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Abstract

In this work we study some physical phenomena that emerge in the vicinity of a magnetoelectric
boundary. For simplicity, we restrict to the case of a planar boundary described by a coupling
between the gauge field with a planar external Chern-Simons-like potential. The results are obtained
exactly. We compute the correction undergone by the photon propagator due to the presence of the
Chern-Simons coupling and we investigate the interaction between a stationary point-like charge
and the magnetoelectric boundary. In the limit of a perfect mirror, where the coupling constant
between the field and the potential diverges, we recover the image method. For a non perfect mirror,
we show that we have an attenuated image charge and, in addition, an image magnetic monopole
whose field strength does not exhibit the presence of the undesirable and artificial divergences
introduced by Dirac strings. We also study the interaction between the plate and a quantum
particle with spin. In this case we have a kind of charge-magnetic dipole interaction due to the
magnetoelectric properties of the plate.

1 Introduction

In the literature, we can find a wide range of models where external J-like potentials coupled to
fields are used to describe material boundaries. This subject has been of great interest for both
experimental and theoretical reasons, once typical experimental setups are composed by material
boundaries whose influence on the dinamics of fields cannot be disregarded. In this scenario, we
can mention, for instance, the interactions between semi-transparent mirrors and point-like particles
[1L 2 B], investigations which concern the interaction between an atom and a d-like mirror [4] 5], the
Casimir energy due to the presence of two d-like mirrors [6l [7, 8, 9, 10} 111 12} 13, 14, [15] 16l 17], and
SO on.

In the work of reference [18], in the context of the Casimir Effect, it was proposed a model
composed by the Maxwell Lagrangian augmented by a term where the gauge field is coupled to 6-
potentials concentrated along parallel planes. The coupling exhibits a Chern-Simons-type form and
describes semi-transparent mirrors. In the limit where the coupling constant between the mirrors and
the field diverges, the model recovers the presence of perfectly conducting plates. In this specific limit,
this model is the same as the one considered previously, in reference [19]. In reference [5] it was also
considered the interaction between one of this delta-like plate (with Chern-Simons coupling) and a
polarizable atom. In reference [20] this model was considered again to study the Casimir Effect.

However, there are some subjects not yet explored appropriately in the literature for such kind of
Chern-Simons-type coupling with a delta-like potential. We can mention, for instance, the meaning
of the modifications that the free photon propagator undergoes due to the presence of this single
semi-transparent mirror, and the influence of this kind of surface in the dynamics of point-like field
sources. In addition, this kind of plate exhibits magnetoelectric properties which were not explored
in the literature and could be of some relevance for the analytical description of this metamaterials
[21] 23], 22]. We hope that the present work could be a contribution to pave the way in this subject.
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In this paper we consider some peculiarities of the model poposed in [5]. In section [2| we compute
the modification undergone by the free photon propagator. We perform our analysis in a similar
manner that was employed in Ref. [2], where another type of J-potential was considered. In section
we investigate the interaction between a stationary point-like charge and the mirror. We show that the
classical image method is found as a particular case of the obtained result. In section [d] we calculate
the electromagnetic field configuration induced by a stationary point-like charge in the presence of
the mirror. We show that, in this setup, it emerges the field of a magnetic monopole, without the
typical singularity introduced by semi-infinite Dirac strings. It is a new magnetoelectric effect and
is an indication that the model could be of some relevance for the description of magnetoelectric
metamaterials. In section we consider the interaction between the plate and a quantum particle
with spin. We show that it emerges a magnetoelectric anisotropic contribution to this energy linear
in the spin. Section [f]is devoted for conclusions and final remarks.

In this paper we work in a 3+1-dimensional Minkowski space-time with metric n*¥ = (1, —1,—1, —1).
The Levi-Civita tensor is denoted by e”**? with 0123 = 1.

