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We outline the general framework of machine learning (ML) methods for multi-scale dynamical
modeling of condensed matter systems, and in particular of strongly correlated electron models.
Complex spatial temporal behaviors in these systems often arise from the interplay between quasi-
particles and the emergent dynamical classical degrees of freedom, such as local lattice distortions,
spins, and order-parameters. Central to the proposed framework is the ML energy model that, by
successfully emulating the time-consuming electronic structure calculation, can accurately predict
a local energy based on the classical field in the intermediate neighborhood. In order to properly
include the symmetry of the electron Hamiltonian, a crucial component of the ML energy model
is the descriptor that transforms the neighborhood configuration into invariant feature variables,
which are input to the learning model. A general theory of the descriptor for the classical fields
is formulated, and two types of models are distinguished depending on the presence or absence of
an internal symmetry for the classical field. Several specific approaches to the descriptor of the
classical fields are presented. Our focus is on the group-theoretical method that offers a systematic
and rigorous approach to compute invariants based on the bispectrum coefficients. We propose an
efficient implementation of the bispectrum method based on the concept of reference irreducible
representations. Finally, the implementations of the various descriptors are demonstrated on well-

known electronic lattice models.
I. INTRODUCTION

Machine learning (ML) is emerging as a new paradigm
for scientific research and engineering [1-14]. In partic-
ular, ML methods are increasingly employed in recent
years to drastically speedup various computational tasks
in quantum chemistry and materials science [15-23]. A
ML model can be viewed as a complex high-dimensional
function with numerous tunable parameters. Highly ef-
ficient methods have been developed to optimize these
model parameters from large number of training dataset.
Among the various ML models, deep neural networks
(NN) [24, 25] represent the most powerful and versa-
tile tools, which, in principle, can approximate any con-
tinuous function with arbitrary accuracy [26-28]. One
of the most remarkable applications along this line is
the development of ML models that can emulate the
time-consuming first-principles electronic structure cal-
culations based on, e.g. the density functional theory
(DFT), thus significantly surpassing the size and time
scales accessible to such accurate methods. Notably, the
advent of interatomic potentials based on ML models has
made it possible to perform large-scale molecular dynam-
ics (MD) simulations with the accuracy of DFT and be-
yond [29-41].

The success of ML methods in quantum chemistry
and quantum MD simulations has motivated similar ap-
plications in condensed-matter physics. For example,
the utilization of ML model to emulate the complicated
many-body calculation could potentially offer the tanta-
lizing potential for accurate multi-scale dynamical mod-
eling of interacting electron systems. A particularly im-
portant application is the large-scale simulations of the
spatio-temporal dynamics of complex patterns that are

prevalent in correlated electron materials [42-52]. The
intriguing nanoscale textures in such systems are be-
lieved to arise from the nontrivial interplay between
quasi-equilibrium electrons and emergent classical fields
or bosonic degrees of freedom whose dynamics is much
slower than the relaxation of electrons. An example of
such slow dynamical variables is the magnetic moments
associated with localized d or f electrons immersed in
the Fermi sea of fast-moving conducting electrons in the
s-d or double-exchange model [53-57]. Another repre-
sentative case is the order-parameter fields which cou-
ple to equilibrium quasi-particles in a symmetry-breaking
phase [58-62]. The well separated time scales in such
electron models is similar to the Born-Oppenheimer ap-
proximation underlying the ab-initio molecular dynam-
ics methods [63, 64]. Instead of the atomic dynamics,
the goal then is to model the adiabatic time evolution of
slow dynamical variables such as local spins and order-
parameter fields under the influence of the fast electron
degrees of freedom.

Conventionally, an empirical or effective energy model
as a function of the classical fields, such as an effective
classical spin Hamiltonian or Ginzburg-Landau energy
functional, is employed for large-scale dynamics simula-
tions [65, 66]. Special care is taken to properly incorpo-
rate the symmetry of the original quantum Hamiltonian
into the effective model. However, while the classical
energy models coupled with phenomenological dynamics
capture some universal features qualitatively, such em-
pirical approach lacks the predictive power. Moreover,
the effective classical energy, which can be viewed as in-
tegrating out the electrons beforehand, fails to describe
the subtle interplay between the electron and the classical
degrees of freedom during the dynamical evolution.



In order to more accurately simulate the dynamics of
the classical fields, one needs to integrate out the fast
electrons or quasi-particles on the fly. This means that
the fermionic Hamiltonian, characterized by the instan-
taneous classical fields, needs to be solved at every time-
step of the dynamical simulations. Compared with the
classical energy model discussed above, this quantum dy-
namical approach is similar in spirit to the quantum MD
methods in which the atomic forces are obtained by solv-
ing, e.g. the self-consistent Kohn-Sham equation at ev-
ery time-step [63, 64]. Naturally, the huge computational
overhead due to the repeated electronic structure calcu-
lations significantly limits the system size and simulation
time accessible by such quantum approaches. For elec-
tron systems with e.g. Hubbard-type interactions, more
sophisticated, hence more time-consuming, many-body
methods such as the dynamical mean-field theory [67, 68],
density-matrix renormalization group [69, 70], or quan-
tum Monte Carlo [71], are required to properly include
the strong electron correlation effects.

As mentioned above, the modern ML methods of-
fer a promising solution to this computational diffi-
culty in multi-scale quantum dynamical modeling of
classical fields, as demonstrated by the ML-based in-
teratomic potential for quantum MD simulations. In-
deed, recent works [72, 73] have demonstrated the use of
deep-learning NN models to enable large-scale quantum
Landau-Lifshitz-Gilbert dynamics simulation of phase
separation phenomena in a correlated electron system
known as the double-exchange model [53-56]. Moreover,
ML energy model was used to achieve large-scale quan-
tum kinetic Monte Carlo simulations which reveals unex-
pected phase ordering dynamics in the Falicov-Kimball
model [74], another canonical example of correlated elec-
tron systems [75, 76]. The classical degrees of freedom
in the former case are local magnetic moments, while
they are equivalent to a classical lattice gas mode used
to describe the heavy f electrons in the latter case. In
both applications, the electronic subsystem is described
by quadratic fermionic Hamiltonians, which can be ex-
actly diagonalized. These pilot studies, however, demon-
strate the plausibility of applying ML methods to lattice
models with strong electron-electron interactions, such as
the Hubbard-type models. The general framework of the
ML energy model for multi-scale dynamical simulations
is discussed in Sec. II.

It is worth noting that the ML approach to the multi-
scale modeling discussed above is essentially to develop
a classical energy model based on the superb approxima-
tion power of modern learning models such as the NN.
Large-scale dynamical simulations are possible mainly
because of the efficiency of computing forces based on
the classical effective energy. However, even with the
general approximation capability of ML methods, it is
not guaranteed that the symmetry of the original electron
Hamiltonian can be properly included in the effective ML
model. In order to ensure the symmetry properties of
energy model, one needs to first construct a proper rep-

resentation of the classical field configuration to be used
as input to the learning models. A good representation
is inwariant with respect to transformations of the sym-
metry group of the classical fields as well as those of the
lattice point group. This crucial step of the ML model,
namely the construction of the proper representation, is
often referred to as feature engineering and the resultant
feature variables, also called the generalized coordinates,
are termed a descriptor [77-79].

Similar issues have also arisen in the context of ML
interatomic potentials for quantum MD simulations.
There, a proper descriptor of the atomic configuration
should be invariant under rotational and permutational
symmetries, while retaining the faithfulness of the Carte-
sian representation. Over the past decade, a number
of descriptors have been proposed together with the
learning models based on them [15, 29, 30, 35, 77—
87]. The bond-order parameters, originally developed to
characterize short-range structural order in liquid and
glasses [80], are one example. A relatively simple ap-
proach is to use the ordered eigenvalues of the correlation
matrix, such as the Coulomb or Edward sum matrices,
as the descriptor [15]. Another example, which is physi-
cally intuitive, is the atom-centered symmetry functions
(ACSFs) built from the two-body (relative distances)
and three-body (relative angles) invariants of the atomic
configurations. Because of its simplicity and flexibility,
the ACSF descriptor is widely used in various learning
models [29, 81]. The group-theoretical method, on the
other hand, offers a more controlled approach to the con-
struction of atomic representation based on the power-
spectrum and bispectrum coefficients [30, 78]. In addi-
tion to these relatively well-established methods, other
notable descriptors include moment tensor potential [82],
atomic cluster expansion [83], and deep-potential repre-
sentation [35]. It is worth noting that the research of
atomic descriptor is an active ongoing field.

In this paper, we develop a general theory of the de-
scriptors for the classical fields in condensed matter sys-
tems, with a special focus on the lattice models. Sev-
eral specific approaches are also presented; some are mo-
tivated by and generalized from the atomic descriptors
discussed above. Our main focus, however, is on the
group-theoretical method, which can in principle pro-
vide a faithful representation of the local classical fields.
The resultant descriptor in terms of the bispectrum co-
efficients of the irreducible representations (IRs) of the
lattice point group is rigorous, but over-complete and
cumbersome to implement. We next discuss the concept
of the reference IRs which can significantly simplify the
implementation of the bispectrum descriptor. The pro-
posed descriptors are then applied to lattice models with
varying symmetries and complexity of the classical fields.

The rest of the paper is organized as follows. In Sec. II,
we outline the framework of utilizing ML energy model
to achieve multi-scale dynamical modeling of condensed
matter systems. We also discuss the similarities and dif-
ferences between descriptor for ML-based quantum MD



methods and that of classical degrees of freedom in lattice
electronic models. Sec. III presents a general formulation
of the descriptors for the dynamical classical fields. While
the majority of the discussion is on the group-theoretical
method for the bispectrum coefficients, we also present
other physically intuitive descriptors motivated by the
studies of ML-based interatomic potentials for MD sim-
ulations. In Sec. IV, we demonstrate the bispectrum de-
scriptor, together with the idea of reference IRs, to lattice
models with a simple scalar classical field representing
local breathing-type lattice distortions. Sec. V discusses
the case of cooperative Jahn-Teller coupling which is an
example of doublet classical field that transforms simul-
taneously with the point group. Sec. VI is devoted to
the systems with a classical vector fields such as the lo-
cal magnetic moments in double-exchange models. We
demonstrate how to properly account for the global ro-
tation symmetry on top of the discrete lattice symmetry.
We conclude our work in Sec. VII.

II. GENERAL FRAMEWORK

The rich and complex behaviors of several correlated
electron systems arise from the emergence of slow classi-
cal degrees of freedom which couple to the electron lig-
uid with a relatively short relaxation time. These classi-
cal variables could arise from the local lattice distortions
or displacements which couples to electrons through de-
formation potential in, e.g. adiabatic Holstein or Jahn-
Teller models. They could also correspond to local mag-
netic moments associated with localized core electrons in
the double-exchange system [53-56]. The classical field
can also represent the collective degrees of freedom such
as order parameters of symmetry breaking phases [58—
62], or amplitudes of slave bosons in Gutzwiller theory of
Mott metal-insulator transitions [88-90].

In the following, we denote these emergent classical
fields by an array of classical variables associated at every
sites of the lattice:

®(r;) =P = (Pi1,Pi2, -, Pim) (1)

We then consider the following general fermionic Hamil-
tonian characterized by the classical fields:
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where éj ., Is the creation operator of electron with quan-

tum number « at site-i. In the following we use the latin
letters i, 7, k, - - - to denote the lattice sites, and the Greek
letters a, 3,--- for internal degrees of freedom, such as
spins and orbitals, of the electrons. ¢ and v are electron
hopping and interaction coefficients that depend on ®;.
Finally, there is in general also a “classical” potential en-
ergy V({®;}) for the classical fields, which is independent
of the electrons.

