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Abstract

In 2001, Davies, Gladwell, Leydold, and Stadler proved discrete nodal domain

theorems for eigenfunctions of generalized Laplacians, i.e., symmetric matrices with

non-positive off-diagonal entries. In this paper, we establish nodal domain theorems

for arbitrary symmetric matrices by exploring the induced signed graph structure. Our

concepts of nodal domains for any function on a signed graph are switching invariant.

When the induced signed graph is balanced, our definitions and upper bound estimates

reduce to existing results for generalized Laplacians. Our approach provides a more

conceptual understanding of Fiedler’s results on eigenfunctions of acyclic matrices.

This new viewpoint leads to lower bound estimates for the number of strong nodal

domains which improves previous results of Berkolaiko and Xu-Yau. We also prove a

new type of lower bound estimates by a duality argument.

1 Introduction

Courant’s nodal domain theorem is a basic result in spectral theory with wide applications.
The theorem, proved in 1920s [12, 13], states that the nodal lines of the k-th eigenfunction
fk of a self-adjoint second order elliptic differential operator can not divide the domain
D into more than k different subdomains. Here the nodal lines are refered to the set of
zeros (nodes) of eigenfunctions and the subdomains are now known as the nodal domains.
Courant’s theorem can be considered as a natural generalization of Sturm’s oscillation
theorem for second order ODEs that the zeros of the k-th eigenfunction of a vibrating
string divide the string into exactly k subintervals. There are abundant extensions of
Courant’s theorem to non-linear operators like p-Laplacians, and to Riemannian manifolds
and more general settings with less regularity, including discrete settings, see, e.g., [9, 14,
10, 26, 27, 28, 35].

The study of discrete nodal domain theorems on graphs dates back to the work of Gant-
macher and Krein [21], which contains a discrete analogue of Sturm’s theorem for strings.
Many of Fiedler’s results in 1970s [17, 18, 19] can be interpreted as discrete nodal domain
estimates. Important progresses in this aspect can be found in the works of Powers [33],
Roth [34], Friedman [20], Colin de Verdière [11], van der Holst [36, 37], Duval and Reiner
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[16], etc. The discrete nodal domain theorems for generalized Laplacians, i.e., symmet-
ric matrices with non-positive off-diagonal entries, were eventually established by Davies,
Gladwell, Leydold, and Stadler [15] in 2001. We refer to [15, Section 2] for a detailed his-
torical review. There are many further advances in this topic, see, e.g., [3, 5, 6, 22, 29, 31]
and the book [4].

Nodal domain theorems for graphs have striking difference from their Rd analogue. One
of the key steps in establishing the discrete nodal domain theorems is to come up with the
correct concept of nodal domains on graphs: We need distinguish strong and weak nodal
domains [15, Definitions 1 and 2] (see also Definition 3.8 below) since the zeros are discrete.
The nodal domain theorems in [15] states that the number of strong nodal domains of the
k-th eigenfunction of a generalized Laplacian is no greater than k + r − 1, where r is the
multiplicity of the corresponding eigenvalue; When the corresponding graph is connected,
the number of weak nodal domains of the k-th eigenfunction is no greater than k. The
strong nodal domain estimates can not be improved due to the example of star graphs
given in Friedman [20]. The weak nodal domain estimates has been correctly stated in the
work of Colin de Verdière [11] and Friedman [20] and a complete proof was given in [15].
While there are no nontrivial lower bound for the number of nodal domains of D ⊂ Rd,
d ≥ 2, Berkolaiko [2] established a non-trivial lower bound estimate for the number of
strong nodal domains on graphs, which were strengthened later by Xu and Yau [38]. This
can be considered as strong extensions of the result of Sturm and its discrete counterparts:
When the graph is not far from being a tree and the eigenfunction has only few zeros, the
number of corresponding strong nodal domains is very close to the upper bound k+ r− 1.

It is natural to ask for discrete nodal domain theorems of general symmetric matrices. This
includes important cases of signed graph Laplacian [1] and related Schrödinger operators [7]
on finite grpahs or on subgraphs with Dirichlet boundary condition. One motivation comes
from the finite element method (FEM) approximation of differential equations. Gladwell
and Zhu [22] studied the nodal domain theorem for an approximate FEM solution to the
Helmholtz equation corresponding to some refined or crude mesh. Recall that the FEM
reduces the Helmholtz equation to a form Mf = 0, where M is a symmetric matrix.
The signs of the off-diagonal entries of M depend on the characteristic of the mesh: For
the case of a triangular mesh in R2, M is a generalized Laplacian if all the triangles are
acute-angled; Some off-diagonal entries of M might be positive if some triangles are obtuse-
angled. Gladwell and Zhu [22] mentioned that it is easy to construct counterexamples of
meshes with some obtuse-angled triangles for which the discrete nodal domain theorems
in [15] fails. Mohammadian [32] has proved the strong nodal domain theorem for any
symmetric matrices. However, his definition of "weak" nodal domains is different from [15,
Definition 2]: For a star graph on n ≥ 3 vertices, any eigenfunction to the second Laplacian
eigenvalue has two weak nodal domains while it only has one "weak" nodal domain in the
sense of Mohammadian (see Remark 3.12). For the case of signless graph Laplacians, i.e.,
symmetric matrices with all off-diagonal entries non-negative, the so-called nonzero nodal
domains of a function (maximal connected induced subgraphs on non-zeros of the function)
have been studied in [26, 27]. The signs of the function values do not play a role in this
approach.

In this paper, we introduce proper concepts of nodal domains for arbitrary symmetric
matrices and establish various upper and lower bound estimates which unifies the approach
of Davies et al. [15] for generalized Laplacians and that of Fiedler [18] for acyclic matrices.
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We do this via the induced signed graph of a symmetric matrix. A signed graph Γ = (G,σ)
is a graph G = (V,E) whose edges are labelled by a signature σ : E → {+1,−1}. By an
induced signed graph Γ of an n×n symmetric matrix M = (Mij), we mean a graph G with
vertices {x1, . . . , xn}, where {xi, xj} is an edge if and only if i 6= j and Mij 6= 0, and the
sign of each edge is σxixj

= −Mij/|Mij |. In the definitions [15, Definitions 1 and 2] (see
Definition 3.8), the strong and weak nodal domains of a function f are decided by the sign
of f at each vertex. In our concepts (Definition 3.4), the signature of edges also plays an
important role. We introduce strong and weak nodal domain walks (see Definitions 3.1 and
3.2 below) which further induce two kinds of equivalent relations on the set of non-zeros
of a function f . Building upon the corresponding equivalent classes, we define strong and
weak nodal domains of a function f (Definition 3.4). When the symmetric matrix is a
generalized Laplacian, that is, when the induced signed graph has all-positive signature,
our definition coincides with that of [15, Definitions 1 and 2].

Signed graphs and the fundamental ideas of balance and switching has led to systematic
and deep understandings for various parts of graph theory, e.g., for matroid theory [39]
and for Cheeger constants and related eigenvalue estimates [1, 30]. The sign of a cycle is
defined to be the product of the signs of all its edges. A signed graph is called balanced
if the sign of every cycle is positive. If the induced signed graph Γ of a symmetric matrix
M is balanced, then there exists a diagonal matrix D(τ) of a function τ : V → {+1,−1},
i.e., Dii = τ(xi) for any i, such that

M τ := D(τ)−1MD(τ) = D(τ)MD(τ)

is a generalized Laplacian. Notice that the symmetric matrix M and the generalized
Laplacian matrix M τ share the same set of eigenvalues and

Mfk = λkfk if and only if M τ τfk = λkτfk.

It turns out that the strong and weak nodal domains in our sense (Definition 3.4) of fk as
an eigenfunction of M coincide with the strong and weak nodal domains in the sense of
[15, Definitions 1 and 2] (see Definition 3.8) of τfk as an eigenfunction of the generalized
Laplacian M τ . In general, our definition of strong and weak nodal domains are switching
invariant (Theorem 3.10).

With the new definition of nodal domains on signed graphs, we extend the theorems
of Davies et al. [15] to arbitrary symmetric matrices (Theorems 4.1). Particularly, a
discrete unique continuation theorem using our concept of weak nodal domains holds for
eigenfunctions of any symmetric matrix (Lemma 4.6). Building upon this fact, we prove
the number of weak nodal domains of the k-th eigenfunction of any symmetric matrix with
a connected induced signed graph is no greater than k. We also show the number of strong
nodal domains of the k-th eigenfunction of any symmetric matrix with minimal support
(Definition 2.3) is no greater than k.

Our approach using signed graphs leads to more conceptual understanding of existing re-
sults. For example, Roth [34] proved that for the generalized Laplacian on a connected
bipartite graph, the largest eigenvalue λn is simple and the numbers of strong and weak
nodal domains of the corresponding eigenfunction fn are both equal to n. Since any bi-
partite graph with an all-positive signature is antibalacned, Roth’s result becomes a direct
consequence of the Perron-Frobenius theorem (see Theorem 3.13). Fiedler [18] studied
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eigenfunctions of acyclic matrices and found close relations between the signs of eigenfunc-
tion values and the positions of the corresponding eigenvalues. We reformulate Fiedler’s
results as discrete nodal domain estimates for symmetric matrices whose induced signed
graphs have no cycle. Notice that any signed graph with no cycle is balanced.

Inspired by this reformulation of Fiedler’s work, we obtain an interesting multiplicity for-
mula (Corollary 5.4), and lower bound estimates for the number of strong nodal domains,
which improves the results of Berkolaiko [2] and Xu and Yau [38] even in the balanced
case. A particular subset of zeros, which we call Fiedler zero set (see Definition 6.5), plays
an important role in those results.

In our approach, a duality argument via considering the quantity

S(f) +S(f)

is quite useful, where S(f) is the number of strong nodal domains of the function f on a
signed graph Γ = (G,σ) and S(f) is that of f on its negation −Γ = (G,−σ). Using this
argument, we prove a new type of lower bound estimates for the number of strong nodal
domains involving properties of leaves, i.e., vertices with degree 1 (Theorem 6.19).