2 The modified photon propagator
In this section we consider a model composed by the Maxwell Lagrangian augmented by a d-potential

concentrated along a plane and with a Chern-Simons-like coupling. The model describes a kind of
partially reflective mirror. Without loss of generality, and for convenience, we will consider the mirror

perpendicular to the 2 axis and placed on the plane 2> = a. The corresponding model is given by
the following Lagrangian density,
1 1 9
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where A” is the photon field, F*¥ = 07 A¥ — 9" A? is the field strength, £ is a gauge fixing parameter,
jP is an external source, v = 7y = (0,0,0,1) is the normal vector to the surface and p > 0 is a
dimensionless coupling constant which accounts for the degree of transparency of the mirror.

There is a generalization of the Chern-Simons electrodynamics in 3 + 1 dimensions, the so called
Carroll-Field-Jackiw model [24], which exhibits a Lorentz symmetry breaking controlled by a single
background 4-vector. The Lagrangian can be seen as a kind of the Carroll-Field-Jackiw Elec-
trodynamics where the Chern-Simons-like term is defined just along a plane perpendicular to the
background vector.

The model exhibits a §-type divergence on the mirror. In order to understand the role of this
divergence on the field strength tensor, it is convenient to write explicitly the dynamical equations, as
follows

O™ + pd (23 — a) F¥ = 7, (2)

where we defined F¥ = %epyagFaﬁ. For the electric and magnetic fields, we obtain

V-E = J'—ud(z* —a) (ByL-2), (3)
VxB = J+%}f—u5(;ﬂ3—a)(E”x2), (4)

where we defined the vectors perpendicular and parallel to the plate, B, = (0, 0, B?’), E = (El, E?, 0),
respectively.

At this point some comments are in order. The presence of the delta-like potential leads to
additional terms in the dynamical equations, which depend on the fields and not on their derivatives.
In Eq. the delta-like term is proportional to the component of the magnetic field perpendicular
to the mirror and can be interpreted as an extra source for the divergence of the electric field. In the
same way, in Eq. the delta-like term is an additional source for the curl of the magnetic field and
depends on the components of the electric field parallel to the surface. For the potential considered
in Ref. [2] the delta-like contributions for the dynamical field equations exhibit different behaviors in
comparison with , and and depend on the derivatives of the fields.



Neglecting surface terms, one can write
1
L= iApOpyA” - J'A, (5)

where O, is a differential operator.
For our purpose, it is convenient to split O,, into two parts, one corresponding to the usual photon
operator and the other one corresponding to the d-like term, as follows

Opzz = Ol(;?,) + Aopu ) (6)

with
O/()?/) = npulj s (7)
AOy, = —pb (2* —a) e3pandf (8)

where we defined the operator [1 = 0“0, and used a gauge where £ = 1. We notice that the derivative
in @} is defined only in the Minkowski coordinates parallel to the mirror, namely, 8ﬁ‘ = (60, o, 82),

because of the fixed index in the Levi-Civita tensor.

The free photon propagator satisfies the differential equation O(O)p”(x)Gl(/Oﬂ) (x,y) =7’ 554 (r —v)
and is given in the Feynman gauge, (£ = 1), by

. (9)
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The propagator corresponding to the model (5) must satisfy the equation O (x)G,y (z,y) =
n’ )\54 (x — y) and can be obtained recursively [2, [I 17, [8 [16]. It is simple to check that

Gpu (z,y) = ng)/) (z,9)
~ [ % Gy (0.2 807 ()6 o) (10)

For convenience let us write G, (z,y) and G,(g?,) (z,y) as Fourier integrals in the parallel coordinates,

as follows

_ d3p|| 3 ,3. —ip (:c —y )
o) = [ 2 G (i) e o170, )
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where we defined xﬁ = (:1;0, xt, w2) and pﬁ = (po, pl,pQ) as being the coordinates and momenta parallel

to the mirror, respectively. The functions G,, (x?’,y?’;pu) and gf,ﬂ) (x3,y3;p||) are usually known as
reduced Green’s functions [2] [1I, 17, [3], [16].
Using the fact that [25]

dp3 eip3(173—y3) efcr\ac3fy3|
/ — = , (13)
(2m) p 20
with p3 standing for the momentum perpendicular to the mirror and o = —pﬁ, from Eq. @) we
have for the reduced photon propagator
e—olz®—y?|
g5 (@ %p) = (14)