Here we are interested in the adiabatic dynamics
of such lattice fermion systems with mixed quantum
(electron) and classical degrees of freedom. The adi-
abatic approximation, which is similar to the Born-
Oppenheimer approximation in quantum molecular dy-
namics (MD) [63, 64], is based on a well separation of
time scales for the electrons and the classical variables.
It assumes that the relaxation of electrons is much faster
than the dynamical evolution of the classical variables.
As a result, the time evolution of the classical ®; field
is determined by the quasi-equilibrium electronic state
of the instantaneous Hamiltonian. Specifically, this elec-
tronic state is represented by the many-body density ma-
trix

pe ({®:}) = exp[—BH ({®:})]/Z, (3)
where 8 = Al/kBT is the inverse temperature, and
Z = Tre #" is the instantancous partition function

of the electrons. The evolution of the classical fields
is governed by dynamical equations ranging from phe-
nomenological relaxational and Metropolis/Glauber-type
dynamics to Newton/Langevin equation of motion or
Landau-Lifshitz-Gilbert (LLG) equation. For example,
one of the simple pure relaxation equation is the time-
dependent Ginzburg-Landau (TDGL) equation [65, 66],
also known as the model-A dynamics [91]:

O AE (4)

ot 0P,
where ) is a dissipation constant, and the effective energy
is obtained from the expectation value of the instanta-
neous Hamiltonian,

E = (H({®:})) = Tr(pH). (5)

In general, the dynamics of the classical fields is deter-
mined by the “forces”, which is the derivative of the ef-
fective energy with respect to the classical variables. An
example is given by the right-hand side of the TDGL
equation (4). Given this electron density matrix, one can
then compute the generalized electronic forces acting on
the classical variables:
S
i i

It is worth noting that these forces have to be computed
at every time-step of the dynamical simulations. Finally,
the “classical” potential energy V({®;}) also contributes
to the force —9V /0P, which can be easily computed and
included in the equation of motion.

Compared with dynamical simulations based on an
empirical energy model, the quantum dynamical ap-
proach here is to obtain the effective energy as well as
forces by integrating out the electrons on the fly. How-
ever, the calculation of these effective forces is highly
time-consuming, and could be prohibitively expensive for
large systems. For example, for lattice models without
electron-electron interactions, i.e. v = 0, the calcula-
tion of the effective forces only requires diagonalizing a
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FIG. 1. Numerical framework of the machine-learning force-field model for dynamical simulations of condensed matter systems.
At the center of this approach is the ML energy model which takes the local neighborhood C; of a given site as the input, and
predicts a local energy e;. The generalized force F; is given by the derivative of the total energy E = >, ¢;. The ML energy
model consists of two major and roughly independent components: the descriptor and the learning model.

quadratic fermionic Hamiltonian. The time complexity
of direct diagonalization for a system of IV sites scales as
O(N?). Even though linear-scaling techniques, such as
the kernel polynomial method (KPM) [92], have been
developed for computing the density matrices of such
quadratic Hamiltonians, since the electronic problem has
to be solved at every time-step of the dynamical simu-
lation, sophisticated implementations, including for ex-
ample GPU programming, are often required in order to
meet the required efficiency.

For models with electron interactions v # 0, such as
the Hubbard-Kanamori-type interactions, more sophisti-
cated many-body methods are needed to solve the lattice
electron model. One popular and widely used approach
is the self-consistent methods which include the well-
known Hartree-Fock mean-field for symmetry-breaking
phases and the Gutzwiller/slave-boson methods for Mott
transitions. The central idea of this approach is to re-
duce the many-body problem into an effective single-
particle or quadratic Hamiltonian, which can then be
solved by either exact diagonalization or KPM. How-
ever, the requirement of self-consistency means that so-
lution of the quadratic Hamiltonian has to be computed
multiple times through iteration until a convergence is
reached. And this iteration has to be performed again
at every time-step, which introduces an extra time com-
plexity even with efficient techniques such as the KPM.
The computational overhead is even more demanding for
more advanced methods such as the dynamical mean-
field theory and quantum Monte Carlo simulations.

As discussed in Section I, ML methods offer a promis-
ing solution to this computationally difficult problem.
The central idea is the principle of locality, also called
the nearsightedness of electronic matter [93, 94], which
assumes that local properties such as the on-site forces
JF; only depends on classical fields in the neighborhood
of the i-th site. This approach is similar to the Behler-
Parrinello (BP) formulation which is fundamental to

the ML potential for ab-initio MD simulations [29, 30].
Specifically, the total energy Eq. (5) is first partitioned
into local energies associated with individual sites:

Importantly, the local site-energy ¢; is assumed to de-
pend only on the classical fields in the local environment
through a universal function ¢; = E(CZ-), where C; de-
notes the local configuration of the classical variables. In
practical implementations, this is often defined as the ®;
variables with a given cutoff radius R,:

CZ:{¢J|R”:|I']—I'Z|§RC} (8)

With this partitioning, the calculation of the total elec-
tron energy can now be significantly simplified by prop-
erly grouping the classical variables ®; and substituting
into the universal function £(C;). Crucially, this com-
plex function can now be accurately approximated by
ML models, especially the deep-learning NN, thanks to
their unprecedented expressive power. Practically, the
ML model is derived through a training process based on
solutions of the particular many-body method on small
systems. Once this universal function is determined, the
ML potential thus provides an effective energy model in
terms of the classical fields

E({2:}) =) () (9)
K3
The effective forces Eq. (6) acting on the classical fields
can now be efficiently computed from the derivatives of
this classical energy. The general framework of the ML-
based force field model for dynamical simulation is sum-
marized in Fig. 1. For ML models based on the neural
network, the forces can be readily obtained through the
automatic differentiation. Importantly, the ML model
offers the efficiency of classical energy model, yet with
the accuracy of the many-body techniques employed for
generating the training dataset.



III. DESCRIPTOR

The ML energy model in Eq. (9) naturally needs to
preserve the symmetry of the original Hamiltonian, which
includes both the symmetry of the dynamical variables
and that of the underlying lattice. Nonetheless, despite
the universal approximation capability of ML models, the
symmetry of the original electron Hamiltonian is not au-
tomatically captured. Since the training of ML model is
essentially an optimization process with randomly chosen
datasets, the symmetry of the model can only be statisti-
cally approximated even with a large amount of training
data. As discussed in Sec. I, a proper representation of
the classical fields is required to ensure that the sym-
metry of the electron Hamiltonian is built into the ML
model. A good representation, or descriptor, of the local
environment must be invariant with respect to symmetry
transformations of the system.

For condensed matter systems defined on a lattice, the
ML energy model £(C;) must be invariant under the dis-
crete transformations of the point group, denoted as G,
associated with the center site-i. Moreover, for classical
fields with a complex structure, one also needs to take
into account the symmetry associated with transforma-
tions among the multiple components ®;1,®;2,--- at
the same site. We classify the classical fields into two
types depending on whether these two symmetries are
entangled to each other or not. Examples of these two
types are illustrated in Fig. 2. For models of the first
type, the internal symmetry of the classical variables is
coupled to the lattice symmetry. Examples of type-I clas-
sical variables include on-site displacement vector fields
u;, = (uf,u?,uf) [95-97], where the transformation of
the 3 components of the displacement vector is coupled
to the discrete rotations of the point group. Another ex-

ample is the Jahn-Teller doublet Q; = (Q ¥, Q% )
characterizing local structural distortion [98, 99]. The
only relevant symmetry group for such type-I models is
the on-site point group G. Under the symmetry opera-
tion § € G, the rearrangement of the classical fields at
different lattice sites coincides with the transformation
of the various components. Noting that ®; ., = ®(r;)
with « = 1,2,--- , M being the index of the various com-
ponents, the transformation of the classical fields is de-
scribed by

00 (0(9) - Rij) = Map(9)Ps(Rij), (10)

where R;; = r; — r; is the relative position vector of
site-j, Map(g) is the M-dimensional matrix represen-
tation of the symmetry operation ¢, and O(g) is the
3-dimensional orthogonal matrix transforming site-i to
site—k, i.e. Rik = O(g) Rzy

For type-IT models, the classical fields are character-
ized by an independent internal symmetry group, which
will be denoted as GGg¢. The most representative exam-
ple, perhaps, is the models with local classical spins S;
as illustrated in Fig. 2(b). For spins with n-component,
the symmetry group of the system is a direct product of

(a) Tk (b)

FIG. 2. Classical fields with different symmetry properties.
An example of type-I case is the local Jahn-Teller distortion
Q; as shown in panel (a). The lattice rotation/reflection is
accompanied by a simultaneous transformation of the Jahn-
Teller phonons. Panel (b) shows the type-II case exemplified
by local spins S;. The global rotation symmetry of spins
is independent of the discrete point-group symmetry of the
lattice.

the lattice group G and the internal symmetry group
Gg = O(n) describing the global rotation symmetry of
the spins. The most general symmetry operation con-
sists of the lattice rotation/reflection § € Gy, and the
transformation h € Ge:

3, (0(3) - Rij) = Mag(h)®s(Ryj), (11)

Note that Mgag(h) is the matrix representation of the
group Gg, which is independent of the lattice point
group. It is important to note that, for type-II models,
the ML potential energy €(C;) must be invariant under
the general combined symmetry transformation h® g.

It is worth noting that while our focus is on the lattice
models which are prevalent in condensed matter physics,
most of the analysis presented in this work can be gen-
eralized to the off-lattice models or disordered systems
if the point group G, is replaced by the continuous 3-
dimensional rotation group O(3), of course, assuming the
system possesses such a global rotation symmetry. This
means that our analysis can also be applied to electron
models defined on an amorphous system or an atomic
liquid state. In fact, the latter case can be viewed as
a molecular dynamics system with an array of classi-
cal variables ®; associated with every atom. A particu-
lar interesting application would be the Gutzwiller MD
method where the classical fields ®; corresponds to the
slave-boson amplitudes [100].

Having discussed the general symmetry transforma-
tions for the two types of classical fields, we next de-
scribe a concise vector representation of the neighbor-
hood C; with its center at site-i, as defined in Eq. (8).
We first consider the type-I models; the case of the type-
IT model will be discussed in Sec. III C. For convenience,
the site-indices of lattice points within C; are labeled as
Jr, where r = 1,2,--- | L = |C;|. Essentially, the inte-
ger r offers an ordered list of lattice sites in the neigh-
borhood. Under the symmetry operation § of the point
group, the lattice point j, is mapped to js if and only if



(rj, —r;) = O(9) - (rj, —r;). Consequently, g can be rep-
resented by a L x L permutation matrix P, which means
the nonzero matrix elements are Ps(g) = 1 if the two
sites j, and js are related by g. Next we introduce a vec-
tor U whose components are given by the classical fields
in the neighborhood:

Z/{r,a = (I)oz(rjr)a (12>

It is easy to see that U offers a vector representation
of dimension L x M for the point group Gr. And the
corresponding matrix representation 7 of the symmetry
operation g € G, is given by

Z/N{r,a = ra,sﬂ(g) US,B = Prs(g)MaB(g) us,ﬂ- (13)

Also importantly, the matrix 7 provides an orthogonal
matrix representation of the point group, ie. 71T =
77T = I, where I is the L x M-dimensional identity
matrix. Next we present two descriptors based on this
vector representation of the neighborhood.

