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Abstract

We study the exact solution of quantum integrable system associated with the A
(2)
3

twist Lie algebra, where the boundary reflection matrices have non-diagonal elements
thus the U(1) symmetry is broken. With the help of the fusion technique, we obtain the
closed recursive relations of the fused transfer matrices. Based on them, together with
the asymptotic behaviors and the values at special points, we obtain the eigenvalues and
Bethe ansatz equations of the system. We also show that the method is universal and
valid for the periodic boundary condition where the U(1) symmetry is reserved. The

results in this paper can be applied to studying the exact solution of the A
(2)
n -related

integrable models with arbitrary n.
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1 Introduction

Since the pioneer work of Sklyanin [1], the quantum integrable systems with open bound-

ary conditions draw many attentions. The open boundary conditions are characterized by

the reflection matrices. The integrability of the system requires that the reflection matrix

satisfies the reflection equation. If the reflection matrix is diagonal, the conventional Bethe

ansatz methods including the coordinate [2] and algebraic [3–5] ones can be applied to solve

it successfully. However, if the reflection matrix has some non-diagonal elements, the U(1)

symmetry is broken and these traditional methods do not work because of lacking the vac-

uum/reference state. Then many interesting methods such as the q-Qnsager alegebra [6–9],

the separation of variables [10–13], the off-diagonal Bethe ansatz (ODBA) [14, 15], and the

modified algebraic Bethe ansatz [16–19] have been proposed.

Recently, the study of quantum integrable systems with high ranks becomes a hot topic

due to the many applications in the quantum field theory, AdS/CFT correspondence in

string theory and high energy physics. The most typical and simple case is the integrable

models associated with A-series Lie algebras. The model with periodic or diagonal open

boundary conditions have been studied extensively [20–24]. Then the results of the system

with non-diagonal boundary reflections are necessary. The exact solution of q-deformed

su(n + 1) invariant quantum spin chain, which is connected with the A
(1)
n Lie algebra, has

been obtained by using the nested ODBA [25]. The next task is to study the quantum

integrable models associated with the A
(2)
n twist Lie algebra. For the simplest case, the exact

solution of Izergin-Korepin model [26], which is connected with the A
(2)
2 Lie algebra, with

generic integrable open boundary condition has been obtained [27]. However, the results

with n ≥ 3 are still missing. We shall note that the generic integrable boundary reflection

of quantum integrable models related with other twist Lie algebra such as D
(2)
n is also an

interesting issue [28–31].

In this paper, we study the exact solution of the A
(2)
3 model with open boundary condition

where the reflection matrices have non-diagonal elements. We use the fusion technique

[32–38]. We find that the fusion properties of present system are quite different from the

A
(1)
n case. In the latter case, only the anti-symmetric fusion is used. For the present case, the

R-matrix has two degenerated points. Based on this fact, we obtain two projectors. These

two projectors give different fused behaviors. With the help of fused transfer matrices, we

2



find that the fusion processes can be closed. From the analyzing of polynomials, instead of

constructing the eigenstates, we obtain the eigenvalues of the system, where the asymptotic

behaviors and special points are used. Then we obtain the energy spectrum of the model

Hamiltonian. In order to show the universality of this method, we also give the corresponding

results of the system with periodic boundary condition.

The paper is organized as follows. In section 2, we give the description of the model,

where the transfer matrix, Hamiltonian, R-matrix and reflection matrices are introduced. In

section 3, we study the fusion properties. In section 4, the closed recursive fusion relations

among the fused transfer matrices are given. In section 5, by constructing the inhomogeneous

T − Q relations, we obtain the eigenvalues and the corresponding Bethe ansatz equations

of the system with non-diagonal boundary reflections. In section 6, the results associated

with the periodic boundary condition are given. The summary of main results and some

concluding remarks are presented in section 7. Some detailed calculations are given in

Appendix A.

2 Associated conserved quantities

For the open boundary condition, the one-dimensional quantum integrable systems associ-

ated with the A
(2)
3 twist Lie algebra is generated by the transfer matrix t(u)

t(u) = tr0{K+
0 (u)T0(u)K

−
0 (u)T̂0(u)}, (2.1)

where u is the spectral parameter, tr0 means the trace in the four-dimensional auxiliary

space V0, K
−
0 (u) is the reflection matrix at one end and is defined in the auxiliary space V0,

K+
0 (u) is the dual one at the other end, T0(u) is the monodromy matrix and the T̂0(u) is the

reflecting one. T0(u) and T̂0(u) are constructed by the R-matrices as [1]

T0(u) = R01(u− θ1)R02(u− θ2) · · ·R0N (u− θN ), (2.2)

T̂0(u) = RN0(u+ θN ) · · ·R20(u+ θ2)R10(u+ θ1). (2.3)

Here {θj |j = 1, · · · , N} are the inhomogeneous parameters and N is the number of sites.

The subscript j means the four-dimensional quantum space Vj. Thus the physical space is

⊗N
j=1Vj . The R-matrix defined in the tensor space V1 ⊗ V2 is the 16× 16 matrix [39]

R12(u) = a(u)
∑

α6=α′

[e1]
α
α ⊗ [e2]

α
α + b(u)

∑

α6=β,β′

[e1]
α
α ⊗ [e2]

β
β
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+
{

e(u)
∑

α<β,α6=β′

+ē(u)
∑

α>β,α6=β′

}

[e1]
α
β ⊗ [e2]

β
α +

∑

α,β

aαβ(u)[e1]
α
β ⊗ [e2]

α′

β′ , (2.4)

where α, β = 1, · · · , 4, α′ = 5 − α, β ′ = 5− β, [ek]
α
β is the 4× 4 Weyl basis of the space Vk.

