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Neural networks based on ultrafast time-delayed effects in exciton-polaritons
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We demonstrate that time-delayed nonlinear effects in exciton-polaritons can be used to construct
neural networks where information is coded in optical pulses arriving consecutively on the sample.
The highly nonlinear effects are induced by time-dependent interactions with the excitonic reservoir.
These nonlinearities allow to create a nonlinear XOR logic gate that can perform operations on the
picosecond timescale. An optoelectronic neural network based on the constructed logic gate performs
classification of spoken digits with a high accuracy rate.

I. INTRODUCTION

The concept of artificial neural networks (ANN) is a widely used approach to machine learning, designed to deal
with large amounts of data. ANNs are highly demanded for various applications such as image and speech recognition,
pattern detection, optimization, prediction of stock exchange variations, dedicated advertising, autonomous cars, etc.
[1]. However, speed and efficiency of software ANN implementations is limited by the von Neumann architecture
of traditional computers, where memory and computing units are physically separated. To circumvent this issue,
neuromorphic computing implements neural networks in hardware where access to external memory is not necessary.

In order to achieve high speed and energy efficiency, photonic systems are natural candidates [2-11]. In electronic
devices, communication requires charging of connection wire capacitance for every bit of information, which leads to
significant energy dissipation. At very high data rates, this leads to losses which are unacceptable from the practical
point of view. This problem is absent in the case of optical links, where information travels at the speed of light and
with almost no energy cost. For this reason, electronic wires are being replaced by optical links at smaller and smaller
scales, from long-haul optical fibers, to interconnections in data centers, to direct on-chip optical connections [12]. It
has also stimulated recent interest in optical computing, leading to remarkable achievements including efficient optical
vector-matrix multiplication and neural networks [13, 14]. One of the main practical obstacles in implementing
optical data processing is the weakness of the nonlinear response of optical media, or equivalently photon-photon
interactions, which is necessary to implement an activation function of a neuron or a transistor. From this point
of view, semiconductor exciton-polaritons, where photons and matter excitations (excitons) coexist in a quantum
superposition state [15], are an exceptionally promising candidates [16]. The excitonic component is providing strong
interactions required for low-threshold nonlinear operation [17, 18]. Thanks to the photonic component, they are able
to process data at very short timescales and transport data at the speed of light [19-21].

Neural networks based on exciton-polaritons have been recently investigated both theoretically [16, 22-24] and
experimentally [25-27]. Results presented so far, relied on reservoir computing [24] and binarized extreme learning
machines [28] approaches where most of the network connections are static and only the output layer is trainable.
Recently, it was demonstrated that the highly efficient backpropagation training algorithm can be implemented in an
exciton-polariton network, leading to an increase of prediction accuracy [27].

In experimental realizations presented in the literature, input data has been provided either by light pulses arriving
at the same time or continuous light beams shaped by spatial light modulators. However, in many practical appli-
cations, such as signal processing or speech recognition, input data has the form of a time-coded series. Moreover,
dynamical systems are believed to provide solutions to the problems in miniaturization as they allow to decrease the
number of spatial nodes [29]. Therefore, it is important that the computing system is able to process data arriving
at different instants.

In this work, we use the dynamics of an exciton-polaritons to construct a binarized neural network [30, 31] where
hidden layer neurons are XOR logic gates processing time coded data. We have recently demonstrated that spatial-
coded polariton binarized neural networks can be realized [26] reaching state-of-the-art accuracy at the MNIST pattern
recognition task. Here, we show that the dynamical properties of polaritons can be exploited to use the time domain,
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instead of the spatial domain, to process input signal. This is enabled by time-delayed interactions successfully realized
in many photonic systems [3, 32, 33] and also recently in polaritons arranged in spatial lattices [34]. In our realization
based on polaritons, the exceptionally strong time-delayed nonlinear effects are provided by the interplay between
the timescales of polariton condensate lifetime and the decay of the so-called reservoir of uncondensed excitons. As a
proof of principle demonstration, we show that our system is able to make highly accurate classification predictions
in a spoken digit recognition task.

II. SAMPLE AND EXPERIMENTAL DETAILS

The investigated sample was a semiconductor heterostructure based on CdTe microcavity with two distributed Bragg
reflectors (DBR) made of quaternary (Cd, Zn, Mg)Te materials. Microcavity contains three pairs of semimagnetic
quantum wells of 20 nm thickness with small concentration (about 0.5%) of manganese ions. The structure was grown
on a (100)-oriented GaAs substrate by molecular beam epitaxy. Sample was placed in an optical cryostat at liquid
helium temperature and excited nonresonantly with pulses of 3 ps width at frequency of 76 MHz. The excitation
energy was matching the first minimum of the DBRs stopband on the high-energy side. The emission from the sample
was collected on the CCD camera or streak camera.
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FIG. 1. Scheme of the time-delayed interactions. Two different pulses P; and P» delayed in time create long-living excitonic
reservoir. Relaxation from the reservoir leads to nonlinear polariton population delayed in time.

