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Similar to its classical version, quantum Markovian evolution can be either time-discrete or time-continuous. Dis-
crete quantum Markovian evolution is usually modeled with completely-positive trace-preserving maps while time-
continuous evolution is often specified with superoperators referred to as "Lindbladians". Here we address the follow-
ing question: Being given a quantum map, can we find a Lindbladian which generates an evolution identical – when
monitored at discrete instances of time – to the one induced by the map? It was demonstrated that the problem of getting
the answer to this question can be reduced to an NP-complete (in the dimension N of the Hilbert space the evolution
takes place in) problem. We approach this question from a different perspective by considering a variety of Machine
Learning (ML) methods and trying to estimate their potential ability to give the correct answer. Complimentary, we use
the performance of different ML methods as a tool to check the hypothesis that the answer to the question is encoded
in spectral properties of the so-called Choi matrix, which can be constructed from the given quantum map. As a test
bed, we use two single-qubit models for which the answer can be obtained by using the reduction procedure. The
outcome of our experiment is that, for a given map, the property of being generated by a time-independent Lindbladian
is encoded both in the eigenvalues and the eigenstates of the corresponding Choi matrix.

The question posed in the abstract is a quantum version
of the "embedding problem" formulated by Elfving in
19371 for classical Markov processes: Given map P can
we find generator L such that P = exp(L T ), where T is
the given time interval? Answer "yes" would mean that
the original time-discrete evolution can be obtained from
the constructed continuous-time evolution by monitoring
the latter at the time instances t = T,2T, .... It may also
be that the answer is "no" and the time-discrete evolution
cannot be obtained as a stroboscopic sample of any time-
continuous Markovian evolution.

The problem of finding the answer for a given com-
pletely positive trace-preserving (CPTP) map P was
called "[quantum] Markovianity problem"2. An algo-
rithm to obtain the answer, based on a reduction of
the original problem to a particular problem of integer
semidefinite programming, has also been proposed2. In
its turn, this particular problem was shown3 to be re-
ducible to the well-known NP-complete 1-IN-3-SAT prob-
lem4. There is no surprise that the algorithm has an expo-
nential complexity with respect to the problem dimension
N. A recent attempt to implement the algorithm demon-
strated that the practical horizon is limited by N = 8 (e.g.,
by models consisting of no more than three spins/qubits)5.

Recently, the Markovianity problem has gained par-
ticular attention in the context of open quantum evolu-
tion governed by time-dependent Lindbladians. While
the stroboscopic version of coherent quantum evolution,
determined by a time-periodic Hamiltonian, can always
be obtained with an effective time-independent Floquet
Hamiltonian6,7, it is no longer so in the case of open quan-

tum evolution induced by a time-periodic Lindbladian,
L (t), L (t +T ) =L (t)8. The reason for that is that a gen-
erator – if it is of the Lindblad form – has to fulfill some
very specific properties. Currently, the problem of the
existence of effective Floquet-Lindbladians is actively dis-
cussed in the literature9–14, and different expansion tech-
niques are used to derive Floquet-Lindbladians. However,
most of the illustrative results are limited by N = 2.

One of the current trends in the quantum community
is to address many-body systems. In the context of the
Floquet-Lindbladian problem that means that it is impor-
tant to step beyond single spin/qubit models. Here we ap-
proach the problem from a new perspective, by consider-
ing it as a generic optimization problem and trying to ana-
lyze it by using the toolbox of Machine Learning methods.
Our motivation is that some of these methods may give us
a chance to get beyond the limit set by the reduced prob-
lem.

I. INTRODUCTION

We start right with the problem formulation and consider
the time-dependent Markovian master equation15,16

ρ̇ = L (t)ρ =− i
h̄
[H(t),ρ]+D(t)ρ, (1)

governing density operator ρ of the model system. The
evolution is set by a time-periodic generator of the Gorini-
Kossakowski-Sudarshan-Lindblad form (henceforth "Lind-
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bladian")17,18, L (t)=L (t+T ). It is characterized by a time-
periodic Hamiltonian H(t) and the dissipative part

D(t)ρ = ∑
i

γi(t)
[
Li(t)ρL†

i (t)−
1
2
{L†

i (t)Li(t),ρ}
]
, (2)

with jump operators Li(t) and non-negative rates γi(t). In gen-
eral, jump operators and rates are also time-periodic, with
the same period T . Under these conditions it is guaranteed
that, for any time t, the corresponding evolution can be repro-
duced with a completely positive (CP) and trace preserving
(TP) map16,

P(t) = T exp
(∫ t

0
dtL (t)

)
. (3)

where T is the standard time-ordering operator.
We will address the stroboscopic evolution set by the map

