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The purpose of this note is to complete the interesting review on quantum contextuality [1] that
appeared recently. In particular we will introduce and discuss the ideas of extracontextuality and
extravalence, that allow one to relate Kochen-Specker’s and Gleason’s theorems, and also to shift
the emphasis from the first to the second one. We will also argue that whereas Kochen-Specker’s
is essentially a negative result (a no-go theorem), Gleason’s is a positive one since it provides a
mathematical justification of Born’s rule. The link between these issues is provided by a specific
quantum feature that we call extravalence.

I. WHAT IS QUANTUM
(NON)CONTEXTUALITY ?

For the clarity of the presentation, we will introduce
quantum contextuality in a simple way, based upon usual
textbook quantum mechanics [2]. Then we will open some
questions, and propose a way to answer them. Finally, we
will draw some conclusions from our approach.

Within basic textbook quantum mechanics (QM), let
us consider a complete quantum measurement of a quan-
tity A, where “complete” means with no degeneracy left ;
usually such a measurement is associated with a complete
set of commuting operators (CSCO), that we summarize

in a single “observable” operator Â. Denoting as ai and
|ui〉 the eigenvalues and eigenstates of Â , one has from

the spectral theorem Â =
∑

i ai |ui〉〈ui| with standard

Dirac’s notations. In the following Â will be identified
with a context, that can be understood with different
meanings : on the physical side the context corresponds
to a macroscopic and operational device, able to measure
the quantity A, whereas on the mathematical side it cor-
responds to the observable Â, or also to the above set of
rank-one orthogonal projectors {|ui〉〈ui|}, where i goes
from 1 to N , the dimension of the Hilbert space. In usual
QM these physical and mathematical objects correspond
to each other, and we will come back to that in the last
part of the paper. Note that in our simple approach, like
in textbook QM, there is no “observer”, or “agent”, only
physical objects made of systems within contexts.

According again to standard QM, a measurement of Â
will give one of the eigenvalues ai, whereas other complete
measurements B̂, Ĉ... associated with other contexts, will
similarly give one of their eigenvalues bj , ck... In each
context it is clear that the corresponding observable gets
one value among N possible ones, so one says that the
value ai is assigned to the observable Â.

Now, what is quantum contextuality, in its simplest
definition ? It is the observation that in QM, it is im-
possible to assign simultaneously values with certainty
to all observables in all possible contexts, each one seen
as the experimental background of a measurement. This
simple observation clashes with classical physics, where

such an assignment is considered essential to describe the
laws of nature. The formal proof of quantum contextua-
lity is given by the Kochen-Specker (KS) theorem, sho-
wing a contradiction between QM and all models attri-
buting non-contextual values to some (well chosen) set
of observables. Such a result is “negative”, or in other
terms it is a no-go theorem, showing that a large class of
non-contextual models (typically the models with non-
contextual hidden variables) contradict QM predictions
and experimental observations [1].

However, it does not tell much about what is actually
happening in QM : the whole purpose of the KS discus-
sion is to tell what QM is not, rather than to tell what
QM is – which is the real issue we are interested in.

As a step in this direction, we may ask the question :
if it is impossible to assign simultaneously values with
certainty to all observables in all possible contexts, how
to make sense of what is being observed and measured ?
There is an answer from observation : given a result in
a context, one cannot in general specify results in other
contexts, but one can specify the probabilities of such
results. Even more interestingly, the assignment of proba-
bilities to the value of all observables (that is, to any given
measurement result) turns out to be non-contextual ! In
other words, all probabilities corresponding to all other
results within all contexts can be simultaneously defined,
albeit via a probability rule, and not a certainty rule.

Contrary to the previous negative result, this is major
asset : as we will show in more details below, it is the
basis of Gleason’s theorem, mathematically establishing
Born’s rule. It is therefore a “positive” result, much more
interesting and powerful than Kochen-Specker’s theorem.
On the mathematical side, we note also that Kochen-
Specker’s theorem can be seen as a corollary of Gleason’s
one, whereas the reverse is not true [1]. We will come
back to these points below.

Before that, it is important to note that there is a spe-
cial case for probabilities : if we restrict ourselves only to
certainties (probabilities p= 0 or p= 1), they are actually
values (eigenvalues of projection operators), not probabi-
lities (average values of projection operators). Certainties
are therefore contextual, as it is not possible to assign
truth values (0 or 1) to all measurement results, this is
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another useful way to see Kochen-Specker’s theorem. But
on the other hand one can assign non-contextual proba-
bilities as said above, with values given by Born’s law or
Gleason’s theorem.
As a conclusion of this introduction, QM is both

contextual (for the measurement results) and non contex-
tual (for the probabilities assigned to these results).
Though this sounds hardly comprehensible, everybody
agrees on that, and this is the current status of quan-
tum contextuality as presented in [1]. Our purpose here
is to to make sense of this situation, by introducing a few
additional ideas and definitions.

