond and is unitary, the

incoherent decay which occurs in tens of nanoseconds, and the pulse repetition rate, which

is in the MHz to KHz. Each cooling cycle could be separated within this picture into

two parts: (1) The short-time interaction of the external field and the molecular system.

Since this step is unitary, the density operator can be decomposed to energy eigenstates,

and each component can be computed in a wave function framework. Then (2) a slow and

field-free, spontaneous decay takes place. In this step, the coherences developed between

energy eigenstates during the laser-controlled stage are erased.

The Hamiltonian, which governs the unitary part of the dynamics, can be written as :

Ĥt = Ĥ0 + V̂t

Ĥ0 = Ĥg ⊗ P̂g + Ĥe ⊗ P̂e.
(4)

Where Ĥg/e is the ground and excited rotatioanl Hamiltonian. The interaction of the system

with light, assumed to be linearly polarized to the lab z axis is described by V̂t:

V̂t = −µ̂z ⊗ (Ŝ+εz(t) + Ŝ−εz(t)
∗) (5)

Where µ̂z is the transition dipole moment along the z spatial direction and εz(t) represents

the time-dependent field along the same direction.
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For mildly cold temperatures (Tinitial ≤ 30K) and high vibrational frequency, we can

assume that the molecules are initially in their ground v = 0 state. Ĥg/e are the field-

free rotational Hamiltonians for the ground vibrational state. Moreover, for the AlF and

chemically similar molecules, vibrational excitations in the electronic transition are negligible

due to the highly restricting FC factors [29]. As a result the modeling is thus restricted to

v = 0.

Under the Hund’s case a, applicable to our case, the rotational states of the model are

expanded by the symmetric top basis [30]

|J,ΩM〉 =
[

2J + 1

4π

] 1

2

DJ
M,Ω(φ, θ, 0) (6)

Where J is the total molecular angular momentum, M and Ω are projections on the spatial

(Z) and molecular (z) axes, respectively. Here, DJ
MΩ is the rotational tensor. For the

ground electronic 1Σ state, the projection of the spatial electronic angular momentum on

the molecular axis is 0 (L=S=0), therefor Λ = 0, and J=N=R. The rotational Hamiltonian

becomes

Ĥrot(r) = BR̂
2 = BĴ

2 (7)

where B is a rotational constant, and R̂ is the nuclear rotational angular momentum oper-

ator, which is equal to R = J − L− S , L is the electronic orbital angular momentum and

S is the electronic spin angular momentum.

1Σ energies are then

E(1Σ; J) = BJ(J + 1) (8)

and its corresponding eigenstates can be defined by |JΩM〉 when Ω = 0.

In the excited 1Π state Λ = ±1 S=0, and thus Ω = ±1.

The rotational Hamiltonian for the excited state, 1Π, is

Ĥrot(r) = BR̂
2 = B(Ĵ − L̂)2 (9)

its energies are

E(1Σ; J) = B[J(J + 1)− 1] (10)

the corresponding eigenstates are |J,ΩM〉 where Ω = ±1.

The transitions between the two electronic states 1Σ → 1Π are dictated by dipole selection

rules (∆J = 0,±1), denoted as R,Q,and P branches,respectively.The coupling elements can
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be found by calculating the overlap of any two eigenvectors with the dipole operator,

∫

Dj′

m′Ω′(θ, φ, 0)D
1
0q(θ, φ, 0)D

j
mΩ(θ, φ, 0)dΩ

= 8π





j 1 j′

−m 0 m′









j 1 j′

−Ω q Ω′





(11)

where µ0q is the transition dipole moment proportional to D1
0q(θ, φ, 0). The value of q is

determined for a given transition case and is equal to q = Ω− Ω′.

At thermal equilibrium, the initial state ρeq is characterized by thermally distributed in

the quantum rotational states

ρ̂eq =
1

Z

∑

j

e−βEj
g |J0M〉〈J0M | (12)

where β = 1/kbT and the sets |JΩM〉 and {Ej} are the eigenstates and eigenenergies of the

system, and Z is the partition function.

