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Realization of novel topological phases in magnonic band structures represents a new opportunity
for the development of spintronics and magnonics with low power consumption. In this work, we
show that in antiparallelly aligned magnetic multilayers, the long-range, chiral dipolar interaction
between propagating magnons generates bulk bands with non-zero Chern integers and magnonic
surface states carrying chiral spin currents. The surface states are strictly localized and can be
easily toggled between non-trivial and trivial phases through an external magnetic field. The real-
ization of chiral surface spin currents in this dipolarly coupled heterostructure represents a magnonic
implementation of the coupled wire model that has been extensively explored in electronic systems.
Our work presents an easy-to-implement system for realizing topological magnonic surface states
and low-dissipation spin current transport in a tunable manner.

Exploration of novel topological phases in quantum
matter has become one of the central topics in nowadays’
condensed matter research, opening up avenues towards
electronics with high speed and low power consumption
[1–5]. Beyond electronic systems, recently topological
phases have also been generalized to various bosonic sys-
tems, including phononic [6, 7] and photonic [8, 9] crys-
tals. Magnon, the quantized collective excitation of local-
ized spins, represents a promising candidate for efficient
spin transport [10–12]. However, the inevitable scatter-
ing between magnons greatly limits the coherence length
of spin waves, preventing long-range spin signal transfer
[13–15]. The formation of topological magnonic surface
states that provide spin current channels with suppressed
scattering is therefore of great importance for realizing
low-dissipation magnonic devices, which has been pro-
posed in several theoretical works [16–23]. Nevertheless,
these proposals require materials with either special crys-
tal symmetries [16–20] or artificially modulated struc-
tures that demand advanced nanofabrication techniques
[21–23], both of which bring in difficulties for experimen-
tal realization.

In this letter, we theoretically study the magnonic
band structure and corresponding topological properties
of antiparallelly aligned magnetic multilayers. We find
that the long-range dipolar interaction between propa-
gating magnons is chiral in nature, whose strength de-
pends on the wave vector direction and therefore breaks
time-reversal symmetry (TRS). This chiral dipolar inter-
action correlates the sublattice and momentum degrees
of freedom, playing a similar role as the spin-orbit cou-
pling does in electronic systems. Consequently, it gener-
ates bulk bands with non-zero Chern integers and ultra-
localized magnonic surface states that carry chiral spin
currents. Through an external magnetic field, the ex-
istence of topologically non-trivial surface states can be
switched on and off, which therefore provides a tunable
and efficient way for transferring spin angular momenta

in this synthetic antiferromagnetic heterostructure.

We focus on the magnonic band structure in magnetic
multilayers shown in Fig. 1(a), where the neighboring
layers possess antiparallel equilibrium magnetic moments
due to antiferromagnetic interfacial exchange, as demon-
strated in several recent experiments [24–26]. An exter-
nal magnetic field applied along the y axis always aligns
the higher- (lower-) moment layers parallel (antiparal-
lel) to it. The layers with the same equilibrium moment
orientations have entirely identical properties including
their material composition and thickness, providing the
system with periodicity along the z axis, i.e., film growth
direction, and allowing us to define unit cells with thick-
ness of d = d1 + d2, as shown in red frames in Fig. 1(a).

We start by considering the simplified case, where each
layer is a infinitely long strip along the x axis and the
magnetic moment distribution along the y and z axes
within the same layer is uniform, i.e., the lowest-order
standing wave mode. As a result, magnons are confined
to transport along the x axis in each individual layer.
We denote the annihilation operator for a circularly po-
larized magnon with wave vector kx in the jth (j = 1, 2
for sublattice index) layer of the nth (n = 1, 2, ..., N for
cell index) cell as bjn,kx

. Neglecting the interlayer inter-
actions, we can write the magnonic Hamiltonian for the
multilayers in Fig. 1(a) as Ĥ0 =

∑

kx,j,n
ωjb

†
jn,kx

bjn,kx
,

where ωj = Ajk
2
x + Ωj stems from the intralayer ex-

change interaction and the effective static field experi-
enced by each sublattice [27]. Here, the coefficient Aj is
defined as Aj = 2Aex

j γ/Msj, with the exchange stiffness
constant Aex

j , electron’s gyromagnetic ratio γ, and the
saturated magnetization Msj . Ωj = γµ0Hj is the Lar-
mor precession frequency, with vacuum permeability µ0

and the effective static field Hj . The sign of Hj is de-
fined for each individual layer such that a positive field is
parallel to its local equilibrium moment orientation. Hj

includes two parts: one is the static interfacial exchange
field Hex

j , which is always positive, and the other is the
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FIG. 1. (a) Scheme of antiparallelly aligned magnetic multi-
layers. The blue (grey) blocks with the thickness of d1(2) form
the 1st (2nd) sublattice. The equilibrium moments in the 1st
(2nd) sublattice are parallel to the +y (−y) direction, repre-
sented by ⊗ (⊙) symbols. The red, solid frames correspond
to unit cells (indexed by n = 1, 2, ..., N) with the thickness
of d = d1 + d2. The green, dotted frames select two layers
belonging to neighboring cells with possible intercell dipolar
coupling. (b) Scheme of dipolar fields (green lines and arrows)
generated by propagating magnons with kx > 0 in two lay-
ers within a cell. The red arrows represent the deviations of
magnetic moments from their equilibrium orientations, which
propagates from left to right as a function of time (the traces
are represented by black, dotted circles). Here, the two layers
experience finite dipolar fields from each other, correspond-
ing to ∆S > 0. Meanwhile, they experience zero dipolar fields
from magnons in the layers of neighboring cells, correspond-
ing to ∆D = 0. (c) Scheme of dipolar fields generated by
propagating magnons with kx < 0 for two layers within a
cell, corresponding to ∆S = 0 and ∆D > 0.