P(T ) = T exp
[∫ T

0
dt L (t)

]
. (4)

The repeating action of this map induces the time-discrete
evolution of the system, ρ(0) we have ρ(nT ) = P(T )nρ(0).
We now define a Floquet generator as a time-independent su-
peroperator K , such that

P(T ) = exp(K T ) or K =
log(P)

T
(5)

for the open driven system described by Eq. (1). If the Flo-
quet generator can be recast into the Lindblad form, i.e., in
the form given by Eq. (1) but with all operators and rates
time-independent, we call the corresponding Floquet gener-
ator Floquet-Lindbladian and write

LF = K . (6)

Now we pose the main question: Is there a Floquet-
Lindbladian LF for a given time-periodic Lindbladian L (t),
L (t +T ) = L (t)?

It was demonstrated2,3 that the answer to another question
"Is there a Lindbladian for the given completely positive trace-
preserving (CPTP) map?" [which is the map P(T ) in our
case] can be obtained by reducing the original problem to an
integer nonlinear programming problem. Therefore, formally,
there is a way to get the answer to the question about the ex-
istence of Floquet-Lindbladian.

The number of variables n in the reduced problem can be
estimated straightforwardly. It is limited by the maximal pos-
sible number of complex conjugated pairs in the spectrum of
the map2,3, nmax = bN2−1

2 c (one is subtracted because at least
one of the eigenvalues is equal to 1). Here N is the dimension
of the Hilbert space H the map is acting in and b...c is the
floor operation, i.e., it gives the greatest integer less than or
equal to the real input. For example, for N = 8 we could have
up to n= 31 integer variables and the answer to the question is
"yes" if there is at least one point of the lattice Z31 for which
the set of the necessary (and altogether sufficient) conditions2

is fulfilled.

It is indeed not possible to check all the points – even of
Z1 – if the lattice is not limited. Luckily, a convex feasible
region in the real space Rn can always be out-shaped2. To
prove that the answer is "yes" or "no", we have to check all
integer points inside the feasible region (or use the Khachiyan-
Porkolab algorithm19 instead). It was shown that this problem
can be reduced to a well-known NP-complete – with respect to
n – problem3. That means that any practical algorithm based
on this reduction will have an exponential complexity with
respect to n.

The answer can be easily obtained for a one-qubit (N = 2)
model because in this case n = 1 and the feasible region is just
a finite interval3,8,13. However, already for two-qubit models,
the complete check of integer points inside a 7-dimensional
volume can take a substantial time. We implemented an algo-
rithm5 that allowed us to out-shape the feasible volume and
test it with several popular multi-spin models. It turned out
that even in the case of three spins we have to deal with up
to 109 integer points for some, physically-relevant, values of
model parameters. Even by taking into account the embar-
rassingly parallelizable character of the task (each point can
be checked independently) and by running the algorithm on a
medium-size cluster, one would need to wait for several hours
before getting the answer5.

It is therefore doubtful that, by following this path, we
would be able to get answers for four-qubit models in the gen-
eral case, simply because it would not be possible to check
all the integer points inside the feasible volume in the 127-
dimensional space. Yet here we need to recall that the al-
gorithm we have used so far is based on a reduction of the
original problem to a known NP-complete problem. Strictly
speaking, the fact that one problem can be reduced to another,
however, does not mean that both are equally complex. To
speculate a bit further, many specific properties of the original
matrices involved in the problem formulation were neglected
in the course of the reduction so there is still a chance that the
original problem, even though still belonging formally to the
same NP-complete class, can be solved faster and with less
computation resources20.

After realizing the complexity of the problem, it is very
natural to think about alternatives, which could allow us to
solve problems for a reasonable large number of qubits – at
the expense of obtaining an answer which is not always cor-
rect but correct with some reasonably high accuracy. Here
Machine Learning (ML) methods look like immediate can-
didates21. We made the first step in this direction in Ref.9,
where we tried to implement ML methods used for computer
vision problems to reconstruct the boundary between ’yes/no’
region on the parameter plane of a two-qubit model. Unfor-
tunately, the potential of this approach is rather limited as it
requires extensive calculations on a coarse grid in the parame-
ter plane for every new model and, therefore, is not capable of
generalization. In addition, by training networks on images of
’yes/no’-boundaries we do not get closer to the understanding
of mechanisms that determine the existence (or non-existence)
of Floquet-Lindbladians.

In this paper, we use several ML algorithms and implement
a parameterization which is based on specific properties of the
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operators and matrices related to the original problem. By us-
ing a one-qubit model, for which the correct answer can easily
be obtained2,9, we demonstrate that ML methods can "learn"
the ’yes/no’-partition of the parameter space. We also discuss
what methods and parameterizations give the best accuracy.