Substituting into , using Eqs. , and , and performing some simple integrals,
we obtain

—olz® =y
e
G (o 50) = e
. ya 3 67‘7|y37“|
—if €3'", Gpy (w ,a;p”) Pla—5 - (15)

From the above equation, the reduced Green’s function G,, (xg,y?’;p”) must be obtained recur-
sively. Evaluating Eq. for > = a and performing some simple manipulations, we arrive at

. _ 3_
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Now we multiply both sides of by the inverse of the operator n’, + % €5, P|jas What leads to
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where we defined nﬁ‘ﬁ =B — B3,
Substituting Eq. in and using the Eq. , the modified photon propagator due to the

presence of the semi-transparent mirror reads

Sy eS|
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The propagator is continuous and well defined all over the space, except at coincident points,
where z# = y#. The first term on the right-hand side is just the free photon propagator. The second
and third terms are corrections which account for the presence of the semi-transparent mirror. As an
important check, we point out that by taking the limit u — oo in Eq. we recover the well-known
photon propagator due to the presence of a single perfect mirror [26].

3 Charge-mirror interaction

In the present section we consider the interaction energy between a stationary point-like charge and
the semi-transparent mirror studied in the previous section. Since we have a quadratic Lagrangian
in the field variables, as discussed in references [27, 28] 29, 30, 31l B2, B3] B4l 35, 36l 37, [38], the
contribution due to the external sources to the ground state energy of the system is given by

1

E=—
2T

/ diz d'y J° (2) Gy (2,9) T (4) | (19)

where T is the time variable and it is implicit the limit 7" — oo.



With no loss of generality, we choose a charge placed at position b = (0,0, b). The corresponding
external source reads

J? (z) = qn”’5* (x — b) (20)

where the parameter ¢ is the electric charge intensity.

We notice that the first term on the right-hand side of expression comes from the free photon
propagator (without the presence of the mirror) and, therefore, it does not contribute to the interaction
energy between the charge and the mirror. Indeed, this contribution does not depend on the distance
between the charge and the mirror, it is present even in the absence of the mirror and provides the
charge self energy. Thus, only the last two terms of propagator contribute to the interaction energy.

Substituting Egs. and in , discarding self interacting terms and performing the
integrals in d®x, d®y, dxU, dp°, dyY, we obtain

2R

q2 Mz 2 e Pi
Eyce (R, p) = < > /d Pl (21)
p

1672 \ 44 2

where R =| a — b | is the distance between the mirror and the charge. The sub-index M C means that
we have the interaction energy between the mirror and the charge.
Using polar coordinates and performing some simple integrations, the interaction energy reads

2
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Figure 1: Force multiplied by 1;5—2”.

Eq. is the exact result for the interaction energy between a point-like charge and the two-
dimensional semi-transparent mirror, described by the model . It is interesting to realize that the
energy still exhibits a Coulomb-like behavior. The role played by the coupling constant y is just

2
to attenuate the image charge (¢;y,) by an uniform multiplicative factor, namely, ¢, = q4ji7. As
expected, this energy vanishes in the limit ; — 0, where we have no mirror present. In the limit

u — 0o, we have the gauge field subjected to the boundary conditions imposed by a perfect mirror
and

q2

S 2
167R "’ (23)

Jim Enrc (R,p) =

what recovers the image method. Thus, the model describes the interaction obtained via image
method in the limit of a perfect conductor.



The force between the point-like charge and the mirror is given by

o q2 M2
Eyc (R, p) = _167TR2W )

Fyo (R, i) = IR

(24)

which is always negative and, therefore, has an attractive behavior. In the figure we have a plot
for the force multiplied by 1(16—2” as a function of R and p.