The paper is structured as follows. In Section 2, we collect preliminaries on symmetric
matrices and signed graphs, particularly on the concepts of balance, antibalance, and
switching of signed graphs. In Section 3, we present the concepts of strong and weak
nodal domains on singed graphs, and discuss their basic properties. In Section 4, we
prove discrete nodal domain theorems for arbitrary symmetric matrices. In Section 5, we
reformulate the main theorem of Fiedler [18] on the eigenfunctions of acyclic matrices as
discrete nodal domain estimates on signed graphs with no cycle, and derive an interesting
multiplicity formula. Finally, we show two lower bound estimates for the number of strong
nodal domains of any symmetric matrix in Section 6.

2 Preliminaries

We first give the following definition which we will used often in this paper.

Definition 2.1 (walk and path). A walk in a graph G = (V,E) is a sequence of vertices
{vi}

k
i=1 for k ≥ 2, such that {vj , vj+1} ∈ E for 1 ≤ j ≤ k − 1. A path is a walk such that

all vertices vi are distinct.

Let M be an n× n symmetric matrix. We list its eigenvalues with multiplicity as follows:

λ1 ≤ λ2 ≤ · · ·· ≤ λn.

Recall the following mini-max principle.

Lemma 2.2. Let Pk and P⊥
k be the sets of subspaces of Rn with dimension at least k and

with codimension at most k, respectively. Then

λk = min
P∈Pk

max
06=g∈P

〈g,Mg〉

〈g, g〉
= max

P∈P⊥

k−1

min
06=g∈P∈Pk

〈g,Mg〉

〈g, g〉
, (2.1)

where 〈·, ·〉 stands for the Euclidean inner product of Rn.
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Definition 2.3. We say an eigenfunction f of M has minimal support if for each eigen-
function g corresponding to the same eigenvalue as f with supp(g) ⊆ supp(f) one has
supp(g) = supp(f). Here we use the notion supp(f) := {i ∈ {1, . . . , n} : f(i) 6= 0}.

Lemma 2.4. For any n × n symmetric matrix M , there exists a basis {f1, . . . , fn} con-
sisting of eigenfunctions with minimal support.

Proof. We show for any eigenspace E there exisits a basis consisting of functions with
minimal support. First choose a basis {fi := (yi1, yi2 . . . , yin)

T : i = 1, . . . r} of E where
r = dimE. Consider the following r × n matrix

M0 =




y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
yr1 yr2 · · · yrn


 .

Without loss of generality, we can assume that M0 can be transformed via elementary row
transformation into the following form




1 0 · · · 0 z1,r+1 . . . z1n
0 1 · · · 0 z2,r+1 . . . z2n
...

...
. . .

...
...

...
...

0 0 · · · 1 zr,r+1 . . . zrn


 .

Set ηi := (δi1, . . . ., δir, zi,r+1, . . . , zin)
T , i = 1, . . . , r. Then {ηi, i = 1, . . . , r} is a basis of

the eigenspace E. Next we show each ηi has minimal support by contradiction. Suppose
that we have a function f = (x1, . . . xn)

T ∈ E with supp(f)  supp(ηi). This implies that
xj = 0, for j = 1, . . . , r, j 6= i. If xi = 0, then f 6∈ E. If, otherwise, xi 6= 0, then f is a
multiple of ηi. Contradiction.

A signed graph Γ = (G,σ) is a graph G = (V,E) with a signature σ : E → {+1,−1},
where V is the vertex set and E is the edge set. We say two vertices x, y ∈ V are connected
by an edge if {x, y} ∈ E and write x ∼ y. We denote by dx :=

∑
y:y∼x 1 the vertex degree

of x ∈ V . For each edge {x, y} ∈ E, we write σxy = σ({x, y}) for short. In this article, we
concern the induced signed graphs Γ = (G,σ) of symmetric matrices, for which the graphs
G are always undirected, finite, and simple.

Definition 2.5. Given an n × n symmetric matrix M = (Mij), we define the induced
signed graph Γ = (G,σ) of M as follows: The underlying graph G = (V,E) is given by

V := {xi}
n
i=1 and E := {{xi, xj} : Mij 6= 0 and i 6= j},

and the signature σ : E → {+1,−1} is defined via

σxixj
:= −

Mij

|Mij|
=

{
+1, if Mij < 0;
−1, if Mij > 0,

for each edge {xi, xj} ∈ E.
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By the above definition, the induced signed graph of any generalized Laplacian always has
an all-positive signature.

Definition 2.6. Given a signed graph Γ = (G,σ). We say a symmetric matrix M is
compatible with Γ if the induced signed graph of M coincides with Γ.

In a signed graph Γ = (G,σ), the sign of a cycle or a path in G is defined as the product of
the signs of edges in it. The following concepts of balance and antibalance are introduced
by Harary [24, 25].

Definition 2.7 (Harary). A signed graph Γ = (G,σ) is called balanced if the sign of every
cycle in G is positive. It is called antibalanced if the sign of every odd cycle is negative
and the sign of every even cycle is positive.

Notice that a signed graph Γ = (G,σ) is antibalanced if and only if its negation −Γ :=
(G,−σ) is balanced.

Definition 2.8 (Switching). A function τ : V → {+1,−1} is called a switching function.
Switching the signature of Γ = (G,σ) by τ refers to the operation of changing σ to be στ

where
στ
xy := τ(x)σxyτ(y)

for any {x, y} ∈ E.

Switching the signature σ by τ is simply reversing the signs of all edges connecting S :=
{x ∈ V : τ(x) = +1} and its complement while keeping the signs of other edges unchanged.

Definition 2.9. Let G = (V,E) be a graph. Two signatures σ : E → {+1. − 1} and
σ′ : E → {+1,−1} are called to be switching equivalent if there exists a switching function
τ such that σ′ = στ .

Notice that the sign of a cycle is invariant under switching operations. The following
characterization lemma using switching is due to Zaslavsky [39, Corollary 3.3].

Lemma 2.10 (Zaslavsky’s switching lemma). A signed graph Γ = (G,σ) is balanced if
and only if σ is switching equivalent to the all-positive signature, and it is antibalanced if
and only if σ is switching equivalent to the all-negative signature.

We can always switch the signs of all edges in a spanning tree of a signed graph to be
positive [39, Lemma 3.1].

Lemma 2.11. Let Γ = (G,σ) be a connected signed graph. Then for any spanning tree T
of G, there exists a switching function τ such that σ can be switched by τ to be positive on
each edge of T .

Proof. Select one vertex x0 ∈ V . The switching function constructed below fulfills the
requirement:

τ =

{
+1, if x = x0;
the sign of the unique path connecting x and x0 in T, if x 6= x0.

6



Let Γ = (G,σ) be the induced signed graph of a symmetric matrix M . Consider a switching
function τ : V → {+1,−1}. Then the symmetric matrix

M τ := D(τ)MD(τ),

where D(τ) is the diagonal matrix of τ , shares the same spectrum with M . The induced
signed graph of M τ is the switched graph Γτ = (G,στ ). Indeed, a function fk is an
eigenfunction of M such that Mfk = λkfk if and only if τfk is an eigenfunction of M τ

such that M τ (τfk) = λk(τfk).

3 Strong and weak nodal domains on signed graphs

In this section, we present the concepts of strong and weak nodal domains on signed graphs
in detail.

Definition 3.1 (Strong nodal domain walks). Let Γ = (G,σ) be a signed graph where
G = (V,E) and f : V → R be a function. A walk {xk}

n
k=1, n ≥ 2 is called a strong

nodal domain walk of f (an S-walk for short) if f(xk)σxkxk+1
f(xk+1) > 0 for each k =

1, 2, . . . , n− 1.

Notice that f(xk) 6= 0 for any vertex xk in an S-walk of f . In contrast, we allow zeros in
the following concept of weak nodal domain walks.

Definition 3.2 (Weak nodal domain walks). Let Γ = (G,σ) be a signed graph where
G = (V,E) and f : V → R be a function. A walk {xk}

n
k=1, n ≥ 2 is called a weak nodal

domain walk of f (a W-walk for short) if for any two consecutive non-zeros xi and xj of
f , i.e., f(xi) 6= 0, f(xj) 6= 0, and f(xℓ) = 0 for any i < ℓ < j, it holds that

f(xi)σxixi+1
· · · σxj−1xj

f(xj) > 0.

We remark that every walk containing at most 1 non-zeros of f is a W -walk.

Using the above two types of walks, we introduce the following two equivalence relations
on the set of non-zeros of a function f .

Definition 3.3. Let Γ = (G,σ) be a signed graph where G = (V,E) and f : V → R be a
function. Let Ω = {v ∈ V : f(v) 6= 0} be the set of non-zeros of f .

(i) We define a relation RS on Ω as follows: For any x, y ∈ Ω, (x, y) ∈ RS if and only if
x = y or there exists an S-walk connecting x and y.

(ii) We define a relation RW on Ω as follows: For any x, y ∈ Ω, (x, y) ∈ RW if and only
if x = y or there exists an W-walk connecting x and y.

It is direct to check that both RS and RW are equivalence relations.

Definition 3.4 (Strong and weak nodal domains). Let Γ = (G,σ) be a signed graph where
G = (V,E) and f : V → R be a function. Let Ω = {v ∈ V : f(v) 6= 0} be the set of
non-zeros of f .

7



(i) We denote by {Si}
p
i=1 the equivalence classes of the relation RS on Ω. We call the

induced subgraph of each Si a strong nodal domain of the function f . We denote the
number p of strong nodal domains of f by S(f).

(ii) We denote by {Wi}
q
i=1 the equivalence classes of the relation RW on Ω. We call the

induced subgraph of each set

W 0
i := Wi ∪ {x ∈ V : there exists a W-walk from x to some vertex in Wi}

a weak nodal domain of the function f . We denote the number q of weak nodal
domains of f by W(f).

Notice that W 0
i is obtained from Wi by absorbing the zeros around it.

Remark 3.5. (i) From the definition, we have S(f) = W(f) = 0 if f is identically zero.

(ii) We observe that both strong and weak nodal domains of a function are connected.

(iii) For any two weak nodal domains Di and Dj of f , if x ∈ Di ∩Dj , then x must be a
zero, i.e., f(x) = 0.

