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We develop a theory of charge transport along the quantum Hall edge proximitized by a “dirty”
superconductor. Disorder randomizes the Andreev reflection rendering the conductance of a prox-
imitized segment a stochastic quantity with zero average for a sufficiently long segment. We find the
statistical distribution of the conductance and its dependence on electron density, magnetic field,
and temperature.

Introduction.— Recent interest in engineering an ex-
otic superconductor have renewed the effort to combine
the superconducting proximity effect with a quantizing
magnetic field. The combination of the two has been
proposed as a route to realize new quasiparticles, such as
parafermions [1, 2], which may be employed for topolog-
ical quantum computing [3]. The picture of the prox-
imity effect is based on Andreev reflection, in which
an electron incident on the interface between a normal
state conductor and a superconductor is reflected as a
hole [4]. In fact, this electron-hole conversion has been
demonstrated [5, 6] in focusing experiments utilizing a
weak magnetic field B to bend the electron and hole
trajectories. Classically, trajectory bending due to the
Lorentz force leads to formation of skipping orbits prop-
agating along the boundaries. At fixed energy, quasiclas-
sical quantization results in a discrete spectrum of angles
αn(B) such a trajectory may form with the boundary,
varying continuously with B. For electron-hole conver-
sion at a boundary with a clean superconductor, the an-
gles of incidence and reflection obey the retroreflection
condition, αn(B) + αm(B) = π. Clearly, the latter is
satisfied only for a discrete set of fields B. In weak fields,
i.e., at high filling factors ν � 1, this set is dense, and one
may disregard the consequence of its discreteness [7, 8].

The described electron and hole “magnetic surface lev-
els” [9] are known as the edge states in the context of
the quantum Hall effect. The angle matching problem
becomes severe for a smaller ν. For a single edge state
(ν = 2), the matching condition is satisfied only for one
specific value of B. Electron-hole conversion is effective
only at that fine-tuned value of the magnetic field.

Disorder, however, lifts the retroreflection constraint,
and allows for an appreciable electron-hole conversion at
all magnetic fields. Indeed, a strong conversion signal was
observed in recent experiments [10–13] without any fine
tuning; the need of high critical fields Hc2 dictated the
use of “dirty” superconductors. Robust Andreev reflec-
tion, being enabled by disorder, is naturally sensitive to
its realization in a sample. As a result, the charge trans-
port varies stochastically with control parameters such as
the magnetic field or the electron density, as is observed
both in experiment [11] and in numerical simulation [14].

The crucial difference of conduction along the proxim-
itized quantum Hall edge from the conventional meso-

scopic transport stems from the chirality of the edge
states. This renders the well-established theory of meso-
scopic conductance fluctuations [15, 16] inapplicable. In
this work, we develop a quantitative theory of mesoscopic
quantum transport along the proximitized chiral edge,
making predictions for the statistics of conductance fluc-
tuations and their dependence on electron density, mag-
netic field, and temperature. The results obtained for
chiral transport differ substantially from their counter-
part in usual conductors.
Model.—We are interested in the linear conductance G

in a three-terminal setting, see Fig. 1(a). To find G, we
start with the Hamiltonian

H = H2DEG +HSC +HT. (1)

Here, H2DEG describes the two-dimensional electron gas
(2DEG) in a ν = 2 quantum Hall state. HSC is the
Hamiltonian of the superconductor. We consider the
experimentally relevant [10–13] “dirty” limit lmfp � ξ,
where lmfp and ξ are, respectively, the electron mean free
path and the coherence length in the superconductor.
Coupling between the 2DEG and superconductor is de-
scribed by the tunneling Hamiltonian [17, 18]

HT = t
∑

σ

∫ L

0

dx (∂yψ
†
σ(x, 0)∂yχσ(x, 0, 0) + h.c.), (2)

where ψσ(x, y) and χσ(x, y, z) are annihilation operators
for an electron with spin σ = ↑ or ↓ in the 2DEG and
superconductor, respectively. The interface of length L
is located at y = z = 0. For simplicity, we assume that
the tunneling amplitude t is uniform along the interface.

For the purpose of describing transport at low tem-
perature and bias, it is convenient to derive an effective
Hamiltonian focusing on chiral electrons at the 2DEG’s
edge,

Heff = Hedge +Hprox. (3)

The first term is obtained by projecting H2DEG onto the
subspace of edge states belonging to a single Landau level

Hedge =
∑

σ

∫
dx η†σ(x)~v[−i∂x − kµ]ησ(x). (4)

Here, ησ(x) is a field operator for chiral electrons with
σ = ↑ or ↓, v is their velocity, and kµ is the Fermi mo-
mentum; we neglect the Zeeman splitting. The second
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FIG. 1. (a) A chiral edge state with a segment proxim-
itized by a “dirty”, grounded superconductor. Electrons are
launched towards the segment from an upstream electrode bi-
ased by voltage V . An electron propagating along the segment
converts randomly into a hole over the distance lA, which is
controlled by disorder in the superconductor, see Eq. (8). (b)
Evolution of the electronic wave function, see Eq. (10), is simi-
lar to the motion of a “spin” in a stochastic effective “magnetic
field". The conductance G = I/V is determined by the re-
sult of a random walk of a point on a Bloch sphere. (c) G is
a random quantity that fluctuates upon varying the electron
density n in the 2DEG (traces are simulated using Eq. (10);
units of n are the same for the two plots and are otherwise
arbitrary). (d) The loss of correlation between the values of
G upon a change in n is quantified by function C(δn), see
Eqs. (15)–(17). The origin of the correlations loss is illus-
trated by the divergence between two stochastic trajectories
on a Bloch sphere. The “spins” corresponding to different val-
ues of n experience a different effective “magnetic field”, and
thus drift apart in the course of evolution. The separation of
the “spins” is slower for stronger disorder. As the result, the
trace G(n) in panel (c) is smoother for smaller lA.

term in Eq. (3) describes the effect of superconducting
proximity. It is obtained by a standard Schrieffer-Wolff
transformation. For electron energies E � ∆, as mea-
sured from the Fermi level, the transformation results in

Hprox = (∂yΦ)2t2
∫ L

0

dx1dx2 η̂
†(x1)∂2

y1y2G(x1, x2)η̂(x2),

(5)
where η̂(x) = (η↑(x), −η†↓(x))T , the 2×2 matrix G(x1, x2)
is the Green’s function of the superconductor at E = 0
(arguments y1,2, z1,2 = 0 are suppressed for brevity), ∆
is the energy gap in the superconductor, and Φ(y) is the
transverse component of the edge state’s wave function
at the Fermi level.

