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Abstract
Defects are crucial in determining the overall physical properties of semiconduc-

tors. Generally, the charge-state transition level εα(q/q’), one of the key physical

quantities that determines the dopability of defects in semiconductors, is temperature

dependent. However, little is known about the temperature dependence of εα(q/q’),

and, as a result, almost all existing defect theories in semiconductors are built on a

temperature-independent approximation. In this article, by deriving the basic formu-

las for temperature-dependent εα(q/q’), we have established two fundamental rules

for the temperature dependence of εα(q/q’) in semiconductors. Based on these rules,

surprisingly, it is found that the temperature dependences of εα(q/q’) for different

defects are rather diverse: it can become shallower, deeper, or stay unchanged. This

defect-specific behavior is mainly determined by the synergistic or opposing effects

between free energy corrections (determined by the local volume change around the

defect during a charge-state transition) and band edge changes (which differ for dif-

ferent semiconductors). These basic formulas and rules, confirmed by a large number

of state-of-the-art temperature-dependent defect calculations in GaN, may potentially

be widely adopted as guidelines for understanding or optimizing doping behaviors in

semiconductors at finite temperatures.
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I. INTRODUCTION

Intrinsic defects and external impurities (generally denoted as defects hereafter) play a

critical role in determining the physical properties of solids, e.g., from solar cells [1–3] to

solid-state lighting [4, 5] to topological phase control [6–8] and to quantum computing [9–

11]. The defect formation energies H f(α,q) for defect α at charge state q, that determine

the defect concentrations; and the charge-state transition levels εα(q/q’ ), that correspond to

the thermal ionization energies, are two of the most important physical quantities for all the

defects in semiconductors [12–14]. Generally, both H f(α,q) and εα(q/q’ ) are temperature

dependent. Differing from the straightforward temperature dependence of H f(α,q) [12, 13,

15–17], little is known about how temperature changes affect εα(q/q’ ) in semiconductors, due

to the lack of basic formulas and fundamental rules. As a result, almost all defect theories in

semiconductors are built on static first-principles calculations excluding temperature effects

[12–14].

The challenge to unravel the temperature dependence of εα(q/q’ ) in theory is two-fold.

Fundamentally, the standard formulas for εα(q/q’ ) calculations are incomplete and do not

capture the εα(q/q’ ) of defects under finite temperatures. Practically, the computations

of temperature-induced vibrational properties of defects in semiconductors are extremely

expensive. Because of its unparalleled complexity, the temperature dependence of εα(q/q’ )

in semiconductors has remained unanswered for decades i.e., we do not have any rules to

predict or understand the dopability of semiconductors at finite or changing temperatures.

Differing from narrow bandgap (NBG) semiconductors (e.g., Si and GaAs) that usually

operate under ambient environments at room temperature, wide bandgap (WBG) semi-

conductors (e.g., GaN and SiC) can operate under harsh environments with high working

temperatures [18–22]. Therefore, WBG semiconductors are an ideal platform for unique ap-

plications in aerospace, nuclear power and earth’s mantle investigation, that require chang-

ing operation temperatures from extremely-low to extremely-high (0∼1000 K) [18–26]. This

highlights the need to understand the evolution with temperature of defect properties in

WBG semiconductors, especially of εα(q/q’ ), which may be critical to improve the reliabil-

ity of WBG semiconductor devices in various environments.

In this article, by deriving the basic formulas of temperature-dependent εα(q/q’ ), we have

established two fundamental rules for the temperature dependence of absolute and relative
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εα(q/q’ ) in semiconductors, respectively. Based on these rules, it is found that regardless

of the initial εα(q/q’ ) levels at 0 K, surprisingly, the temperature-dependent behaviors of

εα(q/q’ ) for different defects in different types of semiconductors are rather diverse, i.e., it

can become shallower, deeper, or even stay unchanged, mainly determined by the synergistic

or opposing effects between free energy corrections and band edge changes. Importantly,

we discover that the electronic and vibrational contributions to free energy corrections are

both fundamentally determined by a key physical quantity δV q→q′ , the local volume change

around the defect during the charge-state transition. Interestingly, the δV q→q′ values are

mainly determined by the competing effect between the local electron occupation (LEO)

changes and the strength of the local lattice relaxation (LLR) around the defects. Using the

state-of-art first-principles-based temperature-dependent approaches with the capacity of

both high accuracy and high efficiency [27], these proposed basic formulas and fundamental

rules have been thoroughly verified based on a large number of defect calculations in GaN.