II. REDUCED PROBLEM

In order to be a Lindbladian, operator K , Eq. (5), has to
fulfilled two conditions. First, it has to preserve Hermiticty.
In case K is a logarithm of a Floquet map, this is guaranteed
since the map itself is Hermiticity preserving. Next, K has to
be conditionally completely positive2. Formally, this means
that

Φ⊥K Γ
Φ⊥ ≥ 0, (7)

where Φ⊥ = 1− |Φ〉〈Φ| is the projector on the orthogo-
nal complement of the maximally entangled state |Φ〉 =
∑

N
i=1 (|i〉⊗ |i〉)/

√
N with {|i〉} denoting the canonical basis of

H .
A new object, C = K Γ = N(K ⊗ 1)[|Φ〉〈Φ|], is the Choi

operator22 corresponding to K which acts in the product
Hilbert space H 2. If K is given in the matrix form (by using
some basis)

K̂i j,kl := 〈i⊗ j|K |k⊗ l〉. (8)

the matrix form of the corresponding Choi operator is related
to it by the reshuffling operation23

C = K̂ R , Ci j,kl = K̂ik, jl . (9)

The reshuffling operation R is an involution so that being re-
peated twice it results in the identity transform. In the case
when K is a CPTP map, the corresponding Choi operator is
a state22,23, i.e., a density operator (though not normalized), in
H 2. For example, for any Floquet map P(T ) we could get
the corresponding state.

Condition (7) can be recast in some matrix inequality2, if
we use spectral decomposition of K . Since the Floquet map
is Hermiticty preserving, its spectrum is invariant under the
complex conjugation. Therefore, the corresponding N2 eigen-
values are either real or appear as complex conjugated pairs
(strictly speaking, the spectrum could also include eigenval-
ues of odd degeneracy). We denote the numbers of real eigen-
values as m and complex pairs as n. P(T ) can be represented
as

P(T ) =
m

∑
r=1

λrPr +
n

∑
c=1

(λcPc +λ
∗
c Pc∗) , (10)

where λr are the real eigenvalues, {λc,λ
∗
c } are the pairs of

complex eigenvalues, and Px the corresponding projectors2.
Any logarithmic branch, Eq. (5), of P(T ) can be repre-

sented as

K{x1,...,xn} = K0 + iω
n

∑
c=1

xc (Pc−Pc∗) , (11)

where K0 is the principle branch and ω = 2π

T . Therefore, ev-
ery branch is parametrized with n integers, {x1, ...,xn}, i.e., it
corresponds to a vertex x = {x1, ...,xn} of the Zn lattice. Now
we introduce a set of operators (that are, in fact, Hermitian)

V0 = Φ⊥K Γ
0 Φ⊥, Vc = iωΦ⊥(Pc−Pc∗)Γ

Φ⊥, c = 1, . . . ,n.
(12)

and arrive at the following test2:
Generator Kx is Lindbladian iff there is a set of n integers,
x ∈ Zn, such that

Vx =V0 +
n

∑
c=1

xcVc ≥ 0. (13)

Such type of matrix inequalities (and related programming
problems) is well known in the control theory; see. e.g.,
Ref.24. The crucial difference is that in there vector x is con-
sidered to be real. If matrices Vc are real and symmetric, the
inequality out-shapes a convex feasible region known as spec-
trahedron25. We deal with integers and this mere fact makes
the problem NP-complete (with respect to the number of the
matrices in the sum). However, we can benefit from the fact
the feasible region (13) is convex if x ∈ Rn. That is, we can
limit the number of integer points needed to be checked. This
was implemented in the algorithm we discussed in the intro-
duction.

Finally, imagine that we can quantify distance from ’Lind-
bladianity’ for any generator Kx. Then, if the answer is "no"
and there is no such integer vector x that condition (13) holds
(and, correspondingly, no Floquet-Lindbladian exists), we can
define the distance from Markovianity for P(T ) by picking
the branch which gives the minimal distance. Such mea-
sure was proposed by Wolf et al.2. It is based on adding a
noise term N , that is the generator of the depolarizing chan-
nel, exp(T µN )ρ = e−µT ρ + [1− e−µT ] 1

N , weighted with
the strength µ , to the generator and determining the mini-
mal strength required to make at least one of the logarithmic
branches Lindbladian , i.e.