Conductance G at T = 0 can be expressed in terms of

transmission amplitudes across the proximitized segment
in the normal (Ae) and Andreev (Ah) channels at E = 0,

G = GQ(|Ae|2 − |Ah|2), (6)

where GQ = 2e2/h is the conductance quantum. To
find G in the setup of Fig. 1(a), we thus need to solve a
quantum-mechanical scattering problem.
Andreev amplitude for a short segment.—An electron

experiences at most one Andreev reflection while prop-
agating along a sufficiently short proximitized segment.
The corresponding Andreev amplitude can be found per-
turbatively in Hprox. With the help of Born approxima-
tion, we obtain

Ah=− (∂yΦ)2t2

v

∫
dx1dx2e

ikµ(x1+x2)∂2
y1y2Ghe(x1, x2), (7)

where Ghe is the anomalous component of the supercon-
ductor Green’s function.

The Green’s function in Eq. (7) is determined by the
interference of electron waves in the superconductor. The
stochastic interference pattern is sensitive to a particu-
lar disorder landscape in the region of size ∼ ξ adjacent
to the interface. Thus, Ghe and Ah of Eq. (7) are ran-
dom quantities. The latter fluctuates upon varying the
magnetic field or the electron density in the 2DEG.

To characterize the statistical properties of the ampli-
tude, we first find 〈Ah〉. The averaging here is performed
over a sufficiently broad window of magnetic fields or elec-
tron densities. Formally, it is equivalent to averaging over
the possible disorder configurations in the superconduc-
tor. With the help of the latter, more practical definition
we obtain: 〈Ah〉 ∝

∫
dx1dx2e

ikµ(x1+x2)〈Ghe(x1 − x2)〉 ∝∫
dxe2ikµx ∝ δ(kµ). We see that 〈Ah〉 = 0 unless kµ = 0.

In the following, we disregard such a fine-tuning and take
〈Ah〉 = 0.

Next, we compute the average probability of the An-
dreev reflection 〈|Ah|2〉. As follows from Eq. (7), we need
to average product of the anomalous Green’s functions of
the superconductor. Such an average can be expressed
in terms of the normal-state diffuson and Cooperon via
a standard procedure (see, e.g., Ref. 19). Assuming that
the thickness of the superconducting film and L exceed
ξ, we obtain [20]

〈|Ah|2〉 =
L

lA
,

1

lA
=

4πg2

GQσ
ln

ξ

lmfp
. (8)

Here g = 2π2GQt
2(∂yΦ)2νQHνMpF /~ is the conductance

per unit length of the interface between the quantum
Hall edge and the metal in the normal state. Along
with the dependence on Φ(y), the conductance g is pro-
portional to the one-dimensional density of edge states
νQH = 1/(2π~v). It is also proportional to the normal-
state density of states νM and Fermi momentum pF in
the superconductor. Unlike in the clean case, the lead-
ing contribution to the Andreev reflection comes from
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electron trajectories much longer than the Fermi wave-
length, with length scale set instead by ξ � lmfp. The
presence of the logarithmic factor and the appearance of
the normal-state conductivity σ in 1/lA results from the
diffusive motion of electron in the superconductor.

The perturbative result, Eq. (7), is applicable at L�
lA. Under this condition, Ah is a Gaussian random vari-
able which allows one to compute all moments of Ah dis-
tribution. Using Eq. (6) we find 〈G〉 = GQ(1 − 2L/lA)
and 〈〈G2〉〉 = 〈G2〉 − 〈G〉2 = 4G2

QL
2/l2A for the average

value and fluctuation of the conductance.
Conductance of a long segment.—At L � lA, an in-

cident electron experiences multiple Andreev reflections
upon traversing the proximitized segment. The first-
order perturbation theory cannot be applied directly to
find the amplitude Ah in this case. Instead, we track how
the quasiparticle wave function evolves along the segment
piece by piece.

We break the segment into a series of short elements
with length δL satisfying ξ � δL � lA. Under these
conditions, the Andreev amplitudes of different elements
δAh(x) are statistically independent and may still be
evaluated perturbatively, δAh(x) = α(x) ·

√
δL. In ad-

dition to Andreev reflections, a quasiparticle may expe-
rience forward scattering due to an excursion in the su-
perconductor. Similarly to δAh(x), we find [20] for the
electron forward scattering phase δΘ(x) = ϑ(x) ·

√
δL.

Variables α(x) and ϑ(x) are Gaussian and independent,
〈α(x)ϑ(x′)〉 = 0. Using Eq. (8) and a similar relation for
〈Θ2〉 we obtain for the correlators

〈α(x)α?(x′)〉 = 〈ϑ(x)ϑ(x′)〉 =
1

lA
δ(x− x′). (9)

The change of the wave function across each element is
small. Therefore, we can describe the wave function evo-
lution by a differential equation:

i
∂

∂x

(
ae(x)
ah(x)

)
=

(
−ϑ(x) α?(x)
α(x) ϑ(x)

)(
ae(x)
ah(x)

)
. (10)

Here ae(x) and ah(x) are the electron and hole compo-
nents of the quasiparticle wave function, respectively.