external field H , which is positive (negative) for the sub-
lattice with higher (lower) saturated magnetization. Due
to the dipolar interaction, magnons with the same wave
vector in neighboring layers will get coupled. As previ-
ous theories and experiments reveal [28–31], one impor-
tant feature associated with the dipolar field from prop-
agating magnons is the chirality – whether it emerges
on the top or bottom side of the thin film depends on
the sign of kx and the equilibrium moment orientation,
as illustrated in Figs. 1(b) and 1(c). Therefore, the
interlayer dipolar coupling strength within and outside
a unit cell are not equal to each other. The interac-
tion Hamiltonian for the multilayers can be written as
Ĥint =

∑

kx,n
(∆Sb

†
1n,kx

b2n,kx
+∆Db

†
1n,kx

b2,n−1,kx
+H.c.),

with the intracell (intercell) coupling strength ∆S(D).
Since the interlayer dipolar interaction between magnons
decays exponentially as the distance of two considered
layers increases [27], we only consider the dipolar in-
teraction between nearest neighboring layers throughout
the work. When |kx| is not large compared with the
Brillouin zone (BZ) boundary, ∆S(D) = B · (|kx| ± kx),

with B = γµ0N1N2

√
Ms1d1Ms2d2/2 and Nj = (1 −

e−|kx|dj)/(|kx|dj) [27]. In sharp contrast to the standard
analytic expressions that describe local interactions in
electronic systems, ∆S(D) here contains a non-analytic
function of |kx| ± kx, which is originated from the long-
range nature of dipolar fields.

Combining Ĥ0 and Ĥint, adopting the periodic bound-
ary condition along the z axis, and implementing Fourier
transformation, i.e., bjn,kx

= (1/
√
N)

∑

kz
βj,ke

ikznd

with k = kxx̂+ kz ẑ, we get the bulk magnonic Hamilto-
nian for the multilayers on the basis of βk = [β1,k, β2,k]

T :

Ĥbulk =
∑

k

β
†
k
Hbulk(k)βk,

Hbulk(k) =

[

ω1 ∆S +∆De
−ikzd

∆S +∆De
ikzd ω2

]

.

(1)

Eq. (1) coincides with the expression of the celebrated
one-dimensional Su-Schrieffer-Heeger (1D SSH) model
[32], except that our model applies to a two-dimensional
(2D) case with both ωj and ∆S(D) being functions of
kx. In the SSH model, the existence of surface/edge
states is determined by the relative magnitude of ∆S and
∆D. In our case, this is further controlled by the sign of
kx, as one can easily verify ∆S > ∆D for kx > 0, and
∆S < ∆D for kx < 0. Solving the eigenvalue equation
Hbulk |χ〉 = ω |χ〉, we can get the higher (lower) eigen-
frequency ω± = (ω1 + ω2)/2 ±

√

(ω1 − ω2)2/4 + 4B2k2x,
either of which has no dispersions along the kz direction,
suggesting a flat band when kx is fixed. Since our model
is 2D in the xz plane with broken TRS, we can calculate
the Chern integer as the topological invariant. Denoting
|χ−〉 as the eigenstate corresponding to ω−, we can calcu-
late the Chern integer Ch− = (2π)−1

∫∫

BZ Ω−(k)dkxdkz
for the lower band, where Ω−(k) = i∂kx

〈χ−|∂kz
|χ−〉 −

i∂kz
〈χ−| ∂kx

|χ−〉 is the Berry curvature. The Chern in-
teger is evaluated to be

Ch− =











1 (A1 > A2, H1 < H2)

−1 (A1 < A2, H1 > H2)

0 (otherwise)

, (2)

suggesting that the bulk bands possess non-zero Chern
integers when (A1 −A2) · (H1 −H2) < 0.
The surface states can be explicitly obtained by con-

sidering multilayers with open boundary condition along
the z direction. The magnonic Hamiltonian for the N -
cell multilayers is Ĥ = Ĥ0 + Ĥint =

∑

kx
b
†
kx
H(kx)bkx

,

where bkx
= [b11,kx

, b21,kx
, ..., b1N,kx

, b2N,kx
]T and H(kx)

is a 2N × 2N matrix. Solving the eigenvalue equation
H |χ〉 = ω |χ〉, we can get 2N eigenfrequencies and cor-
responding eigenstates. When kx < 0, corresponding to
∆S = 0 and ∆D > 0, two surface states emerge, which
are separately localized in the 1st layer of the 1st cell
(bottom layer) with ω1e = ω1, |χ1e〉 = [1, 0, 0, ..., 0]T ,
and in the 2nd layer of the Nth cell (top layer) with
ω2e = ω2, |χ2e〉 = [0, 0, ..., 0, 1]T . We note that both of
them are strictly localized on the surfaces without de-
cay into the bulk. Figs. 2(a) to 2(c) show the evolution
of the magnonic band structure, when the strength of
applied external magnetic field H varies. In this cal-
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FIG. 2. (a) to (c) Evolution of the magnonic band structure
with a varying external field H . The black lines correspond to
bulk states, and the red (blue) line corresponds to the surface
state strictly localized in the bottom (top) layer. (a) and (c)
correspond to the topologically non-trivial and trivial phases,
respectively. (b) is when the topological transition happens.
(d) Coupled wire construction in the magnetic multilayers
with 2N total layers. Due to the chirality of the interlayer
dipolar interaction, right-moving magnons get coupled (red
arrows) within the same cell, while left-moving magnons get
coupled (green arrows) between neighboring cells. Two sur-
face states are left uncoupled. The symbols of ⊗ and ⊙ on
the surface states show the orientations of carried spins. (e)
Coupled wire construction in the multilayers with 2N−1 total
layers.