For the number of strong nodal domains S(f) of a function f , we have the following
observation.

Lemma 3.6. Let Γ = (G,σ) be a signed graph with G = (V,E). For a function f : V → R

and the set of non-zeros Ω = {x ∈ V : f(x) 6= 0}, consider the subgraph S = (Ω, E(S))
where

E(S) := {{x, y} ∈ E : f(x)σxyf(y) > 0}.

Let TS = (Ω, E(TS)) be a spanning forest of S. Then we have

S(f) = |V | − z − |E(TS)|,

where z = |V \Ω| is the number of zeros of f .

Proof. By definition, the number S(f) is the number of connected components of the
subgraph S or that of its spanning forest TS . Therefore, we have

S(f) = |Ω| − |E(TS)| = |V | − z − |E(TS)|.

Next, we illustrate our concept by an example.

Example 3.7. We consider the signed graph Γ = (G,σ) given in Figure 1 and the sym-
metric matrix

M =




0 −1 0 −1 0 0
−1 0 −1 1 0 0
0 −1 0 −1 −1 −1
−1 1 −1 0 0 0
0 0 −1 0 0 1
0 0 −1 0 1 0




,
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Figure 1: Γ = (G,σ).

which is compatible with Γ. By numerical computation, we obtain the eigenvalues of M
listed below:

λ1 ≈ −1.84 ≤ λ2 = λ3 = −1 ≤ λ4 ≈ −0.51 ≤ λ5 ≈ 1.51 ≤ λ6 ≈ 2.84.

The following are a system of corresponding eigenfunctions:

f1 ≈ (1.76, 1.62, 2.84, 1.62, 1, 1)T ,

f2 = (0,−1, 0, 1, 0, 0)T ,

f3 = (0, 0, 0, 0,−1, 1)T ,

f4 ≈ (−2.44,−0.62, 1.51,−0.62, 1, 1)T ,

f5 ≈ (0.82,−0.62,−0.51,−0.62, 1, 1)T ,

f6 ≈ (−1.14, 1.62,−1.84, 1.62, 1, 1)T .

We list the strong and weak nodal domains of each eigenfunction in Table 1. Notice that
we only provide vertex subsets. The strong and weak nodal domains are the induced
subgraphs of those vertex subsets in Table 1. We also illustrate the eigenfunction f6 in

Eigenfunction Strong nadal domain Weak nodal domain

f1 {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6}
f2 {2, 4} {1, 2, 3, 4, 5, 6}
f3 {5, 6} {1, 2, 3, 4, 5, 6}
f4 {1, 2, 4}, {3, 5, 6} {1, 2, 4}, {3, 5, 6}
f5 {1}, {2, 3, 4}, {5}, {6} {1}, {2, 3, 4}, {5}, {6}
f6 {1}, {2}, {3}, {4}, {5}, {6} {1}, {2}, {3}, {4}, {5}, {6}

Table 1: Strong and weak nodal domains

Figure 2. There we see none of the edges is an S-walk.

3.1 Switching invariance

Let us recall the definition of strong and weak nodal domains of a function on an unsigned
graph from [15, Definitions 1 and 2].

Definition 3.8 ([15]). Let G = (V,E) be a graph and f : V → R be a function. A positive
(negative) strong nodal domain of f is a maximal connected induced subgraph of G on

9
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Figure 2: The function f6 on Γ = (G,σ).

vertices v ∈ V with f(v) > 0 (f(v) < 0). A positive (negative) weak nodal domain of f is
a maximal connected induced subgraph of G on vertices v ∈ V with f(v) ≥ 0 (f(v) ≤ 0)
that contains at least one nonzero vertex.

Remark 3.9. Our Definition 3.4 of strong and weak nodal domains of a function on a
signed graph Γ = (G,σ) coincides with Definition 3.8 when σxy = +1 for any edge {x, y}.

Theorem 3.10 (Switching invariance). Let f be a non-zero function on a signed graph
Γ = (G,σ). Let τ : V → {+1,−1} be a switching function. Then an induced subgraph of
G is a strong (weak) nodal domain of the function f on Γ = (G,σ) if and only if it is a
strong (weak) nodal domain of the function τf on Γτ = (G,στ ).

Proof. The theorem follows directly from the following observation: For any walk x0 ∼
x1 · · · ∼ xm, m ≥ 1, it holds that

f(x0)σx0x1
· · · σxm−1xmf(xm) = (τf)(x0)σ

τ
x0x1

· · · στ
xm−1xm

(τf)(xm).

Corollary 3.11. Let f be a non-zero function on a balanced signed graph Γ = (G,σ). Let
τ : V → {+1,−1} be the switching function such that στ

xy = +1 for any edge {x, y}. Then
an induced subgraph of G is a strong (weak) nodal domain of the function f on Γ = (G,σ)
if and only if it is a strong (weak) nodal domain of the function τf on the graph G in the
sense of Definition 3.8.

Remark 3.12. Mohammadian [32] has studied nodal domain theorems for symmetric
matrices. Let M be a symmetric matrix and G = (V,E) be the induced graph. Let
f : V → R be a function. Mohammadian defines the following two subgraphs: One
subgraph Γ<

M,f (G) has vertex set Ω := {x ∈ V : f(x) 6= 0} and edge set

E< := {{x, y} ∈ E : f(x)Mxyf(y) < 0}.

The other subgraph Γ≤
M,f(G) has vertex set V and edge set

E≤ := {{x, y} ∈ E : f(x)Mxyf(y) ≤ 0}.

If the graph G is connected, Mohammadian proves for the k-th eigenfunction fk of M that

c(Γ≤
M,fk

(G)) ≤ k, and c(Γ<
M,fk

(G)) ≤ k + r − 1,

10



where c(·) is the number of connected components and r is the multiplicity of the k-th
eigenvalue.

Comparing with our definitions, we have

c(Γ≤
M,fk

(G)) ≤ W(fk), and c(Γ<
M,fk

(G)) = S(fk).

Therefore, Mohammadian has proved that S(fk) ≤ k + r − 1 in our terminology. Notice
that for many cases, e.g., for the second Laplacian eigenfunction of a star graph, the strict
inequality

c(Γ≤
M,fk

(G)) < W(fk)

holds.

3.2 Antibalance and duality

When the signed graph Γ = (G,σ) is balanced, it holds that W(f1) = S(f1) = 1 for the
first eigenfunction f1 of any symmetric matrix compatible with Γ, by Theorem 3.10 and
Perron-Frobenius theorem. Conversely, if W(f1) = S(f1) = 1, then Γ is not necessarily
balanced, see Example 3.7. However, for antibalanced case, we have the following result.

Theorem 3.13. Let Γ = (G,σ) be a connected signed graph. For any n × n symmetric
matrix M compatible with Γ, let λn be the largest eigenvalue and fn be an eigenfunction of
M corresponding to λn. Then Γ = (G,σ) is antibalanced if and only if W(fn) = S(fn) = n.
Moreover, when Γ is antibalanced, λn is simple.

Proof. We first assume that Γ is antibalanced. By Theorem 3.10, we can further assume
that each edge is negative and hence each off-diagonal entry of M is nonnegative. Then we
apply Perron-Frobenius theorem to derive that λn is simple and fn is positive on all vertices.
Therefore, each edge of Γ is neither a W -walk nor an S-walk. We have W(fn) = S(fn) = n
by definition.

Next, we assume that W(fn) = S(fn) = n. In particular, we know that fn is nonzero on
all vertices. We consider the following switching function

τ(x) =
fn(x)

|f(nx)|
, for all x ∈ V.

Since S(fn) = n, each edge of Γ is not an S-walk, i.e., τ(x)σxyτ(y) = −1 for any {x, y} ∈ E.
That is, we can switch σ by τ such that στ ≡ −1. Hence, Γ = (G,σ) is antibalanced.

In Example 3.7, we have S(f6) = W(f6) = 6. By Theorem 3.13, the singed graph in Figure
1 is antibalanced. Of course, we can check the antibalancedness directly by observing that
each cycle has a negative sign.

As a consequence of Theorem 3.13, we can derive a result due to Roth [34] directly.

Theorem 3.14. [34] Let G = (V,E) be a connected bipartite graph and M be a gener-
alized Laplacian of G. Let λn be the largest eigenvalue and fn be an eigenfunction of M
corresponding to λn. Then λn is simple and we have W(fn) = S(fn) = n.
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Proof. Any bipartite graph G with an all-positive signature σ is antibalanced. Then the
facts that λn is simple and W(fn) = S(fn) = n follow from Theorem 3.13.

It is a very useful philosophy to consider the strong nodal domains of a function f on a
signed graph Γ = (G,σ) and that of f on its negation −Γ = (G,−σ). The latter can be
considered a dual version of strong nodal domains of f . When the graph G is a forest, we
have the following identity.

Theorem 3.15. Let Γ = (G,σ) be a signed graph where G = (V,E) is a forest with
|V | = n. For any function f : V → R, we have

S(f) +S(f) = n+ c− 2z + e0.

where S(f) is the number of strong nodal domains of f on the signed graph −Γ = (G,−σ),
z = |{x ∈ V : f(x) = 0}|, e0 = |{{x, y} ∈ E : f(x) = 0 or f(y) = 0}|, and c is the number
of connected components of G.

Proof. For any edge {x, y} ∈ E of the tree with f(x) 6= 0 and f(y) 6= 0, exactly one of the
following two holds:

(i) {x, y} is an S-walk of f on Γ = (G,σ);

(ii) {x, y} is an S-walk of f on −Γ = (G,−σ);

Let p and q be the numbers of edges which are S-walk of f on Γ and on −Γ, respectively.
Then we have p+ q = n− c− e0.

By Lemma 3.6, we obtain S(f) = n− z − p and S(f) = n− z − q. Therefore, we have

S(f) +S(f) = 2n− 2z − (p+ q) = 2n− 2z − n+ c+ e0 = n− 2z + c+ e0.

This finishes the proof.

Theorem 3.15 will be employed to calculate eigenvalue multiplicities in Corollary 4.8 and
Corollary 5.4 below.