A. Correlation matrix

The idea of correlation matrix is similar to the so-
called Weyl matrix [101] for characterizing the local en-
vironment of a single-species molecular system. Specif-
ically, for L atoms within a cutoff radius in the neigh-
borhood of atom-i, the Weyl matrix is defined as ¥, =
(rj —r;) - (rgy —r;). Since the matrix elements are given
by scalar products of relative position vectors, the Weyl
matrix remains the same under rotation, reflection, and
translation operations. However, ;i is not a suitable
descriptor because permutations of atoms change the
order of rows and columns. On the other hand, such
permutation operations correspond to a unitary or or-
thogonal transformation of the Weyl matrices. Conse-
quently the eigenvalues {\,,} of the ¥-matrix are invari-
ant under permutation and can be used as a descrip-
tor. A generalization of the Weyl matrix, which can also
treat multiple atom-species, is the Coulomb matrix [15]:
M;; = Z;Zj/|r; — rj| for i # j, where Z; is the nu-
clear charge of atom-i, and M;; = const x Z2%. The
“Coulomb” interaction form of the off-diagonal matrix
elements partly accounts for the Coulomb repulsion be-
tween the nuclei, which also highlights the importance of
taking into account the atomic pair distances in the de-
scriptor. Other forms of the pair correlation, such as Ed-
ward sum or sine-matrices, have also been proposed [79].

Motivated by Weyl and Coulomb matrices, we propose
a descriptor given by the ordered eigenvalues of the fol-
lowing correlation matrix of the classical fields

C _ 9(Ur,a)
56 F(rjot),) Usa Us s

where ¢(-) and f(-) are two functions depending on the
model under consideration. For example, one can choose
a Coulomb interaction f(ry,ry) = 1/|ry —rs|. It is worth

(ra) = (Sﬂ) (14>

otherwise

noting that this correlation matrix is not invariant under

symmetry operations of the point group G. Instead,
from Eq. (13), the C' matrix transforms as
C=T@CT (. (15)

Nonetheless, since T is an orthogonal matrix, the eigen-
values of the correlation matrix remains invariant with
respect to symmetry operations § of the point group. As
a result, the ordered list of eigenvalues A, of the correla-
tion matrix C can be used as a descriptor that preserves
the symmetry of the system. In practical implementa-
tions, only a finite number of the largest eigenvalues are
used as feature variables. Unlike the Coulomb matrix
used for fitting the atomization energies of molecular sys-
tems, there is no physical basis for the choice of the pair
function f(R). An example of descriptor based on corre-
lation matrix is given in Sec. IV below.

B. Bispectrum coefficients

In this Section, we present a more systematic method
for constructing a descriptor based on the group-
theoretical method. Specifically, the feature variables
are given by the so-called bispectrum coefficients com-
puted from the expansion coefficients of irreducible rep-
resentations of the point group [102-104]. The bispec-
trum coeflicients, which are invariant under the symme-
try operations of the point group, are in a sense similar
to the scalar triple product of three vectors which is in-
variant under arbitrary rotations. It is also worth noting
that similar group-theoretical methods, with important
modifications to simplify the implementation, have been
proposed as descriptor for ML interatomic potentials in
quantum MD simulations [30, 78].

In order to compute the bispectrum coefficients, the
first step is to obtain the irreducible representations of
the neighborhood. As discussed above, the vector u , de-
fined in Eq. (12) provides a L x M-dimensional represen-
tation of the local environment C;. This high-dimensional
representation can then be decomposed into irreducible
representations (IRs) of the point group G, following the
standard procedures [105, 106]. Specifically, we use I" to
label the different IRs in the decomposition, and denote
the corresponding basis vector of IR-T" as

Y.F = (T¥7fga 7T£p>7 (16)

where nr is the dimension of corresponding IR. Note that
each “component” T} = {T}. .} is itself a (L x M)-
dimensional vector. The neighborhood vector is then de-
composed as

U =Y Z i - (17)
' p=1

The expansion coefficients fE of the IR, play a role sim-

ilar to the Fourier coefficients for the translation group.



Using the orthogonality of the basis vectors of different
IRs, the expansion coefficients are given by

f;I; = Y‘fT Z/{ Z Z T;L ra ra' (18)

r=1 a=1

For convenience, we can group the expansion coefficients
of a given IR into a vector:

f (f13f2a"' 'n,r‘) (19)

In terms of the classical fields, see e.g. Eq. (12), the

expansion coefficients are

Z Z T/L ra ) (20)

r=1 a=1

Under symmetry operations g of the point group G, dif-
ferent IRs transform independently of each other. Con-
sequently, the transformation of the vector fT of a given
IR is described by an nr x nr unitary matrix DT as

MF = ZDII;//(Q) ;1;” (21)
w

or the more concise vector equation: fT = D' fT'. From
the transformation relation Eq. (13) for the vector U, the
transformation matrix DT can be explicitly computed.

D, (9)="T.1-T(g) T}, (22)

It is worth noting that the transformation matrices of a
given IR have been tabulated for most point and dou-
ble groups. Similar to the ordinary Fourier analysis, we
define the power spectrum for a given IR as

Z IS (23)

Since the transformation matrices are unitary DD =1,
it is easy to see that the power spectrum is invariant
under symmetry operations:

=fIT-FU=fIDIDN T = T =t (24)

This indicates that the amplitude of each IR can be used
as the descriptor for the local environment C;. However,
the power spectrum p' is not a complete descriptor of
the neighborhood function, since it neglects the weight
distribution within each IR. Neither does it account for
the relative phases between different IRs.

A more complete description, which consists of a larger
set of invariants, is given by the bispectrum of the IRs. To
this end, we first consider the tensor product of coefficient
vectors 11 ® 12, which can be viewed as the expansion
coefficients of the tensor-product U ®U of the vector
representation with a tensor-product basis 'le ® ’f}:’-’
Under a symmetry operation, according to Eq. (21), the
tensor-product transforms as

fFl ®fr2—><DF1'fF1)®<DF2'fF2)
= (D" @D") - (f*® ). (25

F — fFT fF

As is well established in the representation theory of finite
groups, the direct product of two IRs can be decomposed
into a direct sum of IRs. This indicates the following
decomposition of the direct-product matrices:

D" @ D" = (CT12) [@DF]CF“FQ (26)

where @ means direct sum over the IRs of the direct
product. We note that IR of the same dimension and
symmetry could appear more than once in the direct sum.
The C'1'2 is a unitary matrix of dimension nr, x nr,;
its matrix elements are known as the Clebsch-Gordan
coefficients of the symmetry group under consideration.
Explicitly, we have

D, (3) D2 (3) (27)
_ Z Z CF’II;‘;,FQ D’E ( )CF H TN Y

kv’
I' k,k’

As mentioned above, the sum over T' could include mul-
tiple IRs of the same transformation properties. To con-
struct the bispectrum coefficients, we first consider the
following vector:

ol = CI e (£ 1) (28)
Since the Clebsch-Gordan matrix is essentially a trans-
formation of basis, vector v is thus the expansion co-
efficients of the irreducible basis for the tensor-product
U ®U. This can also be seen from the transformation of
the v vector. Substitute Eq. (26) into (25), and multiply
the resultant expression by the CT*I2 matrix from the
left, we see that under symmetry operation g, the vector
vt T2 transforms according to

ol — [@ DF@)] P R (29)

This result thus also indicates we can decompose v into
a direct sum of vectors each of which corresponds to an
irreducible representation:

oll2 = @ w2 (30)
I

Each vector transforms under symmetry operation as
a2 = Dr(g) LTl (31)

From this equation and Eq. (21) for the transformation
of the vector f belong to the same IR-T, it is straightfor-
ward to see that the following “inner product” is a scalar
invariant under any symmetry operation:

uFTth’ (32)

These coefficients are called the bispectrum of the expan-
sion coefficients of the IRs. Using Eq. (28) to express the
u vectors, we obtain the following explicit formula for
the bispectrum coeflicients

prrele = N olrn e fle fl fre (33)

Kb,V

plill2 — fFT .



The above expression shows the similarity of the b co-
efficients with the scalar triple of three O(3) vectors.
It should also be noted that the power spectrum p' i
part of the bispectrum coefficients. In fact, while for-
mally the bispectrum coefficients are built from product
of three IR-amplitudes, they can also be used to describe
invariants consisting of two IR-coefficients. This corre-
sponds to the case when the decomposition of the di-
rect product representation I'1 ® I's includes the trivial
one-dimensional representation, denoted as I'y for con-
venience. By setting the corresponding coefficient to be
a constant, e.g. fr, = 1, we see that the resultant bis-
pectrum coefficient bTo-T:T2 is nonzero only if the two
IRs I'; and I'y transform in exactly the same way under
symmetry operations, hence have the same dimension.
Consequently, we can define the following generalization
of power spectrum

F171_‘2

=T =N (34)
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The standard power spectrum Eq. (23) of a given IR-T'
corresponds to the case I'y =Ty =T

Importantly, since the bispectrum coefficients are in-
variant under symmetry operations of the point group,
they serve as proper descriptor to be combined with the
ML models. Moreover, it can be shown that the bis-
pectrum provides a faithful representation of the original
configuration in the sense that the vector U can be rigor-
ously reconstructed from all bispectrum coefficients [102—
104]. For practical applications, however, there are a
large number of the bispectrum coefficients for most mod-
els and point groups. For example, let N be the number
of IRs from the decomposition of ¢, which is roughly of
the order of N ~ (L x M), the number of bispectrum is of
the order of N3, which in general is a rather large number.
Moreover, as will be demonstrated in explicit examples in
Sec. IV, the bispectrum is an over-complete representa-
tion with redundant information. Consequently, further
simplification is often required for practical implementa-
tions.

As an application of the bispectrum method, here we
briefly review its application to represent the atomic en-
vironment for ML interatomic potentials. The bispec-
trum method is often combined with the Gaussian ker-
nel potential learning model and the so-called smooth
overlap of atomic positions (SOAP) technique, which
approximates atoms in the neighborhood by Gaussian
functions of a finite width [30, 78]. For MD simula-
tions, the local atomic configuration is described by the
charge density p(r) with the origin r = 0 correspond-
ing to the center atom. The symmetry group of three-
dimensional free space is G = SO(3), and the corre-
sponding irreducible representations are labeled by an
integer £ = 0,1,2,---, which is essentially the angular
momentum quantum numbers [107]. Indeed, the basis
function TE for the SO(3) group is simply the spherical
harmonics Yy ,,,. Choosing a proper radial basis g, (r),

the atomic neighborhood density is expanded as

oo 0o 4
n=0 =0 m=

Note that there is an additional integer index n for
the expansion coefficients due to the radial dependence.
The bispectrum coefficients are then labeled by six inte-
gers [78]:

/6 Ay W4
n ﬁl,%g - Z f;émCm 117112,7712 fnlflml fn2€2m27 (36)

m,mi,ma

where C5ff2 are Clebsch-Gordan coefficients of the
SO(3) group [107]. For a given set of radial indices
(n,m1,n2), the bispectrum coefficients are nonzero only
when ¢ = /{1 4+ {5 due to conservation of angular mo-
mentum. However, there are still an infinite number of
the b coefficients, and some cutoff /,,,x has to be intro-
duced for practical implementation. To further simplify
the calculation, one can consider only coeflicients with
ny = ng = n. This, however, implies that rotations
of different radial basis are decoupled, thus introducing
a spurious symmetry. Nonetheless, some simplifications
can be achieved through special designs of the radial ba-
sis functions [78].

Instead of dealing with the natural SO(3) group for
the three-dimensional space, an alternative approach is
to project the atomic environment within a cutoff R,
onto the surface of the four-dimensional sphere S® [30,
78]. Specifically, this means that the center-atom is at
the north pole, while the cutoff radius, i.e. the 3-sphere
specified by |r| = R., is mapped to the south pole of
the S3. Next assuming an approximate SO(4) symmetry
for the projected atomic density, one can then use the
resultant bispectrum coefficients as the descriptor. As
the IR of the SO(4) group is again labeled by an integer j,
the bispectrum coefficients are indexed by three integers
b7»J1:32 Tt should be noted that although the projection
to S® implicitly assumes a spurious SO(4) symmetry, a
most crucial advantage of this approach is the absence of
the need for radial basis.