culation, we consider an example consisting of alternat-
ing 10 nm yttrium iron garnet (YIG, 1st sublattice) and
10 nm permalloy (Py, 2nd sublattice) thin films, with re-
ported material parameters of Aex

1 = 3.7 × 10−12 J/m,
Aex

2 = 8.7 × 10−12 J/m, Ms1 = 1.4 × 105 A/m, and
Ms2 = 7.4 × 105 A/m [33, 34]. An external magnetic
field is assumed along the −y direction. The antifer-
romagnetic exchange coupling constant at the YIG/Py
interface is taken to be J = −8.6× 104 J/m2 [26], which
gives rise to the static interfacial exchange field Hex

j =
2|J |/(µ0Msjdj) experienced by each sublattice, further
leading to the total effective static field Hj = Hex

j ∓H .
As the Chern integer calculation shows, the topology
of the magnonic band structure depends on the sign of
(A1 − A2) · (H1 − H2), which can be further controlled
by tuning the relative magnitude of H1 and H2 through
H , given that A1 − A2 > 0 is fixed. In Fig. 2(a), under
H = 5 × 105 A/m, corresponding to H1 < H2, the bulk
bands (black lines) are inverted around kx = 0 and two
surface bands (red and blue lines) emerge in the kx < 0

half-space, which cross each other and form a degenerate
point, i.e., a tilted Dirac cone, without pairing at its time-
reversal point due to broken TRS. When H is reduced
such thatH1 = H2, a topological transition happens [Fig.
2(b)], where the bulk bands become degenerate at kx = 0,
corresponding to a gap closing. With further decreasing
H such that H1 > H2 [Fig. 2(c)], there is no bulk band
inversion and the surface bands do not cross each other in
the kx < 0 half-space, representing a topologically trivial
system.

The formation of ultra-localized surface states in the
magnetic multilayers can be further understood as a
magnonic implementation of the coupled wire model that
has been widely investigated in the circumstance of quan-
tum Hall effect (QHE) in electronic systems [35–38]. We
begin by regarding the multilayers as an array of 2N non-
interacting one-dimensional wires, with single-particle
magnonic dispersion relations ω1(2)(kx), which cross each
other under the condition of (A1 − A2) · (H1 − H2) <
0. Due to the interlayer dipolar interaction, magnons
around the band-crossing points in neighboring layers get
coupled, as shown in Fig. 2(d). As discussed earlier, de-
pending on the sign of kx, either ∆S or ∆D reduces to
zero. For right-moving magnons (kx > 0), ∆D = 0 and
∆S > 0, the coupling only happens within the same cell
[red arrows in Fig. 2(d)], while for left-moving magnons
(kx < 0), ∆S = 0 and ∆D > 0, the coupling only happens
between neighboring cells (green arrows). As a result,
the left-moving magnons in the bottom layer and the
left-moving magnons in the top layer are left uncoupled
and form a pair of surface states. Considering that two
surface layers possess opposite equilibrium moments, the
surface magnonic states would carry spin currents with
opposite directions. This kind of chiral surface spin cur-
rents still exist even if the number of layers is odd, as
shown in Fig. 2(e). In this case, the surface states have
opposite velocities but same equilibrium moment orien-
tations, hence still carrying opposite spin currents. The
formation of surface magnonic states and chiral spin cur-
rents in the magnetic multilayers is therefore similar to
the realization of QHE in electronic systems, where the
left- and right-moving electrons in neighboring wires are
coupled together due to interchannel scattering.

Until now, we have demonstrated tunable magnonic
Chern bands and ultra-localized surface states carrying
chiral spin currents in the magnetic multilayers under
a few simplified assumptions, including: 1) the magnon
propagation is confined in the x direction, which is or-
thogonal to the equilibrium moment orientations, 2) we
neglect the intralayer dipolar interaction and dynamic
interfacial exchange interaction. In the following, we ex-
tend our discussion to a generic case where magnons can
propagate within the whole xy plane in each individual
layer, i.e., with in-plane momenta k‖ = kxx̂ + ky ŷ, and
both the intralayer dipolar interaction and dynamic in-
terfacial exchange interaction are included. With the
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FIG. 3. (a) to (d) Magnonic band structure for the 3D
multilayers when all the interactions are included. (a) and
(b) correspond to the topologically non-trivial phase with
H = 5× 105 A/m, while (c) and (d) correspond to the trivial
phase with H = 5× 104 A/m. ky is fixed at 0 for (a) and (c),
and ky is fixed at ±1.0× 108 m−1 for (b) and (d). (e) Decay
length ξ of surface states as a function of |ky/kx|.

periodic boundary condition along the z axis, the bulk
magnonic Hamiltonian for the multilayers in Fig. 1(a)
can be expressed in the Bogoliubov-de Gennes formal-
ism:

Ĥ′
bulk =

1

2

∑

k

[

β
†
k

β−k

]

H ′
bulk(k)

[

βk

β
†
−k

]

,

H ′
bulk(k) =

[

h(k) b(k)
b∗(−k) h∗(−k)

]

,

(3)

with k = k‖ + kz ẑ. The diagonal block h(k) in Eq. (3)
has the form of

h(k) =

[

ω′
1 ∆′

S +∆′
De

−ikzd

∆′
S +∆′

De
ikzd ω′

2

]