Here, one comment is in order. The parameter p is dimensionless. In this case, by a dimensional
analysis, we could infer the ¢?/R behavior for the energy previously, just before we perform the
calculations. The numerical factor —1/(167), including the minus sign, and the dependence on g
cannot be obtained before the calculations are performed.

The dimensionless numerical factor y?/(4+ u?) lies in the range 0 < p?/(4+ u?) < 1, as we can see
in figure (2)), so the force as well as the energy , attain their minimum values for a perfectlly
conducting plate.
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Figure 2: Dimensionless numerical factor p?/(4 + p?) (vertical axis) as a function of p (horizontal
axis).

4  Electromagnetic field

In this section we calculate the electromagnetic field configuration produced by a stationary point-like
charge in the vicinity of the semi-transparent magnetoelectric mirror. We start by considering the
particular solution for the electromagnetic four-potential in the presence of an external source

A, (2) = / d'y G, (2.9) T (4) . (25)

where G*¥ (x,y) is the propagator and J, (y) is given by (20).

From now on, with no loss of generality, we shall take a coordinate system where b> > 0 and a = 0.
It means that the mirror is placed along the plane 22 = 0 and the particle is placed at a given point
on the positive z3 axis.

Each term on the right hand side of leads to a different contribution to the 4-vector potential
in . The first term is the one obtained from the free photon propagator (without the presence of
the mirror),

—ola® |

d3 )
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Defining as ¢ the angle between the vectors p| and x| in the p| space and s = pﬁ, we can write

the above integral in cylindrical coordinates as follows

d3 . —olad—y?|
/ d4y (p||3 e_ZpH'(ml\_y\\)npyeanyoég(y —Db)

27)
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what is the well known potential of a stationary electric charge ¢ placed at b.
The second term of the propagator gives the following contribution to the 4-potential

3
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where we defined the sign function sgn(z > 0) = 1; sgn(x < 0) = —1 and sgn(0) = 0.
The contribution of the third term in to the field must be considered cautiously, as follows
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Collecting the terms 28) and (129 , using cylindrical coordinates: p = |x||, ¢ = arctan(p/z*)
¢a e

and performing some s1m ra, we have the potencial for the mirror-charge system

Ao(x) = q[ 1 W 1 ]

A | |x —b| 44 p?|x+ sgn(a3)b|
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Here, some comments are in order. In the side of the mirror where the charge ¢ is placed, 23 > 0
and the field A°(x) in is the potential produced by the charge itself, placed at b, and an image
charge with intensity —qu?/(4 + p?) and placed at position —b. In the opposite side, 23 < 0 and the
field AY(x) reduces to the one produced by a charge placed at b and with intensity g[1 — u?/(4 + p?)].
The field A%(x) in gives the electric field in

In the side of the mirror where the charge is placed, the vector potential A(x) in is the one
related to a Dirac monopole with intensity 2qu/(4 + p?), placed at —b and whose corresponding semi-
infinite Dirac string is lying on the axis —oco < 23 < —b3, which is in the opposite side of the mirror.
So, we do not have the typical divergence commonly associated with the string in the description
of magnetic monopoles. In the opposite side of the mirror where the charge is placed, the vector
potential in is the same as the one produced by a Dirac monopole placed at b, with intensity
—2qp/ (4 + p?) and related to a semi-infinite Dirac string lying along the axis b3 < 23 < oo. Once
again, there is no divergence for the potential imposed by the string. The field A(x) in gives
the monopole magnetic field in which does not exhibit any divergence usually imposed by Dirac
strings (a delta-like magnetic monopole) [39] 40, [41].

It is important to reinforce that the flux of the magnetic field through a closed surface is always
zero, for surfaces placed in any side of the mirror. The magnetic flux is also zero through surfaces
which encloses a portion of the plate as well. It is due to the fact that we do not have a real magnetic
monopole in any situation. All the magnetic monopoles are virtual ones, lying on the opposite side of
the mirror were the field is taken.