Equation (10) describes a unitary evolution of a two-
component spinor, which can be visualized as a ran-
dom walk of a point on a Bloch sphere, see Fig. 1(b).
We parameterize ae(x) = cos(θ(x)/2) and ah(x) =
eiφ(x) sin(θ(x)/2), where θ and φ are polar and azimuthal
angles on the sphere, respectively [21]. The conductance
G = GQ cos θ(L) can be expressed in terms of a solution
of Eq. (10) with initial condition θ(0) = 0.

To determine the statistics of conductance fluctua-
tions, we derive a Fokker-Planck equation [22] for the
distribution function P(θ, φ|x) with help of Eq. (9):

∂P
∂x

=
1

lA

(
∆θ,φ + ∂2

φ

)
P. (11)

Here 1/lA plays the role of a diffusion coefficient in
the amplitude’s random walk. Equation (11) can
solved straightforwardly in terms of angular harmonics,
P(θ, φ|x) =

∑∞
l=0(2l + 1)Pl(cos θ)e−l(l+1)x/lA/4π, where

Pl(z) are Legendre polynomials.
Using the found distribution function, we obtain for

the average conductance [23]:

〈G〉 = GQe
−2L/lA . (12)

At L � lA, conductance G is distributed uniformly
in the interval [−GQ, GQ] with 〈G〉 = 0 and variance
〈〈G2〉〉 = G2

Q/3. Thus, the conductance fluctuations pat-
tern is sign-alternating and evenly distributed between
positive and negative values, see Fig. 1(c).
Suppression of fluctuations by vortices.—Only a type

II superconductor can withstand magnetic field B re-
quired to enter the quantum Hall regime in the 2DEG.
Such field induces vortices, which lead to a non-vanishing
density of states in the superconductor at the Fermi
level [24]. As a result, an electron or a hole propagating
along the edge can tunnel normally into the supercon-
ducting electrode thus not contributing to G. This leads
to attenuation of conductance fluctuations.

The probability of an incident electron to survive the
propagation along the proximitized segment and reach
the downstream electrode (as a particle or as a hole) de-
creases exponentially with L:

psurv = exp

[
− gL
GQ

ν̄

νM

]
. (13)

Here the induced by vortices density of states ν̄ is taken
at E = 0 and averaged along the interface. Despite the
attenuation, at L � lA the conductance distribution re-
mains uniform. However, its spread reduces to the inter-
val [−Gmax, Gmax] and its variance becomes

〈〈G2〉〉 =
G2

max

3
, Gmax = GQ psurv. (14)

Ratio ν̄/νM in Eq. (13) increases with B/Hc2, reaching
unity at the upper critical field, B = Hc2. Consequently,
〈〈G2〉〉 decreases with increasing B. This is qualitatively
consistent with the observations of Ref. [11].
Conductance correlation function.—We now find the

correlation function of the conductance fluctuations with
the electron density n in the 2DEG,

C(δn) = 〈〈G(n) ·G(n+ δn)〉〉. (15)

Variation of density δn shifts the Fermi momentum of
chiral electrons by δkµ = δn(∂µ/∂n)/(~v), where ∂µ/∂n
is the inverse compressibility of the quantum Hall state.
δkµ affects the phases of Andreev reflection amplitudes,
whose interference determines the conductance. We see
from Eq. (7) that α(x) → α(x)e2iδkµx upon changing
n→ n+ δn. Applying this modification to Eq. (10) and
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using Eq. (9), we derived [20] a differential equation for
C(δn) as a function of L. Solving it, we find at L� lA:

C(δn) = 〈〈G2〉〉 exp
[
− 4

3

( δn

ncor

)2]
. (16)

The correlation density ncor is given by:

ncor =
∂n

∂µ

~v√
lAL

. (17)

The dependence of Eq. (17) on L and lA is of particular
note. Firstly, ncor ∝ 1/

√
L reflects the diffusive character

of the wave function evolution. In contrast, periodic os-
cillations of the quasiparticle between electron and hole
states in the absence of disorder would lead to C(δn) vari-
ation on a scale δn ∝ 1/L [25]. Secondly, ncor ∝ 1/

√
lA

increases with disorder in superconductor, as lA ∝ σ,
cf. Eq. (8). Thus, the pattern of mesoscopic fluctuations
is smoother for a dirtier superconductor, see Fig. 1(c).
This unusual behavior is similar in its origin to the mo-
tional narrowing in nuclear magnetic resonance [26].

The conductance also fluctuates with the magnetic
field. The generalization of Eq. (16) reads C(δn, δB) =
〈〈G2〉〉 exp[− 4

3δk
2
µlAL] exp[− 8

3 (δg/g)2L/lA]. Change in
the Fermi momentum δkµ(δn, δB) varies the phases of
the Andreev reflection amplitudes (as discussed above).
Variation δg(δn, δB) affects the amplitudes magnitude
through the dependence of Φ(y) and v on B and n,
cf. Eq. (7). The functions δg and δkµ acquire a particu-
larly simple form in the limit of high compressibility [27]:
δg/g = 2 δB/B and δkµ(δn, δB) = 1

v
∂µ
∂n [δn − νδB/φ0],

where ν(n,B) is the quantum Hall filling factor and
φ0 = hc/e.
Effect of a vortex entrance.— In the above we disre-

garded the entrance of vortices in the superconductor
through the interface. An entering vortex introduces a
kink in the phase of the order parameter near the inter-
face. This affects the interference between the Andreev
reflection processes thus leading to a jump δG in the con-
ductance.

The magnitude of δG is a random quantity whose sta-
tistical properties depend on the relation between d and
lA, where d is the distance of the vortex core to the in-
terface. We compute the variance, Cjump(d) = 〈(δG)2〉,
where the average is evaluated over a window of elec-
tron densities of width exceeding ncor. To do that, we
compare the results of the wave function evolution along
the proximitized segment before and after the vortex has
entered.