µmin = inf
{

µ ≥ 0
∣∣∣ Kx +µN is a valid

Lindblad generator

}
. (14)

III. METHODS

We select eleven popular ML methods implemented in the
scikit-learn library26. Namely, we use the k-nearest neigh-
bors method (kNN)10,11, support vector machine (SVM) with
linear, polynomial and RBF kernels12,14, decision trees27,28,
random forest (RF)29,30, fully connected neural networks
(FNN)31,32, AdaBoost33, linear (LDA) and quadratic (QDA)
discriminant analysis34, and naive Bayes classifiers35. All
these methods are well described in the literature, so in this
section we only explain the reasoning behind our choice.

The performance of kNN , decision trees, and random for-
est methods depends on how the elements of the training and
test samples are distributed in the space. In all these meth-
ods, a direct comparison of an element from a test sample
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with a training sample and search for a similar element, are
used. We could expect good performance of the methods in
data interpolation if the training sample is representative, but
the possibility of equally good extrapolation is questionable.
Various implementations of SVM, discriminant analysis, and
naive Bayes classifier have different features. Thus, we may
expect to get reasonably accurate functional models of the
boundaries between the ’yes’ and ’no’ regions.

The random forest, fully connected neural networks, and
AdaBoost methods are able to build very complex models and
highlight non-obvious features and can solve a complex prob-
lem in an accurate way. We are not only motivated by the
idea to demonstrate the potential of ML methods in getting
the answer for single-qubit models. In fact, we hope to get
an intuitive understanding of how the specific mathematical
nature of the problem influences the results of the classifica-
tion. We expect that by analyzing the performance of these
methods we can get an additional insight.

All the selected methods have a number of meta-
parameters, some of which are set by default, while others are
selected and optimized to get the best results. In particular,
we vary the following parameters: the number of neighbors in
kNN (typically 3-7), the degree of the kernel polynomial in the
polynomial SVM (typically 2-11), the height of the decision
tree (typically 3-15), the height (2-9) and the number (typi-
cally 50-300) of trees in random forest, the number of layers
(typically 3-4) and their size (from 8 to 512) in fully connected
neural networks, as well as the type of the AdaBoost classi-
fiers (short decision trees) and the number of these classifiers
(typically 50-300). In the following sections, we present only
the best results obtained for each of the methods.

IV. MODEL

As a test bed we used a single spin(qubit) model described
with the following Hamiltonian8 (Problem I):

H(t) =
∆

2
σz +Ecos(ωt +ϕ)σx, L = σ_ (15)

We also modified this model by adding one extra operator
term to the Hamiltonian (Problem II):

H(t) =
∆

2
(σz +σy)+Ecos(ωt +ϕ)σx, L = σ_ (16)

For both models, we use the following parameter values:
∆ = 1,γ = 0.01. Such parameters as amplitude E, frequency
ω , and phase shift ϕ , are varied to generate data sets for the
ML algorithms.

As it is shown in the previous section, solution of the
Floquet-Lindbladian existence problem reduces to the analy-
sis of the properties of the logarithm of Floquet map, P(T ) =

T exp
[∫ T

0 dt L (t)
]

. This Floquet map, in turn, can be trans-

formed into a state by using the Choi–Jamiołkowski isomor-
phism22,23. Represented as a matrix, it is positive semidefinite
and has trace N. The isomorphism provides a natural way

to parametrize Floquet maps in order to produce inputs for
the ML algorithms. We will consider three possible encoding
schemes that are to use as inputs: (i) the eigenvalues of Choi
matrices, (ii) whole Choi matrices, and (iii) eigenvalues and
eigenvectors of Choi matrices.

V. RESULTS

A. Methodology

We start with a brief summary of the results presented in
this section.

We consider two one-qubit models, Problem I and Prob-
lem II, defined in the previous section). Both are parametrized
with two parameters, amplitude E and frequency ω of the
modulations. We start with Problem I and analyze the perfor-
mance of the selected ML methods (Section III) in providing
the answer to the question "Is there a Floquet-Lindbladian?",
for different regions on the {E,ω} plane. Instead of the origi-
nal Floquet maps, we use the corresponding Choi matrices as
the main source of information for classification. After ob-
taining encouraging results for Problem I, that is separability
in the space of the eigenvalues of the Choi matrices, we check
whether the obtained classifiers are capable of coping with
Problem II. After realizing that the quality of the results be-
came significantly worse, we consider alternative methods of
parametrization, still based on Choi matrices. We find that one
of these parametrizations turns to be the best.

For Problem I, we generate samples by varying phase shifts
ϕ . For each value of ϕ , we go through the values of the ampli-
tude E, from 0 to π , and the frequency ω , from 0 to 2π with
a step of π/25. Each dataset corresponding to phase shifts
ϕ = {0,π/4,π/3,π/2,2π/3,3π/4} is randomly divided into
training and validation samples in the proportion of 90% and
10%, respectively. A test sample is organized in a similar way,
but for shifts ϕ = π/8 and ϕ = 5π/8. Further, similar samples
are generated for Problem II.