II. RESULTS AND DISCUSSION

A. Basic Formulas

Without the inclusion of temperature effects, the εα(q/q’ ) of a defect α between the

charge-states q and q’ is given as

εα(q/q’)w.o.T =
E(α, q′)− E(α, q)

q− q’
− εV BM(host), (1)

where E (α,q) [E (α,q’ )] is the total energy of a supercell with defect α in charge-state q

[q’ ] and εV BM(host) is the valence band maximum (VBM) of the host [12–14]. With the

inclusion of temperature effects, E (α,q) [E (α,q’ )] in Eq.(1) is replaced by the corresponding

free energy F (α,q) [F (α,q’ )]. After some manipulations [see Appendix A], it can be written

as

εα(q/q’)[V,T ] = εα(q/q’)w.o.T +
∆F el[V,T ] + ∆F ph[V,T ]

q− q’
−∆εV BM(host)[V,T ]. (2)

On the right-hand side of Eq. (2), the second term represents the corrections from the free

energy differences between the q and q’ configurations induced by the electronic (∆F el)

and vibrational (∆F ph) contributions, while the third term represents the correction on the

VBM energy position driven by thermal expansion and electron-phonon coupling (∆εV BM
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= ∆εthV BM+∆εphV BM). In practice, the temperature dependence of εα(q/q’ ) can be un-

derstood without and with the inclusion of ∆εV BM [28], corresponding to the absolute and

relative evolutions of εα(q/q’ ), respectively. While the temperature dependence of the ab-

solute εα(q/q’ ) [εaα(q/q’ )] is solely determined by the free energy corrections, that of the

relative εα(q/q’ ) [εrα(q/q’ )] is determined by both the free energy corrections and the band

edge changes. Although εα(q/q’ ) is independent of the direction of charge-state transitions,

to simplify our discussion, in the following we focus on the ionization process, i.e., |q’ |>|q |.

This assumption does not change the rules we developed.

Under the quasi-harmonic approximation (QHA), F el can be written as F el=E th+E el-

TS el [13, 29, 30], where the first, second, and third terms are the energy corrections induced

by thermal expansion, electron-occupation change, and electronic entropy, respectively. Gen-

erally, the contributions from E el and S el to F el are negligible under reasonable temperatures

in semiconductors [12, 31]. Therefore, we focus on the E th term in F el. Without an external

pressure, V=ϕV T V 0+V 0, where ϕV is the mean volumetric thermal expansion coefficient

(usually, ϕV>0) and V 0 is the equilibrium volume at 0 K. Ignoring high order terms (see

Appendix B), ∆E th can be expressed as

∆E th = −2γ0 ϕVTV0(host) δVq→q′ . (3)

Here, γ0 is the elastic constant and δV q→q′=V 0(α,q’ )-V 0(α,q) is the local volume change

induced by defect α during the ionization from q to q’.

Moving to F ph, it can be expressed as F ph=
∑

i[
1
2
~ωi+kBT ln{1-exp(- ~ωi

kBT)}] under the

QHA [32], where ~, ωi, and kB are the reduced Planck constant, phonon eigenfrequency,

and Boltzmann constant, respectively. Consequently, under a first-order approximation (see

Appendix C), ∆F ph can be written as

∆F ph = ∆F zp + ∆F̃ ph =
∑
i

1

2
~∆ωi +

∑
i

kBT
∆ωi

ωi(α, q)
, (4)

where ∆ωi= ωi(α,q’ )-ωi(α,q) is the i -th phonon eigenfrequency difference for defect α during

the ionization from q to q’. ∆F zp is the contribution of zero-point vibrations and the ∆F̃ ph

is the pure temperature-dependent part.
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B. Fundamental Rules

First, we consider the role of ∆F el (dominated by ∆E th) on εα(q/q’ ). In a common

semiconductor, rising temperature leads to volume expansion (ϕV>0). During the ionization

of an acceptor (donor) from q to q’, the δV q→q′ of the defect may expand (shrink) due to the

larger (smaller) electron occupation, giving rise to a positive (negative) δV q→q′ . According

to Eq. (3), ∆E th is negative (positive) and decreases (increases) with increasing temperature

for an acceptor (donor), shallowing (deepening) εα(q/q’ ).

Second, we consider the role of ∆F ph on εα(q/q’ ). According to Eq. (4), the sign of ∆F ph

is mostly determined by ∆ωi. The phonon frequencies can be approximately understood

using a one-dimensional harmonic oscillator model with ω∼
√

k
m
, where the k is the force

constant for the system, capturing to the strength of atomic bonds. During the ionization

of an acceptor (donor), the extra electrons are added to (removed from) the low (high)

energy bonding (anti-bonding) states, which consequently stabilize the chemical bonds and

enhance the bond strength surrounding the acceptor (donor). Therefore, ∆ωi is positive for

both donors and acceptors. Consequently, the ∆F ph is positive and increases with rising

temperature, deepening εα(q/q’ ) for both donors and acceptors. Moreover, it is expected

that δV q→q′ and m̄ (defined as the average atomic mass of the defect and its nearest-neighbor

atoms) may be key factors in determining the exact value of ∆F ph. Specifically, a larger

δV q→q′ indicates a larger bonding strength change around the defect during the charge-state

transition, leading to the larger ∆ωi (and hence larger ∆F ph); the larger the m̄, the smaller

∆F zp.