The matrix elements in Eq.(2.4) are

a(u) = 2 sinh
(u

2
− η

)

cosh
(u

2
− 2η

)

, b(u) = 2 sinh
u

2
cosh

(u

2
− 2η

)

,

e(u) = −2e−
u
2 sinh η cosh

(u

2
− 2η

)

, ē(u) = eue(u),

aαβ(u) = 2 sinh ηe∓
u
2

[

∓ e(±2+ᾱ−β̄)η sinh
u

2
− δαβ′ cosh

(u

2
− 2η

)

]

, if α ≶ β,

aαβ(u) = 2 sinh
u

2
cosh

(u

2
− η

)

, if α = β, α 6= α′, (2.5)

where η is the crossing parameter, ᾱ = α+ 1
2
if 1 ≤ α ≤ 2 and ᾱ = α− 1

2
if 3 ≤ α ≤ 4. The

R-matrix (2.4) has the properties

unitarity : R12(u)R21(−u) = ρ1(u)× id = a(u)a(−u)× id,

crossing unitarity : R12(u)
t1M1R21(−u+ 8η + 2iπ)t1M−1

1

= R12(u)
t2M−1

2 R21(−u+ 8η + 2iπ)t2M2 = ρ1(u− 4η − iπ),

regularity : R12(0) = ρ1(0)
1

2P12, (2.6)

where Mk is the 4 × 4 diagonal matrix Mk = diag(e2η, 1, 1, e−2η), P12 is the permutation

operator with the matrix elements [P12]
αγ
βδ = δαδδβγ, tk denotes the transposition in the

k-th space, R21(u) = P12R12(u)P12. Besides, the R-matrix (2.4) satisfies the Yang-Baxter

equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v). (2.7)

The integrability of the system requires that the boundary reflection matrix K−(u) sat-

isfies the reflection equation

R12(u− v)K−
1 (u)R21(u+ v)K−

2 (v) = K−
2 (v)R12(u+ v)K−

1 (u)R21(u− v), (2.8)

while K+(u) satisfies the dual one

R12(−u+ v)K+
1 (u)M

−1
1 R21(−u− v + 8η + 2iπ)M1K

+
2 (v)

= K+
2 (v)M1R12(−u− v + 8η + 2iπ)M−1

1 K+
1 (u)R21(−u+ v). (2.9)
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The general solution of reflection equations (2.8)-(2.9) for the A
(2)
n vertex model has been

constructed by Lima-Santos et al [40], Malara et al [41] and Nepomechie et al [23], where the

reflection matrices could have the non-diagonal elements. Here, we focus on the non-diagonal

boundary reflections. Without losing the generality of our method, we chose

K−
k (u) =











e−u 0 0 eǫ sinh u

0 − sinh(u−η)
sinh η

0 0

0 0 − sinh(u−η)
sinh η

0

e−ǫ sinhu

sinh2 η
0 0 eu











, (2.10)

where ǫ is the boundary parameter at one side. The dual reflection matrix K+(u) is obtained

by the mapping

K+
k (u) =MkK

−
k (−u+ 4η + iπ)|ǫ→ ǫ′, (2.11)

and ǫ′ is the boundary parameter at the other side. It is easy to check that the matrices

K−(u) and K+(u) cannot be diagonalized simultaneously for generic values of ǫ and ǫ′.

Although the U(1) symmetry is broken, the integrability of the system is still held.

From the Yang-Baxter equation (2.7), reflection equation (2.8) and dual one (2.9), one

can prove [1] that the transfer matrices with different spectral parameters commute with

each other, i.e., [t(u), t(v)] = 0. Thus, expanding t(u) with respect to u, all the coefficients

are the conserved quantities. The Hamiltonian is constructed by taking the derivative of the

logarithm of the transfer matrix

H =
∂ ln t(u)

∂u
|u=0,{θj}=0

=
N−1
∑

j=1

Pjj+1
∂Rjj+1(u)

∂u

∣

∣

∣

∣

u=0

+
K−

N(0)
′

2K−
N(0)

+
tr0{K+

0 (0)H10}
tr0K

+
0 (0)

+ constant, (2.12)

where H10 = P10
∂R10(u)

∂u
|u=0. We shall note that because the R-matrix (2.4) reduces to the

permutation operator at the point of u = 0, the interaction in the bulk is the nearest neighbor

one.

3 Fusion procedure

3.1 Fusion of R-matrices

The next task is to exact diagonal the transfer matrix (2.1). According to the definition, we

know that t(u) is an operator-valued polynomial of eu with degrees 4N +4, up to an overall
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factor e−2Nu−2u. Thus t(u) can be completely determined by 4N + 5 constraints. In order

to obtain these constraints, we adopt the method of fusion.

It is easy to check that the R-matrix (2.4) degenerates into the projectors at some special

points. For examples, the R-matrix degenerates into an one-dimensional projector P
(1)
12 if

u = 4η + iπ, and a six-dimensional projector P
(6)
12 if u = 2η. These conclusions are achieved

by the facts

R12(4η + iπ) = P
(1)
12 S

(1)
12 , R12(2η) = P

(6)
12 S

(6)
12 , (3.1)

where S
(1)
12 and S

(6)
12 are the irrelevant constant matrices omitted here, P

(1)
12 and P

(6)
12 are the

projectors

P
(1)
12 = |ψ0〉〈ψ0|, P

(6)
12 =

6
∑

i=1

|φi〉〈φi|. (3.2)

The basis vectors of the related projectors are

|ψ0〉 =
1

2 cosh η
(e−η|14〉+ |23〉+ |32〉+ eη|41〉),

|φ1〉 =
1√

2 cosh η
(e−

η

2 |12〉 − e
η

2 |21〉), |φ2〉 =
1√

2 cosh η
(e−

η

2 |13〉 − e
η

2 |31〉),

|φ3〉 =
1√

2cosh η
(sinh η|23〉+ sinh η|32〉+ |14〉 − |41〉),

|φ4〉 =
1√

2 cosh η
(e−

η

2 |23〉 − e
η

2 |32〉), |φ5〉 =
1√

2 cosh η
(e−

η

2 |24〉 − e
η

2 |42〉),

|φ6〉 =
1√

2 cosh η
(e−

η

2 |34〉 − e
η

2 |43〉), (3.3)

Exchanging two spaces V1 and V2, we obtain P
(1)
21 and P

(6)
21 , where the bases are

|ψ0〉|kl〉→|lk〉, |φi〉η→−η, |kl〉→|lk〉. (3.4)

where {|k〉, k = 1, · · · , 4} and {|l〉, l = 1, · · · , 4} are the orthogonal bases of four-dimensional

linear space V1 and V2,respectively.