II. WHAT IS QUANTUM
(EXTRA)CONTEXTUALITY?

In this section we will introduce some new ideas, still
within the scope of the usual textbook QM. Then at some
point we will diverge, as it will be seen below.
First, let us introduce a distinction between a usual

pure quantum state |ψ〉, described as a vector in the re-
levant Hilbert space E for the considered system, and
the same vector considered as an eigenstate of a com-
plete measurement, therefore within a given context as
introduced above. We will define a modality as the as-
sociation of |ψ〉 and the context Â. By construction a
modality is certain and repeatable : the same |ψ〉, and
the associated eigenvalue, will be found again and again
as long as the same Â is measured on the same system.

From this definition one has |ψ〉 = |ui〉, where |ui〉 is

an eigenstate of Â, and the modality “|ψ〉 ≡ |ui〉 conside-

red as an eigenvector of Â” will be denoted as |ψ〉A. It is
clear that the same vector |ψ〉 may appear as an eigens-
tate of many other observables (actually, an infinity), as
soon as the dimension of E is at least 3. Since the changes
of context are continuous, both physically and mathema-
tically, there is actually an infinity of such observables.
So there will be many modalities, e.g. |ψ〉A, |ψ〉B , |ψ〉C ,
all associated with the same |ψ〉 : in the langage of usual
QM, they are the same |ψ〉 ; but here they are different
modalities. So now we start moving away from the usual
language : let us consider that the different modalities
|ψ〉A, |ψ〉B, |ψ〉C are indeed different, though they are
all associated with the same vector |ψ〉, or equivalently
the same projector |ψ〉〈ψ| (projectors are actually more
suitable for reasons that will appear below). Clearly this
creates an equivalence class between modalities, that we
will call an extravalence class, where all modalities are as-
sociated with the same |ψ〉. This means that certainty can
be transferred between contexts, because |ψ〉 is an eigens-
tate in all the corresponding contexts, and the associated
physical phenomenon will be called extracontextuality.

So far so good, but does this help with the previous
annoying statement that QM is both contextual for mea-
surement results, and non contextual for probabilities as-
signments ? To see that consider the following statements

(i) when making measurements, certainty and reprodu-
cibility are warranted for a modality in a given context,
and are also warranted for extravalent modalities when
changing context. But they are not warranted beyond
that, due to contextuality in the assignment of measure-
ment results as established by the KS theorem.

(ii) in other cases, when changing the context from

Â to B̂, the result is probabilistic and given by Born’s
rule |〈φ|ψ〉|2 for an initial modality |ψ〉A and final one
|φ〉B . This probability depends only on the extravalence
classes of the initial and final modalities, in agreement
with the non-contextuality in the assignment of probabi-
lities, which is a basic hypothesis of Gleason’s theorem.

So by attributing the vector |ψ〉 not to a “quantum
state”, but to an extravalence class of modalities, one
gets a more transparent picture of what QM is telling
us : certainty and reproducibility do exist, not only wi-
thin a context, but also within an extravalence class ;
when changing context and extravalence class, probabili-
ties are needed, but they are non-contextual because they
connect extravalence classes, whatever the contexts are.

This argument tells the “how”, but not yet the “why” :
what would be needed is to explain, or at least justify,
the origins of statements (i) and (ii). This can be done
within the framework called CSM, for Contexts, Systems
and Modalities [4–7], and we will briefly summarize here
some elements taken from [6]. In this framework systems
within contexts are defined as basic objects, and moda-
lities are properties associated with certainties, in agree-
ment with the first part of statement (i). Its second part,
i.e. the contextuality of the assignment of measurement
results, appears as a consequence of a quantization pos-
tulate : for a given system, the maximum number of mu-
tually exclusive modalities is bounded to N ; this requires
a probabilistic description when contexts and extrava-
lence classes are being changed [6].

To get the probability law (ii), one assumes that the
probabilities when changing contexts depend only on the
extravalence class, and one attributes a projector |ψ〉〈ψ|
to each extravalence class. These are strong assumptions,
but they do agree with empirical evidence, and are justi-
fied in detail in [6], based on induction. Then it is easy to
check that all hypotheses for Gleason’s theorem are sa-
tisfied, and as a consequence, that Born’s rule is justified
as the only acceptable probability law [6]. This argument
can be made even more convincing by using Uhlhorn’s
theorem in addition to Gleason’s [8].

We see now that the consequences drawn from ex-
tracontextuality are considerably stronger than the ones
drawn from contextuality alone : we not only get no-go
theorems, but we reach the correct probabilistic structure
of QM, essentially by providing a physical justification
of Gleason’s hypotheses. This automatically ensures that
Kochen-Specker’s theorem is true also, as a corollary of
Gleason’s, without the need of examining many different
scenarii in many different dimensions [1].
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III. MORE ABOUT KS CONTRADICTIONS.