Based on the above understanding of ∆F el and ∆F ph, we can propose two fundamental

rules for the temperature dependence of εaα(q/q’ ) and εrα(q/q’ ), respectively. For donors,

both ∆F el and ∆F ph can downshift the εaα(q/q’ ) levels towards lower energy values, and the

downshift grows with temperature. Meanwhile, as shown in Fig. 1, the larger the |δV q→q′ |

of a donor, the larger the ∆E th and ∆F ph, and consequently the larger the downshift of

εaα(q/q’ ). For acceptors, the (negative) ∆F el and (positive) ∆F ph have a cancelling effect,

because they cause the εaα(q/q’ ) level to shift in opposite directions. Comparing Eqs. (3)

and (4), it is expected that the changes of |∆E th| could be more significant than those of

|∆F̃ ph| for the variable |δV q→q′ |. Accordingly, as shown in Fig. 1, for an acceptor with small

(large) |δV q→q′ |, |∆F̃ ph|>|∆E th| (|∆F̃ ph|<|∆E th|), which may upshift (downshift) εaα(q/q’ )
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in energy. Therefore, we can propose Rule I on the changes of εaα(q/q’ ) [∆εaα(q/q’ )] in

semiconductors at different temperatures. Rule I(a) for donors : the higher the temperature,

the larger the ∆εaα(q/q’ ) towards deeper levels; the larger the |δV q→q′ |, the larger the

∆εaα(q/q’ ) towards deeper levels. Rule I(b) for acceptors : for the acceptors with large

(small) |δV q→q′ |, the higher the temperature, the larger the ∆εaα(q/q’ ) towards shallower

(deeper) levels; the larger (smaller) the |δV q→q′ |, the larger the ∆εaα(q/q’ ) towards shallower

(deeper) levels.

E
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(a) Type-I Semiconductors Type-II Semiconductors

Small |δVq→q’|

Small |δVq→q’|

Small |δVq→q’|

Small |δVq→q’|

Large |δVq→q’| Large |δVq→q’|

Large |δVq→q’| Large |δVq→q’|

(b)

Donors Donors

Acceptors Acceptors

|ΔF 
ph|>|ΔE 

th|

|ΔF 
ph|<|ΔE 

th| |ΔF 
ph|<|ΔE 

th|

|ΔF 
ph|>|ΔE 

th|~~

~~

FIG. 1. Fundamental rules for temperature-dependence of εα(q/q’). Schematic illustra-

tion of the effects of temperature on εα(q/q’ ) levels in (a) type-I and (b) type-II semiconductors,

in which |δV q→q′ | is discovered to play a critical role. For convenience of plotting, we assume that

donors (or acceptors) have similar εα(q/q’ ) at 0 K [Note that ∆εα(q/q’ ) is independent of the

initial εα(q/q’ ) at 0 K]. See text for more details.

After having established the role of the free energy corrections, we next consider the

changes in the band edge. Generally, there are two typical types of temperature-dependent

band edge changes, as demonstrated in Fig. 1. In many conventional semiconductors, e.g.,
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GaN [33, 34] and GaAs [35], the CBM (VBM) energy positions usually downshift (upshift)

as temperature increases, e.g., ∆εCBM<0 and ∆εV BM>0, denoted as type-I semiconductors

(Fig. 1a). Type-II semiconductors (Fig.1b), e.g., CsPbI3 [36] and MAPbI3 [37, 38], are

opposite to the type-I cases, e.g., ∆εCBM>0 and ∆εV BM<0. Combining Rule I and specific

band edge changes, we arrive at Rule II on the temperature dependence of εrα(q/q’ ) in

semiconductors. Rule II(a) for donors : the εrα(q/q’ ) in type-I semiconductors can become

shallower, deeper or stay unchanged under different temperatures (Fig. 1a), depending on

the different strengths of the opposing effect between ∆εaα(q/q’ ) and ∆εCBM ; the εrα(q/q’ )

in type-II semiconductors will always become deeper (Fig. 1b), due to the synergistic ef-

fect between ∆εaα(q/q’ ) and ∆εCBM . Rule II(b) for acceptors : the εrα(q/q’ ) with small

(large) |δV q→q′ | in type-I (type-II) semiconductors can become either shallower, deeper or

stay unchanged as a function of temperature, originating from the opposing effect between

∆εaα(q/q’ ) and ∆εV BM ; the εrα(q/q’ ) with large (small) |δV q→q′ | in type-I (type-II) semi-

conductors will always become shallower (deeper), due to the synergistic effect between

∆εaα(q/q’ ) and ∆εV BM , as shown in Fig. 1a (Fig. 1b).

C. Verification in GaN

Taking GaN as a prototype example, we have systematically studied the effects of tem-

perature on εα(q/q’ ) for ten different defects [see S.I in Supplementary Material (SM)]. The

donor-like defects include N vacancy (VN), substitutional SiGa, GeGa, and ON , while the

acceptor-like defects include MgGa, ZnGa, BeGa, CaGa, CdGa, and CN [39, 40]. Many of

them are commonly observed in GaN [39, 40].