, (4)

with

ω′
j = Ajk

2
‖ +Ωj +

γµ0Msj

2

[

(1−N ′
j)
k2x
k2‖

+N ′
j +

2

3

]

,

∆′
S(D) =

B′

2
·
(

k‖ +
k2x
k‖

± 2kx

)

,

(5)
where N ′

j and B′ can be obtained by replacing |kx| with
|k‖| in Nj and B. The off-diagonal block b(k) in Eq. (3)

has the form of

b(k) =

[

δ1 δ′ · (1 + e−ikzd)
δ′ · (1 + eikzd) δ2

]

, (6)

with

δj =
γµ0Msj

2

[

(1 −N ′
j)
k2x
k2‖

−N ′
j

]

,

δ′ =
γµ0

2

∏

j=1,2

[

f ′
j ·

(

k‖ −
k2x
k‖

)

+Hex
j

]1/2

,

(7)

where f ′
1(2) = Ms2(1)d2(1)N

′
1N

′
2/2. The derivation for

Eqs. (3) to (7) is presented in [27]. Here, we note that βk

(β†
k
) in Eq. (3) corresponds to the annihilation (creation)

operator for circularly polarized right-handed magnon
modes with positive frequencies, or equivalently, parti-
cles, while β†

−k
(β−k) represents the annihilation (cre-

ation) operator for left-handed magnon modes with neg-
ative frequencies, or equivalently, holes. The intralayer
dipolar interaction mixes magnon modes with opposite
handedness, i.e., particles and holes, within the same
layer, and leads to non-zero δj in b(k). Meanwhile, the
dynamic interfacial exchange interaction and the inter-
layer dipolar interaction under finite ky give rise to the
terms proportional to δ′ in b(k), coupling magnon modes
with opposite handedness in neighboring layers. For the
usual cases with large enough effective static fieldHj that
we are interested in, the difference between frequencies of
right- and left-handed magnon modes is large, so b(k) in
Eq. (3) plays a role as a weak perturbation, which does
not lead to extra band inversions. Therefore approxi-
mately, the existence of surface states is still governed by
the relative magnitude of ∆′

S and ∆′
D in h(k), which is

further controlled by the sign of kx according to Eq. (5).
With open boundary condition along the z direction,

the magnonic band structure can be solved through nu-
merical methods based on the Cholesky decomposition
[39]. Using the same parameters as in Figs. 2(a) to 2(c),
we plot the magnonic band structure in Figs. 3(a) to
3(d) with fixed ky for two different H , when all the in-
teractions are included. We see that after extending to
a generic three-dimensional (3D) case, the surface states
still exist in the kx < 0 half-space. When H remains the
same and ky varies, the band structure keeps its topo-
logical properties, either with non-trivial [Figs. 3(a) and
3(b)] or trivial [Figs. 3(c) and 3(d)] surface states, sug-
gesting that the 3D multilayers can be regarded as the
magnonic analog of stacked 2D Chern ‘insulators’ along
the y direction [40]. Similar to the 2D simplified case dis-
cussed earlier, the topological properties are still tunable
through H , i.e., the surface states can still be toggled be-
tween non-trivial and trivial phases, as illustrated by the
comparison of Figs. 3(b) and 3(d). The subtle difference
is that with finite ky, ∆

′
S no longer vanishes for kx < 0,

and the surface states therefore extend into the bulk with
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an exponential decay in magnitude, |χ1e〉 (z) ∼ e−z/ξ and
|χ2e〉 (z) ∼ e−(z−Nd)/ξ, where ξ = d/log(∆′

D/∆
′
S) is the

decay length. In Fig. 3(e), we plot ξ as a function of
|ky/kx|, and see that ξ ≪ d for ky < kx, indicating the
surfaces states are still highly localized.

In summary, we study the magnonic band structure
and corresponding topological properties in antiparal-
lelly aligned magnetic multilayers. We demonstrate that
the long-range, chiral interlayer dipolar interaction be-
tween propagating magnons correlates the sublattice and
momentum degrees of freedom and breaks TRS. It fur-
ther generates bulk bands with non-zero Chern integers
and ultra-localized surface states carrying chiral spin cur-
rents. The topology of magnonic bands can be switched
between non-trivial and trivial through an external field.
We also reveal that the dipolarly coupled magnetic multi-
layers represents a magnonic implementation of the cou-
pled wire model. We believe our study provides an easy-
to-implement system for realizing topologically protected
magnonic surface states and low-dissipation spin trans-
port in a tunable manner, and will therefore benefit the
development of modern spintronics.

This work is supported by AFOSR under award
FA9550-19-1-0048, and National Science Foundation un-
der award DMR-2104912.
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zer, Y. Wang, T. Kubota, T. Schneider, S. Stienen,
K. Lenz, H. Schultheiß, J. Lindner, K. Takanashi, R. E.

Arias, and J. Fassbender, Parameter-free determination
of the exchange constant in thin films using magnonic
patterning, Appl. Phys. Lett. 108, 102402 (2016).

[35] C. L. Kane, R. Mukhopadhyay, and T. C. Lubensky,
Fractional quantum hall effect in an array of quantum
wires, Phys. Rev. Lett. 88, 036401 (2002).

[36] T. Meng, T. Neupert, M. Greiter, and R. Thomale,
Coupled-wire construction of chiral spin liquids,
Phys. Rev. B 91, 241106 (2015).

[37] C. L. Kane and A. Stern, Coupled wire
model of Z4 orbifold quantum hall states,
Phys. Rev. B 98, 085302 (2018).