3.3 Basic properties of weak nodal domains

We say two domains Di and Dj are adjacent, denoted by Di ∼ Dj , if there exist x ∈ Di

and y ∈ Dj such that x ∼ y. By definition, we have the following proposition.

Proposition 3.16. Let {Di}
q
i=1 be the weak nodal domains of a non-zero function f on a

signed graph Γ = (G,σ). Let GD = (VD, ED) be the graph given by

VD := {Di}
q
i=1, and ED := {{Di,Dj} : Di ∼ Dj}.

If the graph G is connected, so does GD.

12



Proof. Let D and D′ be any two weak nodal domains. Choose two vertices x and x′

such that x ∈ D and x′ ∈ D′. Since the graph G is connected, there exists a walk
x = x0 ∼ x1 ∼ · · · ∼ xm = x′ connecting x and x′. Set i0 := max{i : xi ∈ D}. Then
we have f(xi0+1) 6= 0. Therefore, xi0+1 and x belongs to different equivalent classes of
the relation RW , i.e., xi0+1 lies in a weak nodal domain D1 ∼ D. Applying the above
argument iteratively, we find a walk D ∼ D1 ∼ · · · ∼ D′ from D to D′ in the graph GD.
That is, the graph GD is connected.

For any zero vertex, we have the following observation.

Proposition 3.17. Let f be a non-zero function on a signed graph Γ = (G,σ). Then for
any three weak nodal domain D1,D2,D3 of f we have D1 ∩D2 ∩D3 = ∅.

Proof. Suppose that D1 ∩D2 ∩D3 6= ∅. Let x ∈ D1 ∩D2 ∩D3. Then we have f(x) = 0.
By definition, we can find for each i ∈ {1, 2, 3} a walk in Di

xi0 ∼ xi1 ∼ · · · ∼ xipi = x

such that f(xi0) 6= 0 and f(xij) = 0 for any j ∈ {1, . . . , pi}. Set

ai := f(xi0)σxi
0
xi
1
· · · σxi

pi−1
x ∈ R, i = 1, 2, 3.

Since D1,D2,D3 are different from each other, we obtain

a1a2 < 0, a2a3 < 0, and a3a1 < 0,

which is a contradiction.

Corollary 3.18. Let f be a non-zero function on a signed graph Γ = (G,σ). Let x be a
vertex lying in two weak nodal domains D and D′. Then the set

B(x) := {y ∈ V : there exist m ∈ Z and a walk x = x0 ∼ x1 ∼ · · · ∼ xm = y

such that f(xi) = 0, i = 0, 1, . . . ,m− 1.}

is contained in D ∪ D′. In particular, we have S1(x) ⊂ D ∪D′ where S1(x) = {y ∈ V :
y ∼ x}.

Proof. Let y ∈ B(x). If f(y)=0, then we have y ∈ D ∪ D′ by definition. In the case of
f(y) 6= 0, we suppose that y lies in a weak nodal domain D different from D and D′. Then
the vertex x ∈ D ∩D′ ∩D, which is a contradiction by Proposition 3.17.

3.4 Strong nodal domains of the first eigenfunction

It is natural to ask whether the strong nodal domain of the first eigenfunction of a sym-
metric matrix M is the whole graph of M or not. Recall that when the induced signed
graph is balanced, the strong nodal domain of the first eigenfunction is the whole graph
by Perron-Frobenius theorem. When the induced signed graph is non-balanced, we show
in this section that either case can happen.
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Theorem 3.19. Let Γ = (G,σ) be a connected signed graph where G = (V,E). Then
there exists a symmetric matrix M compatible with Γ, such that the first eigenvalue λ1 of
M is simple and the corresponding eigenfunction f1 is nonzero everywhere. In particular,
we have S(f1) = 1 and the strong nodal domain of f1 is the whole graph G.

Proof. By Lemma 2.11, there exists a switching function τ : V → {+1,−1} such that
Γτ = (G,στ ) has a spanning tree consisting of positive edges. We consider the subgraph Γτ

+

of Γτ with vertex set V and edge set {{x, y} ∈ E : σxy = +1}. Notice that Γτ
+ is connected.

Let M+ by any symmetry matrix compatible with Γτ
+. By Perron-Frobenius theorem, the

first eigenvalue of M+ is simple and its eigenfunction is positive on all vertices. We further
consider the subgraph Γτ

− with vertex set V and edge set {{x, y} ∈ E : σxy = −1}. Let M−

be any symmetry matrix compatible with Γτ
−. For any ǫ > 0, M++ǫM− is compatible with

Γτ . By continuity of the eigenvalue and eigenfunction, the first eigenvalue λ1 of M++ǫM−

is simple and the corresponding eigenfunction f is positive when ǫ is small enough. Hence
the matrix D(τ)(M+ + ǫM−)D(τ) fulfills all requirements of the theorem.

By our construction, the signed graph Γ has a spanning tree, whose walks are all strong
nodal domain walks of the first eigenfunction f1 of D(τ)(M+ + ǫM−)D(τ). That is, the
strong nodal domain of f1 is the whole graph G.

Theorem 3.20. Let Γ = (G,σ) be a non-balanced signed graph. Assume that there exists
a vertex z such that Γ becomes balanced after removing z and its incident edges. Then there
exist a symmetric matrix M compatible with Γ and an eigenfunction f1 corresponding to
its first eigenvalue, such that f1 is zero at z and non-zero elsewhere. In particular, the
strong nodal domain of f1 is not the whole graph G.

Proof. Assume that Γ has n + 1 vertices which are denoted by {x1, ..., xn+1}. We further
assume that Γ becomes balanced after removing xn+1 and its incident edges. We denote
by Γ′ the resulting balanced graph. By the switching invariance, we can suppose that the
sign of each edge in Γ′ is +1. Let M ′ be any symmetric matrix compatible with Γ′. By
Perron-Frobenius theorem, the first eigenvalue λ1 of M ′ is simple and the corresponding
eigenfunction f is positive.

We construct a symmetric matrix M ǫ for any ǫ > 0 as follows:

M ǫ
ij =





M ′
ij , i, j=1,2,. . . ,n;

λ1 + 1, i = j = n+ 1;
ǫk−
f(xi)

, j = n+ 1 or i = n+ 1, xi ∼ xn+1 and σxixn+1
= +1;

− ǫk+
f(xi)

, j = n+ 1 or i = n+ 1, xi ∼ xn+1 and σxixn+1
= −1;

0, otherwise,

(3.1)

where k+ (k−, resp.) is the number of the positive (negative, resp.) edges incident with
xn+1. We define

f1(xi) =

{
f(xi), i = 1, 2, . . . , n;
0, i = n+ 1.

(3.2)

By direct computation, we have M ǫf1 = λ1f1 for any ǫ > 0. Recall that when ǫ = 0, λ1 is
the first eigenvalue of M ǫ. By continuity of the eigenvalue, λ1 is still the first eigenvalue
of M ǫ when ǫ is small enough. Hence, the matrix M ǫ with a small enough ǫ fulfills all
requirements of the theorem.
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4 Nodal domain theorems

In this section, we prove the following nodal domain theorem. The proof is a neat extension
of methods from [15]. We will discuss its consequence for symmetric matrices whose induced
signed graphs are trees via a duality argument.

Theorem 4.1. Let M be a symmetric matrix, Γ = (G,σ) be its induced signed graph where
G = (V,E), and λk be its k-th eigenvalue. For any eigenfunction fk corresponding to λk,
i.e., Mfk = λkfk, we have

S(fk) ≤ k + r − 1, and W(fk) ≤ k + c− 1, (4.1)

where r is the multiplicity of λk and c is the number of connected components of G. In
particular, when the graph G is connected, we have W(fk) ≤ k.

If the eigenfunction fk corresponding to λk has minimal support, then we have

S(fk) ≤ k. (4.2)

Remark 4.2. The estimate S(fk) ≤ k+ r−1 has been proved by Mohammadian [32], see
Remark 3.12. Mohammadian’s proof using his estimate c(Γ≤

M,fk
(G)) ≤ k for a connected

graph G and the interlacing theorem. We give a direct argument below via the minimax
principle.

Remark 4.3. The estimate (4.2) for the cases k = 1 and k = 2 is proved in [32, Proposition
7 and Theorem 8] extending a result of van der Holst [36, Proposition 1]. We show it for
any k below. Recall from Lemma 2.4, any symmetric matrix has a basis consisting of
eigenfunctions with minimal support. All the eigenfunctions f1, . . . , f6 in Example 3.7
have minimal supports.

We prepare a crucial lemma, which is a reformulation of Duval and Reiner [16, Lemma 5].

Lemma 4.4. Let M be a symmetric matrix. Let Γ = (G,σ) be the induced signed graph
of M where G = (V,E). Then for any two functions f, g : V → R, we have

〈fg,M(fg)〉 = 〈fg, fMg〉+
∑

{x,y}∈E

(−Mxy)g(x)g(y)(f(x) − f(y))2.

Proof. By a direct calculation, we have

〈fg,M(fg)〉

=
∑

x∈V

f(x)g(x)

[
∑

y∼x

Mxyf(y)g(y) +Mxxf(x)g(x)

]

=
∑

x∈V

f(x)g(x)

[
∑

y∼x

(Mxyf(y)g(y)−Mxyf(x)g(y) +Mxyf(x)g(y)) +Mxxf(x)g(x)

]

=
∑

x∈V

f(x)g(x)
∑

y∼x

(−Mxy)(f(x)− f(y))g(y) +
∑

x∈V

f2(x)g(x)

[
∑

y∼x

Mxyg(y) +Mxxg(x)

]

=
∑

{x,y}∈E

(−Mxy)g(x)g(y)(f(x) − f(y))2 + 〈fg, fMg〉.

This completes the proof.
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The following corollary will be crucial for the proof of Theorem 6.6 in Section 6.

Corollary 4.5. Let g be an eigenfunction of M such that Mg = λkg. Let D(g) be the
diagonal matrix with D(g)xx = g(x). Then we have

〈f,D(g)(M − λkI)D(g)f〉 =
∑

{x,y}∈E

(−Mxy)g(x)g(y)(f(x) − f(y))2.