First, we test the relationship between ∆F el and δV q→q′ in GaN. As shown in Fig. 2a,

the calculated ∆F el and ∆E th for these defects are almost identical, except for SiGa and ON

between 0 and +1 charge-state transitions at T>800 K, confirming that the contributions of

E el and S el to F el are usually small in semiconductors [12, 31]. Deviations at high tempera-

tures partially originate from the shallow-level-induced electron-occupation changes. E th can

be directly evaluated using first-principles calculations under hydrostatic-stress conditions

[41, 42], adopting the experimental ϕV [43]. As shown in Fig. 2a, the calculated ∆E th of

these defects increase almost linearly as temperature increases. Interestingly, the calculated

δV q→q′ are all positive (negative) for the acceptors (donors) during ionization, resulting in
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the negative (positive) ∆E th. Taking 800 K as a typical temperature, as shown in Fig. 2b,

we have plotted the relationship between ∆E th and δV q→q′ for these defects, which exhibits

an almost linear dependence, confirming our expectation from Eq. (3). A similar linear

dependence behavior with different slopes is observed at other temperatures [Fig.S1 in S.II].

δVq→q’ (A3)

LLRSmall Large SmallLLR(a) (b)

c

VN

Be
N

Ga

FIG. 2. Electronic contribution to the temperature dependence of εα(q/q’) in GaN. (a)

∆F el (dashed lines) and ∆E th (symbols) as a function of temperature for different defects in GaN.

(b) Relationship between δV q→q′ and ∆E th for different defects at 800 K. Up-inset and bottom-

inset are partial charge densities for neutral VN and BeGa, respectively. Black-dashed line in the

bottom-inset shows the broken bond between Be and its neighboring N.

It is interesting to understand the origin of the diverse δV q→q′ values for different defects.

Overall, we discover that while δV q→q′ is mainly determined by the change of LEO, the LLR

can effectively compensate the LEO-induced |δV q→q′ |; the larger the LLR, the smaller the

|δV q→q′ |. For example, as shown in Fig. 2b, all donors have a similar δV 0→+1∼-12 Å3

except VN . The δV q→q′ of VN are q/q’ dependent, e.g., δV 0→+1∼-6 Å3 and δV +1→+3∼-1

Å3. Meanwhile, all the acceptors have similar δV 0→−1 ∼+6 Å3 expect MgGa (∼+4.8 Å3)

and BeGa (∼+2.3 Å3). Overall, δV q→q′ is mainly determined by the change of LEO around

the defect, i.e., the increased (decreased) LEO always significantly increases (decreases) the

local volume around a defect [28], leading to a positive (negative) δV q→q′ . Furthermore,

the δV q→q′ value also depends on the strength of LLR around the defect. For example, for

SiGa, there is a negligible LLR during the ionization (Fig. S2 in S.II), therefore, the large
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δV 0→+1 ∼-12 Å3 is mainly induced by the decreased LEO around SiGa. The cases of GeGa

and ON are similar to that of SiGa, resulting in similar δV 0→+1 values. For VN , due to

the broken ionic bonds around VN , the extra electrons from the dangling bonds (DBs) are

strongly localized around VN (up-inset, Fig. 2b). During the ionization from 0 to +1, the

DB electrons could be partially compensated, which consequently reduces electron screening

and enhances Coulomb repulsion between the neighboring Ga+3 ions around VN . As a result,

the large LLR effect around VN (Fig. S3 in S.II) effectively expands the local volume and

partially compensates the initial local volume shrinkage induced by the decreased LEO.

Therefore, the δV 0→+1 of VN is significantly smaller than that of SiGa. In a similar way, the

δV +1→+3 of VN can be further reduced from -6 to -1 Å3, due to the further enhanced LLR

effect (Fig. S3 in S.II).

Similar to SiGa, a negligible LLR also exists in acceptors such as ZnGa, CN , CaGa and

CdGa (Fig. S4 in S.II). As a result, the increased LEO gives rise to a large δV 0→−1 ∼6

Å3 for these acceptors. However, for BeGa, the smaller atomic size of Be compared to Ga

induces one broken ionic-bond around BeGa along the c direction, resulting in a DB hole on

the broken N bond (bottom-inset, Fig. 2b) [44]. During the ionization, the DB hole is fully

compensated, resulting in a strongly enhanced Coulomb attraction that restores the Be-N

bond along the c direction and shrinks the local volume around BeGa (Fig. S5 in S.II). This

large local volume shrinkage induced by the LLR effect largely compensate the initial local

volume expansion induced by the increased LEO. Hence, compared to CdGa, the δV 0→−1

of BeGa is reduced to +2.3 Å3. The strength of LLR in MgGa (Fig. S6 in S.II) is between

BeGa and CdGa, resulting in an intermediate δV 0→−1 value between that of BeGa and CdGa.

Therefore, as shown in Fig. 2b, we conclude that the variable δV q→q′ in different defects

are mainly determined by the competing effect between LEO and LLR.