[38] X.-C. Wu, C.-M. Jian, and C. Xu, Coupled-wire descrip-
tion of the correlated physics in twisted bilayer graphene,
Phys. Rev. B 99, 161405 (2019).

[39] J. H. P. Colpa, Diagonalization of
the quadratic boson hamiltonian,
Phys. A: Stat. Mech. Appl. 93, 327 (1978).

[40] L. Fu, C. L. Kane, and E. J. Mele, Topological insulators
in three dimensions, Phys. Rev. Lett. 98, 106803 (2007).

https://doi.org/10.1103/PhysRevB.100.104427
https://doi.org/10.1126/sciadv.aaz6931
https://doi.org/10.1021/acs.nanolett.1c02575
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1088/0022-3727/48/1/015001
https://doi.org/10.1063/1.4943228
https://doi.org/10.1103/PhysRevLett.88.036401
https://doi.org/10.1103/PhysRevB.91.241106
https://doi.org/10.1103/PhysRevB.98.085302
https://doi.org/10.1103/PhysRevB.99.161405
https://doi.org/10.1016/0378-4371(78)90160-7
https://doi.org/10.1103/PhysRevLett.98.106803


ar
X

iv
:2

20
1.

00
31

2v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  8
 J

an
 2

02
2

Supplemental Material: Tunable Magnonic Chern Bands and Chiral Spin Currents in

Magnetic Multilayers

Zhongqiang Hu,1, ∗ Liang Fu,2 and Luqiao Liu1

1Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Dated: January 11, 2022)

Appendix A: Interlayer dipolar field from propagating magnons

We first discuss the magnetic bilayers shown in Fig. S1(a), which consist of two different ferromagnetic layers with
in-plane magnetic moments. For convenience, we set up a global coordinate system (x, y, z), and denote the angle
between the equilibrium moment orientation and the x axis as θj [Fig. S1(b)]. Here, j = 1, 2 is the layer index. In
the discussion throughout the paper including the main text and Supplemental Material, we use the dimensionless
reduced moment mj = Mj/Msj, where Msj is the saturated magnetization. Within each layer, we also set up a local
coordinate system (xj , yj , z), with the equilibrium moment orientation chosen as the yj axis.
The dipolar energy between a pair of moments m1 (located at r) and m2 (located at r′) is

δEd = −µ0Ms1Ms2

4π

3(m1 ·R)(m2 ·R) − (m1 ·m2)R
2

R5
, (A1)

where R = r − r′ = (X,Y, Z). If defining a matrix

F = −µ0Ms1Ms2

4πR5





3X2 −R2 3XY 3XZ
3XY 3Y 2 −R2 3Y Z
3XZ 3Y Z 3Z2 −R2



, (A2)

we can write Eq. (A1) as δEd = mT
2 Fm1. We note that here mj = [mjx,mjy,mjz ]

T is defined as a column vector.
As shown in Fig. S1(c), the dipolar energy between two layers (i.e., a pair of continuous bodies) is

Ed =

∫∫

mT
2 (r

′)F (r − r′)m1(r)d
3rd3r′. (A3)

After the Fourier transformation m̃j = F{mj} and F̃ = F{F }, it can be written as

Ed =

∫

m̃
†
2(k)F̃ (k)m̃1(k)

d3k

(2π)3
. (A4)

According to [1], F̃ (k) is approximated as

F̃ (k) ≈ −µ0Ms1Ms2

3k2





3k2x − k2 3kxky 3kxkz
3kxky 3k2y − k2 3kykz
3kxkz 3kykz 3k2z − k2



, (A5)

when k = |k| is not large compared with the Brillion zone boundary. Considering the thin-film configuration with the
lowest standing mode along the z direction, i.e., mj(r) = mj(r‖)S0(z; dj), where dj is the layer thickness and

S0(z; d1) =

{

1 (−d1 < z < 0)

0 (otherwise),

S0(z; d2) =

{

1 (0 < z < d2)

0 (otherwise),

(A6)

∗ zhongqhu@mit.edu
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FIG. 1. (a) Magnetic bilayers consisting of two different ferromagnetic layers with in-plane magnetic moments. (b) The global
and local coordinate systems, as seen from the top view of the bilayers. The equilibrium moment orientations in two layers
have different angles with the x axis. (c) When calculating the interlayer dipolar energy, r and r

′ are in the different layers.
(d) When calculating the intralayer dipolar energy, r and r

′ are in the same layer.

we can rewrite Eq. (A4) as

Ed =

∫

m̃
†
2(k‖)S̃

∗
0 (kz ; d2)F̃ (k)S̃0(kz ; d1)m̃1(k‖)

d3k

(2π)3
=

∫

m̃
†
2(k‖)G(k‖)m̃1(k‖)

d2k‖

(2π)2
, (A7)

where

S̃0(kz ; d1) = F{S0(z; d1)} = d1e
ikzd1/2sinc(kzd1/2),

S̃0(kz ; d2) = F{S0(z; d2)} = d2e
−ikzd2/2sinc(kzd2/2),

(A8)

and

G(k‖) =

∫

S̃∗
0(kz ; d2)F̃ (k)S̃0(kz; d1)

dkz
2π

=
µ0Ms1Ms2d1d2

2k‖
N(k‖; d1)N(k‖; d2)





−k2x −kxky ikxk‖
−kxky −k2y ikyk‖
ikxk‖ ikyk‖ k2‖



 , (A9)

where N has a form of N(k; d) = (1− e−kd)/(kd). We note that in Eq. (A7), the moments m̃1 and m̃2 are expressed
in the global coordinate system. After switching to local coordinate systems, we would get a new matrix g(k‖) instead
of G(k‖) to express Ed:

Ed =

∫

m̃
†
2(k‖)g(k‖)m̃1(k‖)

d2k‖

(2π)2
. (A10)

Defining the rotation matrix as

Rj =





sinθj cosθj 0
−cosθj sinθj 0

0 0 1



 , (A11)

and only considering magnons confined to transport in the x axis, which means k‖ = |kx| and ky = 0 (i.e., the simplified
case mentioned in the main text, where each layer is a infinitely long strip along the x axis and the magnetic moment
distribution along the y axis is uniform), we get

g(kx) = R−1
2 G(kx)R1 =

1

2
µ0Ms1Ms2d1d2N(|kx|; d1)N(|kx|; d2)





−|kx|sinθ1sinθ2 −|kx|cosθ1sinθ2 ikxsinθ2
−|kx|sinθ1cosθ2 −|kx|cosθ1cosθ2 ikxcosθ2

ikxsinθ1 ikxcosθ1 |kx|



 .

(A12)
Right now, the interlayer dipolar energy is written as

Ed =

∫

m̃
†
2(kx)g(kx)m̃1(kx)

dkx
2π

= −µ0Ms1d1

∫

h̃
d†
1 (kx)m̃1(kx)

dkx
2π

= −µ0Ms2d2

∫

m̃
†
2(kx)h̃

d
2(kx)

dkx
2π

, (A13)

and the interlayer dipolar field h̃d
j (kx) in each layer is given by

h̃d
1(kx) = − 1

µ0Ms1d1
g†(kx)m̃2(kx),

h̃d
2(kx) = − 1

µ0Ms2d2
g(kx)m̃1(kx),

(A14)
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which can be written in the form of
[

h̃d
1x(kx)

h̃d
1z(kx)

]

= f1

[

|kx|sinθ1sinθ2 ikxsinθ1
ikxsinθ2 −|kx|

] [

m̃2x(kx)
m̃2z(kx)

]

,

[

h̃d
2x(kx)

h̃d
2z(kx)

]

= f2

[

|kx|sinθ1sinθ2 −ikxsinθ2
−ikxsinθ1 −|kx|

] [

m̃1x(kx)
m̃1z(kx)

]

,

(A15)

where f1(2) = Ms2(1)d2(1)N(|kx|; d1)N(|kx|; d2)/2.
There are two additional points we would like to mention:

1) If the moment distribution along the z direction is a higher-order standing mode within each individual layer,
which means m1(r) = m1(r‖)Sm(z; d1), m2(r) = m2(r‖)Sn(z; d2) with m,n = 1, 2, ..., and

Sm(z; d1) =

{

cos(mπz/d1) (−d1 < z < 0)

0 (otherwise),

Sn(z; d2) =

{

cos(nπz/d2) (0 < z < d2)

0 (otherwise),

(A16)

we can then use the similar analysis as we do for the uniform mode. The only difference is that the factor N(|kx|; d1)
N(|kx|; d2) included in fj is substituted by Nm(|kx|; d1) Nn(|kx|; d2), where Nm(k; d) = kd[1− (−1)me−kd]/[(kd)2 +
(mπ)2]. Therefore, a higher-order standing mode will only decrease the interlayer coupling strength, but will not
qualitatively affect the conclusions on the tunable Chern bands and chiral surface spin currents.
2) If two layers in Fig. S1(c) are separated by a gap of δd, a factor of exp(−k‖δd) will be additionally included in fj .
Due to this exponential decay character, we only include the dipolar interaction between nearest neighboring layers.

Appendix B: 2D Magnonic Hamiltonian with only the interlayer dipolar coupling

We continue focusing on the magnetic bilayers. Since each magnetic moment precesses around its equilibrium
orientation, in the small-angle precession limit, we can express the moment as mj(r, t) = mjx(r)e

iωtx̂j + 1 · ŷj +
mjz(r)e

iωtẑ, with the angular frequency ω. The dynamics of precession is characterized by the Landau-Lifshitz (LL)
equation

∂mj

∂t
= −γµ0mj × hj , (B1)

where γ is electron’s gyromagnetic ratio, µ0 is vacuum permeability, hj(r, t) = hjx(r)e
iωtx̂j +Hj ŷj + hjz(r)e

iωtẑ is
the effective field experienced by each layer, with the static component Hj including the external field H and the
static interfacial exchange field Hex

j . The interfacial exchange energy can be written as [2]

Eex
int = −J

∫

m1(r‖) ·m2(r‖)d
2r‖, (B2)

where J is the interfacial exchange constant, and the integral is on the whole interface. The static field contributed by
the interfacial exchange is therefore derived as Hex

j = Jcos(θ1−θ2)/(µ0Msjdj). In the antiparallel aligned multilayers,
i.e., J < 0 and θ2 = θ1±π, the static interfacial exchange field in each layer is Hex

j = 2|J |/(µ0Msjdj), when including
both the interfaces.
Linearizing Eq. (B1) in the small-angle precession limit and transforming it into the reciprocal space, we have

iω

γµ0
m̃jx = −h̃jz +Hjm̃jz ,

iω

γµ0
m̃jz = h̃jx −Hjm̃jx.