Proof. By Lemma 4.4, we have

〈fg, (M − λkI)fg〉 = 〈fg,M(fg)− fMg〉 =
∑

{x,y}∈E

(−Mxy)g(x)g(y)(f(x) − f(y))2.

Then the corollary follows directly by observing that

〈fg, (M − λkI)fg〉 = 〈f,D(g)(M − λkI)D(g)f〉.

For any k, let fk be the eigenfunction of M corresponding to the k-th eigenvalue λk. Next,
we show the estimates of S(fk) and W(fk) in Theorem 4.1.

Proof of Theorem 4.1: Estimates of S(fk). Let {Ωi}
m
i=1 be the strong nodal domains of

fk, where m = S(fk). For each i, we define

gi(x) =

{
fk(x), if x ∈ Ωi;
0, otherwise.

(4.3)

Since gi, i = 1, 2, . . . ,m, are linearly independent, we can find ai ∈ R, i = 1, 2, . . . ,m, such
that the function g :=

∑m
i=1 aigi satisfies

〈g, fi〉 = 0, for i = 1, . . . ,m− 1.

We introduce a function a : V → R defined as a(x) = ai if x ∈ Ωi for some i and a(x) = 0
otherwise. Then we can write g = afk. Applying Lemma 4.4 yields

〈g,Mg〉 = 〈afk, aMfk〉+
∑

{x,y})∈E

(−Mxy)fk(x)fk(y)(a(x) − a(y))2

= λk〈g, g〉 +
∑

{x,y}∈E

(−Mxy)fk(x)fk(y)(a(x) − a(y))2.

By Lemma 2.2, we derive

λm ≤
〈g,Mg〉

〈g, g〉
≤ λk +

1

〈g, g〉

∑

{x,y}∈E

(−Mxy)fk(x)fk(y)(a(x) − a(y))2.

For each edge {x, y} ∈ E, if (−Mxy)fk(x)fk(y) > 0, then fk(x)σxyfk(y) > 0. That
is, the vertices x and y lie in the same strong nodal domain. Hence, a(x) − a(y) = 0

16



and (−Mxy)fk(x)fk(y)(a(x) − a(y))2 = 0. If, otherwise, (−Mxy)fk(x)fk(y) ≤ 0, we have
(−Mxy)fk(x)fk(y)(a(x) − a(y))2 ≤ 0. Therefore, we obtain

∑

{x,y}∈E

(−Mxy)fk(x)fk(y)(a(x)− a(y))2 ≤ 0.

This leads to λm ≤ λk. Recall that λk < λk+r, we have S(fk) = m ≤ k + r − 1.

Suppose that fk has minimal support. Next we show S(fk) ≤ k. We prove that by
contradiction. Assume that S(fk) > k. We construct a nonzero function g :=

∑k
i=1 aigi

as in the above such that 〈g, fi〉 = 0 for i = 1, 2, . . . , k − 1. By construction, we have
S(g) ≤ k. By the same argument as in the above, we derive

λk =
〈g,Mg〉

〈g, g〉
.

Therefore, g is an eigenfunction corresponding to λk. However, we have supp(g)  supp(f)
which is a contradiction.

In order to show the estimate of W(fk), we first prepare the following discrete unique
continuation lemma for eigenfunctions.

Lemma 4.6. Consider an eigenfunction f of a symmetric matrix M corresponding to an
eigenvalue λ. Let {Di}

m
i=1 be the set of weak nodal domains of f . For each i ∈ {1, . . . ,m},

define a function gi as below

gi(x) =

{
f(x), if x ∈ Di;
0, otherwise.

Assume that the induced signed graph Γ = (G,σ) of M is connected. If the function

g :=

m∑

i=1

aigi, where ai ∈ R, i = 1, 2, . . . ,m,

is an eigenfunction of M corresponding to λ, then we have

a1 = a2 = · · · = am.

Remark 4.7. We have the following interesting consequence: For those functions g defined
as above, if g = f on one weak nodal domain, then g = f everywhere.

Proof of Lemma 4.6. We first observe that g can be reformulated as a product of two
functions, g = af , where the function a : V → R is defined as a(x) = ai if x ∈ Di and
f(x) 6= 0, and a(x) = 0 otherwise.

For any adjacent Di and Dj, we can always find x0 ∈ Di, y0 ∈ Dj \Di such that x0 ∼ y0.
Indeed, when Di ∩Dj 6= ∅, due to the connectedness of Dj, there exists a path connecting
any xi ∈ Di ∩Dj and any z ∈ Dj \Di.

Next, we show ai = aj for any two adjacent weak nodal domains Di and Dj if ai 6= 0. We
divide our arguments into two cases.
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Case 1: f(x0) 6= 0. By Lemma 4.4, we have

λ =
〈g,Mg〉

〈g, g〉
= λ+

1

〈g, g〉

∑

{x,y}∈E

(−Mxy)f(x)f(y)(a(x)− a(y))2. (4.4)

For each edge {x, y} ∈ E, if (−Mxy)f(x)f(y) > 0, then f(x)σxyf(y) > 0. That is, the
vertices x and y lie in the same weak nodal domain with both f(x) and f(y) nonzero,
which means a(x)− a(y) = 0. Therefore, we obtain

(−Mxy)f(x)f(y)(a(x)− a(y))2 ≤ 0, for any {x, y} ∈ E, (4.5)

Combining (4.4) and (4.5) yields that for any {x, y} ∈ E,

−Mxyf(x)f(y)(a(x)− a(y))2 = 0. (4.6)

For the edge {x0, y0}, we have f(y0) 6= 0 since y0 ∈ Dj \Di. Moreover, we have

−Mx0y0f(x0)f(y0) < 0,

since x0, y0 lies in two different weak nodal domains with both f(x0) and f(y0) nonzero.
By (4.6), we have a(x0) = a(y0). Since f(x0) 6= 0 and f(y0) 6= 0, we have ai = aj .

Case 2: f(x0) = 0. By Corollary 3.18, we have S1(x0) := {v ∈ V : v ∼ x0} ⊂ Di ∪Dj .
We define a function h := f − 1

ai
g. Observe that h|Di

= 0, and h is an eigenfunction of M
corresponding to λ. So we have

0 =− λh(x0) = Mh(x0) =
∑

y∼x0

Mx0yh(y)

=
∑

y∼x0

y∈Dj\Di

Mx0yh(y) =

(
1−

aj
ai

) ∑

y∼x0

y∈Dj\Di

Mx0yf(y).

By the definition of the weak nodal domain, it holds that

Mx0yf(y)Mx0y′f(y
′) > 0, for any y, y′ ∼ x0 and y, y′ ∈ Dj \Di.

Therefore, we have ∑

y∼x0

y∈Dj\Di

Mx0yf(y) 6= 0.

This tells that ai = aj.

Since g is an eigenfunction, at least one of ai, i = 1, . . . ,m is non-zero. Then the lemma
follows directly from the above argument and the connectedness from Proposition 3.16.

Proof of Theorem 4.1: Estimates of W(fk). We first assume that the signed graph induced
by M is connected. We denote all weak nodal domains of fk by {Di}

m
i=1, where m = W(fk).

We introduce for each i

gi(x) =

{
fk(x), if x ∈ Di;
0, otherwise.
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Let ai ∈ R, i = 1, 2, . . . ,m, be m constants such that g :=
∑m

i=1 aigi satisfies 〈g, fi〉 = 0
for i = 1, ....m − 1. We define a function a : V → R as a(x) = ai if x ∈ Di and fk(x) 6= 0,
and a(x) = 0 otherwise. By construction, g = afk. We then derive

λm ≤
〈g,Mg〉

〈g, g〉
≤ λk +

1

〈g, g〉

∑

{x,y}∈E

(−Mxy)fk(x)fk(y)(a(x) − a(y))2. (4.7)

Similarly as in the proof of (4.5), we have

(−Mxy)fk(x)fk(y)(a(x) − a(y))2 ≤ 0, for any {x, y} ∈ E, (4.8)

and, hence,
λm ≤ λk. (4.9)

We argue by contradiction. Suppose m > k, then λm ≥ λk. By (4.7) and (4.9), we have

λm =
〈g,Mg〉

〈g, g〉
= λk. (4.10)

Hence, g is an eigenfunction of M corresponding λk.

Then we can apply Lemma 4.6 to show that g = afk where a is a nonzero constant function.
However, 〈g, fj〉 = 0 for any j < m by construction. Our assumption m > k then implies
〈g, fk〉 = 0. That is, a〈fk, fk〉 = 0. This is a contradiction. So we get

W(fk) = m ≤ k. (4.11)

In general, we denote by {Γi}
c
i=1 the c connected components of the signed graph induced

by M . Let M i, f i
k be the restriction of M,fk to the connected component Γi respectively.

Then either f i
k is identically zero on Γi or M if i

k = λi
ki
f i
k, where λi

ki
= λk is the ki-th eigen-

value of M i. Moreover, we can assume λi
ki−1 < λi

ki
. Without loss of generality, we assume

{Γi}
ℓ
i=1 be the connected components on which fk is not identically zero. Employing the

fact (4.11) we estimate

W(fk) ≤
ℓ∑

i=1

ki ≤
ℓ∑

i=1

(ki − 1) + ℓ < k + ℓ ≤ k + c.

This completes the proof.

Corollary 4.8. Let M be an n × n symmetric matrix with the induced signed graph Γ =
(T, σ), where T is a tree. If fk is an eigenfunction corresponding to the k-th eigenvalue λk

of M which is not zero at any vertex, then

(i) λk is simple;

(ii) S(fk) = k.

Consequently, any eigenfunction corresponding to a multiple eigenvalue of such a matrix
M vanishes on at least one vertex.
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Corollary 4.8 is due to Fiedler [18, (2,5) Corollary, (2,6) Corollary] and Bıyıkoğlu [3,
Theorem 2]. We give an alternative proof here as a consequence of Theorem 4.1 and the
Theorem 3.15.

Proof. By Theorem 3.15, we have

S(fk) +S(fk) = n+ 1. (4.12)

Since fk has no zeros, we have S(fk) = W(fk). By Theorem 4.1, we obtain

S(fk) ≤ k. (4.13)

Without loss of generaliy, let λk be the eigenvalues of M with multiplicity r such that

λ1 ≤ · · · ≤ λk−1 < λk = · · · = λk+r−1 < λk+r ≤ · · · ≤ λn.