Second, we explore the relationship between ∆F ph and δV q→q′ in GaN. As shown in

Fig. 3a, the ∆F ph of both donors and acceptors are positive and increase with increasing

temperature. Here, we focus on the ∆F̃ ph, which determines the temperature dependence

of ∆F ph. We expect that |δV q→q′ | and m̄ are the two main factors in determining ∆F̃ ph.

Indeed, the ∆F̃ ph values of all the defects at different temperatures can be well fitted by a

simple but unified formula given as

∆F̃ ph = kBT (a1|δVq→q′|+ a2|δVq→q′|2 + b1m̄+ b2m̄2 + c|δVq→q′|m̄+ d). (5)
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Fig. 3b shows the case of T=800 K. Similar behaviors are observed at other temperatures

but with different parameter values (Fig.S7 in S.II). Overall, it is found that the |δV q→q′ |

term is the dominant factor for ∆F̃ ph, and a larger |δV q→q′ | usually gives a larger ∆F̃ ph.

For example, the larger ∆F̃ ph of SiGa compared to CdGa (116 v.s. 44 meV) is mainly

due to its larger |δV q→q′ | (∼12 v.s. ∼6 Å3). For defects with similar |δV q→q′ | values, m̄

becomes important in determining ∆F̃ ph, and a smaller m̄ gives a larger ∆F̃ ph. For example,

comparing CaGa, ZnGa, and CdGa, which have a similar |δV q→q′ |∼6 Å3, CaGa with smaller

m̄ (19.2) than ZnGa (24.2) and CdGa (33.6) has larger ∆F̃ ph (80 meV) compared to ZnGa

(47 meV) and CdGa (44 meV). We notice that the calculated ∆F̃ ph value for CN at 600 K

also agrees with a previous study [45].

|δVq→q’ | (A 3)

m_

(a) (b)

ΔF 
ph=kBT (a1|δVq→q'|+a2|δVq→q'|2

+b1m+b2m2+c|δVq→q'|m+d )

~
__ _

FIG. 3. Vibrational contribution to the temperature dependence of εα(q/q’) in GaN.

(a) ∆F ph as a function of temperature for different defects in GaN. (b) Relationship between ∆F̃ ph,

|δV q→q′ | and m̄, which can be described by a general polynomial formula. At 800 K, a1=0.15,

a2=0.0017, b1=-0.0263, b2=0.0006, c=-0.0019, and d=0.4311.

Combining the results of ∆F el (Fig. 2a) and ∆F ph (Fig. 3a), we arrive at the

temperature-dependent εα(q/q’ ) of defects in GaN. GaN is a type-I semiconductor [33],

whose |∆εCBM | (Fig. 4a) is noticeably larger than |∆εV BM | (Fig. 4b) at a given tempera-

ture, due to the different band-edge orbital characters [33, 46]. Importantly, the calculated

bandgap of GaN as a function of temperature agrees well with the experimental measure-

ments [34], confirming the reliability of our computational methods (Fig. S8 in S.II).
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As shown in Fig. 4a, three typical donors, i.e., VN , SiGa, and ON , are selected to demon-

strate the temperature dependence of εα(q/q’ ) for donors, to verify our proposed Rules I(a)

and II(a). Interestingly, these donors exhibit quite different temperature-dependent behav-

iors. Without the consideration of ∆εV BM , the εaα(q/q’ ) of all the donors become deeper

as the temperature increases, i.e., the higher the temperature, the deeper the εaα(q/q’ ).

Surprisingly, the εaα(0/+1) of SiGa and VN , which have similar shallow levels at T=0 K

(with the inclusion of ∆F zp contribution), exhibit dramatically different temperature de-

pendences, i.e., the change of ∆εaα(0/+1) in SiGa (-0.44 eV) in the range 0<T<1000 K is

much larger than that in VN (-0.28 eV), due to the significantly larger |∆V 0→+1| in SiGa

(Fig. 2b). Interestingly, although the εaα(0/+1) of ON is much deeper than that of SiGa at

0 K, they exhibit almost the same trend of ∆εaα(0/+1) under different temperatures, due to

their similar |∆V 0→+1| (the slight difference at high temperatures is caused by their different

m̄). Unexpectedly, the ∆εaα(q/q’ ) of one defect can also exhibit totally different behaviors

under different charge-state transitions. For example, the ∆εaα(0/+1) and ∆εaα(+1/+3)

for VN are dramatically different because of their largely different |δV q→q′ | (Fig. 2b). The

above observations, along with other calculated donors (Fig. S9a in S.II), confirm the pro-

posed Rule I(a) on the relationship between |δV q→q′ | and ∆εaα(q/q’ ) for donors at different

temperatures.