(B3)

In the absence of interlayer interactions, each individual layer has its unperturbed eigenfrequencies and eigenstates.
The intralayer exchange field is hex0

j = [2Aex
j /(µ0Msj)]∇2mj [3], with the exchange stiffness constant Aex

j . In Eq.
(B3), this corresponds to:

h̃ex0
jx(z) = −

2Aex
j k2x

µ0Msj
m̃jx(z), (B4)
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The unperturbed eigenfrequencies and eigenstates of each layer are therefore given by

ωj± = ±(Ajk
2
x +Ωj),

m̃j± =
1√
2
(m̃jx ± im̃jz),

(B5)

where Aj = 2Aex
j γ/Msj characterizes the intralayer exchange strength and Ωj = γµ0Hj is the Larmor precession

frequency. From Eq. (B5), we see that the unperturbed eigenstate m̃j± is a right- (left-) handed circularly polarized
magnon mode, which corresponds to the positive (negative) eigenfrequency, representing a particle (hole).
Applying the intralayer exchange field [Eq. (B4)] and interlayer dipolar field [Eq. (A15)] into the linearized LL

equation [Eq. (B3)], we can get the eigenvalue equation

ω







m̃1+

m̃2+

m̃1−

m̃2−






=







ω1+ ∆1+ 0 δ1+
∆2+ ω2+ δ2+ 0
0 δ1− ω1− ∆1−

δ2− 0 ∆2− ω1−













m̃1+

m̃2+

m̃1−

m̃2−






, (B6)

where the diagonal terms are exactly unperturbed eigenfrequencies [Eq. (B5)] and the off-diagonal terms are originated
from the interlayer dipolar coupling, which can be written as

∆j± =
1

2
γµ0fj [kx(sinθ1 − sinθ2)± |kx|(1− sinθ1sinθ2)],

δj± =
1

2
γµ0fj [kx(sinθ1 + sinθ2)∓ |kx|(1 + sinθ1sinθ2)].

(B7)

Since we are interested in bilayers with antiferromagnetic spin textures with θ1 = π/2, θ2 = −π/2, or θ1 = −π/2,
θ2 = π/2, δj± vanishes and Eq. (B6) becomes block diagonalized.
We can further express the magnonic excitations using the Holstein-Primakoff (HP) transformation [4]

m̃j+ ≈
√

2γ~

MsjSxydj
bj,kx

, m̃j− ≈
√

2γ~

MsjSxydj
b†j,kx

(B8)

where Sxy is the area of the interface, and bj,kx
(b†j,kx

) annihilates (creates) a circularly polarized magnon with wave

vector kx in the jth layer. If we define bkx
= [b1,kx

, b2,kx
]T , Eq. (B6) can be equivalently written as

i
d

dt

[

bkx

b
†
−kx

]

=

[[

bkx

b
†
−kx

]

, Ĥ2L

]

= σ3H2L(kx)

[

bkx

b
†
−kx

]

, (B9)

with

Ĥ2L =
1

2

∑

kx

[

b
†
kx

b−kx

]

H2L(kx)

[

bkx

b
†
−kx

]

,

σ3 ≡
[

1 0

0 −1

]

, H2L(kx) =

[

h2L(kx) 0

0 h∗
2L(−kx)

]

,

(B10)

where

h2L(kx) =

[

ω1 ∆
∆ ω2

]

,

ωj = ωj+ = Ajk
2
x +Ωj ,

∆ =
√

∆1+∆2+ =
1

2
γµ0

√

f1f2[kx(sinθ1 − sinθ2) + |kx|(1 − sinθ1sinθ2)].

(B11)

The bosonic Bogoliubov-de Gennes (BdG) Hamiltonian H2L(kx) only possesses the diagonal blocks, so the bilayer
Hamiltonian operator can be simplified as

Ĥ2L =
∑

kx

b
†
kx
h2L(kx)bkx

. (B12)
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As for the antiparallelly aligned multilayers shown in Fig. 1 of the main text, we can regard it as the stack of
bilayers along the z direction. Particularly, when treating the dipolar coupling between two layers within a unit cell,
we can set θ1 = π/2, θ2 = −π/2, while we set θ1 = −π/2, θ2 = π/2 for two layers belonging to neighboring cells.
Therefore, we can get the intracell (intercell) coupling term ∆S(D) by assigning the corresponding values of θ1 and θ2
into the expression of ∆ in Eq. (B11):

∆S = ∆|θ1=π/2,θ2=−π/2 = B · (|kx|+ kx),

∆D = ∆|θ1=−π/2,θ2=π/2 = B · (|kx| − kx),
(B13)

with B = µ0γ
√
f1f2 characterizing the coupling strength. The multilayer magnonic Hamiltonian is therefore written

as

Ĥ = Ĥ0 + Ĥdip =
∑

kx,j,n

ωjb
†
jn,kx

bjn,kx
+

∑

kx,j,n

(

∆Sb
†
1n,kx

b2n,kx
+∆Db

†
1n,kx

b2,n−1,kx
+H.c.

)

. (B14)

We can get the bulk Hamiltonian [Eq. (1) of the main text], with the periodic boundary condition along the z
direction, and we can solve for the explicit surface states [Figs. 2(a) to 2(c) of the main text], with the open boundary
condition along the z direction.