Our experiment relies directly on the properties of exciton-polaritons. These quasiparticles result from strong
coupling of excitons in quantum wells to photon modes in a microcavity [15]. At high enough densities, they may
undergo a transition to a nonequilibrium Bose-Einstein condensate and form a quantum fluid of light [35]. We
create polariton population using two independent laser beams with an adjustable time delay between the pulses,
as illustrated in Fig. 1. The first pulse creates long-lived reservoir (uncondensed particles) allowing the formation of
exciton-polaritons through energy relaxation and scattering. The reservoir remains populated when the second pulse
excites the sample. This leads to the dramatic increase of the density of polaritons and more efficient relaxation to
the ground state due to condensation by stimulated scattering. Collective polariton population is therefore coupled
through single reservoir, providing time-delayed interactions.

In the realization of our polaritonic logic gate, the pulses correspond to two inputs where logic states are encoded
via excitation power and delay between the pulses. Emission from the condensate serves as the output signal.

III. TIME-CODED HIGHLY NONLINEAR XOR GATE

Our method provides large nonlinearities originating from time-delayed interactions of polaritons with long-lived
excitonic reservoir and from the build-up of circular polarisation in the condensate. It should be noted that nonlinear
effects are negligible below the condensation threshold. Fig. 2 illustrates the emission signal from exciton-polaritons
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FIG. 2. Evidence of nonlinearity. Time-resolved photoluminescence from the exciton-polaritons pumped with the first pulse
P, the second pulse P> and two time-delayed pulses Pi + P>. The delay between the input pulses was 390.7 ps. Emission
originating from polaritons excited with a single pulse only is increased 5 times for better visibility. The legend shows pulse
energy of the first and the second pulse. The inset illustrates intensity of the second emission peak as a function of delay
between the pulses.

excited with two pulses delayed in time (brown line). The first peak originates from the weak emission of polaritons
below the condensation threshold. The first pulse, however, creates long-lived reservoir that remains active and
second pulse increases population of excitons that provide gain to reach condensation threshold. This results in an
observation of a second peak with much higher intensity than the first one. To demonstrate the nonlinear nature of
this phenomenon, we excite the sample separately with corresponding laser pulses. The gray and orange lines indicate
emission originating from excitation with the first and the second pulse separately. Both peaks are multiplied five
times for better visibility. We have observed that while the first emission peak has almost the same intensity in both
schemes, the second peak induced by a single pulse had significantly lower intensity than the peak resulting from
both pulses. The magnitude of nonlinear effects depends on time-delay between the pulses. The inset in Fig. 2 shows
the intensity of the second peak measured for different delays between the pulses. The observed dependence has a
strongly nonlinear character and a shape similar to the sigmoid function (marked with red line).

The nonlinear response of the system is used to construct a XOR gate, which can be considered the simplest form
of a nonlinear machine learning problem that cannot be implemented by a simple thresholding of a linear combination
of inputs, as is the case for OR / AND gates. The XOR classification task is designed to distinguish patterns in two
classes, consisting of input combinations ("00", "11") in the first class and ("01", "10") in the second class. Moreover,
it was demonstrated that XOR gates can be used as building blocks of binarized neural networks, which are able to
perform complex tasks such as image recognition very efficiently [30, 31]. In this case, XOR gates are used in the
role of neurons. The truth table of the XOR problem is shown in Fig. 3a). The XOR logic gate is an example of a
problem that is not linearly separable, as schematically represented in Fig. 3b). The binary inputs correspond to the
2 and y axes in the figure. The linear classification task can be performed at most with 75% accuracy as shown with
dashed line. To overcome this problem, we use the nonlinear transformation of inputs by the polariton condensate. A
linear combination of gate inputs x1, 2 and a sufficiently nonlinear output from the condensate y reduce this problem
into a linearly separable one in the three-dimensional input-output space [26]. In this case, the result of the XOR
operation is given by the sign of the expression z = wix; + wexs + wsy(x1,x2) + b, where wy and we are the input
weights, ws is the weight of the nonlinear output feature and b is the bias. The task of finding the proper weights
and thresholding are both implemented in software. The weights are determined using a linear regression algorithm.

The input-output characteristic of a time-coded nonlinear effects for polariton XOR gate is illustrated in Fig. 4.
Panels (a)-(d) show real space emission from a spot pumped with o polarised pulses and detected in the opposite
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FIG. 3. XOR logic gate as a problem not solvable by linear separation. (a) The truth table. (b) The input parameter space
and linear separation represented by dashed line.