From the Yang-Baxter equation (2.7) and using the properties of projector, we obtain

P
(1)
12 R23(u)R13(u+ 4η + iπ)P

(1)
12 = a(u)c(u+ 4η + iπ)P

(1)
12 , (3.5)

P
(1)
21 R32(u)R31(u+ 4η + iπ)P

(1)
21 = a(u)c(u+ 4η + iπ)P

(1)
21 , (3.6)

P
(6)
12 R23(u)R13(u+ 2η)P

(6)
12 = ρ̃0(u)R〈12〉3(u+ η), (3.7)
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P
(6)
21 R32(u)R31(u+ 2η)P

(6)
21 = ρ̃0(u)R3〈12〉(u+ η), (3.8)

where c(u) = 2 sinh u
2
cosh(u

2
− η), ρ̃0(u) = sinh u+η

2
cosh u−5η

2
and the subscript 〈12〉 denotes

the six-dimensional fused space V〈12〉 = V1̄. From Eqs.(3.5)-(3.6), we see that the fusion

with one-dimensional projectors gives an one-dimensional vector. From Eqs.(3.7)-(3.8), we

know that the fusion with six-dimensional projectors gives a new fused R-matrix R1̄2(u),

whose matrix elements are given in Appendix A (see (A.1)-(A.2) below). Moreover, we have

checked that R1̄2(u) also satisfies the properties

unitarity : R1̄2(u)R21̄(−u)× id = ρ2(u) = a1(u)a1(−u)× id,

crossing unitarity : R1̄2(u)
t1̄M̄1̄R21̄(−u+ 8η + 2iπ)t1̄M̄−1

1̄

= R1̄2(u)
t2M−1

2 R21̄(−u+ 8η + 2iπ)t2M2 = ρ2(u− 4η − iπ),

periodicity : R1̄2(u+ iπ) = −V̄1̄R1̄2(u)V̄
−1
1̄
, (3.9)

where a1(u) = 2 sinh(u−3η), M̄1̄ is the diagonal matrix M̄1̄ = P
(6)
12 M1M2P

(6)
12 = diag(e2η, e2η,

1, 1, e−2η, e−2η) and V̄1̄ is a 6× 6 matrix with the form of

V̄1̄ =

















1
−1

1
1

−1
1

















. (3.10)

The above properties are very useful later for us to derive some important polynomial prop-

erties of the associated transfer matrices t̄(u) given by (3.25) and t̄(p)(u) given by (6.1).

It is remarked that the fused R-matrix R1̄2(u) becomes a 4 × 4 matrix at the point of

u = 3η

R1̄2(3η) = P
(4)

1̄2
S
(4)

1̄2
, P

(4)

1̄2
=

4
∑

i=1

|ϕi〉〈ϕi|, (3.11)

where S
(4)

1̄2
is an irrelevant constant matrix omitted here, and P

(4)

1̄2
is a 4-dimensional projector

with the basis vectors

|ϕ1〉 =
1

√

2 cosh η + e3η
(
√

cosh η|13〉 −
√

cosh η|22〉 − e
3η

2 |41〉),

|ϕ2〉 =
1√

1 + 2 cosh 2η
(e−

η

2

√

cosh η|14〉 − cosh η|32〉 − sinh η|42〉+ e
η

2

√

cosh η|51〉),
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|ϕ3〉 =
1√

1 + 2 cosh 2η
(e−

η

2

√

cosh η|24〉 − cosh η|33〉+ sinh η|43〉+ e
η

2

√

cosh η|61〉),

|ϕ4〉 =
1

√

2 cosh η + e−3η
(
√

cosh η|62〉 −
√

cosh η|53〉+ e−
3η

2 |44〉). (3.12)

Exchanging the two spaces V1̄ and V2, we deduce another 4-dimensional projector P
(4)

21̄
with

the bases |ϕi〉η→−η,|kl〉→|lk〉, where {|k〉, k = 1, · · · , 6} and {|l〉, l = 1, · · · , 4} are the orthogo-

nal bases of six-dimensional linear space V1̄ and four-dimensional linear space V2,respectively.

Starting from the Yang-Baxter equation

R1̄2(u− v)R1̄3(u)R23(v) = R23(v)R1̄3(u)R1̄2(u− v), (3.13)

and using the properties of projector, we have

P
(4)

1̄2
R23(u)R1̄3(u+ 3η)P

(4)

1̄2
= ρ̃1(u)S〈1̄2〉R〈1̄2〉3(u+ 2η + iπ)S−1

〈1̄2〉
, (3.14)

P
(4)

21̄ R32(u)R31̄(u+ 3η)P
(4)

21̄ = ρ̃1(u)S〈1̄2〉R3〈1̄2〉(u+ 2η + iπ)S−1
〈1̄2〉, (3.15)

where ρ̃1(u) = −4 sinh(u
2
+ η) cosh(u

2
− 2η), the subscript 〈1̄2〉 denotes the fused four-

dimensional space V〈1̄2〉, and S〈1̄2〉 is a diagonal matrix

S〈1̄2〉 = diag

(

−e− η

2

sinh η

sinh 3η
s(η), 1,−1, e

η

2

sinh η

sinh 3η
s(−η)

)

,

s(η) =
√

(1 + 2 cosh 2η)(e3η + 2 cosh η). (3.16)

From Eqs.(3.14) and (3.15), we see that the fused R-matrices R〈1̄2〉3(u) and R3〈1̄2〉(u) differ

from the fundamental ones only by a similar transformation up to a constant. By introducing

the one-to-one correspondence, we can map the fused space V〈1̄2〉 into V1. Then the fused

R-matrix R〈1̄2〉3(u) becomes the fundamental R-matrix R13(u) given by (2.4). Then we

conclude that the fusion processes of R-matrices are closed.

3.2 Fusion of monodromy matrices

From the fused R-matrices (3.7)-(3.8), we construct the fused monodromy matrices

T0̄(u) = R0̄1(u− θ1)R0̄2(u− θ2) · · ·R0̄N(u− θN ), (3.17)

T̂0̄(u) = RN 0̄(u+ θN ) · · ·R20̄(u+ θ2)R10̄(u+ θ1). (3.18)

We should note that the fusions are taken in the auxiliary space, thus all the quantum spaces

of T0(u), T̂0(u), T0̄(u) and T̂0̄(u) are the same.
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From the Yang-Baxter equations (2.7) and (3.13), we can prove that the monodromy

matrices satisfy the Yang-Baxter relations

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v), (3.19)

R12̄(u− v)T1(u)T2̄(v) = T2̄(v)T1(u)R12̄(u− v). (3.20)

By using the fusion identities (3.5), (3.7) and (3.14), we obtain

P
(1)
21 T1(u)T2(u+ 4η + iπ)P

(1)
21 = P

(1)
21

N
∏

j=1

a(u− θj)c(u− θj + 4η + iπ)× id,

P
(6)
12 T2(u)T1(u+ 2η)P

(6)
12 =

N
∏

j=1

ρ̃0(u− θj)T〈12〉(u+ η),

P
(4)