Appendix C: 3D Magnonic Hamiltonian with all interactions included

In the generic case, magnons can propagate within the whole xy plane in each individual layer, i.e., with the in-
plane momenta k‖ = kxx̂+kyŷ. Besides, both the intralayer dipolar interaction and the dynamic interfacial exchange
interaction should be included.
First, let’s derive the interlayer dipolar field with finite ky. For two layers within a unit cell, we have θ1 = π/2 and

θ2 = −π/2. Substituting them into Eq. (A11) gives

R′
1 =





1 0 0
0 1 0
0 0 1



 , R′
2 =





−1 0 0
0 −1 0
0 0 1



 . (C1)

Applying these rotation matrices into Eq. (A9), we get

g′(k‖) =(R′
2)

−1G(k‖)R
′
1 =

µ0Ms1Ms2d1d2
2k‖

N(k‖; d1)N(k‖; d2)





k2x kxky −ikxk‖
kxky k2y −ikyk‖
ikxk‖ ikyk‖ k2‖



 . (C2)

Right now, the interlayer dipolar energy is written as

E′
d =

∫

m̃
†
2(k‖)g

′(k‖)m̃1(k‖)
d2k‖

(2π)2
= −µ0Ms1d1

∫

h̃
d†
1 (k‖)m̃1(k‖)

d2k‖

(2π)2
= −µ0Ms2d2

∫

m̃
†
2(k‖)h̃

d
2(k‖)

d2k‖

(2π)2
,

(C3)
and the interlayer dipolar field in each layer is give by

h̃d
1(k‖) = − 1

µ0Ms1d1
g′†(k‖)m̃2(k‖),

h̃d
2(k‖) = − 1

µ0Ms2d2
g′(k‖)m̃1(k‖),

(C4)

which can be written in the form of components
[

h̃d
jx(k‖)

h̃d
jz(k‖)

]

= f ′
j

[

−k2x/k‖ ikx
−ikx −k‖

] [

m̃vx(k‖)
m̃vz(k‖)

]

. (C5)

where v = 2 for j = 1 and v = 1 for j = 2. f ′
j can be obtained by replacing |kx| with |k‖| in the expression of fj.

Next, let’s derive the intralayer dipolar field, which is similar to what we’ve done for the interlayer dipolar field.
The difference is that there is only one continuous body now, so r and r′ are in the same layer, as shown in Fig.
S1(d). The intralayer dipolar energy of the jth layer is

Ed0,j =
1

2

∫

m̃
†
j(k‖)Gj(k‖)m̃j(k‖)

d2k‖

(2π)2
. (C6)
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Gj(k‖) is calculated to be

Gj(k‖) =
1

3
µ0M

2
sjdj1− µ0M

2
sjdj

1

k2‖





k2x(1−N ′
j) kxky(1 −N ′

j) 0
kxky(1 −N ′

j) k2y(1−N ′
j) 0

0 0 k2‖N
′
j



 , (C7)

where N ′
j = N(|k‖|; dj). After switching to the local coordinate system, we find gj(k‖) = (R′

j)
−1Gj(k‖)R

′
j = Gj(k‖),

where R′
j is shown in Eq. (C1). Right now, the intralayer dipolar energy is written as

Ed0,j =
1

2

∫

m̃
†
j(k‖)gj(k‖)m̃j(k‖)

d2k‖

(2π)2
= −1

2
µ0Msjdj

∫

m̃
†
j(k‖)h̃

d0
j (k‖)

d2k‖

(2π)2
, (C8)

and the intralayer dipolar field h̃d0
j (k‖) in each layer is given by

h̃d0
j (k‖) = − 1

µ0Msjdj
gj(k‖)m̃j(k‖), (C9)

which can be written in the form of
[

h̃d0
jx(k‖)

h̃d0
jz (k‖)

]

= Msj

[

(1−N ′
j)k

2
x/k

2
‖ +

1
3 0

0 N ′
j +

1
3

] [

m̃jx(k‖)
m̃jz(k‖)

]

. (C10)

On the other hand, from Eq. (B2), we can get the dynamic interfacial exchange field h̃ex
j in each layer:

[

h̃ex
jx(k‖)

h̃ex
jz(k‖)

]

= Hex
j

[

1/2 0
0 −1/2

] [

m̃vx(k‖)
m̃vz(k‖)

]

. (C11)

Applying the intralayer exchange field [replacing kx by k‖ in Eq. (B4)], interlayer dipolar field [Eq. (C5)], intralayer
dipolar field [Eq. (C10)], and dynamic interfacial exchange field [Eq. (C11)], into the linearized LL equation [Eq.
(B3)], we can get the eigenvalue equation

ω







m̃1+

m̃2+

m̃1−

m̃2−






=







ω′
1 ∆′

1+ δ1 δ′1
∆′

2+ ω′
2 δ′2 δ2

−δ1 −δ′1 −ω′
1 ∆′

1−

−δ′2 −δ2 ∆′
2− −ω′

2













m̃1+

m̃2+

m̃1−

m̃2−






, (C12)

with

ω′
j = Ajk

2
‖ +Ωj +

γµ0Msj

2

[

(1 −N ′
j)
k2x
k2‖

+N ′
j +

2

3

]

,

∆′
j± =

1

2
γµ0f

′
j

[

±
(

k‖ +
k2x
k‖

)

+ 2kx

]

,

δj =
γµ0Msj

2

[

(1 −N ′
j)
k2x
k2‖

−N ′
j

]

,

δ′j =
γµ0

2

[

f ′
j ·

(

k‖ −
k2x
k‖

)

+Hex
j

]

.

(C13)

Eqs. (C12) and (C13) give the eigenvalue equation for two layers within the same unit cell (θ1 = π/2 and θ2 = −π/2).
As for two layers belonging to neighboring cells (θ1 = −π/2 and θ2 = π/2), the only difference in the eigenvalue
equation is

∆′
j± =

1

2
γµ0f

′
j

[

±
(

k‖ +
k2x
k‖

)

− 2kx

]

. (C14)

Then we can do the HP transformation on m̃j+ and m̃j− [Eq. (B8)] and apply the periodic boundary condition
along the z direction. We finally get the bulk magnonic Hamiltonian for the 3D multilayers [Eqs. (3) to (6) of the
main text].
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