The dissipating part of the dynamics is generated by the Liovillian super operator LD,

Eq. (3). Integrating in time leads to the transition map Λt = eLDt. Assuming that the

timescale between pulses is longer than the spontaneous emission, the transition map D of

the spontaneous emission can be defined. The matrix elements of D are from a given excited

state energy eigenstate to the ground state manifold of states. They can be calculated

employing Fermi’s golden rule:

Γi→f =
2π

~
|〈f |µ| i〉|2 ρ (Ef) (13)

where 〈f |H ′| i〉 is the matrix element of the electronic transition dipole between the final

and initial states, ρ (Ef ) is the density of states in vacuum (number of continuum states

divided by dE in the infinitesimally small energy interval E to E + dE ) at the energy Ef

of the final states. With Eq. (13) we have defined the decay rate (∼ 10−6 second), it is

important to note that because the rotattional selection rules ,in our system, dictates narrow

band transitions (all transitions are almost equal), ω3 can be neglected. Assuming that we

wait sufficient time and normalize it; we get the decay probability of our system.

It is important to note that the coherent step yields only unitary transformations and

therefore does not change the purity when the latter decay step is known for the loss of

purity and thus changes the system’s temperature.
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We can use the defined Full map transformation Eq. (1) and get a final state that

is invariant under the whole transformation. After many excitation-relaxation cycles, the

memory of the initial state will be erased and the system will finally evolve into the single

stationary ρss.

One can obtain the state ρss by diagonalization of Eq. (1). The eigenstate then gives

the stationary state with a unit eigenvalue, while the next eigenvalue indicates the system’s

convergence rate to the steady-state.

Using the ergodic theory compels the system to be closed. Since D is fixed, the task is

to find the unitary transformation U that is will lead to the designed stationary state.

To associate an effective temperature to the state, we employ the von-Neuman entropy

to scale the purity and define the effective temperature. The idea comes from information

theory, where the entropy is related to the probability distribution of an ensemble [15]. The

entropy is defined as:

SV N = −tr{ρ̂ ln ρ̂} ≤ −
∑

j

PjlnPj (14)

where ρ̂ is the system’s density matrix, and Pj is the probability to be in the energy eigenstate

j. This is the only contribution to the entropy, assuming that quantum coherences do not

survive the spontaneous emission incoherent step. Equality will be obtained when the system

is diagonalized in the energy domain. It is important to note that entropy is invariant

under unitary transformation. Therefore any steady-state reached after cooling can be

transformed by unitary transformation to a passive state with the same entropy [31]. To

define a temperature of any non-thermal state, we associate it with the temperature of a

thermal state with the same vN entropy [16].

III. METHODS

A. Optimal Control Theory (OCT)

Quantum Optimal Control Theory (OCT) is a branch of coherent control, a quantum

mechanical based method for controlling dynamical processes. The basic principle is to

control quantum interference phenomena typically by shaping the phase of laser pulses

[5, 6, 32, 33]. OCT is formulated as a maximization problem, and seeks a time dependent
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field that maximizes the expectation value of an operator in final time.

Consider a quantum system in an initial state: ρ̂0 =
N
∑

k=1

pk|ψ0
k〉〈ψ0

k|, where the set {ψ0
k}

is energy eigenstates of the system, and N the size of Hilbert space. The control will seek a

field that maximizes the expectation value of the operator Ô at final time T:

Jmax(ε) ≡
N
∑

k=1

pk〈ψk(T )|Ô |ψk(T )〉 (15)

where Ψi(T ) describes the state that results from the interaction of the system with the

field εat the final time T . The governing of the dynamics of the system by the Schrödinger

equation i ∂
∂t
|ψ〉 = Ĥ|ψ〉. The quantum dynamics is enforced by adding an additional cost

term to the functional, according to the Lagrange-multiplier method:

Jcon =
N
∑

k=1

−2Re

T
∫

0

〈χk(t)|
d

dt
+ iĤ(t) |ψk(t)〉 dt (16)

where {〈χk(t)|} are the set of time dependent Lagrange function multipliers. To regularize

the solution with a limitation over the intensity another penalty term to the functional is

added [34]:

Jpenal(ε) = −α
∫ T

0

ε2(t)dt (17)

where α is a scalar Lagrange multiplier.