1̄2
T2(u)T1̄(u+ 3η)P

(4)

1̄2
=

N
∏

j=1

ρ̃1(u− θj)S〈1̄2〉T〈1̄2〉(u+ 2η + iπ)S−1
〈1̄2〉

. (3.21)

The reflecting monodromy matrices satisfy the Yang-Baxter relations

R21(u− v)T̂1(u)T̂2(v) = T̂2(v)T̂1(u)R21(u− v), (3.22)

R12̄(u− v)T̂2̄(v)T̂1(u) = T̂1(u)T̂2̄(v)R12̄(u− v). (3.23)

From Eqs.(3.6), (3.8) and (3.15), we obtain the fusion identities among the reflecting mon-

odromy matrices

P
(1)
12 T̂1(u)T̂2(u+ 4η + iπ)P

(1)
12 = P

(1)
12

N
∏

j=1

a(u+ θj)c(u+ θj + 4η + iπ)× id,

P
(6)
21 T̂2(u)T̂1(u+ 2η)P

(6)
21 =

N
∏

j=1

ρ̃1(u+ θj)T̂〈12〉(u+ η),

P
(4)

21̄
T̂2(u)T̂1̄(u+ 3η)P

(4)

21̄
=

N
∏

j=1

ρ̃1(u+ θj)S〈1̄2〉T̂〈1̄2〉(u+ 2η + iπ)S−1
〈1̄2〉

. (3.24)

3.3 Fusion of reflection matrices

Using the fusion technique [37, 38], now, we need to connect the fusions of monodromy

matrices and those of the reflecting ones, which gives the fusion behavior of the reflection

matrices. We first define the fused transfer matrix

t̄(u) = tr0̄{K+
0̄
(u)T0̄(u)K

−
0̄
(u)T̂0̄(u)}, (3.25)
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where the trace is taken in the fused auxiliary space 0̄ and K±
0̄
(u) are the fused reflection

matrices. Then, we calculate the quantities

t(u)t(u+∆) = ρ−1
1 (2u+∆− 4η − iπ)tr12{K+

2 (u+∆)M−1
2 R12(−2u+ 8η + 2iπ −∆)

×M2K
+
1 (u)T1(u)T2(u+∆)K−

1 (u)R21(2u+∆)K−
2 (u+∆)T̂1(u)T̂2(u+∆)}, (3.26)

t(u)t̄(u+∆) = ρ−1
2 (2u+∆− 4η − iπ)tr12̄{K+

2̄
(u+∆)M̄−1

2̄
R12̄(−2u+ 8η + 2iπ −∆)

×M̄2̄K
+
1 (u)T1(u)T2̄(u+∆)K−

1 (u)R2̄1(2u+∆)K−
2̄
(u+∆)T̂1(u)T̂2̄(u+∆)}, (3.27)

where ∆ is the shift of spectral parameter. From the fusion of monodromy matrices, we

know that ∆ should be chosen as 4η + iπ, 2η in Eq.(3.26) and as 3η in (3.27), which gives

the fusion relations of reflection matrices.

The ∆ = 4η+ iπ in Eq.(3.26) corresponds to the fusion with one-dimensional projectors.

According to Eq.(3.26) and using the reflection equations (2.8)-(2.9) and the properties of

projector, we obtain

P
(1)
21 K

−
1 (u)R21(2u+ 4η + iπ)K−

2 (u+ 4η + iπ)P
(1)
12

=
1

sinh2 η
sinh(u+ 4η) sinh(2u+ 2η) sinh(u− η)P

(1)
12 , (3.28)

P
(1)
12 K

+
2 (u+ 4η + iπ)M1R12(−2u+ 4η + iπ)M−1

1 K+
1 (u)P

(1)
21

= − 1

sinh2 η
sinh(u− 4η) sinh(2u− 2η) sinh(u+ η)P

(1)
21 . (3.29)

We shall remark that the inserted R-matrices with fixed spectral parameters in Eqs.(3.28)

and (3.29) is to reserve the integrability of the system. The fused results are the one-

dimensional vectors.

The ∆ = 2η in Eq.(3.26) corresponds to the fusion with six-dimensional projectors. From

Eq.(3.26), we obtain that the fused reflection matrices should be constructed as

P
(6)
12 K

−
2 (u)R12(2u+ 2η)K−

1 (u+ 2η)P
(6)
21

=
2

sinh η
cosh(u− η) sinh(u− η) sinh(u+ η) sinh(u+ 2η)K−

〈12〉(u+ η), (3.30)

P
(6)
21 K

+
1 (u+ 2η)M̄−1

1 R21(−2u+ 6η)M̄1K
+
2 (u)P

(6)
12

= − 2

sinh η
cosh(u− η) sinh(u− η) sinh(u− 3η) sinh(u− 4η)K+

〈12〉(u+ η),(3.31)

where K−
〈12〉(u) is the 6 × 6 fused reflection matrix defined in the fused space V〈12〉 with the
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matrix form of

K−
〈12〉(u) =



























0 0 0 0 eǫ 0

0 0 0 0 0 eǫ

0 0 − 1
sinh η

0 0 0

0 0 0 1
sinh η

0 0

e−ǫ

sinh2 η
0 0 0 0 0

0 e−ǫ

sinh2 η
0 0 0 0



























, (3.32)

and K+
〈12〉(u) is the dual one

K+
〈12〉(u) = M̄〈12〉K

−
〈12〉(−u + 4η + iπ)|ǫ→ǫ′. (3.33)

With the definition V1̄ = V〈12〉, the fused reflection matrices satisfy the reflection equations

R1̄2(u− v)K−
1̄
(u)R21̄(u+ v)K−

2 (v) = K−
2 (v)R1̄2(u+ v)K−

1̄
(u)R21̄(u− v), (3.34)

R1̄2(−u+ v)K+
1̄
(u)M̄−1

1̄
R21̄(−u − v + 8η + 2iπ)M̄1̄K

+
2 (v)

= K+
2 (v)M̄1̄R1̄2(−u− v + 8η + 2iπ)M̄−1

1̄
K+

1̄
(u)R21̄(−u+ v). (3.35)

The ∆ = 3η in Eq.(3.27) corresponds to the fusion with four-dimensional projectors.