We use three conventional metrics: accuracy, f1-score, and
Area Under the Curve (AUC). The first metric, accuracy, is
the percentage of correct answers for the presented data. This
metric is not always fair, since in many problems it is not easy
to balance the number of objects of different classes in the
samples. In our case, f.e., about 70% of the data belongs to
the class of problems with the answer ’yes’, so even an ele-
mentary classifier that always answers ’yes’ will receive an
acceptable accuracy of ∼ 0.7. Therefore, we also use two
other metrics to take care of the imbalance in the datasets.

The f1-score36 is the harmonic average between precision
and recall. This metric is a compromise between the two,
where precision is the ratio of true-positive results to all posi-
tive results, and recall is the ratio of true-positive elements to
all true-positive and false-negative objects in a sample. The
need for a compromise is due to the fact that often we can
increase precision, decreasing recall, or increase recall, but
decrease precision. The third metric, AUC37, is the integral
indicator which estimates the quality of a classifier and its er-
rors. It is not always possible to use it independent of the con-
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text, since this indicator is very sensitive to noise, but could
be informative as a complement to other metrics.

B. Results

1. Classification based on eigenvalues of Choi matrices

Feature extraction plays one of the key roles in solving clas-
sification problems using ML methods. Relevant feature ex-
traction affects the accuracy of classifiers, allowing ML meth-
ods to discard insignificant information and focus on the main
features. During the last decade, substantial progress in this
direction has been made when solving a wide range of prob-
lems from various fields of science and technology. These
fields include computer vision, image processing, computa-
tional biomedicine, natural language processing, and other ap-
plications. However, for the problems from such field as com-
putational physics, there are no well-defined guidelines, and
intuition still plays an essential role. Intuitive guesses are of-
ten supplemented by several trial-and-error rounds which re-
sult in finding the feature space in which separability is sharp
enough.

In the case of the Floquet-Lindbladian problem, our intu-
ition tells that the properties of the Choi matrices of the Flo-
quet maps can open a way to the desired separability. It is
known that the Choi matrix of the quantum map reflects the
complete positivity (or its absence) of the latter in a very trans-
parent way: The map is completely positive if its Choi ma-
trix is positively semidefinite, i.e. all the Choi eigenvalues
are non-negative23. Therefore, it is natural to assume that the
property of being Markovian (or the absence of such property)
of the given CPTP map can be encoded in the corresponding
Choi matrix. However, what properties of the Choi matrix to
use and what parametrization is optimal are open questions.
We start with the eigenvalues of the Choi matrices as features
to classify the ’yes’ and ’no’ answers.

The eigenvalues of the Choi matrices are real positive num-
bers which sum up to N. The space of eigenvalues in the one-
qubit problem is a three-dimensional positive manifold in the
four-dimensional real space. The possibility to visualize the
eigenvalues in 2D space and thus to examine the position of
the points corresponding to the ’yes’ and ’no’ answers is an
important advantage of this parametrization. To test this idea,
we consider Problems I and II and vary values of the ampli-
tude and frequency for a specific fixed value of the phase shift.

For every parameter set, we construct the Choi matrix
and calculate its eigenvalues numerically. Further, by using
the test (13), the answer to the question of the existence of
Floquet-Lindbladian is obtained. The generated dataset con-
sists of lists of eigenvalues, labeled with "0" if the answer is
’no’ and "1" if the answer is ’yes’. Fig. 1 (left) shows that the
distribution of the answers is not chaotic but exhibits some
structure so potentially it can be partitioned into ’yes/no’ sub-
manifolds. We find this behavior typical, and the partition is
present for both models, I and II, when they are considered
separately. However, as it is discussed in the next section, if
we plot the ’yes/no’ points for both models, without differ-

entiating between them, we get a cloud of points which no
longer exhibits signatures of partition.

Next, we built classifiers using eleven selected ML meth-
ods. The results for Problem I are presented with Fig. 2.
The main observation is that the Nearest Neighbors, Decision
Tree, and Random Forest methods yield the best results (in
terms of the metrics used) and significantly outperform other
methods. The reason for this is that these methods compare
the classified point of the parameter space with the original
training sample, thereby taking into account the fact that the
points are close in the sense of a particular metric. Consider-
ing by tuning the amplitude, frequency, or phase shift we do
not detect substantial changes (for both problems, I and II),
we conclude that the classification scheme based on the Choi
eigenvalues works reasonably well.