C. Internal symmetry

As discussed above, the type-II models are character-
ized by an internal symmetry group Gg, independent of
the lattice point group, that governs the transformation
of the classical fields ®;. The feature variables for the
ML models need to be invariant with respect to transfor-
mations of both symmetry groups. As the multiple com-
ponents of the local classical vector ®; do not transform
simultaneously with the lattice symmetry operations, the
method described in Sec. 111 B cannot be directly applied
to the type-II models.

One solution is to treat each of the M components of
the classical fields ®; = {®; 4} (o« = 1,2,---, M) as



independent. We then view the neighborhood config-
uration U, = (Ur,a, Uz, -+ ,UL0) as M independent
L-dimensional representations of the neighborhood C;.
Each component is then decomposed into the IRs of the
lattice group (c.f. Eq. (17) for the type-I case)

nr

=3 T (37)

' pu=1

Note the basis function T of the IR now only depends on
the site-index r. The coefficients of the IRs are similarly
obtained based on the orthogonality of the basis functions

L
o= YU, Z Y5 @alr),). (38)
r=1

For each of the IR T" in the decomposition (with respect to
point group), there are M components indexed by a. As
each can be viewed as a M-dimensional representation of
the internal symmetry group, it can be decomposed into
the IR of G labeled by K:

= Z FrX VK o (39)

K m=1

Here VX is the basis function of the K-th IR whose dimen-
sion is nk. Using the orthogonality of the basis functions,
the expansion coeflicients are given by

Zyg*a Fa _ Z Zyrls*o‘ TF*

a=1r=1

Fym Do (r,). (40)

Here we have used Eq. (38) in the second equality to ex-
press FMF K'in terms of the classical fields. It is worth
noting that this mixed expansion coefficients, expressed
as a special combination of the classical fields, have well
defined transformation properties, indicated by the IR
indices I' and K, under both the point group of the site-
symmetry and the internal symmetry group. However,
since the two set of symmetry transformations are inde-
pendent of each other, one cannot obtain simultaneous
bispectrum coeflicients with respect to both symmetry
groups. To proceed, we can first “trace out” the point
group indices p by forming the bispectrum coefficients of
the point group first

B imican = D Crs " FL [ L . (41)

NN

These coefficients with three indices |, m, n can be viewed
as a tensor-product representation K ® K; ® Ky of the
internal symmetry group G¢. Next we decompose this
tensor-product representation into a direct sum of IRs
of the group Gg. For convenience of the discussion, we
denote the coefficients of the IR in the direct sum as Ff;.
Then invariants with respect to the internal symmetry
are given by the bispectrum coefficients from the “triple”
product of these F(’; coefficients. Importantly, these bis-
pectrum coefficients are now invariant with respect to

both the lattice and internal symmetry groups. Since
the Fg coefficients themselves are already triple product
of the field variables, the final invariants in general are
composed of 9 classical variables; although some of them
can be reduced. Since the number of the coefficients in-
creases even more dramatically with the cutoff radius R,
for type-IT models, further approximations are necessary
to simplify the implementation of the descriptor.

A second approach, which is physically more intuitive
and transparent, is to start from the symmetry of the
classical fields and first construct building blocks that
are already invariant under the transformations of the
internal symmetry group. The group-theoretical method
discussed in Sec. IIIB is then applied to these building
blocks for the lattice symmetry. To this end, we again
note that the classical fields ®; = {®; .} at every sites
in the neighborhood C; is obviously an M-dimensional
representation of the internal symmetry group, and can
be decomposed into IRs of the G group:

0, = 33 K (42)

K m=1

It is worth noting that the expansion coefficients fjlfm ac-
quires a site index j. Again, using the orthogonality of
Y, we have

M

fjlfm = Z ynlf,*a (I)j,oz‘ (43)

a=1

If the decomposition in Eq. (42) includes the trivial rep-
resentation Ky which is by definition a one-dimensional
IR, then the coefficients fJKO are automatically invariant
with respect to the internal symmetry group and are part
of the building blocks for the lattice group.

Other invariants of the internal symmetry group are
provided by the generalized power spectrum Eq. (34)
and the bispectrum coefficients. The crucial difference
here is that these invariants are to be built from different
sites, thus also serving as many-body correlation func-
tions. First, we consider the generalized power spectrum
obtained from a pair of sites (jk)

Ki,Kz Ky * ¢K
Pyt =) farRe, (44)

m

Again, the generalized power spectrum coefficient is
nonzero only if the two IRs K; and Ks have the same
transformation properties. Similarly, one can build in-
variants of internal symmetry from a triplet (jkl) of lat-
tice sites based on the bispectrum coefficients

K Ki,Ka E K;K1,Ko K1 £Ka
_]kl CI m,n f fk: mfl n: (45)
I,m,n
K; K11K2

where C are the Clebsch-Gordan coefficients of the
mternal symmetry group Gg. Fig. 3 shows examples of
the atomic pairs (jk) and triplets (jkl) related by the
lattice rotation and reflection in the neighborhood of the
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FIG. 3. Examples showing the atomic pair (jk) and triplet
(jkl), which are related by the lattice rotation and reflection
symmetries, in the neighborhood of the center site on a square
lattice.

center site. As mentioned above, these quantities p and
b also encode the two-body and three-body correlations,
respectively, of the neighborhood. Also importantly, they
remain unchanged under operations of the internal sym-
metry group and can be used as building blocks for con-
structing the invariants of the lattice point group. To this
end, we arrange them, including the single-site trivial IR,
into a vector of dimension N:

U= (U U, Uy) = (F, pir" e bl ) (46)
Here we use U; to denote the components of this vector,
where the index J is used to label either a site j, a pair
(jk), or a triplet (jkI). The dimension A is dominated
by the number of atomic pairs and triplets in the neigh-
borhood. For a neighborhood consisting of L sites, these
two number scale as L? and L3, respectively. Moreover,
one also needs to take into account the number of dif-
ferent IRs. As the total classical degrees of freedom is
L x M, the set of all £, p, and b invariants obviously
is an over-complete representation of the neighborhood.
Practically, one needs to introduce further constraints in
order to reduce this number, for example, by restricting
distances between the pairs or triplets to be smaller than
another cutoff, or to avoid too many overlaps of the pairs
and triples.

Irrespective of the approximations, by keeping all sym-
metry related pairs and triples, as shown in Fig. 3, in
Eq. (46), the vector U forms an N-dimensional represen-
tation of the lattice point group G. We next apply the
same group-theoretical method discussed in Sec. III B to
obtain the bispectrum coefficients of the point group. We
again decompose U into the IRs

uJ_ZZ R e (47)

I' p=1

where YT .; are the appropriate basis functions. It is
worth notmg that the IRs of the single sites, pairs, and
triplets are decoupled from each other. The expansion
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coeflicients are then obtained separately as
X Thit
fi =14 T Taepit™ (48)

K,K1,Kz
>k Tlina Pji

Given these IR coefficients, Eqgs. (33) and (34) can then
be used to compute the generalized power spectrum and
bispectrum coefficients, respectively, which are invariant
with respect to both the internal and the lattice symme-
try groups of the type-II systems.

D. Atom-centered symmetry functions

The building blocks introduced in Eqs. (44) and (45)
above also offer the basis for a descriptor which can be
viewed as the generalization of the atom-centered sym-
metry function (ACSF) originally proposed to describe
the atomic configurations [29, 36]. Unlike the group-
theoretic methods, the ACSF approach is physically more
intuitive and relatively simple to implement. On the
other hand, it is more difficult to control the errors due
to the ad hoc parameterizations of the symmetry func-
tions. Nonetheless, ACSF has been successfully applied
to the ML interatomic potential for a wide range of ma-
terials. We first briefly review the basic features of ACSF
using the example of mono-atomic systems. For a given
atomic configuration {r;} in the vicinity of a center atom-
i, the fundamental invariants that are invariant under
rotations and reflections of the O(3) group are the dis-
tances R;; = |r;—r;| from the center atom, and the angles
0;;x = arccos[(r; —r;) - (ry —r;)/R;; Rix]. Based on these
quantities, two kinds of symmetry functions are intro-
duced. The first type is the two-body (between atoms j
and the center atom-7) symmetry function

{Em Z F2 va {gm} (49)

J#i

where F(R;&,,) is a user-defined function, parameter-
ized by {&,} to extract atomic structures at certain dis-
tances from the center atom. One popular choice, pro-
posed in the original work [29], is a Gaussian with a soft
cutoff at radius R,

By (R {&m}) =

Here f.(r) = %[COS(%) +1] for R < R, and zero other-
wise. The two parameters £; and & speficiy the center
and width, respectively, of the Gaussian function. The
3-body symmetry functions are defined as

SRS f(r).(50)

Gs({&m}) = > Fs(Rij, Rik, Rjk, Oiji; {&m}), (51)

7, k#i



An example of the three-body envelop function charac-
terized by three parameters is [29, 36]

F3(R1, Ro, R3,0; {&m}) = 21751 (1 4 &5 cos 0) (52)
X exp [—(R% + R% + R%)/f%] fc(Rl)fc(RQ)fc(R3)

We note that generalizations to take into account the dif-
ferent atom species have also been made [79]. Moreover,
depending on the problems at hand, it might be more
convenient to use different F> and F3 functions, and sev-
eral variants of these functions have been proposed [79].

Next we present a generalization of the ACSF for
condensed-matter systems, where each atom is now asso-
ciated with a dynamical classical field ®;. We emphasize
that the formulation presented here can also be used for
disordered systems, where the “lattice” point group is
replaced by the 3D rotation group SO(3). Moreover, for
applications to MD simulation of liquid systems with a
dynamical classical fields, the generalized ACSF provides
a convenient descriptor for ML energy models for both
the atomic dynamics and the classical fields. In order
to incorporate the internal symmetry, our approach is to
define a set of symmetry functions based on the building
blocks in Eq. (46). We start with the two-body symme-
try functions that include the coefficients of the trivial
IR at every sites:

Gaa{€m}) = D £5° Fa(Riji {€m)), (53)

J#i

This is the direct generalization of the original two-body
symmetry functions that incorporates the on-site classi-
cal fields. Another way to build the 2-body symmetry
functions is to use the invariants pfjl’Kz between the cen-
ter site-i and a neighboring site-j:

Gor " ({&m}) = oo FY(Rij; {&m}),  (54)
J#

The envelope function Fj(R) is not necessarily the same
as the one for Go,. A three-body symmetry function
based on single-site invariants is

K17K2 {é.m Z lesz
jk#i
XF3<Rij7RikaRjk79ijk;{gm})a (55)

The pair-wise invariants can also be combined with the
center atom to define a three-body symmetry function:

G5 - Xl
Jk#i
XFé(RijaRikaRjkvgijk;{gm})a (56)

A second type of 3-body symmetry functions is obtained
from the invariants bsz 1K2 that involves the center atom

K,K1,Kz
Z buk

jk#1i
XF (szaRzkaRjkaeijk;{gm}% (57)

KKl,K2 ({&m))
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Finally, several four-body symmetry functions can be de-
fined based on the fundamental invariants of the inter-
nal symmetry group. For example, combining the triplet
(jkl) with the center site, we have

K,K1,K2
> bl
Jkl#i
X Fy(Rij, Rirs Rt - - -

GR (6, =
$0ijk Oirt, -+ ). (58)

It is worth noting that most of the symmetry functions
also depend on the IR indices K of the internal symmetry
group. We also note that since the relative angles 6;;;. are
pre-defined constants for models on a regular lattice, the
dependence of the F' functions on these angles is trivial.
More importantly, these F' functions are used to select
the more relevant pairs or triplets to be included in the
symmetry functions.