The vortex entrance leads to α(x) → α(x)e−iδϕ(x) in
Eq. (10). The phase δϕ(x) = π + arctan([x − xv]/d)
interpolates between 0 and 2π over the interval |x−xv| ∼
d, where xv is the x-coordinate of the vortex core. The
overall interference pattern does not change substantially
if d � lA. Under this condition, the conductance jump
is small. It is also small in the opposite limit, d� lA, in

which the presence of δϕ(x) can be accounted for with the
help of the adiabatic approximation applied to Eq. (10).
We find [20]

Cjump(d)

〈〈G2〉〉 =

{
32πd
3lA

, d� lA,
4πlA
3d , d� lA.

(18)

The two asymptotes match each other at d ∼ lA. In this
case, the conductance jump is maximal and comparable
to the signal itself, Cjump(d) ∼ 〈〈G2〉〉. This regime is
relevant for the data presented in Ref. [11].
Conductance fluctuations at finite temperature.— In a

conventional mesoscopic conductor, the electron trans-
mission amplitudes at energies E1 and E2 are uncorre-
lated if |E1 − E2| & ETh. The Thouless energy here is
determined by the electron propagation time across the
sample; ETh = ~v/L in the ballistic limit. Thus, the or-
dinary mesoscopic conductance fluctuations [15, 16] are
smeared out at temperature T & Tsm = ~v/L.

While quasiparticles propagate ballistically along the
proximitized quantum Hall edge, the energy scale ~v/L is
irrelevant for the correlation of Andreev amplitudes. The
main mechanism responsible for the variation of Ah with
E is the dependence of the anomalous Green function on
E/∆ in Eq. (7) generalized to finite energy [28]. Using
Eq. (10) to compare Ah at different E, it is easy to show
that fluctuations of G at L� lA are smeared out above
Tsm ∼ ∆ (lA/L)1/4, in stark contrast with a conventional
ballistic conductor. The difference stems from the chiral
nature of the edge, which prohibits backscattering and
formation of standing waves.

The found weak dependence, Tsm ∝ L−1/4, prompts
us to explore inelastic scattering as a mechanism of the
fluctuations suppression. In one dimension, inelastic pair
collisions are forbidden by the energy and momentum
conservation [29]. Violation of translation invariance by
disorder allows for the pair collisions at the edge and leads
to a standard Fermi liquid estimate for the scattering
rate, τ−1

in (T ) = b T 2 [30]. The conductance fluctuations
are suppressed at temperature exceeding Tin such that
v τin(Tin) ∼ L. We then find Tin ∝ L−1/2.

The coefficient b is not universal and depends on dis-
order. If the latter is due to the electron excursions
into the dirty superconductor, then we can estimate
b ∼

[
e2

κ~v
]2 v
lA

1
(~ωc)2 , where κ is the dielectric constant

of the environment and ωc is the cyclotron frequency. In
this case, we obtain Tin ∼ ~ωc[κ~v/e2](lA/L)1/2. The
comparison of Tin and Tsm is very sensitive to ~ωc/∆.
Conclusions.— Disorder allows for efficient Andreev

reflection of a quantum Hall edge without fine-tuning,
but it introduces randomness in the edge transport. Elec-
trons stochastically convert into holes over a length scale
lA, see Eq. (8). This stochasticity results in conduc-
tance fluctuations with the variation of electron density
or magnetic field strength. For a long edge, L� lA, the
average conductance 〈G〉 vanishes, see Eq. (12), while
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in the absence of vortices the individual realizations of
G vary within an interval ±2e2/h. Electron tunnel-
ing into the cores of the vortices in the superconduc-
tor shrinks this interval, see Eqs. (13) and (14), due to
electrons being lost to ground. The ensemble averaging
of G can be experimentally achieved in a given sample
by varying the electron density n by amount exceeding
ncor of Eq. (17). At smaller variation, the values of G
are correlated, see Eq. (16). Variation of magnetic field
also results in conductance fluctuations, including abrupt
changes associated with a vortex entering the supercon-
ductor, see Eq. (18). At a finite temperature, thermal
smearing and inelastic scattering suppress conductance
fluctuations. The chiral nature of edge states, however,
weakens the suppression compared to the case of conven-
tional conductors. Our work explains the basic findings
of experiment [11] including the observation of random
conductance, with zero average. Our quantitative pre-
dictions call for further experiments exploring the con-
ductance fluctuations pattern.
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S.I. DERIVATION OF 1/lA, EQ. (8)

In this section, we present details of the derivation of Eq. (8). We start with the obtained in the main text expression
for the Andreev amplitude, see Eq. (7). For convenience, we reproduce it here:

Ah = − (∂yΦ)2t2

v

∫ L

0

dx1dx2e
ikµ(x1+x2)∂2y1y2Ghe(x1, x2), (S1)

(we remind that Ghe(x1, x2) ≡ Ghe(r1, r2|E = 0)|y1,2,z1,2=0 is the anomalous Green’s function of the superconductor).
For calculations, it is convenient to choose a gauge in which the vector potential vanishes at the interface between the
superconductor and the 2DEG. In this gauge, the wave vector kµ in Eq. (S1) is related to the distance yc between

the cyclotron orbit center and the interface: kµ = yc/l
2
B , where lB =

√
c/eB is the magnetic length (throughout the

supplement, we work in units with ~ = 1). At ν = 2, we can thus estimate

kµ . 1/lB . (S2)

For simplicity, we first consider a type I superconductor. In this case, the vector potential vanishes not only at the
interface but everywhere in the superconductor. We describe the superconductor with the standard BCS Hamiltonian:

HSC =
∑

σ

∫
d3r χ†σ(r)

[
− ∂2r

2m
− µ+ U(r)

]
χσ(r) +

∫
d3r∆

(
χ†↑(r)χ†↓(r) + χ↓(r)χ↑(r)

)
. (S3)

Here χσ(r) is an annihilation operator for an electron with spin σ, m is the effective mass, µ is the chemical potential,
and ∆ is the superconducting order parameter. U(r) is the disorder potential, which we assume to be a Gaussian
random variable with a short-ranged correlation function,

〈U(r)U(r′)〉 =
1

2πνMτmfp
δ(r − r′). (S4)

We parameterized the correlation function by the normal-state density of states in the metal νM and the electron
mean free time τmfp. We assume that the superconductor is “dirty”, ∆ · τmfp � 1.