Observe that the signed graph induced by −M is the negation −Γ = (G,−σ) of Γ = (G,σ).
The eigenvalues of −M can be listed accordingly as below

−λn ≤ · · · ≤ −λk+r < −λk+r−1 = · · · = −λk < −λk−1 ≤ · · · ≤ −λ1.

Notice that fk is an eigenfunction of −M corresponding to −λk. Similarly, we derive

S(fk) ≤ n− (k + r − 1) + 1. (4.14)

Combining the estimates (4.12), (4.13), and (4.14) yields

n+ 1 = S(fk) +S(fk) ≤ n− r + 2.

This tells that r = 1. Therefore, the inequalities in (4.13) and (4.14) are both equality. In
particular, we have S(fk) = k.

5 A reformulation of Fiedler’s approach on acyclic matrices

Fiedler [18] studied the eigenvectors of acyclic matrices, i.e., symmetric matrices whose
induced graph does not contain any cycle. In this section, we explain that Fiedler’s result
can be reformulated as estimates for the number of strong nodal domains of eigenfunctions
for acyclic matrices in our terminology.

Observe that the induced signed graph Γ = (T, σ) of any acyclic matrix is always balanced,
since the graph T has no cycles. That is, T is a forest.

We first quote the main theorem of Fiedler [18, (2,3) Theorem] below.

Theorem 5.1 ([18]). Let A = (aik) be an n × n acyclic matrix. Let y = (yi) be an
eigenvector of A corresponding to an eigenvalue λ. Denote by ω+ and ω−, respectively, the
number of eigenvalues of A greater than and smaller than λ, and let ω(0) be the multiplicity
of λ.

Let there be first no "isolated" zero coordinate of y, i.e. coordinate yk = 0 such that
akjyj = 0 for all j. Then

ω+ = a+ +m, ω− = a− +m, ω(0) = n− ω+ − ω− (5.1)
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where m is the number of zero coordinates of y, a+ is the number of those (unordered)
pairs (i, k), i 6= k, for which

aikyiyk < 0

and a− is the number of such pairs (i, k), i 6= k, for which

aikyiyk > 0.

If there are isolated zero coordinates of y, if F is the set of indices corresponding to such
coordinates and Ã the matrix obtained from A by deleting all rows and columns with indices
from F then the numbers ω+, ω− and ω(0) satisfy

ω+ = ω̃+ + c1, ω− = ω̃− + c2, ω(0) = ω̃(0) + c0 (5.2)

where ω̃ are corresponding numbers of Ã and c0, c1, c2 nonnegative integers such that

c0 + c1 + c2 = |F|, (5.3)

the number of elements in F .

With our terminology, we reformulate Theorem 5.1 as below.

Theorem 5.2. Let A = (aik) be an n×n acyclic matrix and Γ = (T, σ) where T = (V,E)
be the induced signed graph. Let λk be the k-th eigenvalue of M with multiplicity r and
eigenfunction fk such that

λ1 ≤ · · · ≤ λk−1 < λk = · · · = λk+r−1 < λk+r ≤ · · · ≤ λn.

We denote by
F := {x ∈ V : fk(x) = 0 and fk(y) = 0 for all y ∼ x} (5.4)

the set of Fiedler’s isolated zeros of fk, and by S(fk) the number of strong nodal domains
of fk on the signed graph −Γ = (T,−σ). Let r̃ be the multiplicity of λk as an eigenvalue of
the matrix Ã obtained from A by deleting all rows and columns with indices from F . Then
we have r ≥ r̃ and

S(fk) = k + r − 1− |F|+ c1, and S(fk) = n− k + 1− |F|+ c2, (5.5)

where c1, c2 are nonnegative integers such that c1 + c2 + (r− r̃) = |F|. In particular, when
F = ∅, we have

S(fk) = k + r − 1, and S(fk) = n− k + 1. (5.6)

Proof. We show how to derive the theorem from Fiedler’s Theorem 5.1. By definition, we
have

ω+ = n− (k + r − 1), and ω− = k − 1. (5.7)

Observe that for any edge {i, j} ∈ E, aijfk(i)fk(j) < 0 if and only if fk(i)σijfk(j) > 0
since σij = −aij/|aij |. Then applying Lemma 3.6, we have

a+ = n− z −S(fk), (5.8)
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where z is the number of zeros of fk. Similarly, we obtain

a− = n− z −S(fk). (5.9)

If F = ∅, combining (5.1) with (5.7), (5.8) and (5.9) yields

n− (k + r − 1) = n−S(fk), and k − 1 = n−S(fk).

That is, (5.6) holds true.

If F 6= ∅, let Ã be the matrix obtained from A by deleting all rows and columns with
indices from F . Then fk restricting to the set V \F is an eigenfunction of Ã corresponding
to the eigenvalue λk. Suppose λk = µ

k̃
such that all the eigenvalues of Ã can be listed as

µ1 ≤ · · · ≤ µ
k̃−1 < µ

k̃
= · · · = µ

k̃+r̃−1 < µ
k̃+r̃

≤ · · · ≤ µn−|F|.

Then we have
ω̃+ = n− |F| − (k̃ + r̃ − 1), and ω̃− = k̃ − 1. (5.10)

By (5.6), we have

S(fk) = S(fk|V \F ) = k̃ + r̃ − 1, and S(fk) = S(fk|V \F ) = n− |F| − k̃ + 1. (5.11)

Inserting (5.7), (5.10) and (5.11) into (5.5) leads to

n− (k + r − 1) = n− |F| −S(fk) + c1, and k − 1 = n− |F| −S(fk) + c2,

which confirms (5.5).

Corollary 5.3. Let A = (aik) be an n× n acyclic matrix and Γ = (T, σ) with T = (V,E)
be the induced signed graph. Let λk be the k-th eigenvalue of M with multiplicity r and
eigenfunction fk such that

λ1 ≤ · · · ≤ λk−1 < λk = · · · = λk+r−1 < λk+r ≤ · · · ≤ λn.

Denote F := {x ∈ V : fk(x) = 0 and fk(y) = 0 for any y ∼ x}. Then we have

k + r − 1− |F| ≤ S(fk) ≤ k + r − 1, and n− k + 1− |F| ≤ S(fk) ≤ n− k + 1.

Proof. Since c1 + c2 + (r − r̃) = |F| and r ≥ r̃, we have 0 ≤ c1, c2 ≤ |F|. Then, the
Corollary is an immediately consequence of Theorem 5.2.

Combining with Theorem 3.15, we derive the following consequence.

Corollary 5.4. Let A = (aik) be an n×n acyclic matrix and Γ = (T, σ) with T = (V,E) be
the induced signed graph. Let λ be an eigenvalue of M with multiplicity r and eigenfunction
f : V → R. Denote F := {x ∈ V : f(x) = 0 and f(y) = 0 for any y ∼ x}. Let r̃ be the
multiplicity of λ as an eigenvalue of Ã which is the matrix obtained from A by deleting all
rows and columns with indices from F . Then, we have

r ≥ r̃ = e0 − 2z + c+ |F|, (5.12)

where z = |{x ∈ V : f(x) = 0}|, e0 = |{{x, y} ∈ E : f(x) = 0 or f(y) = 0}|, and c is the
number of connected components of T .
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Proof. On one hand, Theorem 5.2 implies that

S(f) +S(f) = n+ r − 2|F|+ c1 + c2 = n+ r − |F| − (r − r̃) = n− |F|+ r̃.

On the other hand, we have by Theorem 3.15 that

S(f) +S(f) = n+ c− 2z + e0.

Combining the above two identities leads to r̃ = e0 − 2z + c+ |F|.

Remark 5.5. Suppose that the eigenfunction f of the acyclic matrix A satisfies the fol-
lowing property: There are no two indices i, j such that aij 6= 0 and f(i) = f(j) = 0. Then
we have F = ∅, e0 =

∑
x∈V :f(x)=0 dx, and

r = r̃ =
∑

x∈V :f(x)=0

dx − 2z + c = c+
∑

x∈V :f(x)=0

(dx − 2).

The above identity has been shown in [18, (2,4) Theorem]. Our Corollary 5.4 is, therefore,
an extension of [18, (2,4) Theorem].

6 Lower bounds of the number of strong nodal domains

We discuss in this section two lower bound estimates of the number of strong nodal domains
and related applications.

We first prepare some notations. A sequence {xi}
k
i=1 of vertices in a signed graph Γ =

(G,σ) is called a strong nodal domain cycle (S-cycle for short) of a function f on Γ if it is
an S-walk of f and xk = x1.

Definition 6.1. Let G = (V,E) be a graph. We define

ℓ(G) := |E| − |V |+ c(G),

where c(G) is the number of connected components of G. Let Γ = (G,σ) be a signed graph
and f : V → R be a function. Let H be a graph whose vertex set V (H) = V and edge set
E(H) := {{x, y} ∈ E : f(x)σxyf(y) > 0}. We define

ℓ+(G,σ, f) := |E(H)| − |V (H)|+ c(H)

where c(H) is the the number of connected components of H.

Remark 6.2. (i) The number ℓ(G) is the minimal number of edges that need to be
removed from G in order to turn it into a forest. It is the dimension of the cycle
space of G [8, Corollary 1.33].

(ii) The number of ℓ+(G,σ, f) is the dimension of the vector space of S-cycles of the
function f on the singed graph (G,σ).

Definition 6.3. Let G = (V,E) be a graph. A vertex x ∈ V is called a tree-like vertex if
removing x and its incident edges from G increases the number of connected components
by dx − 1.
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All vertices in a forest are tree-like. Moreover, we have the observations below.

Proposition 6.4. The tree-like vertices have the following properties:

(i) Let x be a tree-like vertex in a graph G = (V,E). Let G\{y} be a graph obtained from
G by removing any vertex y 6= x and its incident edges. Then x is still a tree-like
vertex in the graph G \ {y}.

(ii) Let G′ be the induced subgraph of G = (V,E) on the set V \ Y where Y is a set of
tree-like vertices. Then we have ℓ(G′) = ℓ(G).