The overall object of maximization is the following functional:

J = Jmax + Jpenal + Jcon (18)

The maximization of the fitness J is the control task. Functional derivatives with respect

to the various field are then taken resulting in the following system of equations:

Each of the set of the |χk(t)〉 Lagrange multipliers will obey a time reversed Schrödinger

equation:
d〈χk(t)|
dt

= i 〈χk(t)| Ĥ(t) (19)

with the boundary conditions: |χk(T )〉 = Ô|Ψk(T )〉 [35].
The Krotov iterative method is applied to obtain a monotonic growth of of the fitness J

at each iteration with the updated field so that:

εl+1(t) = εl(t) − 1

α

N
∑

k=1

Im
〈

χl
k(t)

∣

∣ µ̂
∣

∣ψl+1
k (t)

〉

(20)
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where •l

(t) denote the quantity after the the field after the l − th iteration.

Note that the scheme of Eqs. (19) (20) is somewhat similar to the simultaneous opti-

mization scheme that is required for unitary transformations and quantum gates. However,

for cooling each cycle at the final transformation erases the relative quantum phase between

the various optimized set initial states. This leaves the resulting fitness measurement at the

level of classical transition probability between the initial and final state and removes the

need to evaluate quantum phases.

For large systems, the convergence of OCT is fast in the first iterations but later saturates

or becomes stagnant. Therefore, accurate solutions for large systems of the control problem

are difficult to reach. A good initial guess for the control field can speed convergence

considerably. Ideally, a control field of an easy-to-solve small quantum system could serve

as an initial pilot guess for large quantum systems [19].

The first step is to find the pilot field for which we seek a solution to the control problem

of dimention K for a small number of random phase states L. We will then explore the

universality of the control field for the increasing number of states. We will use optimal

control theory, based on Krotov’s algorithm, which guarantees monotonic convergence [36],

to do so.

The difficulty in converging a control field to generate state-to-state transitions can be

related to the algebraic structure of the control Hamiltonian. We have seen that when the

initial or target states are superpositions of generalized coherent state, no relation exists

between the control fields of such targets for different Hilbert space sizes.

B. Quantum Typicality

Typicality describes a property of a system where a typical state can present an assembly

of similar states. This set of states should have a narrow distribution of some feature (e.g.,

drawn according to the same distribution, sharing the same energy, etc.) and therefore yield

a very limited distribution of expectation values. The typical state will fit the expectation

value of the complete set of states.

Quantum typicality was first noted by Schrödinger and von Neumann when they were

trying to incorporate statistical mechanics with quantum mechanics. They inferred that the

wavefunction of a complex system can have statistical properties.
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In their approach, when discussing thermalization in isolated quantum systems, one

should focus on physical observables instead of wave functions or density matrices describ-

ing the entire system. This approach is similar to Eigenvalue Thermaliziation Hypothesis

(ETH), in which the focus is put on macroscopic observables and “typical” configuration.

Eigenvalue Thermaliziation Hypothesis (ETH) implies that the expectation values of

local observables and their fluctuations in isolated quantum systems relax to (nearly) time-

independent values that can be described using traditional statistical mechanics ensembles.

This has been verified in several quantum lattice systems and, according to ETH, should

occur in generic many-body quantum systems. ETH states that the eigenstates of generic

quantum Hamiltonians are “typical” in the sense that the statistical properties of physical

observables are the same as those predicted by the microcanonical ensemble. [37–39]

Our quantum typicality refers to an idea that anticipates that almost all quantum systems

will have similar dynamical properties [40].