Let us now compute the average probability of the Andreev reflection (our approach is similar in spirit to that in
Ref. S1). Using Eq. (S1), we first represent 〈|Ah|2〉 as

〈|Ah|2〉 =
(∂yΦ)4t4

v2

∫ L

0

dx1dx2dx3dx4e
ikµ(x1+x2)e−ikµ(x3+x4)∂2y1,y2∂

2
y3,y4

〈〈
Ghe(r1, r2|0) · Geh(r4, r3|0)

〉〉∣∣
yα,zα=0

. (S5)

On the right hand side, we replaced the average by its irreducible component. This is possible because 〈Ah〉 = 0
(see discussion in the main text). The superconductor Green’s functions in Eq. (S5) can be expressed in terms of the
retarded Green’s function GRN of the metal in the normal state:

G(r1, r2|E) =

∫
dε

∆2 − E2 + ε2

(
E + ε ∆

∆ E − ε

)
1

π
ImGRN(r1, r2|ε). (S6)

Substituting this relation with E = 0 into Eq. (S5) we obtain

〈|Ah|2〉 =
(∂yΦ)4t4

π2v2

∫ L

0

dx1dx2dx3dx4e
ikµ(x1+x2)e−ikµ(x3+x4)

∫
∆dε

∆2 + ε2
∆dε′

∆2 + ε′2

× ∂2y1,y2∂2y3,y4
〈〈

ImGRN(r1, r2|ε) · ImGRN(r4, r3|ε′)
〉〉∣∣
yα,zα=0

. (S7)

Let us focus on the averaged-over-disorder product of the Green’s functions in the above expression. We can represent
this product as

〈〈
ImGRN(r1, r2|ε) · ImGRN(r4, r3|ε′)

〉〉
=

1

2
Re
[〈〈
GRN(r1, r2|ε) · GAN(r4, r3|ε′)

〉〉
−
〈〈
GRN(r1, r2|ε) · GRN(r4, r3|ε′)

〉〉]
, (S8)
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where GAN is the advanced normal state Green’s function. We will see below that the contribution of the first term to
〈|Ah|2〉 is determined by long diffusive electron trajectories of size ∼ ξ (ξ is the superconducting coherence length).
On the other hand, the contribution of the second term is determined by trajectories of length . λF only (λF is
the Fermi wave length in the superconductor). This means that the latter contribution is small compared to the one
produced by the first term in Eq. (S8). In what follows we neglect the second term.

The average 〈〈GRN · GAN〉〉 can be expressed in terms of the normal-state diffuson and Cooperon [S2]. Using Eq. (S4)
and neglecting small corrections that have a relative magnitude ∼ λF /lmfp � 1 (with lmfp = vF τmfp being the mean
free path), we represent 〈〈GRN · GAN〉〉 as
〈〈
GRN(r1, r2|ε) · GAN(r4, r3|ε′)

〉〉

=
1

2πνMτ2mfp

∫
d3rd3r′ 〈GRN(r1, r|ε)〉〈GAN(r, r3|ε′)〉DD(r, r′|ε− ε′)〈GAN(r4, r

′|ε′)〉〈GRN(r′, r2|ε)〉 (S9)

+
1

2πνMτ2mfp

∫
d3rd3r′ 〈GRN(r1, r|ε)〉〈GAN(r, r4|ε′)〉DC(r, r′|ε− ε′)〈GAN(r3, r

′|ε′)〉〈GRN(r′, r2|ε)〉. (S10)

Here functions DD(r, r′|ε−ε′) and DC(r, r′|ε−ε′) are the diffuson and the Cooperon, respectively. The magnetic field
does not penetrate a type I superconductor, so DD(r, r′|ε − ε′) = DC(r, r′|ε − ε′) in this case. In the time domain,
DD(r, r′|t) satisfies the diffusion equation [S2],

(∂t −D∂2r)DD(r, r′|t) = δ(t)δ(r − r′), (S11)

with the boundary condition corresponding to the vanishing of the probability current at the metal’s surface. Here
D = vF lmfp/3 is the diffusion constant.

At relevant energies ε − ε′ ∼ ∆, the diffuson DD(r, r′|ε − ε′) varies at a length scale of the order of ξ. The latter
satisfies ξ � lmfp for a dirty superconductor. At the same time, the average Green’s functions decay at a distance
∼ lmfp. This means that in Eqs. (S9) and (S10) the argument r of DD and DC is close to r1 and the argument r′ is
close to r2. Consequently, we can approximate 〈〈GRN · GAN〉〉 as

〈〈
GRN(r1, r2|ε) · GAN(r4, r3|ε′)

〉〉
= 2πνMDD(r1, r2|ε− ε′)[V (r1, r3)V (r2, r4) + V (r1, r4)V (r2, r3)], (S12)

where we abbreviated

V (r1, r3) =
1

2πνMτmfp

∫
d3r 〈GRN(r1, r|ε)〉〈GAN(r, r3|ε′)〉. (S13)

Combining Eqs. (S7), (S8), and (S12), we obtain the following expression for 〈|Ah|2〉:

〈|Ah|2〉 =
νM(∂yΦ)4t4

πv2

∫ L

0

dx1dx2dx3dx4e
ikµ(x1+x2)e−ikµ(x3+x4)