In particular, the symmetry functions can be simplified
to a sum over the symmetric-IR for lattice models. Take
G3p as an example, we first divide all atomic pairs (jk)
in the neighborhood into inequivalent classes such that
pairs within the same class are related by the point group
symmetry. Moreover, since pairs belong to the same class
are related by rotations or reflections that preserve the
distance from the center site, they share the same value
of the F3 function; see Fig. 3(a) for an example of the
symmetry-related pairs on a square lattice. Using 7 to
denote the inequivalent classes of pairs, we then have

GL™ ({6 ) = L Filmi &) P (59
g

Here 7(g) denotes atomic pairs (jk) related to a reference
pair in the class w by the symmetry operation §. The sum
over ¢, which is the symmetric sum of the pair-wise in-
variants p, corresponds to the 1D trivial IR of the lattice
point group. Consequently, the symmetry function Gs
is manifestly an invariant of both the internal and lattice
symmetry groups.

To briefly conclude this Section, we have formulated a
general theory of descriptors for characterizing dynami-
cal classical fields in condensed matter systems, and pre-
sented various different, yet related, approaches for com-
puting the invariant feature variables. By generalizing
the concept of the Weyl matrix for atomic environment,
we show that the ordered eigenvalues of a correlation ma-
trix can be used to characterize the classical fields in a
local neighborhood. The group-theoretical method offers
a rigorous and systematic approach to derive a descriptor
based on the bispectrum coefficients. Finally, we discuss
a descriptor that incorporates the symmetry of the clas-
sical fields into the atom-centered symmetry functions.
Explicit implementations of these descriptors are demon-
strated for well-studied correlated electron systems in the
following sections.



IV. EXAMPLE: ADIABATIC DYNAMICS OF
CLASSICAL SCALAR FIELD

We first discuss descriptors for the simplest classical
field: a dynamical scalar variable @); = Q(r;) associated
with every lattice sites in a square lattice. Physically,
such dynamical scalar field can be viewed as describ-
ing the local isotropic structure distortion, for example,
the breathing mode of the MOg octahedron in transition
metal oxide. Specific example is given by the Holstein
model [109] with spinless electrons:

H=—t> (cles+he)—gd Qi (60)
(i) i

where ¢;/ é;r is the annihilation/creation operators of spin-
less electron at site-i, and n; = é;rél is the corresponding
number operator. The first-term describes electron hop-
ping between nearest-neighbor sites (ij), ¢ is the nearest-
neighbor hopping coefficient. The second term denotes
phonon-electron interaction with a coupling constant g.
The Hamiltonian is supplemented by the classical poten-
tial energy that describes the elastic energies of the local
structural distortion,

({Qz O ZQZ + Ky ZQ Q] (61>

where Ky and K; are the effective spring constants.
Inclusion of electron-electron interaction leads to the
Holstein-Hubbard model [110] with spinful electrons

:—tzz (wc]g—khc) (62)

(i) o=1.1

—Q—Uannu —|—VZn n; —gZQl M,
(ig)
Here 7,5 = CI Jcl » is the number operator of electron
with spin-o, and f; = 3,1+, the U term describes the
well known on-site Hubbard repulsion, and V' represents
short-range Coulomb interactions.

The Holstein models in which the lattice degrees of
freedom are treated quantum mechanically are used to
study phenomena related to electron-phonon coupling,
such as polaron physics and superconductivity. On the
other hand, Holstein models with classical phonons also
serve as simple model systems to investigate the effects
of structural distortions on the electronic properties. In-
deed, the Jahn-Teller model, which is the multi-orbital
generalization of the Holstein model, plays an important
role in the physics of colossal magnetoresistance effect.
In particular, as discussed in Sec. I, complex inhomoge-
neous states can arise from the interplay between the fast
electron and slow classical lattice dynamics.

Here we are interested in the adiabatic dynamics of
these models and treat the lattice distortions as classical

12

dynamical variables. Their time evolution is then gov-
erned by the Langevin equation

PQ; dQ; oV OH

WEQ 0002l

dt? 0Q;  0Q;

+mi(t).  (63)

where p is the effective mass and A is the dissipation con-
stant, and 7;(t) represents the stochastic thermal forces.
The first term on the right hand side describes the classi-
cal elastic restoring force, while the second term is due to
the electron-lattice coupling. Explicit calculation gives

Fplec _ _8<H>
’ 0Q;
The electron force is proportional to the on-site electron
density. Similar to the Born-Oppenheimer approxima-
tion in ab initio or quantum MD simulations, the elec-
trons are assumed to quickly reach quasi-equilibrium of
the instantaneous Hamiltonian. For a given classical
field, the Holstein model describes a quadratic fermionic
Hamiltonian, which can be solved by, e.g. exact diagonal-
ization. In the presence of Hubbard interaction U, many-
body methods such as the real-space Gutzwiller/slave
boson [87], or DMFT are required to solve the electron
Hamiltonian and compute the electron force. As dis-
cussed in Sec. II, these are time-consuming computations
for large system sizes, and ML methods can be employed
to achieve large-scale dynamical simulations. In the fol-
lowing, we implement the descriptors discussed in Sec. IT1
to the Holstein-type models.

= g(i), (64)

A. Correlation matrix

We first discuss the descriptor based on the correlation
matrix. Since here we are dealing with a scalar field,
there is no internal index. Using the notations intro-
duced to label the neighborhood sites in Sec. III, we ar-
range the lattice distortions into a vector U with elements
U = Q;, = Q(rj,). The matrix index r =1,2,3,--- , L,
where L is the total number of sites in the neighborhood.
We reserve r = 1 for the center site, i.e. j; = . For
convenience, we also define R, = |r;, —r;,|. The explicit
definition of the correlation matrix is (c.f. Eq. (14))

011 = U12

CI’F = urQ/R%r (I’ 7& 1) (65)
Crl = Clr = Ul Z/{r/R%r (r 75 1)
Crs = Co = UUs /Ry R1sRys (r,s# 1,1 #55)

The dimension of the correlation matrix is given by the
number of lattice sites L in the local neighborhood, which
in our implementation contains a total of L = 89 sites (up
to the 14th neighbors). Since this is a relatively small
number, all eigenvalues of the C' matrix are used for the
descriptor.

We integrate the correlation-matrix descriptor with a
neural network (NN) learning model to predict the elec-
tron force. As a proof of principle, we consider the Hol-
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FIG. 4. (a) Electron forces predicted from ML model with
the correlation-matrix descriptor versus exact solutions for
test dataset of the Holstein model with g = 1.5¢. Here the
forces are normalized by the coupling constant g, hence are
the same as the on-site electron density n;. (b) Histogram of
the force error § = (Fumr — Fexact)/g-

stein model Eq. (60) without electron-electron interac-
tion. By exactly diagonalizing the quadratic Hamilto-
nian, the electron force, which is proportional to the on-
site electron density, is obtained from the eigenvectors.
A six-layer NN model is trained from 2000 snapshots
of a 30 x 30 system. Fig. 4 shows the ML predictions
versus the exact forces. Here we plot the dimensionless
forces normalized by the coupling constant g, which is
the same as the on-site electron density. The histogram
of the prediction error exhibits a small standard devia-
tion ¢ = 0.023, indicating very good accuracy of the ML
predicted forces.

A remark about the ML model. The results shown in
Fig. 4 were obtained from an ML energy model based on
the BP scheme shown in Fig. 1. The output of the NN
is the local energy ¢;, and the force is obtained via auto-
matic differentiation of the total energy. Since the scalar
force is simply proportional to the electron density, one
can apply the supervised learning to build a NN which
directly predicts the on-stie density (7;) from the lattice
distortions {Q;} in the neighborhood. Interestingly, we
found that the accuracy of this direct approach is worse
than that based on the BP method. As already noted
in previous works, the BP method ensures that the pre-
dicted forces are conservative as they are given by the
derivative of an effective energy. The more constrained
supervised learning in the BP scheme also helps with the
prediction accuracy.

B. Bispectrum

Next we discuss the bispectrum descriptor of the
Holstein-type models based on the group-theoretical
method. The site-symmetry of the square lattice is de-
scribed by the D4 point group. As discussed above, the
collection of on-site lattice distortions {@Q;} in the neigh-
borhood forms a high-dimensional representation of the
D4 group, which can be decomposed into the five irre-
ducible representations: A;, Az, By, By, and E; see Ta-
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FIG. 5. Partition of lattice sites in the neighborhood C; into
groups (nearest neighbors, 2nd nearest neighbors, and so on)
depending on their distance to the center site. Lattice sites
belong to the same neighboring group are also related by sym-
metry operations of the point group.

ble I for the character table of the point group D4. The
first four are singlet IRs, while E is a doublet represen-
tation. The task of the decomposition is made easier by
noting that the {Q,} of same radius from the center form
invariant blocks under the symmetry operations, i.e. the
matrix representation of symmetry operations of Dy are
block-diagonalized with each block corresponding to a
given radius; see Fig. 5.

In fact, direction examination shows that there are
only two kinds of invariant blocks, one of size 4 and
the other 8, illustrated in Fig. 6(a) and (b), respec-
tively. Consequently, one only needs to decompose the
resultant 4- and 8-dimensional reducible representations.
The decomposition of the 4-site blocks in Fig. 6(a) is
4= A, & B; @ E, with the following coefficients:

F = Qa + Qu+ Qe + Qu,
FP = Qa — Qu+ Qe — Qu, (66)
=Qa=Qe f7=Qv—Qu

The decomposition of the 8-site block shown in Fig. 6(b)

’D4‘ E ‘204(7;)‘02 (z)‘ZCé ‘QC; ‘Linear func‘Quadaratic func‘

Ay |41 +1 | 41 | +1| +1 - (2 +42), 2°
Ax|+1| +1 +1 | —-1] -1 z -
Bi|+1] —1 | 41 |41 -1 - z? —y?
Bo|+1| -1 +1 | —1|+1 — xy
E|+2] 0 -2 1010 (z,y) (xz,yz)

TABLE I. Character table for point group Ds. Also shown
are the linear and quadratic function representations of the
various IRs.
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FIG. 6. The two basic types of neighboring groups with (a) 4
and (b) 8 sites. These groups form invariant blocks in the
representations of the neighborhood classical field.

is: 8= A, ® Ay & B1 & By  2E. Importantly, there are
two doublet E IRs. The corresponding coefficients are

M =Qa+ Qv+ Qe+ Qu+ Qe+ Qp + Qg+ Q.
2 =Qa—Q+Qc— Qi+ Qc— Qs +Qy— Qn,
P =Qa— Qv — Qe+ Qu+ Qe — Qp — Qg + Qn,
P =Qu+Qp—Qc—Qu+ Qe+ Qs —Qy — Qu,
H=Qu—Qc, [ =Q.—Q

F=Q-Qr 17 =Qu—Qu (67)

Since for most point groups, the dimension of the IRs
is often very small, and IR of the same transforma-
tion properties appears many times in the decomposi-
tion of the vector U representation of the neighborhood,
we label the IR index as I' = (T, r), where T denotes
the symmetry type of the IR, and r enumerates the
multiple occurrence of this symmetry in the decompo-
sition. Using the above formulas for the different neigh-
borhood blocks, we thus decompose the {Q,} variables
into five different IRs f(A17) | f(A2r)  p(Bir) - £(B2r) and
FED = ({15, G50,

Now that we have all the IR components, we can now
use Eq. (33) to compute the bispectrum coefficients. To
this end, we first list in Table II the decomposition of
tensor product for the D4 group. The nonzero Clebsch-
Gordan (CG) coefficients of the tensor products can be
found in, e.g. Ref. [108]. The bispectrum coefficients can
be classified according to the tensor-product table. First,
we list the coefficients involving only the singlets:

"o

biﬁ%’ﬁ}’Al) = flAum) pAnr) p(A7 ") (68a)
B AnA2) _ () nr) f(Aar) ()
bﬁéiif}’Bl) = L) f(Brr) f(Bar”) (68c)
BB — ) (B (B (o30)
bij“f,:,f},’Bz) = f(A2) f(Brr) p(Bair) (68e)

There are four different types of bispectrum coefficients
involving the doublet. Their expressions can be simpli-
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Ay A B B2 E
Ay Ay Ao B, Bs FE
A Ay B2 B E
By A Ao E
B2 Ay E
E A1 ® A ® B1 @ B

TABLE II. Direct products of irreducible representations of
the D4 point group.

fied using the Pauli matrices o 2 3:

b(Al,E,E) _ f(Al,r) (fl(Em’)fl(E,r”) n fz(E"Tl)féE’T”))

ey
T, r,T

= fn) p(EBr) | p(Br) (69a)
A E, r ! ! 7’ !
) = g (4P g P (P
= fUA2m) p(BI) (Ligy) . fBT) (69b)

b(Bl,E,E) _ f(Bw) (fl(E,r )fl(E,r ) fQ(E,r )f2(E,r ))

ey —
T, r,T

— fBrn) B g BT, (69¢c)

p(B2.EE) _ f(BN) (ffE’T/)fz(E’TN) L f2(E7T/)f1(E’T//))

! 17
rrlr

— f(BZ:T) f(E’T,) o0 f(E’T”), (69d)

While bispectrum provides a complete description of the
neighborhood within a cutoff, a formal descriptor based
on bispectrum requires a large number of b coefficients,
which makes it infeasible practically. Besides, the vari-
ous coefficients b are not independent of each other. To
simplify the calculation, our approach here is to use the
power spectrum pl supplemented by some of the bis-
pectrum coefficients to obtain an equivalent, but more
efficient, descriptor.

C. Reference coefficient for irreducible
representations

The bispectrum provides a systematic method to ob-
tain invariants which contain crucial information regard-
ing the relative “phases” between different IRs. However,
the set of all bispectrum coefficients listed in Egs. (68)
is obviously over-complete. For example, since fﬁAl) is
already an invariant itself, the b\*1 44 is redundant.
Here we propose a novel method to retain the phase in-
formation based on the idea of reference coefficients for
irreducible representations of the site-symmetry group.
Importantly, this method allows us to significantly reduce
the number of feature variables required to reconstruct
the environment configuration module the site symmetry.

To demonstrate the idea of reference coefficients, we
consider bispectrum b4 where T' = Ao, By, or Bs
is one of the singlet IR. For convenience, we define the
phase of the singlet coefficient as

FOT =k, (70)
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FIG. 7. Construction of the reference irreducible repre-

sentations from (a) a particular neighboring group, and
(b) symmetry-related clusters.

Since the A; part is already invariant under symmetry
operations, the invariance of b(411"I) is equivalent to the
invariance of the following product

R R R Vi Y (71)
where we have defined the relative phase of two expansion
coefficients as

I r T
My s = Ty Ty (72)

In addition to the power spectrum coefficients p', the
relative phase % L., 18 @ crucial invariant encoded in the
bispectrum. However, the relative phases are not inde-
pendent of each other. Indeed, from its definition it is
straightforward to show that

7771;1,% 77{277“3 7771“1377‘1 =1 (73)
To derive the set of truly independent phase coefficients,
we introduce the phase il of a reference expansion coeffi-
cient f('*) of IR-T, and define the relative phase between
a given coefficient f(I'™) and the reference one as 17517".
The relative phase between two expansion coefficients of
the same IR T' is then given by

My = Ty Mo (74)

This relation thus allow us to reconstruct all the p(41:1>D)

bispectrum coefficients.

It is worth noting that the purpose of the reference
coefficient of a given IR is to construct invariants which
retain the relative phase between a given expansion co-
efficient and the reference one. Consequently, the ampli-
tude of the reference representations is completely irrel-
evant, as long as it is nonzero. Also importantly, there is
no unique procedure to obtain these reference expansion
coefficients f(I'*). Fig. 7 shows two examples of com-
puting the reference coefficients from the neighborhood
configuration. One approach is simply to use the decom-
position of a particular 8-site neighbor block, e.g. the
B, neighbors in Fig. 7(a), as the reference. However,
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the small size of such an 8-site block might result in the
undesirable situation of vanishing expansion coefficients
for some IRs. While there is no general method to avoid
such pathological situation, one can try to minimize such
probability, which is already very small in most cases, by
using weighted results from several neighbor blocks to
derive the reference expansion coefficients.

Another approach, shown in Fig. 7(b), is based on
symmetry-related clusters built from the neighborhood
sites. First, a cluster of sites, say C1, is introduced either
based on geometrical consideration, or simply randomly.
Applying symmetry operations of the point group to C
then generates all clusters C'i that are related to C; by
the site symmetry. Next we define the average of dynam-
ical variables for each cluster: Qx = (1/M)> o, Qi
where M is the number of sites in each cluster. Ob-
viously, these cluster-based variables {Qk} form an 8-
dimensional reducible representation. Its decomposition
using Eq. (67) thus gives rise to a set of references coef-
ficients f(I'*) for all five IRs of the D4 group.

As discussed above, the amplitude of the reference ex-
pansion coefficients is unimportant for the descriptor, as
the essential information is carried by their phase. In
the following, we use the phase of the reference coeffi-
cients to define a new set of feature variables {g,(,r’r)}
which are manifestly invariant under symmetry opera-
tions. Importantly, these coefficients supplemented by a
few additional normalized bispectrum factor form a com-
plete descriptor such that the local environment can be
faithfully reconstructed from them. First, since expan-
sion coefficients of the A; IR is already an invariant, we
define g(A1") = f(A17) For other singlet IRs T’ = Ay, By,
and By, the new coefficient is defined as

gt = Ol =\ /pEnl, (75)

where 7l is the relative phase introduced in Eq. (74).
This coefficient is obviously an invariant of the symme-
try group. Importantly, the bispectrum coefficients in
Eq. (68a)—(68d) can be readily expressed in terms of these
invariant g coefficients:

b =g
where I' = Ay, Ao, By, Ba. We still need to consider the
special bispectrum b(42:51:82) in Eq. (68e), which en-
codes the relative phases between expansion coefficients
of the three 1D IRs. However, it is easy to show that
expression in Eq. (68e) can be expressed as

(Al,’l“)g(r,’l“/)g(l—‘,’r‘”)7 (76)

bgﬁ%’glth) _ g(Ag,r)g(Bl,r’)g(BQ,r”)bgAz,Bl,BQ)’ (77)
where we have introduced a normalized reference bispec-
trum

biAQ’Bl’B2) (B1) , (B2) (78)

A
— i) B0
It can be readily checked that this normalized bispec-
trum of the reference coefficient is invariant under sym-
metry operation. Eqs. (76) and (77) indicate that all



bispectrum coefficients of Eq. (68) can be restored using
invariant coefficients ¢") and piAz Br.B2)

Next we consider the bispectrum coefficients in
Eq. (69) that involve the doublet E' IRs. We define a
similar normalized doublet vector €, = (e?,¢¥) from the

reference coefficients of the doublet IR:

@ = fER ) ER| e = 1|55 (79)

The x and y components have amplitude |exY| = 1. Tt
can be readily checked that this 2-component vector €,
transforms as a doublet IR under the D4 group. Con-
sequently, €, can be used to build invariant coeflicients
using the the bispectrum formula in Eq. (69). Specifi-
cally, for any given doublet vector f(F"), we introduce
two invariant coefficients g(#") = (ggE’T),géE"r)) defined
as

giE,r) —€, - f(E,r)/\/i
= (AP0 + e fg™0) 1V,
9" = e oy fE V2

= T« €y

=P (e f B0 — e ffB) V2. (30b)

(80a)

This can be readily inverted to give
E,r T Er B Er
RE = e (7 4 nP0glE0) v,

AP = (gﬁE’r) - nﬁBl)géE”)) V2.

(81a)

(81b)

By substituting the above expressions for fl(g’r) into
Egs. (69), we can express the bispectrum coefficients in
terms of the invariant g coefficients

bﬁﬁ%jfiE) _ g(Al,r) g(E,r/) .g(E,T”)7 (82a)
DB = p{a BuBe) y (e B )

xgA2m) g(Br) (_ig,). g (82D)
5%35"]3) — B g(Br) g (B (82¢)

bfﬁ?:f}E) _ b&Bz,E,E)g(BQ,r) g(E,r') o _g(E,r”). (82d)
Here we have defined another important normalized ref-
erence bispectrum coefficient

p{P2 B = (B2) e ey, (83)
which encodes the relative phase between the reference
By and FE coefficients.

To summarize, a complete description of the local en-
vironment is given by the following set of invariant coef-
ficients:

{g("‘l’”, gt glBur) | g(Bar) | g,
b£A27Bl7BZ)7 biBsz,E)}. (84)

We integrate this descriptor with a six-layer NN to de-
velop a ML energy model following the framework shown
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FIG. 8. (a) Electron forces predicted from ML model with the
bispectrum descriptor versus exact solutions for test dataset
of the Holstein model with g = 1.5¢t. Here the forces are
normalized by the coupling constant g, hence are the same
as the on-site electron density n;. (b) Histogram of the force
errors 0 = (FuL — Fexact)/9-

in Fig. 1. The NN is trained from exact solution of the
Holstein model Eq. (60) on a 30 x 30 square lattice.
The ML predicted normalized forces, shown in Fig. 8,
agree very well with the exact values, as evidenced by
the rather small standard deviation from the histogram
of prediction errors.

It is worth noting that, thanks to the regularity of the
lattice geometry and the simplicity of the scalar classical
field, decent force prediction can be obtained using a ML
model even without a descriptor, namely directly using
an array of the scalar variables {Q;} in the neighborhood
as the input. However, the site symmetry is an approx-
imate symmetry in such naive approaches, though the
accuracy of the symmetry could be improved by increas-
ing the size of the training dataset. On the other hand,
the employment of the lattice descriptor ensures that the
ML force field model preserves the lattice symmetry.

V. EXAMPLE: DYNAMICS OF COOPERATIVE
JAHN-TELLER COUPLING

As a second example of the type-I models, we consider
the Jahn-Teller (JT) coupling between the e, electrons
and the distortion modes of local MnQOg octahedron in
maganites. The JT-coupling, along with the DE mech-
anism, are important for the physics of colossal magne-
toresistance and polaron liquids [98, 99, 111, 112]. Here
the local distortion of the tetrahedron is characterized
by three modes. The symmetric breathing mode Q} is
essentially the same as the Holstein phonons discussed
in the previous Section IV. Here we are interested in the
dynamics of the asymmetric normal modes that are de-
scribed by a e, doublet Q; = (QF, Q7). Here the Q7
component has the symmetry of (2% — y?), and Q7 has
the symmetry of (322 — 72). Here we consider the two-
orbital electron Hamiltonian with the JT coupling on a



square lattice [98, 99]

H=- Z > (5 elaep + e (85)

(ij) aB=a,b
-9 Z [Qw (émczb + Czbcm) + Q7 (Aza Cia — 6;'rbéib)} )

Here é;fa /¢i.o are creation/annihilation operators of elec-
tron at site-i with an e, orbital-index o = a, b, cor-
responding to orbitals d,2_,2> and ds,2_,2, respectively.
The superscript z, z indicates that the corresponding Q-
mode couples to the z and z pseudo-spin of the orbitally
degenerate e, electrons Because of the orbital degrees of
freedom, the electron hopping coefficients are anisotropic:
tea = —/3teb = —/3thy = 3t = ¢ for (ij) along the -
direction, and t{" = \/gt%b = \/gtf]a = 3t =t for (ij)
along the y-direction.