(07) circular polarisation. For this polarisation configuration the obtained nonlinearities were the largest. The
condensate was excited with two pulsed laser beams with different delay between them (long/short delay encoded
0/1) and two different excitation powers (low/high power encoded 0/1, respectively). Emission was collected on a
CCD camera with the acquisition time of 60 ms. In this case increasing excitation power of laser pulses and decreasing
the delay time between them results in a build up of a condensate. Due to the right circular polarisation of input
pulses, condensation of semimagnetic exciton-polaritons results in a spontaneous build up of o™ circular polarisation.
This leads to a vanishing ¢~ component as observed in photoluminescence. This agrees with the emission observed

(@) 00 (b) 01 (c) 10 (d) 11
2325ps 05pd 2325ps 09pJ 318ps 05pJ 318ps 09pJ
(e)
520 00 i " 01 i 10 ! 11
> 1 1 :
o 157 i i | |
2 i W
2 10k ww.i E i ]
_.03 1 1 1
£ gt i i r 4
— i i i
o i i |
0 1 1 1 1 1 1 1
0 1 2 3 4 5 6

Number of measurement (x10°)

FIG. 4. Demonstration of time-coded nonlinearities used for XOR operation. (a)-(d) Real space emission of a polariton
condensate with different delay between excitation pulses (indicated at bottom left) and different power of the pulses (bottom
right). Corresponding input configurations z1z2 are marked at top right. Black dashed circles indicate integration regions
of 3um diameter used for further analysis. Color scale is the same in all panels. (e) Output intensity for all four input
combinations.



in Fig. 4(a)-(d) where the lowest signal intensity was measured for short delay and large power of the pulses. This
method allowed us to obtain nonlinearities exceeding significantly noise existing in the system. It is worth noting, that
in this case the system dynamics is orders of magnitude faster than the speed of the CCD camera, what is discussed
in IV.

We repeated the experiment to obtain training and testing datasets for the XOR problem. We performed linear
classification on a data nonlinearly transformed by polariton condensate. As the nonlinear output signal we used
mean intensities in regions marked by black dashed circles in Fig. 4a-d). In Fig. 4e) we show intensities measured in
the testing series. Each state was realized 150,000 times in the training phase and 30,000 times in the testing phase.
It is important to note, that the output intensities obtained for all input configurations does not have to resemble
the XOR gate truth table. At this stage only the high enough nonlinear output is crucial to further perform linear
regression and obtain XOR logic gate with perfect accuracy.

The accuracy of the XOR gate depends on the ratio of the obtained nonlinearity to the noise present in the system.
We calculated the degree of nonlinearity for a given set of data as [26]:

_ <100> + <Ill> - <I()1> - <I10>
= \/VOO + VOl + V10 + V11 ’ (1)

where (I;;) is the average output intensity for the ¢j input logic state and V;; = ((I;; — (I; ))?). It was demonstrated
previously [26] that almost perfect XOR gate operation is achieved for nonlinearity degree n > 5. Here during the
training phase 1 ~ 62. The same procedure was implemented in the testing phase where n ~ 57. The differences
between the values in the training and testing sets are originating mostly from the experimental noise. Despite the
noise present in the system, it is clear that the proposed system is highly nonlinear. Furthermore, the nonlinearities
were large enough to obtain 100% accuracy rate of the XOR gate in the whole testing dataset.

IV. ULTRAFAST XOR OPERATION

In order to prove the picosecond timescale of the XOR gate operations we performed a time-resolved experiment
with a streak camera detection. We studied time-resolved emission in four z; x5 input configurations coded by different
excitation power of the pulses and different delay time between the pulses. Fig. 5 demonstrates the signal observed
in o1 circularly polarised emission. In Fig. 5(a), low excitation power and long delay (432ps) between the pulses
(00) results in the formation of low density exciton-polaritons, which decay over few hundred picoseconds. For two
another input configurations (01) and (10), where the delay time was set to 5ps or power of the pulses was high,
we observed emission with a similar intensities and decay times. On the other hand, the (11) configuration, with
short delay between high intensity pulses, resulted in a clearly stronger emission. To calculate the nonlinearites we
integrated the signal in the first peak in each configuration which led to n = 70.

The same experimental conditions were applied during the measurements performed on a spectrometer with a CCD
camera. Output was taken as the total intensity observed in the emission. The performed experiments resulted in a
degree of nonlinearity above 50, which confirms that the nonlinearities remain high even for the signal averaged over
many realizations.

Our results confirm, that the time-coded XOR gate operates in a picosecond scale, but its output can be collected
by much slower detector, while still preserving high enough nonlinearities. In fact, there is only one factor playing
a crucial role in a XOR gate operation speed. It is a lifetime of an excitonic reservoir which imposes the minimum
delay between the laser pulses and for this realization the value is about 250 ps. In particular, it is possible to create a
XOR gate using constant delay between the pulses, defining input parameter space with power of the first and second
pulse.