∫
∆dε

∆2 + ε2
∆dε′

∆2 + ε′2

× ReDD(x1, x2|ε− ε′) ∂2y1,y2∂2y3,y4 [V (r1, r3)V (r2, r4) + V (r1, r4)V (r2, r3)]
∣∣
yα,zα=0

, (S14)

where DD(x1, x2|ε− ε′) ≡ DD(r1, r2|ε− ε′)|y1,2,z1,2=0.
So far, we have been focusing on the case of a type I superconductor. Type II superconductor is different in that

it admits magnetic field B. The field affects functions DD and DC leading to additional phase factors in them. At
relevant distances ∼ ξ the corresponding phases can be estimated as ∼ Bξ2/φ0 ∼ B/Hc2 (φ0 is the flux quantum
and Hc2 is the upper critical field). We see that for fields B � Hc2 the phases are small and can be disregarded.
This means the derived at B = 0 Eq. (S14) is also applicable for the case of a type II superconductor in the regime
B � Hc2. The same holds for all of the results presented in the remainder of the section.

Let us proceed with the derivation of 1/lA. Functions V in Eq. (S14) stipulate r1 ≈ r3, r2 ≈ r4 in the diffuson’s
contribution and r1 ≈ r4, r2 ≈ r3 in the Cooperon’s contribution. By making a direct calculation of the integral in
Eq. (S13), we find for the combination of functions V in Eq. (S14):

∂2y1,y2∂
2
y3,y4 [V (r1, r3)V (r2, r4)+V (r1, r4)V (r2, r3)]

∣∣
yα,zα=0

= (πpF )2
[
δ(x1 − x3)δ(x2 − x4) + δ(x1 − x4)δ(x2 − x3)

]
, (S15)

where pF is the Fermi momentum of the superconductor. The delta-functions in this expression should be interpreted
as peaks of width ∼ λF . With the help of Eq. (S15), we can rewrite Eq. (S14) as

〈|Ah|2〉 =
2πνM(∂yΦ)4t4p2F

v2

∫ L

0

dx1dx2

∫
∆dε

∆2 + ε2
∆dε′

∆2 + ε′2
ReDD(x1, x2|ε− ε′). (S16)



3

The expression for DD(x1, x2|ε−ε′) is sensitive to a particular geometry of the considered device. We will assume that
the width of the superconducting film exceeds ξ. In this case, the film can be regarded as being three-dimensional for
diffusion. We then find:

DD(x1, x2|ε− ε′) = 2

∫ +∞

0

dt

(4πDt)3/2
e−i(ε−ε

′)t− (x1−x2)2

4Dt (S17)

(the factor of 2 results from the boundary condition for Eq. (S11)). Using this expression, one can easily show that

∫
∆dε

∆2 + ε2
∆dε′

∆2 + ε′2
ReDD(x1, x2|ε− ε′) =

π

2D|x1 − x2|
e−|x1−x2|/ξ, ξ =

√
D

2∆
. (S18)

We will assume that the length of the proximitized segment exceeds the coherence length, L � ξ. Then, using
Eq. (S18) in Eq. (S16) we obtain

〈|Ah|2〉 =
2π2νM(∂yΦ)4t4p2F

v2D

∫ +∞

0

dx

x
e−x/ξ · L =

2π2νM(∂yΦ)4t4p2F
v2D

ln
ξ

lmfp
· L. (S19)

In the latter equality, we regularized the logarithmic divergence at small distances by the mean free path lmfp, i.e., by
the length scale at which the diffusive behavior ceases.

Finally, it is convenient to express the factor in front of the logarithm in Eq. (S19) in terms of the normal-
state conductivity of the metal σ = 2e2νMD, and of the conductance per unit length of the interface g =
2π2GQt

2(∂yΦ)2νQHνMpF (here νQH = (2πv)−1 is the density of edge states per spin projection and GQ = e2/π).
In this way we obtain Eq. (8) of the main text.

S.II. DERIVATION OF 〈Θ2〉 FOR THE FORWARD SCATTERING PHASE Θ

Here we present the derivation of 〈Θ2〉 for the forward scattering phase Θ accumulated by an electron across a short
proximitized segment. We can obtain an expression for Θ similarly to how we found the amplitude Ah, see Eq. (7) of
the main text. By treating Hprox in Eq. (3) as a perturbation, we find:

Θ =
(∂yΦ)2t2

v

∫ L

0

dx1dx2e
ikµ(x1−x2)∂2y1y2Gee(x1, x2). (S20)

Here Gee(x1, x2) = Gee(r1, r2|E = 0)|y1,2,z1,2=0 is the normal component of the superconductor Green’s function. It

is easy to verify using Eq. (S6) at E = 0 that 〈Θ〉 = 0. An expression for 〈Θ2〉 can be obtained similarly to how we
found 〈|Ah|2〉. A counterpart of Eq. (S14) is

〈Θ2〉 =
2πνM(∂yΦ)4t4p2F

v2

∫ L

0

dx1dx2dx3dx4e
ikµ(x1−x2)e−ikµ(x3−x4)

∫
εdε

∆2 + ε2
ε′dε′

∆2 + ε′2

× ReDD(x1, x2|ε− ε′)
[
δ(x1 − x3)δ(x2 − x4) + δ(x1 − x4)δ(x2 − x3)

]
, (S21)

where we also used Eq. (S15) for functions V . Using Eq. (S17) for DD(x1, x2|ε − ε′), we can rewrite the above
expression as

〈Θ2〉 =
π2νM(∂yΦ)4t4p2F

2v2D

∫ L

0

dx1dx2
|x1 − x2|

e−|x1−x2|/ξ[1 + cos[2kµ(x1 − x2)]
]
. (S22)

The distance between points x1 and x2 here does not exceed the coherence length ξ. The latter satisfies ξ � lB . |kµ|−1
for a type II superconductor in field B � Hc2. These estimates mean that the argument of cosine in Eq. (S22) is
small, allowing one to approximate cos[2kµ(x1 − x2)] = 1. Then, the right hand side of Eq. (S22) becomes identical
to that of Eq. (S19) for 〈|Ah|2〉. As a result, we obtain

〈Θ2〉 =
L

lA
, (S23)

where lA is given by Eq. (8) of the main text.
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S.III. DERIVATION OF THE CONDUCTANCE CORRELATION FUNCTION

Here we present the derivation of the conductance correlation function C(δn, δB) = 〈〈G(n,B) ·G(n+ δn,B+ δB)〉〉,
which we use to obtain Eqs. (16) and (17) of the main text.