The adiabatic dynamics of the JT phonons is described
by a similar Langevin equation

2Q; sz 0V OH)
A T To}

Here p is the effective mass, A is the dissipation coeffi-
cient, and n;(t) represent stochastic thermal forces. We
have also included the classical elastic energy V of the
JT phonons [98, 99]. Again, the time-consuming part,
which has to be carried out at every time-step, is the
calculation of the electron forces:

Felec _ _a<7:l> (87)

ERTeY

=9 (< Ciq zb +¢ bcw> <éjaéza - éjbézb>> .
The two components of the force are given by the on-
site two-point correlation function piaz = (éj’ﬁéiﬂ),
which can be obtained by exact diagonalization for the
JT Hamiltonian above. Next we outline the bispectrum
descriptors for the JT doubles, which can be combined
with a learning model to develop an effective classical en-
ergy, as outlined in Fig. 1 for the adiabatic dynamics of
the JT phonons.

First, we note that the JT doublet Q; has the trans-
formation property of an e; doublet under the cubic
point group, e.g. Op. Since here we consider the two-
dimensional model, which is relevant for applications of
CMR manganites, the two components of Q; transform
independently of each other under the in-plane Dy point
group of the square lattice. As shown in Table I, while the
(07 mode transforms with the A; symmetry, the Q)7 mode
behaves as the B; IR. Consequently, the ()7 components
are essentially a scalar field, and their decomposition can
be obtained following exactly the same procedure for the
Holstein model outlined in Sec. IV B, and the correspond-
ing coefficients are given by Egs. (66) and (67). On the
other hand, the fact that the 7 mode transforms as an
Bi IR mixes the transformations of the lattice sites with
those of Q% amplitude. Take the four-site neighboring

+mi(t).  (86)

17

Histogram

-0.6 -04 -0.2 0.0 0.2 04 0.6
F;(act/g

Histogram
—
(==}

0 /
-0.6 -04 -0.2 0.0 0.2 04 0.6 -0.1 -0.05
Fezxact/g

0.1

FIG. 9. Electron forces predicted from ML model with the
bispectrum descriptor versus exact solutions for test dataset
of the Jahn-Teller model with g = 1.5¢ for the (a) Q¥ and
(¢) @F components. Here the forces are normalized by the
coupling constant g, hence are the same as the on-site elec-
tron density n;. The corresponding histograms of the force
errors § = (Fur — Fexact)/g are shown in panel (b) and (d),
respectively.

group in Fig. 6(a) as an example, under the Cy(z) rota-
tion, the four Q2 modes acquire an additional —1 sign in
addition to the lattice rotation:

Qi = —Qp, @ = —Q¢

Qe = —Qy Qg — —Q;
To account for this additional —1 sign, the expansion
coefficients of the corresponding IRs are given by

=0 - QF +QF - Q3
P =0+ QF + QF + Q3 (88)
=0 -Q% ff=Q%- Q.

Similar expressions can be obtained for the 8-site neigh-
boring block.

U =Q Q- Qi+ Qi+ Q- QF —Qp + Qi

R =Qr+QF - Qi - Qi+ QI +QF — Q — Qi

fP = Qe +QF + Qi+ Qi+ Q0+ QF +Q + QF,

P =Q - Qi+ Qi - Qi+ QL — Q5+ QF — @,

fF=Qi-qQt  f3=Q; -

=@-Q 1 =Qr - (89)
Given the expansion coefficients of both the @® and

Q* phonons, bispectrum coefficients, with contribu-
tions from both modes, can be obtained as outlined in



Sec. IV B. The implementation can similarly be simpli-
fied using reference IR method. Combining the descrip-
tor with a neural network, an effective energy model is
trained by datasets from exact diagonalization of the JT
Hamiltonian on 30 x 30 lattices. The ML predicted forces
for both components versus the exact values are shown in
Fig. 9 along with the histograms of the prediction errors.

VI. EXAMPLE: ADIABATIC DYNAMICS OF
ITINERANT MAGNETS

As a final example, in this Section we demonstrate the
descriptors for the spin dynamics of itinerant magnets,
which are a representative example of the type-II mod-
els. Explicitly, we consider the following single-band s-d
model [56, 57]

7 = ,tz (ézaéja + h.c.) - JZ S;- éjao'aﬁéwa (90)
(i5) ‘

where é;ra/éi,a are creation/annihilation operators of
electron with spin a =1,| at site 4, (ij) indicates the
nearest neighbors, ¢ is the electron hopping constant,
Jgr is the local Hund’s rule coupling between electron
spin and local magnetic moment S; due to the local-
ized d or f electrons. Here repeated indices «, im-
ply summation. The s-d Hamiltonian offers a funda-
mental description of the electron-spin interaction; it
has been widely used to model the dynamics of mag-
netic textures, such as domain-walls and skyrmions, un-
der the influence of conducting electrons. The strong
coupling J > t limit of the s-d Hamiltonian, also known
as the double-exchange model, exhibits intriguing phase-
separated states in which ferromagnetic clusters with low
electron density are mixed with half-filled antiferromag-
netic domains [56]. Such electronic phase separation is
crucial to the emergence of novel material functionalities
such as colossal magnetoresistance and high-T, super-
conductivity.

The adiabatic dynamics of the classical spins is gov-
erned by the stochastic Landau-Lifshitz-Gilbert (LLG)
equation [113, 114]

d;i =~S; x (aag? —Hn) — AS; x (Si X 882-[})7 (91)

where 7;(t) is a stochastic local field of zero mean, and A
is the damping coefficient. The computational overhead
is dominated by the calculation of the electron contribu-
tion to the exchange forces:

o)
0S;
As demonstrated in Fig. 1 and in previous works [72,
73], the calculation of this electronic force can be speed
up with the use of ML energy models. Here we present

details of the descriptors for the case of dynamical spins,
or the vector field.

H?lec — _ = J0'a5<éjaéi,8>' (92)
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The local spins in the standard s-d model are often
assumed to have a fixed length. On the other hand,
Eq. (90) can also be viewed as an effective Hamiltonian
for the spin-density wave (SDW) obtained from a mean-
field treatment of the interacting electron Hamiltonian.
In the case of the SDW, the spin length itself is a dynam-
ical variable, and the Gilbert damping in Eq. (91) has
to be replaced by a Langevin-type dissipation force [62].
Here we consider the general case of descriptor for a vec-
tor field S(r;) = (S7,SY,S7) with variable spin lengths.

The internal symmetry of the vector field is the SO(3)
rotation group, which is locally isomorphic to the SU(2)
group. The IRs of the rotation group is labeled by the
angular momentum quantum number j which can be ei-
ther integers or half-integers. The 3-component vector
S = (5%,5Y,5%) is already an IR of dimension 3 of the
rotation group, which is equivalent to the angular mo-
mentum j = 1 representation. In order to construct the
bispectrum coefficients of the SO(3) group, we consider
the tensor product of two spins S; ® Sy, in the neighbor-
hood. Since this can also be viewed as the tensor product
(j =1)® (j = 1), from the theory of angular momen-
tum addition, it can be decomposed to a direct sum of
j =0 (scalar), j = 1 (vector), and j = 2 (rank-2 traceless
symmetric tensor).

The scalar component (j = 0) is simply the inner prod-
uct of the two vectors

P =S5+ Sk, (93)

This scalar invariant is the same as the generalized power
spectrum coefficient Eq. (44) in Sec. III, which is a spe-
cial case of the bispectrum coefficients obtained from the
trivial representation and two j = 1 IRs. The invariants
P;ji, With j # k represents the rotation-invariant spin-spin
correlation, sometimes also called a bond variable. For
the case of SDWs, one also needs to consider the on-
site invariant p;; = |Sj|2, which corresponds to the spin
length.

The j = 1 IR in the decomposition of S; ® Sj, is the
vector product S; x S, which can be combined with a
third vector to form a scalar invariant under rotation

bjkl = Sz X Sk . Sl. (94)

These are the bispectrum coefficients Eq. (45) con-
structed from three j = 1 IRs of the SO(3) group. This
scalar invariant b, also called the scalar spin chirality,
provides a measure of the non-coplanarity of the triplet
spins. Importantly, according to the bispectrum theory
of group representations, the collection of all scalars Pk
and bji; provides a faithful representation of the neigh-
borhood that is invariant with respect to SO(3) rotations.
On the other hand, this is obviously an over-complete
representation. For example, the relative orientation be-
tween three spins (ijk) can be completely specified by
three bond variables p,;, p;;,, and p;;; consequently, the
scalar chirality b;;; is redundant. This also means that
an equally faithful description of three spins can be at-
tained from p,;, p;;., and b;j;. However, the effectiveness



of the descriptor depends on the choice of the feature
variables, and we find that explicit inclusion of the scalar
chirality is very efficient for describing magnetic states
with non-coplanar spins.

A. Atom-centered symmetry functions

As a first example, we discuss the symmetry functions
based on the rotation-invariant building blocks discussed
above. Following Egs. (53)—(56) in Sec. IIID, we de-
fine the following symmetry functions associated with a
center spin at r;. First, since there is no on-site singlet
(trivial) IR £; for the spin model, there is no Ga,. The
only nontrivial two-body symmetry function is

Goo({6m}) = D F(Riji {&n})(Si-S)).  (95)
J#i
And there are also two 3-body invariants involving a pair
of spins (jk) along with the center site-i:

Gsa({&m}) = Z Fs5(Rij, Ri, Rji; 0:51)(S; - Sk), (96)

jk#i

G ({€m}) = Y Fi(Rij, Rie, Rjr; 0ii) (Si - S5 x Sg). (97)

GhAi

We note that these symmetry functions can also be ap-
plied to describe local spin environment in disordered
atomic systems. For example, it could be used to develop
a ML model for the dynamics of spin glasses, as exem-
plified by the dilute magnetic alloys such as CuMn. The
interaction between the randomly distributed magnetic
atoms in spin glass is mediated by conducting electrons
of the metallic matrix. Conventionally, this effective spin-
spin interaction is modeled by integrating out electrons
beforehand, giving rise to the Ruderman-Kittel-Kasuya-
Yosida (RKKY) pair interaction at weak coupling. The
above magnetic ACSF descriptor combined with a learn-
ing model can provide large-scale dynamical simulations
of spin-glass alloys with a better accuracy even for strong
electron-strong coupling. Another application is to com-
bine the magnetic ACSF descriptor with molecular dy-
namics for the simulations of magnetic molecules in, e.g.
ferrofluids [115, 116].

Here we apply the descriptor to the case of s-d model
on a square lattice. A two-parameter function of the
form Eq. (50)is used for both Fy and Fj. Specifically
we use Fy(R;d,w) = exp[—(R — d)?/w?] to extract spin
correlations at lattice sites in a ring of width ~ & at
a distance & from the center site; a hard cutoff at R,
is used. On the other hand, since all triplet angles 6
are pre-defined on a lattice, we ignore the angular depen-
dence of the F3 function. Instead of Eq. (52), we use the
following parameterization:

(R~ 4 (Ryp—d)? (Rjp—d)?