According to Eq.(3.27), the fusion of reflection matrices are

P
(4)

1̄2
K−

2 (u)R1̄2(2u+ 3η)K−
1̄
(u+ 3η)P

(4)

21̄

=
4

sinh η
cosh(u) sinh(u− η)S〈1̄2〉K

−
〈1̄2〉

(u+ 2η + iπ)S−1
〈1̄2〉

, (3.36)

P
(4)

21̄
K+

1̄
(u+ 3η)M̄−1

1̄
R21̄(−2u+ 5η)M̄1̄K

+
2 (u)P

(4)

1̄2

= − 4

sinh η
cosh(u− η) sinh(u− 4η)S〈1̄2〉K

+
〈1̄2〉

(u+ 2η + iπ)S−1
〈1̄2〉

. (3.37)

With the same one-to-one correspondence as used in the fusion of R-matrices, the fused

reflection matrices K±
〈1̄2〉

(u) become the original ones given by Eqs.(2.10)-(2.11). Thus the

fusion processes of reflection matrices are also closed.

The fusion does not break the integrability. From the fused Yang-Baxter equation (3.13)

and the fused reflection equations (3.34)-(3.35), one can prove that the transfer matrices t(u)

and t̄(u) commutate with each other, i.e.,

[t(u), t̄(u)] = 0. (3.38)

Thus t(u) and t̄(u) have common eigenstates.
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4 Closed operators identities

From the definitions of R-matrices (2.4), (3.9) and reflection matrices (2.10), (3.32), we know

that the t(u) (resp. t̄(u)) is an operator-valued polynomial of eu with degree 4N + 4 up to

an overall factors e−2Nu−2u ( an operator-valued polynomial of e2u with degree 2N up to

an overall factor e−2Nu respectively). Denote the eigenvalues of t(u) and t̄(u) acting on a

common eigenstate as Λ(u) and Λ̄(u), respectively. Then the eigenvalue Λ(u) (resp. Λ̄(u))

is a polynomial of eu with degree 4N + 4 (is a polynomial of e2u with degree 2N) up to an

overall known factor. Therefore, Λ(u) and Λ̄(u) can be completely determined by the values

of them at 6N + 6 points. The next task is to find these complete constraints.

From Eqs.(3.26)-(3.27), we see that for arbitrary values of spectral parameter u, the fusion

relations among the transfer matrices t(u) and t̄(u) are not closed. However, we find that

at the inhomogeneous points {θj}, the fusions of t(u) and t̄(u) can be closed. The detailed

derivation is as follows. From the Yang-Baxter relation (3.19) at the points of {u = θj ,

v = {θj + 4η + iπ, θj + 2η}}, (3.20) at the points of {u = θj , v = θj + 3η} and using the

properties of projectors, we obtain

T1(θj)T2(θj + 4η + iπ) = P
(1)
21 T1(θj)T2(θj + 4η + iπ),

T2(θj)T1(θj + 2η) = P
(6)
12 T2(θj)T1(θj + 2η),

T2(θj)T1̄(θj + 3η) = P
(4)

1̄2
T2(θj)T1̄(θj + 3η), j = 1, · · · , N. (4.1)

We see that we can obtain three projectors by the suitable choices of spectral parameters

in the monodromy matrices. The role of introducing inhomogeneous parameters {θj} is to

generate the projectors. The generated projectors allow us to taken the fusion, which is

valid for arbitrary u and the only requirement is the shift ∆. Substituting Eq.(4.1) into

(3.26)-(3.27) with u = θj , we obtain one set of fusion relations between t(u) and t̄(u). The

Yang-Baxter relation (3.22) at the points of {u = −θj , v = {−θj + 4η + iπ,−θj + 2η}} and

(3.23) at the points of {u = −θj , v = −θj + 3η} give

T̂1(−θj)T̂2(−θj + 4η + iπ) = P
(1)
12 T̂1(−θj)T̂2(−θj + 4η + iπ),

T̂2(−θj)T̂1(−θj + 2η) = P
(6)
21 T̂2(−θj)T̂1(−θj + 2η),

T̂2(−θj)T̂1̄(−θj + 3η) = P
(4)

21̄
T̂2(−θj)T̂1̄(−θj + 3η), j = 1, · · · , N. (4.2)

We see that three projectors can also be generated in this situation. Substituting Eq.(4.2)
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into (3.26)-(3.27) with u = −θj , we obtain another set of fusion relations between t(u) and

t̄(u).

Now, we are ready to seek the closed fusion relations among the transfer matrices. Sub-

stituting Eqs.(3.21), (3.24), (3.28)-(3.31), (3.36)-(3.37), (4.1)-(4.2) into Eq.(3.26) and con-

sidering the cases of {u = ±θj ,∆ = 4η + iπ} and {u = ±θj ,∆ = 2η}, and into Eq.(3.27)

with {u = ±θj ,∆ = 3η}, we arrive at

t(±θj)t(±θj + 4η + iπ) =
sinh(±2θj − 2η) sinh(±2θj + 2η) sinh(±θj − 4η) sinh(±θj + 4η)

4 sinh4 η cosh(±θj − 2η) cosh(±θj + 2η)

×
N
∏

l=1

a(±θj − θl)c(±θj − θl + 4η + iπ)a(±θj + θl)c(±θj + θl + 4η + iπ)× id,

t(±θj)t(±θj + 2η) =
sinh2(±2θj − 2η) sinh(±θj + 2η) sinh(±θj − 4η)

4 sinh2 η cosh(±θj) cosh(±θj − 2η)

×
N
∏

l=1

ρ̃0(±θj − θl)ρ̃0(±θj + θl)t̄(±θj + η),

t(±θj)t̄(±θj + 3η) =
2 cosh(±θj) sinh(±2θj − 2η) sinh(±θj − 4η)

sinh2 η sinh(±2θj + 2η) sinh(±2θj − 4η)

×
N
∏

l=1

ρ̃1(±θj − θl)ρ̃1(±θj + θl)t(±θj + 2η + iπ), j = 1, · · · , N. (4.3)

We shall note that the recursive equations (4.3) are closed, which give the 6N constraints of

t(u) and t̄(u) at the inhomogeneous points.

Besides, from the direct calculation, we also obtain the values of t(u) and t̄(u) at some

special points

t(0) = 4 cosh2 η

N
∏

j=1

ρ1(−θj)× id, t(4η + iπ) = 4 cosh2 η

N
∏

j=1

ρ1(−θj)× id,

t(2η) =
cosh2 η

2 cosh 2η(1 + 2 cosh 2η)
t̄(η). (4.4)

In the derivation, we have used the relations

tr[K+(0)K−(0)] = 4 cosh2 η, tr[K+(4η + iπ)K−(4η + iπ)] = 4 cosh2 η,

tr1{M−1
2 R12(6η + 2iπ)M2K

+
1 (0)R21(2η)} = 4 cosh 2η(1 + 2 cosh 2η) sinh2 2η × id.