To start with, we briefly discuss the main mechanism leading to the loss of correlation between the values of G
at parameters (n,B) and (n + δn,B + δB), respectively. Firstly, the variation (δn, δB) shifts the Fermi momentum
of chiral electrons by δkµ(δn, δB). As discussed after Eq. (15) of the main text, this affects the phases of the
Andreev amplitudes α(x). The phases are also affected by the change in the diamagnetic current flowing along the
superconductor’s surface. The two effects can be accounted for by adding the phase factor to the Andreev amplitude,

α(x)→ α(x)e2iδk
(tot)
µ x, where δk

(tot)
µ = δkµ− 1

2δ(∂xϕ) and ∂xϕ is the gradient of the order parameter phase associated
with the diamagnetic current. The variation (δn, δB) also affects the magnitudes |α(x)| and |ϑ(x)|. The reason is the
dependence of ∂yΦ and v in Eqs. (S1) and (S20) on n and B. The magnitudes change as |α(x)| → (1 + δg/g)|α(x)|
and |ϑ(x)| → (1 + δg/g)|ϑ(x)|, where we used the relation for g presented at the end of Sec. S.I.

To find C(δn, δB), we use Eq. (10) of the main text to compare the results of the wave function evolution across the
proximitized segment at parameters (n,B) and (n+ δn,B+ δB). We denote the components of the wave function by
ae(x), ah(x) and be(x), bh(x) for the respective sets of parameters. The corresponding evolution equations read

i
∂

∂x

(
ae(x)
ah(x)

)
=

(
−ϑ(x) α?(x)
α(x) ϑ(x)

)(
ae(x)
ah(x)

)
, (S24)

i
∂

∂x

(
be(x)
bh(x)

)
=

(
1 +

δg

g

)(
−ϑ(x) α?(x)e−2iδk

(tot)
µ x

α(x)e2iδk
(tot)
µ x ϑ(x)

)(
be(x)
bh(x)

)
. (S25)

We can represent C(δn, δB) in terms of the wave function components as

C(δn, δB) = 〈〈G2〉〉 〈〈|ah(L)|2 · |bh(L)|2〉〉
〈〈|ah(L)|2 · |ah(L)|2〉〉 . (S26)

To determine 〈〈|ah(L)|2 · |bh(L)|2〉〉, we derive a system of differential equations describing the evolution with x of the
correlators 〈〈a?i (x)aj(x) · b?k(x)bl(x)〉〉, where i, j, k, l = e,h. In fact, a closed system of equations can be obtained using
Eq. (9) of the main text and following the approach described in Ref. [S3]. The system has a particularly simple form
in terms of the following variables:

c0(x) = 〈〈|ah(x)|2 · |bh(x)|2〉〉+ e
−2
(
1+(1+ δg

g )2
)
x
lA /4, (S27)

c+(x) = Re 〈〈a?e(x)ah(x) · b?h(x)be(x)〉〉, (S28)

c−(x) = Im 〈〈a?e(x)ah(x) · b?h(x)be(x)〉〉. (S29)

We obtain

∂

∂x



c0(x)
c+(x)
c−(x)


 =

1

lA



−2
(
1 +

(
1 + δg

g

)2)
2
(
1 + δg

g

)
0

4
(
1 + δg

g

)
−
(
1 +

(
1 + δg

g

)2)− 2
(
δg
g

)2
2δk

(tot)
µ lA

0 −2δk
(tot)
µ lA −

(
1 +

(
1 + δg

g

)2)− 2
(
δg
g

)2






c0(x)
c+(x)
c−(x)




(S30)

(we also made a gauge transformation be/h(x)→ e∓iδk
(tot)
µ xbe/h(x) when deriving the system). The initial conditions

are c0(0) = 1/4, c±(0) = 0.

Let us assume that δk
(tot)
µ lA � 1 and δg/g � 1. Under these conditions, system (S30) can be analyzed with the

help of the perturbation theory. At δg = 0 and δk
(tot)
µ = 0, the 3× 3 matrix on the right hand side of Eq. (S30) has

an eigenvalue ω = 0. The zero eigenvalue corresponds to the steady state solution of the Fokker-Planck equation, see

Eq. (11) of the main text. The respective eigenvector is (1, 2, 0)T . The correction to ω = 0 due to finite δk
(tot)
µ and

δg is of the second order in these parameters:

ω = −4

3
(δk(tot)µ )2lA −

8

3

(
δg

g

)2
1

lA
. (S31)

Using this expression, we find the solution of system (S30) at x� lA:


c0(x)
c+(x)
c−(x)


 =

1

12




1
2
0


 exp

[
− 4

3
(δk(tot)µ )2lAx−

8

3

(δg
g

)2 x
lA

]
. (S32)
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Setting x = L and using Eqs. (S27) and (S26), we obtain

C(δn, δB) = 〈〈G2〉〉 exp
[
− 4

3
(δk(tot)µ )2lAL−

8

3

(
δg

g

)2
L

lA

]
. (S33)

We now apply the general result (S33) to find the conductance correlation function with density C(δn). The change
of the wave vector kµ upon the variation δn can be expressed as (we recall that ~ = 1)

δkµ =
∂µ

∂n

δn

v
, (S34)

where ∂µ/∂n is the inverse compressibility of the quantum Hall state. The influence of δn on g can be disregarded

provided lA � lB =
√
c/eB. Assuming the latter condition to be satisfied, we disregard the second term in the square

brackets of Eq. (S33). Then, substituting Eq. (S34) in Eq. (S33) we arrive to Eqs. (16) and (17) of the main text.