Is it possible to improve the classification? To get an in-
sight, we expand the feature space by adding various func-
tions of the Choi eigenvalues such as logarithms, exponents,
degrees, roots, trigonometric, hyperbolic functions, and their
combinations. We assume that in the extended space, methods
would be able to detect linear or other, relatively simple, sepa-
rability. We obtain the best separability in the space consisting
of eigenvalues in powers of 1, 1/2, and 1/4; see Fig. 3. It is
noteworthy that those methods that previously worked poorly
have significantly improved their results. The fully connected
neural network outperforms other methods in the sense of the
classification accuracy, being able to accurately approximate
the separating surface in the feature space.

The next important question is to what extent the devel-
oped classifiers are capable of generalization. Note that so far
they were trained to solve one specific problem (Problem I or
Problem II), albeit with different parameters. Now we want
to check how the classifiers developed for Problem I can cope
with Problem II.

Unfortunately, the outcome is disappointing. It turns out
that the models trained and validated for Problem I is not suit-
able for Problem II. One could say that this is expected since
all methods have not seen the data obtained for Problem II
during their training. However, the problems are similar and,
therefore, we naturally expect the models should be able to
generalize. To improve the performance, we add data obtained
for Problem II to the training set. This dramatically improved
the results; see Fig. 4.

However, it is still not possible to achieve results that com-
pete with the metrics obtained during training and validating
of classifiers on a single problem. The reason for this can be
understood by looking at Fig. 1 (right). The presented plot
shows that it is difficult to reach separability because when
the samples from two problems are combined, some points
appear surrounded by a cloud of points with the opposite an-
swer. We do not present the feature space extended by various
functions of the eigenvalues of the Choi matrices for this case,
but obtained results make it clear that the corresponding pa-
rameterization does not lead to a better accuracy. Therefore,
we should look for alternative parameterizations.
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FIG. 1. Distribution of ’yes’ (orange and red dots) and ’no’ (blue and green dots) answers in the space of the three largest eigenvalues of
the Choi matrices of the Floquet maps. Left: distribution for Problem I, Eq. (15), for phase shift of π/2. Right: Distributions for Problem I,
Eq. (15), and Problem II, Eq. (16), plotted together. Classification is expected to be more complicated in this case because the separability
cannot be detectable visually, in contrast to the distribution for Problem I alone (left panel).

FIG. 2. Classification accuracy for datasets of Choi eigenvalues of Problem I, for training (top row) and test (bottom row) samples. The
accuracy is quantified by using three different measures (see Section VA). The center of a diagram corresponds to accuracy 0.4.
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2. Classification based on the elements of Choi matrices

As we figured out in the previous section, the parametriza-
tion based on the eigenvalues of Choi matrices does not pro-
vide the possibility to generalize from one physical model to
another model even if we add data from both models in the
training dataset. Apparently, this is because such parameteri-
zation is rather reduced and we are losing too much informa-
tion when condensing properties of the original Floquet map
into the corresponding Choi eigenvalues. Here we try an alter-
native parametrization based on the elements of the Choi ma-
trix. Namely, we use the following parameterization: the up-
per triangle of the matrix, including the diagonal, containing
the real parts of the elements, and the lower triangle contain-
ing the imaginary parts of its elements. Such a representation
is complete, since we can unambiguously restore the original
data, and all the elements of the constructed matrix are real
numbers. Next, we vectorize the real matrix, by writing its
elements one after another column-wise. Fig. 5 presents ex-
amples of such parameterizations for four different parameters
of Problem I (Figs. 5a-d).

Using this parametrization, it is also possible to solve the
classification problem by combining data from problems I
and II both in the training and in the test samples. The best
achieved results are summarized in Fig. 6. It turns out that
almost all methods substantially improved their performance,
both on the training sample and the test sample. AdaBoost,
Neural Network, and Random Forest methods show very good
results on the training set (errors less than 2.5%), while on the
test set, the results are expected to be slightly worse in terms
of accuracy.

To get more insight, we inspect the two-dimensional dia-
gram on Fig. 7 in order to understand when the classifiers are
wrong. It is not correct to think that errors are localized at
the vicinity of the border between the ’yes/no’ areas. The
errors of this sort are expected; however, we also find error
zones that are far from the border. For example, ML methods
mistakenly detect extensive dark blue ‘petals’ corresponding
to the answers ’no’ when solving Problem I. It is notewor-
thy that such ‘petals’ exist in Problem II. Obviously, having
learned such ‘petals’ in one of the problems, ML methods fail
to learn to recognize whether these petals are in other prob-
lems or not. We tried to overcome this problem by balancing
the contribution of data from several problems in the training
sample, but this did not help. Moreover, we found that ‘petals’
appear erroneously even if we only use Problem I for training
and evaluation. Our conclusion is as follows: the considered
parametrization is not suitable for an accurate feature selec-
tion.