The asymptotic behaviors of t(u) and t̄(u) read

t(u)|u→±∞ = Q±e
±(2N+2)u + · · · , t̄(u)|u→±∞ = Q̄±e

±2Nu + · · · , (4.5)
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where Q± and Q̄± are the conserved quantities

Q+ =
1

4 sinh2 η

{

eǫ
′−ǫe−2η[T+]

4
4[T̂+]

1
1 + eǫ−ǫ′e−6η[T+]

1
1[T̂+]

4
4

+e−4η[T+]
2
2[T̂+]

2
2 + e−4η[T+]

3
3[T̂+]

3
3

}

,

Q− =
1

4 sinh2 η

{

eǫ
′−ǫe6η[T−]

4
4[T̂−]

1
1 + eǫ−ǫ′e2η[T−]

1
1[T̂−]

4
4

+e4η[T−]
2
2[T̂−]

2
2 + e4η[T−]

3
3[T̂−]

3
3

}

,

Q̄+ =
1

sinh2 η

{

eǫ
′−ǫe2η

(

[T̄+]
5
5[
ˆ̄T+]

1
1 + [T̄+]

6
6[
ˆ̄T+]

2
2

)

+[T̄+]
3
3[
ˆ̄T+]

3
3 + [T̄+]

4
4[
ˆ̄T+]

4
4 + eǫ−ǫ′e−2η

(

[T̄+]
1
1[
ˆ̄T+]

5
5 + [T̄+]

2
2[
ˆ̄T+]

6
6

)}

,

Q̄− =
1

sinh2 η

{

eǫ
′−ǫe2η

(

[T̄−]
5
5[
ˆ̄T−]

1
1 + [T̄−]

6
6[
ˆ̄T−]

2
2

)

+[T̄−]
3
3[
ˆ̄T−]

3
3 + [T̄−]

4
4[
ˆ̄T−]

4
4 + eǫ−ǫ′e−2η

(

[T̄−]
1
1[
ˆ̄T−]

5
5 + [T̄−]

2
2[
ˆ̄T−]

6
6

)}

. (4.6)

Here [T±]
α
β , [T̂±]

α
β , [T̄±]

α
β and [ ˆ̄T±]

α
β are the operators acting on the quantum space V1 ⊗ V2 ⊗

· · · ⊗ VN with the explicit expressions

[T±]
α
β =

4
∑

{δi}=1,{γi}=1

[R
(±)
01 ]αγ1α1δ1

[R
(±)
02 ]α1γ2

α2δ2
· · · [R(±)

0N ]
αN−1γN
β δN

,

[T̂±]
α
β =

4
∑

{δi}=1,{γi}=1

[R
(±)
N0 ]

γNα
δNαN

[R
(±)
N−10]

γN−1αN

δN−1αN−1
· · · [R(±)

20 ]γ1α2

δ1β
,

[T̄±]
α
β =

4
∑

{δi}=1,{γi}=1

[R
(±)

0̄1
]αγ1α1δ1

[R
(±)

0̄2
]α1γ2
α2δ2

· · · [R(±)

0̄N
]
αN−1γN
β δN

,

[ ˆ̄T±]
α
β =

4
∑

{δi}=1,{γi}=1

[R
(±)

N 0̄
]γNα
δNαN

[R
(±)

N−10̄
]
γN−1αN

δN−1αN−1
· · · [R(±)

10̄
]γ1α2

δ1β
, (4.7)

where the repeated indicators should be summarized, and R
(±)
0j and R

(±)

0̄j are the leading

terms of e∓uR0j(u)|u→±∞ and e∓uR0̄j(u)|u→±∞, respectively. The detailed calculation shows

that the eigenvalues of conserved quantities Q± and Q̄± can be characterized by a quantum

number m (an integer |m| ∈ [0, N ]). Then we obtain the asymptotic behaviors of Λ(u) and

Λ̄(u) as

Λ(u)|u→±∞ =
2

4N+1 sinh2 η

[

cosh(ǫ− ǫ′ − 2η) + cosh(2mη)
]

e±(2Nu+2u−4Nη−4η) + · · · ,

Λ̄(u)|u→±∞ =
2

sinh2 η

[

2 cosh(ǫ− ǫ′ − 2η) cosh(2mη) + 1
]

e±(2Nu−4Nη) + · · · . (4.8)
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5 Inhomogeneous T-Q relations

Acting the operator identities (4.3) on a common eigenstate, we obtain the functional rela-

tions among the eigenvalues Λ(u) and Λ̄(u) as

Λ(±θj)Λ(±θj + 4η + iπ) =
sinh(±2θj − 2η) sinh(±2θj + 2η) sinh(±θj − 4η) sinh(±θj + 4η)

4 sinh4 η cosh(±θj − 2η) cosh(±θj + 2η)

×
N
∏

l=1

a(±θj − θl)c(±θj − θl + 4η + iπ)a(±θj + θl)c(±θj + θl + 4η + iπ),

Λ(±θj)Λ(±θj + 2η) =
sinh2(±2θj − 2η) sinh(±θj + 2η) sinh(±θj − 4η)

4 sinh2 η cosh(±θj) cosh(±θj − 2η)

×
N
∏

l=1

ρ̃0(±θj − θl)ρ̃0(±θj + θl)Λ̄(±θj + η),

Λ(±θj) Λ̄(±θj + 3η) =
2 cosh(±θj) cosh(±2θj − 2η) sinh(±θj − 4η)

sinh2 η sinh(±2θj + 2η) sinh(±2θj − 4η)

×
N
∏

l=1

ρ̃1(±θj − θl)ρ̃1(±θj + θl)Λ(±θj + 2η + iπ), j = 1, · · · , N. (5.1)

According to Eqs.(4.4) and (4.5), we also have other seven constraints of Λ(u) and Λ̄(u) as

Λ(0) = 4 cosh2 η

N
∏

j=1

ρ1(−θj), Λ(4η + iπ) = 4 cosh2 η

N
∏

j=1

ρ1(−θj), (5.2)

Λ(2η) =
cosh2 η

2 cosh 2η(1 + 2 cosh 2η)
Λ̄(η). (5.3)