Combining εaα(q/q’ ) with the calculated CBM bowing of GaN, we obtain the εrα(q/q’ )

of donors. Interestingly, as exhibited in Fig. 4c, the εrα(q/q’ ) can become either shal-

lower [εrα(q/q’ )>0], deeper [εrα(q/q’ )<0] or even unchanged [εrα(q/q’ )∼0] for different

donors in different temperature regions. For examples, for SiGa and ON , ∆εrα(0/+1)≈0

in the range 0<T<500 K, due to the largest opposing effect between |∆εCBM | and

|∆εaα(0/+1)| (|∆εCBM |≈|∆εaα(0/+1)|); for T>500 K, |∆εCBM |<|∆εaα(0/+1)| gives rise

to ∆εrα(0/+1)<0, e.g., ∆εrα(0/+1) of SiGa is -0.04 eV at T=1000 K. For VN , |∆εCBM |>

|∆εaα(0/+1)| in the range 0<T<1000 K, resulting in ∆εrα(q/q’ )>0. Among all the

∆εrα(q/q’ ), the largest value occurs in the ∆εrα(+1/+3) of VN (0.33 eV at T=1000

K), due to the smallest opposing effect between |∆εCBM | and |∆εaα(+1/+3)|. The above

observations, along with other calculated donors (Fig. S9a in S.II), confirm our proposed

Rule II(a) that the ∆εrα(q/q’ ) of donors in type-I semiconductors is determined by the

relative magnitude and sign of ∆εaα(q/q’ ) and ∆εCBM .

In Fig. 4b, four typical acceptors, i.e., ZnGa, MgGa, BeGa, and CdGa, are selected to

12



Shallower

Shallower
Deeper

|δVq→q’|

Small

|δVq→q’|

Small

LargeLarge

(a) (b)

(c) (d)

FIG. 4. Temperature dependence of εα(q/q’) in GaN. εaα(q/q’ ) levels of several typical (a)

donors and (b) acceptors in GaN as a function of temperature. Calculated temperature-dependent

CBM and VBM changes are also plotted in (a) and (b), respectively. (c) and (d) are corresponding

∆εrα(q/q’ ) for (a) and (b), respectively. Gray arrow indicates the trend of the sizes of |δV q→q′ |.

demonstrate the temperature dependence of εα(q/q’ ) for acceptors, to verify our proposed

Rules I(b) and II(b). Holding large |∆V 0→−1|, the εaα(0/-1) of CdGa and ZnGa always

becomes shallower [i.e., εaα(0/-1)<0] as temperature increases. Interestingly, regardless

of the significantly different εaα(0/-1) values at 0 K for CdGa and ZnGa, their ∆εaα(0/-

1) exhibit similar temperature dependences, mostly due to their similar |∆V 0→−1| (Fig.

13



2b). Again, their slightly different ∆εaα(0/-1) at high temperatures could be due to their

different m̄. Surprisingly, although the CdGa and BeGa have close εaα(0/-1) values at 0 K,

their ∆εaα(0/-1) exhibit different (even opposite) temperature dependences, due to their

significantly different |∆V 0→−1| (Fig. 2b); with small |∆V 0→−1|, the εaα(0/-1) of BeGa

becomes even deeper when T>400 K, swapping the relative positions of CdGa and BeGa

at T=0 K and T=1000 K. Since the |∆V 0→−1| of MgGa is in between CdGa and BeGa,

the ∆εaα(0/-1) of MgGa is ∼0 in the range 300<T<700 K. These observations, along with

other calculated acceptors (Fig. S9b in S.II), confirm the Rule I(b) on the ∆εaα(q/q’ ) of

acceptors, especially the critical role played by |δV q→q′ |. We emphasize that the values of

|∆εaα(q/q’ )| for acceptors are usually much smaller than those for donors, due to the large

cancelling effect between ∆F el and ∆F ph for acceptors.

Combining εaα(q/q’ ) with the calculated VBM bowing of GaN, we can obtain the

εrα(q/q’ ) of acceptors. Overall, as shown in Fig. 4d, the εrα(0/-1) of all acceptors in GaN

becomes shallower [i.e., ∆εrα(0/-1)<0]. For CdGa and ZnGa, the synergistic effect between

∆εaα(0/-1) and ∆εV BM results in a large value of ∆εrα(0/-1), e.g., ∆εrα(0/-1)=-0.15 eV

at T=1000 K. For MgGa with ∆εaα(0/-1)∼0, its ∆εrα(0/-1) closely follows the trend of

∆εV BM . For BeGa, the opposing effect between ∆εaα(0/-1) and ∆εV BM leads to a small

∆εrα(0/-1). The above observations, along with other calculated acceptors (Fig. S9b in

S.II), confirm our proposed Rule II(b) that the εrα(q/q’ ) of acceptors in type-I semicon-

ductors, depending on the size of |δV q→q′ |, can exhibit either synergistic or opposing effects

between εaα(q/q’ ) and ∆εV BM .

III. CONCLUSION AND OUTLOOK

We emphasize that, although the overall sizes of |∆εα(q/q’ )| are not huge in GaN (gen-

erally <0.4 eV), we expect that the temperature effect, obeying the same rules as we have

developed, could be much more noticeable in many other systems, e.g., superhard semi-

conductors (e.g., diamond, in which defects play a key role for realizing quantum bits) or

organic-inorganic hybrid perovskites (e.g., MAPbI3, in which defects play a key role for lim-

iting their solar efficiencies), in which the phonon vibrations or band edge changes are much

more significant than those in GaN. Since the carrier concentrations and defect-mediated

non-radiative carrier recombination in semiconductors are very sensitive to the positions of
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εα(q/q’ ) inside the bandgap that are temperature dependent, our theory may also be applied

to reexamine or explain many existing puzzles on the disagreements between experimental

measurements and static first-principles calculations.