Proof. The property (i) follows directly from the observation that a vertex is tree-like if
and only if it belongs to no cycle. Moreover, for any y ∈ Y , we have

ℓ(G \ {y}) = (|E| − dy)− (|V | − 1) + (c(G) + dy − 1) = ℓ(G).

By (i), we can apply the above argument iteratively to conclude (ii).

Next, we define the following particular set of zeros of a function on a graph.

Definition 6.5. Let G = (V,E) be a graph and f : V → R be a function. We define the
Fiedler zero set of f on G as below:

F(G, f) := {x ∈ V : f(x) = 0, and either f(y) = 0 for all y ∼ x, or x is not tree-like}.

When G is a forest, the set F(G, f) coincides with Fiedler’s set of isolated zeros (5.4). We
denote by Fc(G, f) the complement of F(G, f) in the zero set of f , i.e.,

Fc(G, f) := {x ∈ V : f(x) = 0, x is tree-like and there exists y ∼ x such that f(y) 6= 0}.

Now we are ready to state our first lower bound estimate.

Theorem 6.6. Let M be an n×n symmetric matrix and Γ = (G,σ) be the induced signed
graph. Let λk be the k-th eigenvalue of M with multiplicity r and eigenfunction fk such
that

λ1 ≤ · · · ≤ λk−1 < λk = · · · = λk+r−1 < λk+r ≤ · · · ≤ λn.

Then we have
S(fk) ≥ k + r − 1− ℓ′ + ℓ+ − |F|,

where F = F(G, fk) is the Fielder zero set, ℓ+ = ℓ+(G,σ, fk) is the dimension of the
S-cycle space of G, and ℓ′ = ℓ(G′) is the dimension of the cycles space of G′, where G′ is
the induced subgraph of G on the set of nonzeros V \ {x : fk(x) = 0}.

Remark 6.7. The above lower bound estimate is an extension of previous works in [18, 3,
2, 38, 32] with improvements. Xu and Yau [38, Theorem 1.3] have shown for generalized
Laplacians that S(fk) ≥ k + r − ℓ − z, where ℓ = ℓ(G) and z = |F| + |Fc| is the total
number of zeros. Since ℓ′ ≤ ℓ, ℓ+ ≥ 0 and z ≥ |F|, Theorem 6.6 improves Xu and Yau’s
estimate. Moreover, when M is acyclic, Theorem 6.6 reduce to the lower bound estimates
in Corollary 5.3.
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The proof is built upon techniques developed in [18] and [38].

Let us prepare four Lemmas. We first recall the following results of Fiedler [18].

Lemma 6.8. [18, (1,8)] Let T be a tree with the set of vertices {1, . . . , n}. Then the n− 1
linear forms xi − xj , where {i, j}, i < j, are edges of T , are linearly indepenent.

Lemma 6.9. [18, (1,12) Lemma] Let

A =

(
B a
aT b

)

be an n× n partitioned symmetric matrix where b ∈ R. If there exists u ∈ Rn−1 such that
Bu = 0 and aTu 6= 0. Then we have

pA = pB + 1,

where pA and pB are the positive indices of inertia of A and B, respectively.

The following result is the so-called interlacing theorem. For its proof and a brief historical
review, we refer to [23, Section 2].

Lemma 6.10. Let A be a Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn and B be a
principle submatrix of A with eigenvalues µ1 ≤ · · · ≤ µm. Then we have the inequalities

λi ≤ µi ≤ λn−m+i,

for any 1 ≤ i ≤ m.

The following linear algebraic lemma is essentially taken from [38, Lemma 2.3].

Lemma 6.11. Consider a quadratic form

B =

n∑

i,j=1

aij(xi − xj)
2, where aij = aji ∈ R.

Let G = (V,E) be the graph with V = {1, 2, . . . , n} and E = {{i, j} : aij 6= 0 and i 6= j}.
Let H = (V,E(H)) with E(H) = {{i, j} ∈ E : aij > 0} be a subgraph of G. For any
spanning forest T of H, we have

p ≤ |E(T )| ≤ |E(H)| ≤ p+ ℓ, (6.1)

where p is the positive index of inertia of B, and ℓ = ℓ(G).

Remark 6.12. (i) When the corresponding graph G is a forest, the linear forms xi−xj,
where {i, j} ∈ E are linearly independent by Lemma 6.8. Then the fact |E(H)| = p
follows directly from Sylvester’s law of inertia.

(ii) Let A be an n×n symmetric matrix such that Aij = −aij for any i 6= j, and A1 = 0,
where 1 = (1, . . . , 1)T . Then the positive index of inertia of the matrix A is equal
to that of the quadratic form B, since B = −2

∑n
i,j=1 aijxixj. Therefore, (6.1) tells

pA ≤ |E(T )| ≤ |E(H)| ≤ pA + ℓ. Notice that 2|E(H)| is equal to the number of
negative off-diagonal entries of A. For the case ℓ = 0, i.e., A is acyclic, this has been
shown in [18, (2,2) Theorem].
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(iii) For our purpose, we only need the upper bound estimate in (6.1). The lower bound
estimate in (6.1) can provide an alternative proof of the estimate S(fk) ≤ k + r − 1
for strong nodal domains in Theorem 4.1.

Proof. For the readers’ convenience, we recall the proof here. Let the rank of B be n− r.
By Sylvester’s law of inertia, the quadratic form B can be reformulated as

B =

n−r∑

i=1

biY
2
i , (6.2)

where Yi =
∑n

j=1mijxj , i = 1, . . . , n are independent linear forms and

b1 > 0, . . . , bd > 0, bd+1 < 0, . . . , bn−r < 0.

We argue by contradiction.

Suppose that |E(H)| > d+ ℓ. We consider the following two systems of linear equations

Y1 = 0, . . . , Yd = 0, xi − xj = 0, for any {i, j} ∈ E \ E(H), (6.3)

and
xi − xj = 0, for any {i, j} ∈ E. (6.4)

Let c be the number of connected components of G. By our assumption |E(H)| > d + ℓ,
we observe that

the rank of (6.3) ≤ d+ |E| − |E(H)| ≤ d+ n− c+ ℓ− |E(H)| < n− c

and, by Lemma 6.8, the rank of (6.4) is n − c. Hence, there exists a nonzero solution
(x01, ...., x

0
n) of (6.3) which fails (6.4). Then we derive B(x01, ...., x

0
n) ≤ 0 from (6.3) and

B(x01, ...., x
0
n) > 0 from (6.4), which is a contradiction. This shows |E(H)| ≤ d+ ℓ.

Suppose that |E(T )| < d. Let us consider the following two systems of linear equations

xi − xj = 0, for any {i, j} ∈ E(H), Yd+1 = 0, . . . , Yn−r = 0 (6.5)

and
Y1 = 0, . . . , Yn−r = 0. (6.6)

Now we compare the ranks of the two systems. By Lemma 6.8 and our assumption that
|E(T )| < d, we estimate

the rank of (6.5) ≤ |E(T )|+ n− r − d < n− r.

On the other hand, the rank of (6.6) is n − r. Therefore, there exists a nonzero solution
(x01, ....., x

0
n) of (6.5) which fails (6.6). Then we derive B(x01, ....., x

0
n) ≤ 0 from (6.5) and

B(x01, ....., x
0
n) > 0 from (6.6), which is a contradiction. This shows |E(T )| ≥ d.

Now, we are ready for the proof of Theorem 6.6. First we consider the case that fk has no
zeros.
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Lemma 6.13. Let M , Γ = (G,σ), and fk be defined as in the Theorem 6.6. If fk is
non-zero at each vertex, then we have

S(fk) ≥ k + r − 1− ℓ+ ℓ+.

Proof. Let us denote the vertex set of G by V = {1, 2, . . . , n}. Define F to be the diagonal
matrix with Fii = fk(i) for any i ∈ V , and B := F (M − λkI)F . By Corollary 4.5, we get
for any function g : V → R

〈g,Bg〉 =
∑

{i,j}∈E

(−Mij)fk(i)fk(j)(g(i) − g(j))2 =
∑

{i,j}∈E

aij(g(i) − g(j))2 (6.7)

where aij := (−Mij)fk(i)fk(j), which is nonzero if and only if {i, j} ∈ E.
Next we apply Lemma 6.11 to the quadratic form B and the graph G. Let H be the
subgraph of G defined as in Lemma 6.11 and T be a spanning forest of H. We observe
that the edge set of H is exactly the set of edges in G which are S-walks of fk on the signed
graph Γ = (G,σ). Then we derive from Lemma 3.6 that

S(fk) = n− |E(T )|. (6.8)

Since F is nonsingular, the positive index of inertia of B satisfies

pB = pF (M−λkI)F = p(M−λkI) = n− (k + r − 1).

Therefore, we obtain by Lemma 6.11

n− (k + r − 1) ≤ |E(T )| ≤ |E(H)| ≤ n− (k + r − 1) + ℓ. (6.9)

Noticing that |E(H)| = |E(T )| + ℓ(H) = |E(T )|+ ℓ+(G,σ, fk), we derive

n− (k + r − 1) ≤ |E(T )| ≤ n− (k + r − 1) + ℓ− ℓ+. (6.10)

Inserting (6.8) into (6.10) yields

k + r − 1− ℓ+ ℓ+ ≤ S(fk) ≤ k + r − 1. (6.11)

This proves the lemma.

Next, we consider the case that every zero of fk is not in the Fiedler zero set.

Lemma 6.14. Let M, Γ = (G,σ) and fk be defined as in Theorem 6.6. If all zeros of fk
lie in Fc = Fc(G, fk). Then we have

S(fk) ≥ k + r − 1− ℓ′ + ℓ+,

where ℓ′ = ℓ(G′) and G′ is the induced subgraph of G on the set of nonzeros.

Remark 6.15. Due to Proposition 6.4, we have in the above that ℓ(G′) = ℓ(G), since all
vertices in Fc are tree-like.
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Proof. We denote the vertex set of G by V = {1, 2, . . . , n}. Let us denote by N the
symmetric matrix obtained from M by deleting all rows and columns with indices from
Fc. Then we claim that

p(M−λkI) = p(N−λkI) + |Fc|, (6.12)

where p(M−λkI) and p(N−λkI) are the positive indices of inertia of M − λkI and N − λkI,
respectively. For ease of notation, we do not distinguish In and In−|Fc|.