V. SPEECH RECOGNITION

Previously, a binarized exciton-polariton neural network allowed to perform pattern recognition with a high accuracy
in comparison to other neuromorphic hardware systems [26]. This work applies the same type of network architecture,
realised using time-multiplexed XOR, gates, for speech recognition. To determine the efficiency of our system, we
consider a part of the TI 46-Word data set (available from the Linguistic Data Consortium) [36]. The database
mentioned above is a commonly used speech recognition benchmark for artificial neural networks.

In our analysis, we used 500 training and 1275 testing samples in the form of audio waveform files. Each item is a
recorded spoken word that corresponds to one of ten digits (0 to 9). The training set includes words spoken by five
different female voices, each word uttered ten times. The testing set included recordings of 8 other females, repeating
digits approximately 16 times.
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FIG. 5. Ultrafast XOR operation. (a)-(d) Time-resolved photoluminescence in the o circular polarisation. Excitation power
of the two excitation pulses and the delay between them are marked at top right. Top left annotation indicates the realized
r1r2 input configuration. Corresponding peaks are multiplied by marked factors for better visibility.

Using raw audio files as an input to a neural network is an ineffective method of speech recognition. To obtain
optimal classification results, the recorded signals are mapped onto the time-frequency domain using an acoustic
transformation [37]. This method can be considered as a feature extraction technique, commonly used in automatic
speech recognition. In our work, we employ two methods of audio waveform transformation: the Fourier transform
(FT) and the Lyon cochlear-ear model (LCM). The Lyon cochlear-ear model is a nonlinear transformation used to
decompose acoustic signals, which mimics the operation of a biological cochlear. It was confirmed that the application
of LCM to acoustic signals greatly increases the recognition rate [37].

The conceptual scheme of the proposed neural network is shown in Fig. 6. Each audio sample from a data set
is pre-processed and transformed into the time-frequency domain using Ny frequency channels. Next, all maps are
normalised and resized to the size Ny x Ny. Time-frequency patterns are converted into eight black and white
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FIG. 6. Scheme of the binarized neural network used for the speech recognition task. The recorded audio signal is transformed
into a cochleagram and presented as orange and white bitmap. Then the N randomly selected pixel pairs from the bitmap are
used as inputs to a set of XOR logic gates, acting as neurons in the hidden layer. The result of gate operations is used for
linear classification in the output layer.
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modulo operation returning the remainder of division of a/b. The binary time-frequency maps are used as neural
network inputs. From each map we selected N pairs of pixels denoted by p1,p2,ps,...,pn which allow us to reveal
nontrivial correlations between pixels in the bitmaps. The positions of the selected pixels did not change during the
entire learning process. Next, we use a linear classification, denoted in the figure as LC, to predict the spoken word.
To avoid overfitting, we use a stochastic gradient descent method with regularization. As we only train the weights
in the output layer used for linear classification, the network is an instance of an extreme learning machine [28].

TABLE I. Classification accuracy determined for spectrograms and cochleagrams using 5000 XOR gates in the hidden layer.

Fach value is an average of five different realizations of neural network teaching. Each realization corresponds to a different

selection of the randomly selected pixel pairs.

Size of time-frequency map| (16 x 16) (32 x 32) (64 x 64)
FT (%) 76.08 87.16 94.06

Method rr=rm oz 9096 9550  96.44

We examined the efficiency of the network using both spectrograms and cochleagrams as input data. We considered
time-frequency maps of size (16 x 16), (32x32) and (64 x64). Data samples delivered to the network were combinations
of eight binary maps merged into vectors [c1, ¢2,¢3, ..., cg]. The obtained results are presented in Table I. Increasing
the number of XOR gates in the hidden layer results in improvement of accuracy. Accuracy of the spoken words
prediction in the case of binarized and not transformed by XOR gates, FT and LCM inputs were: 75.50%, 86.12%,
92.72% and 86.12%, 94.4%, 95.5%, respectively for (16 x 16), (32 x 32) and (64 x 64) time-frequency bitmaps. The
highest increase of correct predictions, equal to 4.84%, was achieved for input in the form of a cochleagram containing
16 frequency channels.

VI. SUMMARY

We developed a method for the realization of exciton-polariton based binarized neurons using time-delayed effects.
We used time-coded addressing of a single exciton-polariton condensate with laser pulses delayed in time. The system
was used to implement two machine learning tasks, the nonlinear XOR problem and spoken digit recognition. Our
proof-of-principle experiment demonstrates the capability of exciton-polariton systems to process time-dependent data
on the picosecond timescale.
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