It seems that even though we are using all the information
encoded in the Choi matrix, the resulting approach does not
lead to a better performance. The tendency is that simple mod-
els cannot generalize data from different problems and com-
plex models are often overfitted. We conclude that we should
try to identify features that are important for classification and
train models on these features.

3. Classification based on eigenvalues and eigenvectors of
Choi matrices

Finally, We consider parameterization of a Choi matrix
based on the full eigenset, which includes eigenvalues and
eigenvectors. The matrix of eigenvectors is an N2×N2 or-
thonormal complex matrix. It is not very convenient to use it
in this form since the values of its elements vary over a wide
range. Given that angles are a key feature of eigenvectors, we
decided to use spherical coordinates. To use this coordinate
system, we have to unfold a complex vector of size N2 into
real vectors of the size of 2N2. In this case, it is possible to
make the last imaginary coordinate (the last coordinate of the
real vector) equal to 0. We converted such vectors into spher-
ical coordinates as follows:

r =
√

x2
1 + x2

2 . . .x
2
N2−1 + x2

N2

ϕ1 = arccot
x1√

x2
N2 + x2

N2−1 . . .x
2
3 + x2

2

ϕ2 = arccot
x2√

x2
N2 + x2

N2−1 . . .x
2
4 + x2

3

. . .

ϕN2−2 = arccot
xN2−2√

x2
N2 + x2

N2−1

ϕN2−1 = arccot
xN2−1 +

√
x2

N2 + x2
N2−1

x2
N2

This approach has several advantages:

1. There is no loss of information, that is, the original data
(Floquet map) can be reconstructed.

2. The length of the vector is equal to 1 (and therefore is
irrelevant).

3. We can exclude the coordinate of the angle ϕN2−1 ∈
[0,2π] from the data, since it is equal to zero during
computation for the zero component. Thus, the angles
close to 0 and 2π are not close to each other in the gen-
erated data.

4. All other angles ϕi ∈ [0,π], and represent an ordinary
hypercube.

All angles were also normalized to the range [0,1] to get rid
of unnecessary dependence on π .

After constructing the classifiers, we implement the same
training procedure as in the previous section, by using datasets
obtained with both models, I and II. We find that the results
are substantially better; see Fig. 8. However, there are still
regions of wrong answers far from the ’yes/nor’ border. As
before, in some cases in Problem I, the petals of answers ’no’
were mistakenly found in those areas of parameters in which
these petal-like regions are present in Problem II. We analyze
the datasets to understand the origin of this behavior. We find
that the adjacent points on the diagram are distinguished by a
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FIG. 3. Classification accuracy for datasets of Choi eigenvalues (blue) and of their functions, square roots and and fourth-order roots (red).
Datasets were generated for Problem I. The accuracy is quantified by using three different measures (see Section VA). The center of a diagram
corresponds to accuracy 0.4.
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smooth change in the angles corresponding to real-valued co-
ordinates, and by sharp changes in the angles corresponding
to complex-valued coordinates. As a result, ML methods at
some point begin to ’react’ only to dramatic changes of the
values, which leads to the decay of the accuracy of classifica-
tion. To overcome this effect, we remove angles correspond-
ing to the complex-valued coordinates from the datasets. Af-
ter purging the data, we evidently are no longer able to recon-
struct the original matrix, however we expect that this purge
could improve the accuracy of classification. Fig. 9 reports
the obtained results.

First of all, the accuracy of every classifier has improved.
Most of the methods now give correct answers, both on the
training and test samples, in more than 90% of the cases. Next,
we concentrate on further improving the accuracy of the meth-
ods that give the best results by performing some balancing in
the feature space. We notice that changes in the eigenvalues
contribute less to the classification results because the sum
of all eigenvalues is equal to 2, but each of the angles corre-
sponding to the eigenvectors varies from 0 to 1. To achieve
more homogeneity, we use the following transformation:

λ
′ = 0.5(λ −0.5)

 1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

 (17)

After performing the transformation, we get three non-zero
values, which are distributed from 0 to 1. Fig. 10 shows the
distributions of eigenvalues before and after the transforma-
tion.

The obtained results demonstrate that after the transforma-
tion, the first eigenvalue does no longer dominates over the
rest of the eigenvalues. Further on, we scale the values of the
angles from the interval [0,1] to the interval [0,0.25] in order
to increase the importance of the contribution of eigenvalues
to the classification results. All this improves the accuracy
even of the methods that previously did not work well. The
final results are summarized in Table 1 and Fig. 11. The dia-
gram shown in Fig. 11 highlights that the classification errors
have local characters and there are no wrong-answer regions
appear.