C. Random states

Controlling the dynamics of an extensive system is practically impossible when the system

becomes large and complex. Formally our control strategy requires N states Eq. (15) and

(16). Can we reduce the number of states to L < K < N ? We know from Ref. [41] that

sampling quantum states at random can be seen to be induced by the sampling of unitaries

at random. Sampling a set of unitaries, which are bounded, means we sample a set of actions

we can apply to our state, which is global.

We will now sample using a random state, as follows:

|Ψ(~θ)〉 = 1√
N

N
∑

j

eiθj |φj〉 (21)

where ~θ = (θ1, θ2...θN ) is a vector of random phases and N is the size of the Hilbert space

[42, 43]. Employing a random set defined by different ~θ we can resolve the identity:

Î = lim
M→∞

1

M

∑

l

|ψ(~θl)〉〈ψ(~θl)| (22)

Employing now K random states to sample the control and relying on quantum typicality

we expect K < N .
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IV. RESULTS

Our primary goal in this study is to develop a method to control systems with large Hilbert

space while minimizing the computational effort. The objective of the present model was

to cool by increasing the system’s purity at the final steady-state after multiple cycles using

the OCT algorithm. It is important to note that this objective is a multi-state problem.

We have shown that such a task is possible [22], but the main drawback is the computation

scaling of the problem with the system’s size.

Assuming that the target of the process is to reach a colder state, any proposed mecha-

nism for the process has to maintain the population of the target state while allowing the

population of all other states to repopulate selectively. After many excitation-relaxation

cycles, the memory of the initial state will be erased, and the obtained transformation will

be of which mentioned in Eq. (1). In this model, rotational cooling of AlF Sec. II we

define the cost function J to populate states which will through spontaneous emission will

populate lower j values and penalize increase in j values. To control this type of system we

have created several realizations for an increasing number of random states L to control the

transformation. We wanted to check:

1. Does the total transformation can be represented.

2. If it does, how many states L are required to converge the entire system and the cooling

transformation sufficiently? (where K is the size of the cooling transformation).

The solution we obtained from the OC algorithm (the control field) was employed as

a pilot field for the following realization. We hoped to decrease the complexity of the

problem by reducing the amount of iteration needed to solve the control problem for the

next realization.

Employing the control field from a small L, as a pilot field, to a larger one did not sig-

nificantly improve the convergence. Such a behavior has been observed for generic quantum

objectives [44].

Figure 1 displays the control fidelity of systems with a different number of random states

L as a function to the number of iterations. To estimate the number of states needed to

converge the control, we have sampled a small set and checked the obtained control field on

the full-sized (Hilbert space) dynamics.
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We have a controlled scheme of a single field polarized to the Z spatial axis. The initial

population distributed among different random states corresponds to a system with J =

11 → N = 430. The target was to move the population to all states in Hilbert space, up

to excited state at J 6 10 and eliminate any transitions to higher J states that open decay

channels to even higher states. The control field can manipulate the system towards the

target state with a fitness of 99%. However, this fidelity fits only the contracted space; later

on, we will show that the same field acting on the full space system results in lower fidelity.

Thus, some impurities are leaking in.
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FIG. 1. (main) The controlled Infidelity (log scale), of different number random phase sampling, as

a function of the number of iterations required to converge the control(≈ 99% at the target state).

The number of RP wavefunctions is assigned by different colors in the legend. The number of states

of each model influences the number of iteration, increase monotonically. Inset The numerical effort

(log scale) as a function of the number of RP states. The numerical effort is a function of Hilbert

space times the number of iterations, showing a polynomial scaling.

In the inset 1 we show how the Numerical effort increases polynomially. The effort is

defined by the following: NEffort = ln(NI ×MRP ) where MRP is the number of random

phase states used in this model and NI states the number of iterations needed for the OC

algorithm to converge to the predetermined thresh hold.