In conclusion, we have derived the basic formulas and consequently established two fun-

damental rules for the temperature dependence of εα(q/q’ ) for both donors and acceptors in

semiconductors, a question that has remained unanswered for decades. As we demonstrated

in GaN, the temperature-driven changes of εα(q/q’ ) for different defects can be rather di-

verse, i.e., it can become shallower, deeper or stay unchanged. The ultimate behavior is

mainly determined by the synergistic or opposing effects between free energy corrections

and band edge changes. In particular, we discover a previously ignored physical quantity,

δV q→q′ , that plays an unexpectedly central role in determining the temperature evolution of

εα(q/q’ ). Generally, these basic formulas and fundamental rules may potentially be applied

to design novel semiconductor devices operated under high or varying temperatures.
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APPENDIX A: DERIVATION OF εα(q/q′) AT FINITE TEMPERATURE

Without the inclusion of temperature effects, the formation energy of a defect α in charge

state q is defined as [12–14]:

∆Hf(α, q) = E(α, q)− E(host) +
∑

niE(i) +
∑

niµi + qεV BM(host) + qEF . (A1)
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E (α,q) is the total energy of the supercell with defect α in charge state q, whereas E (host)

is the total energy of perfect host without defect or impurity. E (i) is the energy of the

elemental constituent i at its elemental monomeric phases, and µi is its chemical potential

refer to E (i). n i is the number of atoms exchanged with the external environment during

the formation of defects for element i, and the charge state q is the number of electrons

transferred from the supercell to the reservoirs. εV BM(host) is the valence band maximum

(VBM) of the host material and EF is the Fermi energy refer to εV BM(host).

The εα(q/q’ ) is the Fermi level at which the charge state q has the same formation energy

with q’ :

εα(q/q’)w.o.T =
E(α, q′)− E(α, q)

q− q’
− εV BM(host). (A2)

With the inclusion of temperature effects, the ∆H f(α,q) in Eq.(A1) is replaced by the

Gibbs free energy ∆G f(α,q), and the E (α,q) [E (α,q’ )] is replaced by free energy F (α,q)

[F (α,q’ )]

∆Gf(α, q)[P,T ] =F(α, q)[V,T ]− F(host)[Vhost,T ] + (V− Vhost)P +
∑

niF(i)[Vi,T ]

+
∑

niµi[P,T ] + qεV BM(host)[Vhost,T ] + qEF [V,T ], (A3)

where P and T are the pressure and temperature, respectively. V and V host are the volumes

of the system with defects and the host system under pressure P, respectively. In our case

of no external pressure (P=0), Eq.(A3) can be written as

∆Gf(α, q)[P,T ] =F(α, q)[V,T ]− F(host)[V,T ] +
∑

niF(i)[Vi,T ]

+
∑

niµi[P,T ] + qεV BM(host)[V,T ] + qEF [V,T ]. (A4)

Accordingly, with the inclusion of temperature effects, εα(q/q’ ) is given by

εα(q/q’)[V,T ] =
F (α, q′)[V,T ]− F (α, q)[V,T ]

q− q’
− εV BM(host)[V,T ]. (A5)

The free energy F can be expanded around the equilibrium position as

F({RI}) = F0 +
1

2

∑
k,l

ukul[
∂2F

∂Rk∂Rl

]{R0
I} + O(u3), (A6)

where RI are the atomic coordinates of atom I, and RI
0 are the equilibrium position. uk,

defined as Rk-Rk
0, are the atomic displacements of atom k from the equilibrium positions.
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The first and second terms are the electron and phonon free energies, respectively. Accord-

ingly, F 0 includes two parts, E (the total energy of the system without the consideration

of temperature effects) and F el (the corrections of the free energy induced by the electron

contribution). Ignoring high order terms, we have

F [V,T ] = E + F el[V,T ] + F ph[V,T ], (A7)

where F ph is the correction of the free energy induced by the phonon vibration.

Under the quasi-harmonic approximation (QHA), F el can be written as [13, 29, 30]

F el[V,T ] = E th[V,T ] + E el[V,T ]− TS el[V,T ], (A8)

where the first, second, and third terms are the contributions from thermal expansion,

electron-occupation change, and electronic entropy, respectively. Generally, the contribu-

tions of the E el and S el are negligible in semiconductors, as also verified in our calculations

[Fig2(a)]. Therefore, we focus on the E th term in F el.

Under the QHA, F ph can be written as [32]

F ph =
∑
i

[
1

2
~ωi + kBT ln{1− exp(− ~ωi

kBT
)}], (A9)

where the ~, ωi, and kB are the reduced Planck constant, phonon eigenfrequency, and

Boltzmann constant, respectively.