In the previous sections we identified a context with a
CSCO, and the CSCO with a single non-degenerate ob-
servable Â. However in practice most CSCO are sets of
co-commuting observables (Â1, Â2, Â3....), each operator
having some degenerate eigenvalues, with degeneracy lif-
ted by considering all of them. In a textbook CSCO, one
stops adding operators when all degeneracies are lifted,
e.g. with 3 operators, and then Â ≡ (Â1, Â2, Â3). But one
may keep adding co-commuting operators, staying thus
in the same context. This idea is used in many contex-
tuality theorems, a famous example being the Peres-
Mermin square nicely described in [1] : for two spins
1/2, (σ̂z ⊗ I, I ⊗ σ̂z) is a CSCO, but one rather consi-
ders the overcomplete set of co-commuting operators
(σ̂z ⊗ I, I⊗ σ̂z, σ̂z ⊗ σ̂z). There are other exemples where
contexts are given as usual CSCO, for instance the well-
known “colored” set of 9 contexts in dimension 4, intro-
duced in [14], and discussed from the CSM point of view
in [5]. Another example is the Mermin version of the GHZ
argument [15], also discussed in [10].
Obviously there are infinitely many variants of such

KS-type contradictions, that may or may not depend on
considering a particular initial state, and may involve a
great variety of measurements and inequalities [1]. This
is a quite interesting zoo to explore, with a lot of combi-
natorics, but one may wonder what is the ultimate les-
son it provides. In our view it may be more fruitful to
move straight to Gleason’s theorem by considering conti-
nuously varying contexts, in agreement with empirical
evidence, and to turn our attention on how to integrate
both systems and contexts in a unified mathematical des-
cription, maybe along the lines proposed in [13].

Contextuality has also some aspects going beyond QM,
not as a claim that everything should be quantum, but
as a general feature of some probabilistic theories [16,
17] ; elucidating the quantum-classical boundary in such
theories is also an interesting question.

IV. CONCLUSION AND FUTURE
DIRECTIONS.

Our conclusion is that, for the purpose of telling what
QM is rather than what QM is not, the crucial feature of
quantum contextuality is extracontextuality. Extracon-
textuality and subsequently extravalence tell “how much
non-contextual” QM can be, given that it is neither non-
contextual (as it would be the case in classical physics)
nor fully contextual (then there would be no connection
between different contexts, and thus no theory at all).

Another conclusion is that the usual state vector |ψ〉
is incomplete indeed, not due to any “hidden variable”,
but because it gives access to an actual physical moda-
lity |ψ〉A only when the context has been specified.
Correspondingly, |ψ〉 can be turned into a non-trivial
(p 6= 0, 1) probability distribution only within a given

measurement context, not admitting |ψ〉 as a modality
(otherwise one has again p = 0 or 1). This feature im-
plies that |ψ〉 is predictively incomplete [9], and allows
the violation of Bell’s inequalities, without requiring any
nonlocality at the elementary level [10].

On the other hand, the modalities |ψ〉A, |ψ〉B , |ψ〉C
are indeed complete, with deep reaching consequences
on all the usual “paradoxes” of QM. For instance, in the
framework of the Einstein-Bohr debate, it means that |ψ〉
is incomplete indeed, as claimed by Einstein, Podolsky
and Rosen, and that it must be completed by “the very
conditions that allow future predictions” (i.e. the context,

either Â, or B̂, or Ĉ), as claimed by Bohr [11].
The above ideas emphasize that a well defined quan-

tum property, i.e. a modality, belongs to a system within
a context. This is a quite objective statement, but clearly
the system and the context are not described in the same
way. A system with N mutually exclusive modalities is
associated with a Hilbert space E of dimension N , whe-
reas the context (as a CSCO) is associated with ope-
rators acting in E . Such operators are constructed from
macroscopic data, such as orientations or positions of the
apparatus, and the whole construction makes clear that
both systems and contexts are needed, and that there is
no proper way to make one “emerge” from the other.
This leads to the (in)famous question of the “Heisen-

berg cut” between system and context and of the uni-
versality of the quantum description. Within the CSM
framework there are two ways to answer this question :
– The first and simpler one is to postulate that quan-

tum objects are made of systems within contexts [3, 4].
This fits quite well with usual textbook QM, and allows
one to recover Born’s rule from Gleason’s theorem [6],
as explained above. The main benefit here is that the
usual “quantum paradoxes” just vanish : QM is certainly
not classical, but it results from contextual quantization,
which fits quite well within the usual physical realism
[3, 4, 7] - though not within classical physical realism.
– A second way is to include both systems and contexts

in the same description as incommensurable objects,
along the lines introduced e.g. by von Neumann in [12].
More details are given in [13], but this approach requires
to use algebraic tools that are not included in the text-
book QM considered until now. More technically, text-
book QM corresponds to type I algebra in the Murray -
von Neumann classification, whereas the approach quo-
ted here requires typically type III algebra [13]. These
algebraic tools open a way to include both systems and
contexts in a unified framework, but they require in some
sense to “manipulate infinities”, which is quite possible
mathematically though not popular in physics nowadays.
Exploring further such directions may be quite useful to
get finally a unified picture of what QM tells us.
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