As mentioned, we have used the controlled field on the full system; figure 2 shows the

infidelity of the entire system as a function of the number of random phase states L. To check
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the quality of the transition we used the field from the controlled scheme on the dynamics

of the entire system. We find a monotonic growth of fidelity corresponding to the number

L of random states.
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FIG. 2. The infidelity as a function of the number of random phase base functions L. The infidelity

is calculated for the full transformation.

The fidelity of the full transformation as expected is smaller than the one obtained from

the control calculated from a finite set of random phase states. To find the number of

random states which lead to convergence, we extrapolate our results, taking its infidelity as

a measure.
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FIG. 3. Fitting the infidelity of the full transformation (red dots) as a function of the number of

RP states (blck curve). Extrapolating to high fidelity allows to estimate the effective size of the

cooling transformation (44,0.01).

In figure 3 we have fitted our calculated points to an exponential curve. Defining an

acceptable threshold we get the number of sampling states K required to converge the full

system of dimension N .

The marked point is a good guess to the complexity of the transformation corresponding

to an effective transformation size of K = 44. Nevertheless, the computation effort for this

sampling space is vary high. The effective transformation size is still much smaller than the

dimension of the full transformation.

A concrete measure for cooling in our context, is the change in normalized entropy.

Employing Eq. (14) we define the normalized entropy decrease:

∆Seff =
SRP
FS − SJ=11

initial

SJ=10
Th − SJ=11

initial

(23)

where SRP
FS is the entropy of the full system obtained from the control sequence, SJ=11

initial is

the thermal entropy of the initial state (J=11), and SJ=10
Th is the thermal entropy of target

for our transformation. The normalization is with respect to the thermal entropy difference

between J = 11 to J = 10 (at T= ∼ 300K).
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FIG. 4. The monotonic decrease of normalized entropy, Eq. (23) with L, for the complete transfor-

mation obtained by each RP model (blue stars). The entropy value of the thermal state at J=10

is marked by a red line and for J=9 by a blue line. The objective of full transformation was to

cool from J = 11 to J=10, but it is clear that for the 19-RP model we accomplished an even colder

state.

Figure 4 shows the effective change in entropy for each model (RP). A monotonic decrease

of the effective entropy is a clear indication for cooling.

The samples describe different realisation, where the initial state were created randomly.

We have used these realisations for the same transformation and used it on the full spaced

system. The fidelity we have got on the full system with respect to the desired transformation

as calculated, and built for the calculation of the standard deviation, which is defined by

STD =
√
<J2>−<J>2

|<J>| . In the next figure we show how the STD behaves in different models.
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FIG. 5. The Standard Deviation (STD) of the infidelity of the total transformation as a function

of the number of samples (n). The blue curve is data obtained by optimizing a single RP model.

The orange curve was obtained for simultaneous transformation for 3-RP sampling. The red curve

was obtained for simultaneous transformation for 6-RP sampling.

An ensemble of typical states should have a small standard deviation with respect to

a local observable. This is confirmed by Figure 5 displaying the standard deviation of

the target infidelity when the size of the sample increases. Each sample is composed of

independent random realizations with different L. We expect convergence as 1√
n
, where n is

the sample size. The standard deviation is quite small for the random phase wavefunction

sampling. As expected when random transformation L is larger (3 − RP and 6 − RP ) the

STD decreases.

V. CONCLUSIONS

Laser cooling of the internal degrees of freedom of a molecule is a difficult task due to

the large occupied Hilbert space. A shaped pulse generates a unitary transformation accom-

panied by spontaneous emission. We optimize the unitary transition U such as after many

cooling cycles the target state is colder than the initial one. We have utilized quantum typ-

icality for computing the cooling map. The transformation is calculated with an increasing

number of random phase wavefunctions. We show convergence (of infidelity) to the target
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state. Doing so while reducing the computational effort.

We have shown that this method can be utilized to model cooling of internal degrees of

freedom of molecules. It is anticipated that a series of such transformation can cool the

rotation to its ground state.
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