Combining Eq.(A6) to Eq.(A9), we can obtain the εα(q/q’ ) of defects under different

temperatures

εα(q/q’)[V,T ] = εα(q/q’)w.o.T +
∆F el[V,T ] + ∆F ph[V,T ]

q− q’
−∆εV BM(host)[V,T ]. (A10)

The second term of Eq.(A10) represents the correction on the free energy differences be-

tween the q and q’ configurations induced by the electronic (∆F el) and vibrational (∆F ph)

contributions. The third term of Eq.(A10) represents the correction on the VBM en-

ergy position induced by thermal expansion and electron-phonon coupling (∆εV BM =

∆εthV BM+∆εphV BM).

Without consideration of the external pressure, volume expansion induced by rising tem-

perature can be described by the thermal expansion coefficient. From the definition of mean

volumetric thermal expansion coefficient, we can obtain that T and V are correlated by [47]

V = ϕV TV0 + V0, (A11)
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where ϕV is the mean volumetric thermal expansion coefficient, and V 0 is the equilibrium

volume of the system at 0 K. Thus, in case of no external pressure, we can keep T as the

only variable in our formula, and the εα(q/q’ ) at a finite temperature becomes

εα(q/q’)[T ] = εα(q/q’)w.o.T +
∆F el[T ] + ∆F ph[T ]

q− q’
−∆εV BM(host)[T ]. (A12)

At a given temperature , ∆F el(∆E th) and ∆εthV BM can be directly calculated via first-

principles calculations under hydrostatic-stress conditions [41, 42] (it is noted that the lattice

constant after thermal expansion is determined by the experiment thermal expansion co-

efficients of GaN [48]), ∆F ph can be determined through Eq.(A9) and the calculations of

phonon eigenfrequencies for charge states q and q’. Finally, ∆εphV BM can be calculated

using the finite displacement approach based on thermal lines [49, 50]. Unlike the conven-

tional finite-displacement approach that evaluates each phonon separately and sum over all

phonons, this stochastic approach considers all phonon modes at the same time, and the

electron-phonon interaction can be calculated accurately and efficiently.

APPENDIX B: DERIVATION OF ∆E th

Under the QHA, the thermal expansion induced energy correction E th, can be treated

as arising from strain [41, 42]. Therefore, the corrections on the total energy differences

between the system with and without defect α induced by the thermal expansion can be

written as [28]

E th(α, q)[V ]− E th(host)[V ] = −2γ0 ∆Vq[V− V0(host)] + ∆γ[V− V0(host)]2. (B1)

γ0 is the elastic constant of the host and ∆γ is the change of γ0 induced by a defect α in

charge state q. ∆V q=V 0(α,q)-V 0(host) is the volume change induced by the defect α at 0

K, in which V 0(host) and V 0(α,q) are the equilibrium volume of the system without and

with defect at 0K.

We assume that in a large system, a single defect cannot strongly influence the elastic

constant, i.e., ∆γ=0 as a first-order approximation, and ∆E th between the two charge states

q and q’ with the same defect α is

∆E th(α, q/q’)[V ] = E th(α, q’)[V ]− E th(α, q)[V ] = −2γ0 [V− V0(host)] δVq→q′ , (B2)
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where δV q→q′=V 0(α,q’ )-V 0(α,q) is the volume change induced by the defect α at 0 K when

the charge-state changes from q to q’. Combining Eq.(A11), we have

∆E th = −2γ0 [V− V0(host)] δVq→q′ = −2γ0 ϕVTV0(host) δVq→q′ . (B3)

APPENDIX C: DERIVATION OF ∆F ph

The phonon contribution to the free energy, F ph, can be described by Eq.(A9). Consid-

ering the first-order approximation of the Taylor expansion ex=1+x+x2/2!+x3/3!+..., we

have

F ph[T ] =
∑
i

[
1

2
~ωi + kBT ln(

~ωi
kBT

)]. (C1)

The ∆F ph between the two charge states q and q’ with the same defect α is given by

[two states with the same defect have the same number of phonon (i)]

∆F ph(α, q/q’)[T ] =F ph(α, q’)[T ]− F ph(α, q)[T ]

=
∑
i

[
1

2
~ωi(α, q’) + kBT ln(

~ωi(α, q’)
kBT

)]

−
∑
i

[
1

2
~ωi(α, q) + kBT ln(

~ωi(α, q)

kBT
)]

=
∑
i

{1

2
~[ωi(α, q’)− ωi(α, q)] + kBT ln[

ωi(α, q’)
ωi(α, q)

]}. (C2)

Defining ∆ωi= ωi(α,q’ )-ωi(α,q) and considering the first-order approximation of the Tay-

lor expansion ln(1+x)=x-x2/2+x3/3-..., we have

∆F ph(α, q/q’)[T ] =
∑
i

{1

2
~∆ωi + kBT ln[1 +

∆ωi
ωi(α, q)

]}

=
∑
i

[
1

2
~∆ωi + kBT

∆ωi
ωi(α, q)

]. (C3)
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