F3(Rija Rika Rjk:) =€ w? e w2

In both 2- and 3-body symmetry functions, a finite width
w is used to ensure overlaps between consecutive rings,
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FIG. 10. (a) Exchange forces predicted by the ML model with
the ACSF descriptor versus the exact solution from the exact
diagonalization for the s-d model with exchange coupling J =
6t. (b) Histogram of the force prediction error.

thus avoiding the spurious symmetry due to indepen-
dence of rings. Combining the ACSF descriptor with a
NN model for the s-d model, Fig. 10 shows the ML pre-
dicted exchange forces versus the exact values. Although
the ML prediction overall agrees well with the exact cal-
culation, a rather large error was obtained with the ACSF
descriptor, especially compared with the prediction error
of the ML model with the bispectrum descriptor and the
same NN structure to be discussed below. This is partly
due to the fact that, from the representation theory point
of view, the ACSF descriptor is mostly dominated by the
fully symmetric A; representation, as also discussed in
Sec. ITID. Contributions from other nontrivial IRs could
be implicitly included in ACSF of higher order. For ex-
ample, consider the 4-body symmetry functions (not in-
cluded in our implementation)

Ga= Y Fu(Rij,---)(Si-S;)(Sk-S1).  (98)

This is a summation of the A; IR of four-spin variables.
As shown in II, this could result from the direct product
of two-spin IR of either Ay, Bi, Bz, or E symmetries,
which cannot be captured by either of the two-spin sym-
metry functions in Eq. (95) and (96).

B. Bispectrum

Compared with the ACSF, the bispectrum coefficients
based on the group-theoretical method provides a more
systematic approach to build the descriptor. Follow-
ing the discussion in Sec. IIIC, we consider a vector
U= {Pjk,bjri} consisting of the bond and scalar chi-
rality variables. which are already invariant with respect
to the internal SO(3) rotations. This vector, which is a
high-dimensional representation of the point group asso-
ciated with a given center site, is then decomposed into
the IRs. As discussed above, the collection of all such
variables is an over-complete representation. A proper
downsizing to avoid too much overlap is required, also
for practical reasons. To this end, we restrict ourselves
to three types of invariants shown in Fig. 11: (i) bond
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FIG. 11. Examples of (a) bond variables p;, and (b) spin
scalar chirality b;;, that are related by the point group sym-
metry of the lattice. These 2-spin and 3-spin correlations
are also invariants of the internal SO(3) symmetry, and are
building blocks for computing the bispectrum coefficients of
the point group.

variables p;; between center site and another site-j in the
neighborhood, (ii) bond-variables p;; between two sites
that are different from the center, and (iii) scalar chirality
variables from triplets (ijk) that include the center spin.
Notably, they correspond to those used in the symmetry
functions Gop, G34, and Gjgp, respectively, discussed in
the previous subsection.

Even with this simplification, there are still a large
number of these local variables. Fortunately, as dis-
cussed above, the vector representation for U is block-
diagonalized with each block consisting of spin-pairs or
triplets with a fixed distance from the center site. For
the case of square lattice, that means each block has a
dimension of 4 or 8; there are also 12-member block, but
these are trivial union of the dim-4 and dim-8 blocks. Ex-
amples of these blocks that are close on themselves under
lattice rotation/reflection are shown in Fig. 11. The de-
composition of these blocks is similar to that discussed
in Sec. IVB for the scalar field. For the dimension-4
blocks, such as the four scalar chirality variables shown
in Fig. 11(b), we have 4 = A; & B; @ E:

f4 =ba+bp+bo+bp,
fP =ba—bp+bc —bp, (99)
f¥ = (ba —bp, bc —bp).
And the decomposition of a dim-8 block is illustrated by
the eight off-center bond variables in Fig. 11(a): 8 =
Ay ® Ay ® By @ By @ 2E. The corresponding expansion
coefficients are
fM =pa+Pp+Pc+Pp+Pp+Pr+PG Py
[ =pA—Pp+Pc—Pp+Pp—Pr+Pc— P
f% =ps—Pp—Pc+Pp+Pr—Pr—Pg+Pu
fP% =ps+pp—Pc—Pp+Pr+Pr—Pc— Pu
f¥=(pa—Pp Pc—Po):
f¥ = (pg —Pps Pp —Pa)- (100)
Applying these decompositions to all blocks in the neigh-
borhood, one obtains the coefficients of all IRs {f!'} from
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FIG. 12. (a) Exchange forces predicted by the ML model
with the bispectrum descriptor versus the exact solution from
the exact diagonalization for the s-d model with exchange
coupling J = 6¢. (b) Histogram of the force prediction error.

the reducible representation of bond and scalar chirality
variables U = {P,1>Pjki} within the cutoff radius. Here
the basis functions of a given irrep are arranged into a
vector fU' = (fI,f4, -, };F), where T' labels the sym-
metry of the IR, and r enumerates the multiple occur-
rence of I' in the decomposition of U.

Feature variables that are invariant under the point
group symmetry are given by the bispectrum coeffi-
cients computed from these expansion coefficients. De-
tails of the calculation of the bispectrum with the aid
of the reference IRs can be found in Sec. IVB for the
case of square lattice. Here we outline the procedure
from a different perspective. First, the power spectrum
pt' = |fF|? is obviously invariant under discrete sym-
metry operations of the point group. However, power-
spectrum descriptor contains spurious symmetries since
it does not take into account the fact that different IR
need to transform consistently, instead of independently,
under symmetry operations. For example, the angle
cosfio = (FED . fE2) /| FED||£E2)] between the
vectors of two doublet IR characterizes the relative orien-
tation of the two doublets, and is also an invariant of the
point group. Consequently, the relative phases between
different IRs should also be included in the descriptor in
addition to the power spectrum [87].

The reference IR f(T*) discussed in Sec. IV C offers a
way to properly incorporate the “phase” of the IRs into
the descriptor. These reference coefficients are computed
by averaging large blocks of bond and chirality variables,
such that they are less sensitive to small changes in the
neighborhood spin configurations. We then define the rel-
ative “phase” of a irrep as the projection of its basis func-
tions onto the reference basis: nt = f¥ - fL./|f1] | £E,].
The feature variables of the descriptor are then the col-
lection of power spectrum coefficients and the relative
phases: {p' , n''}. The various steps in the process of
obtaining the descriptor are summarized in the following

Ci = {pjiobjmt — {F} = {p" .0}

The invariant feature variables characterizing the neigh-
borhood spins, are then forwarded to the neural network
which produces the local energy at its output node. This



means the local energy associated with spin S; depends
on its neighborhood through the effective coordinates:
e(C;) = e({p*,n'}), which obviously preserves both the
SO(3) spin-rotational symmetry and the discrete lattice
Symimetry.

A six-layer NN model is constructed and trained us-
ing PyTorch [117-122]. The training dataset consists of
3500 snapshots of spins and local exchange forces, ob-
tained from exact diagonalization of a 30 x 30 lattice.
Fig. 12(a) shows components of local exchange forces H;
predicted by our trained NN model versus the exact re-
sults on test datasets. The difference § = Hyp, — Hexact
is well described by a Gaussian distribution with a rather
small mean-square error of o2 = 0.035, as shown in
Fig. 12(b). Interestingly, the histogram of the deviation
0 implies that the statistical error of the ML model can
be interpreted as an effective or artificial temperature in
Langevin dynamics.

VII. SUMMARY AND DISCUSSION

In this work, we present a numerical framework of uti-
lizing machine learning methods for multi-scale dynami-
cal modeling of condensed matter systems with emergent
dynamical classical fields. These classical degrees of free-
dom could arise from the coupling to lattice dynamics,
or magnetic moments of localized d or f electrons. They
could also represent the collective electron behaviors, as
exemplified by the order-parameter field in a symmetry
breaking phase, of interacting electrons. The slow adi-
abatic dynamics of the emergent classical fields is often
dominated by the electrons or quasi-particles, which are
assumed to be in quasi-equilibrium of the instantaneous
Hamiltonian parameterized by the classical variables. As
in the quantum or ab initio molecular dynamics meth-
ods, accurate simulation of the dynamical classical fields
requires solving the electronic structure problem at ev-
ery time-step. Motivated by the success of ML-enabled
large scale quantum MD simulations, we propose a simi-
lar approach for condensed matter systems in which the
complex dependence of the local energy on the neighbor-
hood classical field is encoded in a ML energy model.

The two important components of the ML energy
model are the descriptor for characterizing the local clas-
sical field configuration, and the learning model used to
encoded the dependence on the local environment. Sev-
eral learning models developed in the context of quantum
MD can also be used for the effective energy model of the
condensed-matter systems. Among the various ML mod-
els, the deep-learning neural network (NN) is perhaps the
most versatile and accurate. The descriptor is crucial
for properly incorporating symmetry of the system into
the ML energy model. The so-called feature variables,
which are input to the learning model, must be invariant
with respect to symmetry transformations of the electron
Hamiltonian. While a large number of descriptors have
been proposed for ML-MD methods, the theory of de-
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scriptor for classical fields of condensed matter models
has yet to be developed.

We discuss common features of the descriptor of clas-
sical fields of electronic lattice models, and formulate a
general theory by first distinguishing two types of models
depending on the absence or presence of an internal sym-
metry for the classical fields. Several specific approaches
to derive a descriptor have been discussed. First, a gen-
eral descriptor is given by the ordered eigenvalues of the
correlation matrix of the neighborhood classical fields,
which is similar in spirit to the Weyl or Coulomb ma-
trix descriptor used to characterize the atomic environ-
ment. Another approach, also motivated by ML-models
for quantum MD simulation, is the generalization of the
atom-centered symmetry functions which incorporates
the internal symmetry of the classical fields.

The majority of our effort focuses on the group the-
oretical method which offers systematic and controlled
approach to build fundamental invariants of the symme-
try group. In this approach, the local classical fields,
which form a high-dimensional representation of the site-
symmetry point group, is first decomposed into the ir-
reducible representations. Fundamental invariants are
given by the bispectrum coefficients of three IRs, which
are similar to the scalar or triple product of three vectors.
To cope with the issue due to the large number of the
over-complete bispectrum invariants, we propose a sim-
plification method based on the concept of the reference
IRs. Instead of keeping all the bispectrum coefficients,
both the amplitude and the relative “phase” of each IR
can be faithfully retained via an inner product with the
reference IR.

Finally, we demonstrate the implementation of the var-
ious descriptors on well-known lattice models including
the Holstein and Jahn-Teller model, and the s-d Hamil-
tonian for itinerant magnets. The classical field in the
former case corresponds to local structural distortions.
In particular, the scalar field in the Holstein-type mod-
els offers the simplest example to illustrate the working
of the lattice descriptor. On the other hand, the s-d
model characterized by a vector classical field is used to
demonstrate the construction of a descriptor with an in-
dependent internal symmetry.

Our work laid the foundation for applying ML methods
to multi-scale dynamical modeling in condensed matter
systems. Contrary to ML-based MD methods which is
an ongoing active research field by itself, the goal here is
to model the adiabatic dynamics of classical fields un-
der the influence of quasi-equilibrium electrons. The
capability of going beyond empirical methods for large-
scale dynamical simulations of such classical fields has
numerous implications in condensed matter physics. For
example, one particularly important application is the
accurate dynamical modeling of topological defects of
multi-component classical fields, which are prevalent in
condensed matter systems. Notable examples include
vortices in superconductivity and skyrmions in itinerant
magnetism.



Moreover, complex inhomogeneous electronic states
are ubiquitous in correlated electron systems. Not only
are these mesoscopic textures of fundamental importance
in correlated electron physics, they also play a crucial
role in the emergence of novel macroscopic functionali-
ties. For example, complex mixed-phase states are preva-
lent in colossal magnetoresistant materials and several
high-T,. superconductors also exhibit intriguing stripe or
checkerboard patterns. Accurate modeling of these com-
plex nanoscale textures is thus of paramount importance
in the engineering of these novel material functionalities.
However, large-scale simulations of such electronic tex-
tures so far are based on empirical or phenomenological
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models, mostly because of the extreme difficulty for the
multi-scale dynamical modeling of such systems. We be-
lieve that the ML force field approach along with the
proper descriptor outlined in this work will be an indis-
pensable tool to enable large-scale dynamical simulations
of complex patterns in correlated electron materials.
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