S.IV. DERIVATION OF EQ. (18) FOR Cjump(d)

In this section, we present details of the derivation of Eq. (18) for the variance of the conductance jumps Cjump(d) =
〈(δG)2〉. We assume the proximitized segment to be long throughout the section, L� lA.

To find Cjump(d), we compare the results of the wave function evolution across the proximitized segment before and
after a vortex has entered the superconductor. We denote the wave function components as ae(x) and ah(x) before
the vortex entrance, and as be(x) and bh(x) after it. The corresponding evolution equations are given by

i
∂

∂x

(
ae(x)
ah(x)

)
=

(
−ϑ(x) α?(x)
α(x) ϑ(x)

)(
ae(x)
ah(x)

)
, i

∂

∂x

(
be(x)
bh(x)

)
=

(
−ϑ(x) α?(x)eiδϕ(x)

α(x)e−iδϕ(x) ϑ(x)

)(
be(x)
bh(x)

)
. (S35)

Here δϕ(x) = π + arctan([x − xv]/d) is the phase induced by the entered vortex (we assume that pinning in the
superconductor is strong enough so that the entrance of the vortex does not affect the preexisting vortex distribution).
As mentioned in the main text, d is the distance between the vortex core and the interface, and xv is the core’s
coordinate along the x-direction.

The variance of the conductance jumps can be expressed in terms of the wave functions components as:

Cjump(d) = 2〈〈G2〉〉
[
1− 〈〈|ah(L)|2 · |bh(L)|2〉〉
〈〈|ah(L)|2 · |ah(L)|2〉〉

]
. (S36)

To find 〈〈|ah(L)|2 · |bh(L)|2〉〉, we derive a system of equations for correlators 〈〈a?i (x)aj(x) · b?k(x)bl(x)〉〉 similarly to how
we did it in Sec. S.III. The system reads

∂

∂x



c0(x)
c+(x)
c−(x)


 =

1

lA



−4 2 0
4 −2 −lA∂xδϕ(x)
0 lA∂xδϕ(x) −2





c0(x)
c+(x)
c−(x)


 . (S37)

Here variable c0(x) = 〈〈|ah(x)|2 · |bh(x)|2〉〉 + e−4x/lA/4, whereas variables c±(x) are defined in the same way as in
Eqs. (S28) and (S29).

System of equations (S37) can be solved analytically in the two limiting cases, d � lA and d � lA. Let us start
with the former case. The condition d� lA means that the kink in the superconducting phase δϕ(x) is narrow. This
suggests one to approximate

∂xδϕ(x) = 2π · 1

π

d

d2 + (x− xv)2
≈ 2πδ(x− xv) (S38)

in Eq. (S37). However, such an approximation is too crude. Indeed, it can be easily verified that the vector
(c0(x), c+(x), c−(x))T does not change across x = xv if we replace ∂xδϕ(x) → 2πδ(x − xv). Thus, Cjump(d) = 0
to the zeroth order in d/lA.

The leading in d/lA result for Cjump(d) can be obtained in the following way. First of all, we go to a rotating frame
in Eq. (S37):



c0(x)
c+(x)
c−(x)


 = exp

[



0 0 0
0 0 −δϕ(x)
0 δϕ(x) 0



]


c̃0(x)
c̃+(x)
c̃−(x)


 (S39)
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(we choose the frame in such a way that terms ∝ ∂xδϕ(x) cancel on two sides of the equation after the transformation).
In this frame, the “scatterer” associated with the vortex is described by a local perturbation of magnitude ∼ 1/lA
and width ∼ d. It can be treated using an analog of Born approximation. A straightforward calculation leads to

〈〈|ah(L)|2 · |bh(L)|2〉〉 = 〈〈|ah(L)|2 · |ah(L)|2〉〉
(

1− 16π

3

d

lA

)
. (S40)

Using this expression in Eq. (S36), we obtain the result presented in the first line of Eq. (18) of the main text.
Now we consider the limit of d � lA. In this limit, we can account for ∂xδϕ(x)lA in system (S37) with the help

of the adiabatic approximation. Using the similarity of system (S37) to system (S30) (taken at δg = 0), we find by
generalizing Eq. (S32):



c0(x)
c+(x)
c−(x)


 ≈ 1

12




1
2
0


 e−

1
3

∫ x
0
[∂xδϕ(x

′)lA]2dx′ . (S41)

Taking x = L� lA, computing the integral in the exponent, and using the definition of a variable c0(x), we find

〈〈|ah(L)|2 · |bh(L)|2〉〉 = 〈〈|ah(L)|2 · |ah(L)|2〉〉 exp
[
− 2πlA

d

]
≈ 〈〈|ah(L)|2 · |ah(L)|2〉〉

(
1− 2πlA

d

)
. (S42)

Substituting this expression in Eq. (S36), we obtain the result presented in the second line of Eq. (18) of the main
text.

[S1] F. W. J. Hekking and Yu. V. Nazarov, Subgap conductivity of a superconductor–normal-metal tunnel interface, Phys. Rev. B
49, 10, 6847 (1994).

[S2] I. L. Aleiner and A. I. Larkin, Divergence of classical trajectories and weak localization, Phys. Rev. B 54, 20, 14423 (1996).
[S3] A. A. Ovchinnikov and N. S. Erikhman, Temperature and frequency dependence of the electron conductivity in a two-band

model with impurities, Sov. Phys. JETP 51, 4, 728 (1980).