The 6N function relations (5.1) and 7 constraints (4.8) and (5.2)-(5.3) allow us sufficient

information to determine the values of Λ(u) and Λ̄(u), which can be expressed in terms of

inhomogeneous T −Q relations as

Λ(u) =
sinh(u− 4η) sinh(2u− 2η)

2 sinh2 η cosh(u− 2η)

N
∏

j=1

a(u− θj)a(u+ θj)
Q(1)(u+ 2η)

Q(1)(u)

+
sinh(u) sinh(u− 4η)

sinh2 η sinh(2u− 4η)

N
∏

j=1

b(u− θj)b(u+ θj)
[

sinh(2u− 2η)

×Q
(1)(u− 2η)Q(2)(u+ 2η)

Q(1)(u)Q(2)(u)
+ sinh(2u− 6η)

Q(1)(u− iπ)Q(2)(u− 2η)

Q(1)(u− 2η − iπ)Q(2)(u)

]

+
sinh(u) sinh(2u− 6η)

2 sinh2 η cosh(u− 2η)

N
∏

j=1

c(u− θj)c(u+ θj)
Q(1)(u− 4η − iπ)

Q(1)(u− 2η − iπ)

15



+h
N
∏

j=1

b(u− θj)b(u+ θj)
sinh u sinh(u− 4η)

sinh2 η

Q(1)(u− 2η)Q(1)(u− iπ)

Q(2)(u)
, (5.4)

Λ̄(u) =
1

sinh2 η

{

N
∏

j=1

a1(u− θj)a1(u+ θj)
sinh(u− 3η)

sinh(u− η)

×
[

sinh(2u)

sinh(2u− 4η)

Q(2)(u+ 3η)

Q(2)(u+ η)
+
Q(1)(u+ η)Q(1)(u+ η − iπ)Q(2)(u− η)

Q(1)(u− η)Q(1)(u− η − iπ)Q(2)(u+ η)

]

+

N
∏

j=1

b1(u− θj)b1(u+ θj)
sinh(u− η)

sinh(u− 3η)

×
[

sinh(2u− 8η)

sinh(2u− 4η)

Q(2)(u− 3η)

Q(2)(u− η)
+
Q(1)(u− 3η)Q(1)(u− 3η − iπ)Q(2)(u+ η)

Q(1)(u− η)Q(1)(u− η − iπ)Q(2)(u− η)

]

+
N
∏

j=1

c1(u− θj)c1(u+ θj)
Q(1)(u+ η)Q(1)(u− 3η − iπ)

Q(1)(u− η)Q(1)(u− η − iπ)

+

N
∏

j=1

c1(u− θj − iπ)c1(u+ θj − iπ)
Q(1)(u+ η − iπ)Q(1)(u− 3η)

Q(1)(u− η)Q(1)(u− η − iπ)

+h
cosh(u− η) sinh(u− 3η)

sinh(2u− 4η)

N
∏

j=1

a1(u− θj)a1(u+ θj)

×Q
(1)(u+ η)Q(1)(u+ η − iπ)

Q(2)(u+ η)
+ h

cosh(u− 3η) sinh(u− η)

sinh(2u− 4η)

×
N
∏

j=1

b1(u− θj)b1(u+ θj)
Q(1)(u− 3η)Q(1)(u− 3η − iπ)

Q(2)(u− η)

}

, (5.5)

where h is a parameter to be determined later (see (5.9) below), the Q-functions are

Q(1)(u) =
L1
∏

l=1

sinh
1

2
(u− µ

(1)
l − η) sinh

1

2
(u+ µ

(1)
l − η),

Q(2)(u) =
L2
∏

k=1

sinh(u− µ
(2)
k − 2η) sinh(u+ µ

(2)
k − 2η),

a1(u) = 2 sinh(u− 3η), b1(u) = 2 sinh(u− η),

c1(u) = 4 sinh
1

2
(u− 3η) cosh

1

2
(u− η). (5.6)

L1 is the number of Bethe roots {µ(1)
l } and L2 is the number of Bethe roots {µ(2)

k }. The

regularities of eigenvalues Λ(u) and Λ̄(u) require that the Bethe roots {µ(1)
l } and {µ(2)

k }
satisfy the Bethe ansatz equations (BAEs)

Q(1)(µ
(1)
l + 3η)Q(2)(µ

(1)
l + η)

Q(1)(µ
(1)
l − η)Q(2)(µ

(1)
l + 3η)

= −sinh(µ
(1)
l + η)

sinh(µ
(1)
l − η)
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×
N
∏

j=1

sinh 1
2
(µ

(1)
l + η − θj) sinh

1
2
(µ

(1)
l + η + θj)

sinh 1
2
(µ

(1)
l − η − θj) sinh

1
2
(µ

(1)
l − η + θj)

, l = 1, · · · , L1, (5.7)

sinh(2µ
(2)
k + 2η)

sinh(2µ
(2)
k )

Q(2)(µ
(2)
k + 4η)

Q(1)(µ
(2)
k + 2η)Q(1)(µ

(2)
k + 2η − iπ)

+
sinh(2µ

(2)
k − 2η)

sinh(2µ
(2)
k )

Q(2)(µ
(2)
k )

Q(1)(µ
(2)
k )Q(1)(µ

(2)
k − iπ)

= −h, k = 1, · · · , L2. (5.8)

From the degree analysis of polynomials Λ(u) and Λ̄(u), we obtain that the numbers of Bethe

roots {µ(1)
l } and {µ(2)

k } should be the same, i.e., L1 = L2. According to the asymptotic

behaviors of Λ(u) and Λ̄(u), the value of h is determined as

h = (−1)L14L1

{

2 cosh(ǫ− ǫ′ − 2η)− 2 cosh[2(L1 + 1)η]
}

. (5.9)

Meanwhile, the quantum numberm is related with the number of Bethe roots asm = L1−N3.

Here we present the numerical solutions of the T − Q relation (5.4) with BAEs (5.7)-

(5.8) for the N = 2 case in Table 1. The eigenvalue calculated from (5.4) is the same as

that from the exact diagonalization of the transfer matrix t(u) (2.1) with open boundary

conditions. Numerical solutions with random choice of u and η for some small size imply

that the solution (5.4) indeed gives the complete solutions of the model. We further remark

that for L = 0, the T −Q relation will give the same eigenvalue as the L = 4 in the Table.