VI. CONCLUSION

In this work, we estimated the potential of Machine Learn-
ing (ML) methods as tools to analyze the Floquet-Lindbladian
(FL) problem. We put the emphasis on finding appropriate
feature space for which it is possible to construct and train
high-accuracy classifiers. As a start, we considered the feature
space constructed by using the eigenvalues of the Choi matri-
ces and found that even though good accuracy can be achieved
with one model, it is not possible to generalize the obtained
classifiers to another problem. Next, we use the whole sets
of elements of the Choi matrices. However, this approach did
not yield encouraging results either. Finally, by taking into
account all the elements of the eigenset, that are eigenvalues
and eigenvectors of the Choi matrix, we managed to develop

a procedure to purge and normalize data, which allowed us
to reach more than 90% of the classification accuracy when
solving the FL problem for both models.

Even though the results we obtained are encouraging and
motivating, we should not overestimate the perspectives since
we are having a situation rather typical to the ML and AI fields
when the results are usually very promising for small-scale
test problems. First of all, we cannot prove that the devel-
oped schemes would work if the problem set-up is substan-
tially modified. Next, it is not known whether it will be pos-
sible to generalize the results to higher values of N (which is
our main motivation).

However, our results provide insight into the mathematical
nature of the original problem38. For example, the fact that,
by taking into account not only eigenvalues of the Choi ma-
trix but also eigenvectors, we have obtained substantially bet-
ter accuracy, tells that some physically relevant information
about Markovianity of the map is encoded in the eigenvectors
of its Choi matrix. Since the test, Eq. (13), contains matri-
ces derived from the eigenelements of the Floquet map, we
could assume that eigenvectors of the Choi matrix also bear
information about the degree of Markoviaity of the original
Floquet map. Our results validate this assumption and thus
constitute, as we believe, a step in the understanding of the
Floquet-Lindbladian problem.
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FIG. 4. Classification accuracy for datasets of Choi eigenvalues (blue) and of their functions, square roots and fourth-order roots (red).
Datasets were generated for Problem I. Additionally, we train and test models with mixed datasets consisting of the data for both problems, I
and II (green). The accuracy is quantified by using three different measures (see Section VA). The center of a diagram corresponds to accuracy
0.4.

FIG. 5. Parametrization of the Choi matrix. The upper half of the matrix corresponds to the real part, the lower one – to the imaginary part of
the matrix. Center: Diagram of ’yes’ (light blue) and ’no’ (dark blue) answers to the question of the existence of Floquet-Lindbladian for the
Problem I. Four combinations of parameters are used (a, b, c, d). Their positions on the (E,ω) plane are indicated on the central diagram (red
squares).
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FIG. 6. Classification accuracy for datasets of the Choi eigenvalues, and their functions, square roots and fourth-order roots (green) compared
to the accuracy obtained by employing datasets generated by using elements of the Choi matrices (light blue). Samples from Problem I and
Problem II were used for training and testing. The accuracy is quantified by using three different measures (see Section VA). The center of a
diagram corresponds to accuracy 0.4.

FIG. 7. ’Yes/no’ partition of the parameter space for Problems I (top row) and II (bottom row) for different values of phase shift. Partitions are
obtained by using the test, Eq. (13)[left] and ML methods, the Nearest neighbors method [center] and the Random forest method [right]. For
the ML methods the parametrization based on the elements of Choi matrices is used.
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FIG. 8. ’Yes/no’ partition of the parameter space for Problems I (top row) and II (bottom row) for different values of phase shift. Partitions are
obtained by using the test, Eq. (13) [left] and ML methods, the Nearest neighbors method [center] and the Random forest method [right]. For
the ML methods the parametrization based on the eigenvalues and eigenvectors of Choi matrices is used.

FIG. 9. Classification accuracy for three datasets: a) generated by using the Choi eigenvalues and their functions, square roots and fourth-order
roots (green); b) generated by using elements of the Choi matrices (light blue); c) generated by using the Choi eigenvalues and eigenvectors
after appropriate normalization (magenta). Samples from Problem I and Problem II were used for training and testing. The accuracy is
quantified by using three different measures (see Section VA). The center of a diagram corresponds to accuracy 0.4.
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FIG. 10. The distribution of the eigenvalues of Choi matrices before (top row) and after (bottom row) the transformation, Eq. (17).

FIG. 11. ’Yes/no’ partition of the parameter space for Problems I (top row) and II (bottom row) for different values of phase shift. Partitions
are obtained by using the test, Eq. (13) [left] and ML methods, the Nearest neighbors method [center] and the Random forest method [right].
For the ML methods the parametrization based on the eigenvalues, normalized with the transformation (17), and eigenvectors of Choi matrices,
is used.
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