We prove this claim by induction with respect to the number |Fc|. When |Fc| = 0, the
claim holds true. Next, we assume the claim is true when |Fc| = m− 1. We consider the
case that |Fc| = m. Without loss of generality, we assume n ∈ Fc and the matrix M−λkI
has the following form:

M − λkIn =

(
M0 η
ηT Mnn − λk

)

with ηT = (Mn1, . . . ,Mn(n−1)) and

M0 :=




M1 − λkIn1
0 · · · 0

0 M2 − λkIn2
· · · 0

...
...

. . .
...

0 0 · · · Mh − λkInh


 ,

where h = dn is the degree of n and Mi is an ni × ni symmetric matrix for each i.

Since n ∈ Fc, there exists an index j such that Mnjfk(j) 6= 0. Without loss of generality,
we assume j ∈ {1, . . . , n1}. We set

u := (fk(1), . . . , fk(n1), 0, . . . , 0)
T ∈ Rn−1.

Since the vertex n is tree-like, we have n ≁ ζ, for any ζ ∈ {1, . . . , n1} \ {j}. Therefore, we
derive

ηTu =

n1∑

ζ=1

Mnζfk(ζ) = Mnjfk(j) 6= 0.

Moreover, we have M0u = 0. Then we can apply Lemma 6.9 to conclude that

p(M−λkI) = pM0
+ 1.

By our induction assumption, we have p(M−λkI) = pM0
+1 = p(N−λkI) + |Fc|. That is, we

prove the claim (6.12).

Let µ1 ≤ · · · ≤ µn−|Fc| be the eigenvalues of N . We assume

µk′−1 < λk = µk′ = · · · = µk′+r′−1 < µk′+r′ .

We observe that p(M−λkI) = n− (k+ r− 1), and p(N−λkI) = n− |Fc| − (k′ + r′− 1). Then
(6.12) implies

k + r = k′ + r′. (6.13)

Note that G′ is the induced subgraph of N . By definition, we have S(fk|G′) = S(fk) since
the set of nonzeros stays put. Applying Lemma 6.13 and (6.13) leads to

k + r − 1 = k′ + r′ − 1 ≥ S(fk) = S(fk|G′) ≥ k′ + r′ − 1− ℓ′ + ℓ+ = k + r − 1− ℓ′ + ℓ+.

This completes the proof.
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Proof of Theorem 6.6. Restrict the function fk to the induced subgraph G̃ of G on V \F .
Then fk is still an eigenfunction of M |

G̃
restricting to G̃ corresponding to the eigenvalue

λk. We denote by µ1 ≤ · · · ≤ µn−|F| the eigenvalues of M |
G̃
. We assume

µ
k̃−1 < λk = µ

k̃
= · · · = µ

k̃+r̃−1 < µ
k̃+r̃

.

Observing that all zeros of fk|G̃ lie in Fc(G̃, fk|G̃), we obtain by Lemma 6.14

S(fk) = S(fk|G̃) ≥ k̃ + r̃ − 1− ℓ′ + ℓ+, (6.14)

where ℓ′ = ℓ(G′). Recall that G′ is the induced subgraph of G on the set of nonzeros.

Applying the interlacing result Lemma 6.10, we have

λ
k̃+r̃+|F| ≥ µ

k̃+r̃
> µ

k̃+r̃−1 = λk = λk+r−1.

This implies that
k̃ + r̃ + |F| ≥ k + r. (6.15)

Inserting (6.15) into (6.14) yields

S(fk) ≥ k + r − |F| − 1− ℓ′ + ℓ+.

This completes the proof.

Remark 6.16. In fact, we have an alternative proof of the estimate S(fk) ≤ k + r − 1
in Theorem 4.1 by combining (6.11) and the interlacing theorem. Let G′ be the induced
subgraph of G on the set of nonzeros of fk. Let µ1 ≤ · · · ≤ µn−z be the eigenvalues of
M |G′ , where z = |F|+ |Fc| is the total number of zeros of fk. We can assume λk−1 < λk,
λk = µk′ and µk′−1 < µk′ = · · · = µk′+r′−1 < µk′+r′ . By Lemma 6.10, we derive

λk′+r′−1 ≤ µk′+r′−1 = λk+r−1.

This leads to k′ + r′ ≤ k + r. Inserting it into (6.11) leads to S(fk) ≤ k + r − 1.

Next, we discuss another application of Lemma 6.11.

Theorem 6.17. Let M = (Mij) be an n × n symmetric matrix. Let G = (V,E) be the
graph with V = {1, 2, . . . , n} and E = {{i, j} : Mij 6= 0 and i 6= j}. Then the multiplicity r
of an eigenvalue λ of M with an eigenfunction f non-zero at each vertex satisfies

c ≤ r ≤ c+ ℓ,

where c is the number of connected components of G and ℓ = ℓ(G).

Remark 6.18. Theorem 6.17 is due to Xu and Yau [38, Corollary 2.5], where they state
it for generalized Lapalcians.

Proof. Since f has no zeros, the restriction of f to any connected component is also an
eigenfunction of the same eigenvalue. Therefore, we have r ≥ c.
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Consider the quadratic form

B =
∑

{i,j}∈E

f(i)(−Mij)f(j)(xi − xj)
2.

We have a partition of the edge set E = E1 ∪ E2, where

E1 = {{i, j} ∈ E, −f(i)Mijf(j) > 0}, E2 = {{i, j} ∈ E, −f(i)Mijf(j) < 0}.

Applying Lemma 6.11 to the quadratic forms B and −B, respectively, we obtain

|E1| ≤ p+ ℓ, and |E2| ≤ n− p− r + ℓ,

where p stands for the positive index of inertia of B. Then we derive

|E1|+ |E2| ≤ n+ 2ℓ− r.

Since |E1|+ |E2| = |E| = n− c+ ℓ, we have r ≤ c+ ℓ.

When the induced signed graph has a large number of leaves, i.e., vertices with degree 1,
we have the following non-trivial lower bound estimate via a duality argument.

Theorem 6.19. Let M be an n×n symmetric matrix and Γ = (G,σ) be the induced signed
graph. Let λk be the k-th eigenvalue of M with an eigenfunction fk such that λk−1 < λk.
Then we have

S(fk) ≥ k + vl − 1− n− zl + zr,

where zl = |{x : dx = 1, fk(x) = 0}|, zr = |{x : dx = 1, fk(x) 6= 0, fk(x
′) = 0, for x′ ∼ x}|,

and vl is the number of leaves.

Proof. Let r be the multiplicity of λk. Recall that S(fk) is the number of strong nodal
domains of fk on −Γ. Theorem 4.1 implies S(fk) ≤ n− (k+ r− 1)+1+ r− 1 = n− k+1.

Let x be a leaf and fk(x) 6= 0. We denote by x′ the only vertex such that {x, x′} ∈ E. If
fk(x

′) = 0, then the subgraph induced by {x} is a strong nodal domain of fk on both Γ and
its negation −Γ. If fk(x

′) 6= 0, then either fk(x)Mxx′fk(x
′) > 0 or fk(x)Mxx′fk(x

′) < 0.
This means that the subgraph induced by {x} is a strong nodal domain of fk on either Γ
or −Γ. Therefore, we derive

S(fk) +S(fk) ≥ (vl − zl − zr) + 2zr = vl − zl + zr. (6.16)

Then we obtain

S(fk) ≥ vl − zl + zr −S(fk) ≥ vl − zl + zr − n+ k − 1.

To conclude this section, we compare the two lower bound estimates of Theorems 6.6 and
6.19 in the following examples.
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Example 6.20. Let G = (V,E) be a graph obtained by adding 7 leaves to one vertex
of the complete graph K7. We consider the symmetric matrix M = −A where A is the
adjacent matrix of G. Then the induced singed graph of M is Γ = (G,σ), where σ ≡ +1.
Let us denote V = {1, 2, . . . , 14}. Let {1, 2, . . . , 7} be the vertices of the graph K7. Assume
that the 7 leaves {8, 9, . . . , 14} are added to the vertex 1. The largest eigenvalue λ14 ≈ 3.05
of M is simple and its eigenfunction is

f14 ≈ (−3.05, 0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 1, 1, 1, 1, 1, 1, 1)T .

It is direct to figure out S(f14) = 9, ℓ = |E| − |V |+1 = 15, ℓ+ = 10 and vl = 7. Theorem
6.6 tells S(f14) ≥ 9, which is sharp, while Theorem 6.19 tells S(f14) ≥ 6.

In the next example, Theorem 6.19 provides a better estimate than Theorem 6.6.

Example 6.21. We consider a complete graph K8 and denote its vertex set by {1, . . . , 8}.
Let G = (V,E) be a graph obtained by adding i leaves to each vertex i ∈ {1, . . . , 8}. For

each i, we label the i leaves adjacent to it by {8 + i(i−1)
2 + k : k = 1, . . . , i}. Then the

vertex set V = {1, 2, . . . , 44}. Consider M = −A where A is the adjacent matrix of G.
Hence, the induced singed graph of M is Γ = (G,σ), where σ ≡ +1. The 41-st eigenvalue
λ41 ≈ 2.69 of M is simple and its eigenfunction is

f41 ≈ (0.07,0.10, 0.16, 0.47,−0.55,−0.17,−0.10,−0.07,−0.02,−0.04,−0.04,

−0.06,−0.06,−0.06,−0.17,−0.17,−0.17,−0.17, 0.20, 0.20, 0.20, 0.20,

0.20, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.04, 0.04, 0.04, 0.04,

0.04, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03)T .

Notice that the values of f41 has different signs at a leaf and the vertex adjacent to it. It
is direct to compute S(f41) = 38, ℓ = 21, ℓ+ = 6, and vl = 36. Theorem 6.6 tells that
S(f41) ≥ 41− 21 + 6 = 26 while Theorem 6.19 tells that S(fk) ≥ 41 + 36− 1− 44 = 32.
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