In the limit 4 — oo, the field A°(x) in and the electric field in reduce to the ones obtained
for a perfect conductor, and the vector potential A(x) in vanishes, as well as the magnetic field
in . So we recover the same results obtained from a perfect conductor in the limit p — co.

When pu = 0, we recover the case with just a single point-like charge, where we have only a
coulombian electric field, as it should be.

It is very interesting to notice that the modulus of the magnetic field connected to the magnetic
image monopole, given by the second expression in Eq. , can be greater or lower than the modulus
of the electric field of the image charge, given by the second term on the right hand side of the first

Eq. . In fact, from Egs. , we have
’Eimage‘ - %’B’ . (32)

So when p = 2, the image charge and image monopole produce fields with the same intensities. When
1 > 2 the image electric field dominates over the image magnetic field. For p < 2, we have the opposite
situation.

In figure we have the graphic for the attenuation factor u?/(4 + u?) for the image electric
charge. It is a monotonic function of the coupling constant u. In figure we have the attenuation
factor 241/(4+ p?) for the image magnetic monopole. It is always positive, equal to zero for u = 0 and
= oo, and attains its maximum value, 1/2, for u = 2.
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Figure 3: Dimensionless numerical factor 2u/(4 + pu?) (vertical axis) as a function of u (horizontal
axis).

5 Plate-spin interaction

In this section we consider the interaction energy between a charged quantum particle with spin 1/2
and the plate. This kind of interaction is known for standard situations, but the novelty in this



case relies on the fact that we have a magnetoelectric plate. So, for a particle with spin, we shall
have a cross interaction between the charge and spin of the particle due to its mirrored image in the
magnetoelectric plate.

We shall take a simplified model, where the particle is described by the well known Pauli spin
theory. We shall also take the particle as fixed, so its quantum state is just described by spin variables.
The quantum states are denoted by |+) and |—), standing for spin up and down, respectively, with
the Z taken as the quantization axis.

Let us start by considering the interaction energy between the magnetoelectric plate and a classical
charged particle with magnetic moment m. In this case, the field source which accounts for the presence
of such a particle is

JE vip(X) = '8 (x = b) + % m; [9,6°(x — b)] . (33)

The first term on the right hand side of is, obviously, the source for a stationary point-like charge
placed at x = b. The second term is the source for a stationary magnetic dipole m placed at x = b,
as discussed in the appendix. From now on, with no loss of generality, we shall take b = (0,0, b).

Substituting Eq. in and performing some straightforward calculations, similar to the
ones of the previous sections, we are taken to the interaction energy

2 2
= | e +[m+(m z)} 12
167 | b | 647 | b |3 4+ p?

_(éfrrTb? <4+MM2> ' (34)

The first two terms on the right hand side of Eq. are the direct interactions, that is, the charge
X image-charge and the magnetic dipole x image-magnetic dipole ones, respectively. In comparison
with the case of a perfect mirror, we have an atenuation factor u?/(4 + u?) for these first two terms.
The last term in is a cross interaction due to the simultaneous presence of, both, the charge and
the magnetic moment. Notice that in the limit of a perfect conducting plate, where u = oo, the last
term in vanishes and the attenuation factor in the first terms equals to one.

On the right hand side of , the first term is proportional to the distance to the power —1
while the second term is proportional to the distance to the power —3. The last term exhibits a
dependence on the distance to the power —2 so, for larger distances, this crossing term is more
relevant in comparison with the direct magnetic dipole x image-magnetic dipole interaction.

For a quantum particle with spin 1/2, the magnetic dipole is a quantum operator proportional to
the spin operator m = «S, where v is a constant of proportionality. In this sense, the Hamiltonian
operator of the system is

2 [q2 2
- e . ¥ [S +(S2) } 12
167 | b | 647 | b |3 4+ p?

S p
8w | b |2 (4+u2> ' (35)

The constant ~ is proportional to the charge ¢ and both have the same signal.
A general spin-1/2 state is given by

[1b) = cos (6/2) /2| +) + sin (0/2) e79/?| =) . (36)

where 6 and ¢ can be interpreted as the polar and azimuthal angels, respectively, associated with the
mean spin direction of the state taken the origin at the particle position.
The mean value of the Hamiltonian operator in the general spin-1/2 state is

B qQ ,YQ /‘LQ
WiHW) = {_167r]b|+647r|b|3] <4+u2>

qycos(0) ([ p
- . 37
167 | b |2 (4+u2> (87)

9



The first term on the right hand side of leads to a Coulombian force between the particle and
the plate, as discussed in section . There is a remarkable difference between the second term in
and its classical counterpart. In the case of a quantum particle with spin, the contribution to the
energy coming from the second term does not depend on the mean orientation of the spin with respect
to the plate. In the case of a classical particle with magnetic moment, this contribution depends on
the angle between the magnetic moment of the particle and the normal vector do the plate, as one
can see in , with the scalar product m - 2.

The third term on the right hand side of is the most interesting one. It is due to the
magnetoelectric properties of the plate and is a #-dependent contribution, the mean angle between
the spin of the state and the normal to the plate. From the third term in we have a mean
contribution to the force between the plate and particle which falls with the distance between them
slower in comparison with the second term in . Besides, this force also depends on the 6 angle.

In addition to a force, from the third term in , we also obtain a mean torque acting on the
quantum particle with respect to the angle . This torque is always non-positive, attains its minimum
value for §# = w/2 and vanishes when 6 = 0, 7.

6 Conclusions

The Maxwell electrodynamics in the vicinity of a semi-transparent mirror with magnetoelectric prop-
erties have been investigated. We have considered a mirror described by a d-potential with a Chern-
Simons-like coupling. We have found exactly the modification undergone by the photon propagator
due to the presence of the mirror.

We have computed the interaction energy between a stationary point-like charge and the mirror
and we have shown that the role played by the coupling constant u is just to attenuate the image
charge by an uniform multiplicative factor. We have also shown that the interaction via image method
is recovered in the limit case of a perfect mirror (u — 00).

We have shown that a stationary point-like charge produces an electric field and a magnetic field
due to the presence of the mirror. The electric field is the one induced by the charge itself and the
field associated to an image charge attenuated by a multiplicative factor. The magnetic field is the
one associated with a magnetic monopole. The interesting magnetoelectric properties simulated by
the model is an indication that it can be used to describe magnetoelectric surfaces.

We have investigated some physical phenomena which emerge from a setup composed by the plate
and a stationary charged quantum particle with spin 1/2. We have shown that, in addition a Coulom-
bian and an isotropic dipole-dipole-like terms, the energy exhibits a magnetoelectric contribution with
the features of a charge-magnetic dipole interaction. This last contribution leads also to a torque
acting on the particle with spin.

We hope that the present work could pave the way to use analytical methods to describe magne-
toelectric material media.
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A Stationary magnetic dipole source

In this appendix we obtain the field source that describes a magnetic dipole m. First we consider the
vector potential related to the magnetic dipole placed at the origin

1 mxx
Ax)= ——— 38
() = =" (39)
In a covariant form, the gauge field (38) reads
Oik mx
Al () = DUk 39
MD(SU) A |X|3 ( )

As argued in reference [35], the Fourier transform of a gauge field, AW (p) is related to the Fourier
transform of its corresponding field source, J#(p),

1 -
At(p) = —PJ“(p) : (40)
The Fourier transform of the field is obtained with the aid of , as follows
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P

where in the third line we introduced a mass parameter in order to regularize the integral.

With the aid of and we have

Thip(p) = —2mis(p°)e  mpy, | (42)

through which we can obtain the source, as follows

4 ~ .
Taupl@) = [ G we

. d3p .
—  Opgk,
= M m]ak/ (27r)3esz
= Fm0,0%(x) (43)
With a simple spatial translation, we can obtain the second term in from

In vector form Eq. reads
J(x) = -mx [V&(x)] . (44)
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