3If m ≤ 0, we have 0 ≤ L1 ≤ N . When m ≥ 0, we have N ≤ L1 ≤ 2N .
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Table 1: Solutions of BAEs (5.7)-(5.8) for the T − Q relation (5.4), N = 2, u = 0.2, η = 0.4, {θj} = 0, ǫ = ǫ′ = 0. The
numbers of the two sets of Bethe roots are the same L = L1 = L2. The symbol n indicates the number of the spectrum Λ(u).

µ
(1)
1 µ

(1)
2 µ

(1)
3 µ

(1)
4 µ

(2)
1 µ

(2)
2

2.8213− 7.3824i 2.8566− 11.7923i 2.6075− 9.6328i −15.4519 + 9.5555i 5.7360− 20.1799i −15.9439 + 3.2723i
−1.8106− 5.5833i −0.6073− 3.3582i −9.6710− 14.6796i −1.7855− 0.7885i 8.1575− 2.9733i −10.2358− 11.4398i
−1.1119− 3.1416i —— —— —— 1.7606 + 0.0000i ——
−1.1119 + 3.1416i −12.7134 + 2.2785i −12.7134− 4.0046i —— 13.5955 + 4.0046i 1.7606− 3.1416i
−12.8331 + 0.7576i −0.0000− 3.1416i —— —— 20.7772− 1.5018i 20.9923− 0.1902i
−0.7650 + 1.2091i −0.7650− 1.2091i —— —— 10.3808 + 0.9039i 1.0705− 1.5708i
0.0751− 0.3828i —— —— —— −0.7428− 2.6351i ——
8.5971 + 2.8481i 0.0751− 0.3828i −8.5971 + 0.2935i —— −9.1416 + 0.6080i −0.7428 + 6.7896i
−0.0751− 0.3828i —— —— —— 0.7428 + 0.5064i ——
−0.0751 + 5.9004i 8.8382 + 6.7463i −8.8382 + 8.9616i —— −9.3827 + 2.9929i −0.7428 + 12.0599i
0.0051 + 0.4591i −0.0676 + 1.4934i —— —— 9.3206− 0.5054i −9.0327 + 0.6314i
0.1816− 1.3704i −0.0175− 0.4666i —— —— −9.1912− 0.4531i −9.3950 + 2.4425i
0.0000− 0.0000i −14.0480 + 2.8382i —— —— 22.9513− 2.7003i 22.9864− 1.7707i
−0.0393 + 0.0000i —— —— —— 0.4925− 0.0000i ——
0.0393 + 0.0000i 8.6900− 0.0624i 8.6901− 3.2040i —— −9.2346 + 2.8895i 9.2346− 0.3770i
−0.0000− 1.6458i −0.0000 + 0.0049i —— —— −0.4919− 0.0000i 7.3047− 1.4074i

µ
(2)
3 µ

(2)
4 Λ(u) L n

−5.7344 + 12.8484i −5.7362 + 5.5171i 0.6400− 0.0000i 4 1
9.4903 + 3.1677i −8.0876− 4.9070i 0.6400− 0.0000i 4 2

—— —— 0.6884− 0.0000i 1 3
−12.9204 + 5.4201i —— 0.6884− 0.0000i 3 4

—— —— 0.7049− 0.0000i 2 5
—— —— 0.7782− 0.0000i 2 6
—— —— 1.7412− 0.3231i 1 7

9.1416 + 3.1626i —— 1.7412− 0.3231i 3 8
—— —— 1.7412 + 0.3231i 1 9

−9.3827 + 5.5055i —— 1.7412 + 0.3231i 3 10
—— —— 1.7907− 0.0000i 2 11
—— —— 1.7907− 0.0000i 2 12
—— —— 6.0819− 0.0000i 2 13
—— —— 6.2595− 0.0000i 1 14

0.4925− 3.1416i —— 6.2595− 0.0000i 3 15
—— —— 6.9792− 0.0000i 2 16
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We shall give some remarks about the obtained eigenvalues. The BAEs (5.7) are homo-

geneous while the BAEs (5.8) are inhomogeneous. This is because that the non-diagonal

boundary reflections break the U(1) symmetry of the system. Due to the present form

of reflection matrix (2.10), which is diagonal in a 2 × 2 subspace, the Bethe roots in this

subspace satisfy the homogeneous BAEs. The existence of one sets of homogeneous BAEs

consists with the fact that there is only one good quantum number m. Another things we

should mentioned is that during the construction of T −Q relation, the BAEs obtained from

the regularities of Λ(u) and Λ̄(u) should be the same. It is easy to check that Λ(u) and

Λ̄(u) satisfy the functional relations (5.1) and the additional constraints (5.3). Therefore, we

conclude that the analytical expressions (5.4) and (5.5) are the eigenvalues of the transfer

matrices t(u) and t̄(u), respectively. It is noted that the eigenvalues and associated BAEs

have the well-defined homogeneous limit.

Based on the exact solution (5.4) and (5.7)-(5.8) of Λ(u), we can obtain the energy

spectrum of the Hamiltonian (2.12)

E =
∂ ln Λ(u)

∂u
|u=0,{θj}=0. (5.10)

6 Periodic boundary condition case

We shall note that the above method is universal, which is also valid for the quantum

integrable systems with U(1) symmetry. For this purpose, we consider the exact solution of

the A
(2)
3 model with the periodic boundary condition.

In the periodic case, the transfer matrix t(p)(u) and the fused one t̄(p)(u) are defined as

t(p)(u) = tr0T0(u), t̄(p)(u) = tr0̄T0̄(u), (6.1)

where the monodromy matrices T0(u) and T0̄(u) are given by (2.2) and (3.17), respectively.

From the Yang-Baxter equations (2.7) and (3.13), we can prove that the transfer matrices

t(p)(u) and t̄(p)(u) satisfy the commutation relations

[t(p)(u), t(p)(v)] = [t(p)(u), t̄(p)(v)] = 0. (6.2)

Taking the partial trace of Eq.(3.21) in the auxiliary spaces and using the relation (4.1), we

obtain the operator product identities

t(p)(θj) t
(p)(θj + 4η + iπ) =

N
∏

l=1

a(θj − θl)c(θj − θl + 4η + iπ)× id,
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t(p)(θj) t
(p)(θj + 2η) =

N
∏

l=1

ρ̃0(θj − θl) t̄
(p)(θj + η),

t(p)(θj) t̄
(p)(θj + 3η) =

N
∏

l=1

ρ̃1(θj − θl) t
(p)(θj + 2η + iπ), j = 1, · · · , N. (6.3)

From the definitions (6.1), we obtain the asymptotic behaviors of fused transfer matrices

t(p)(u)|u→±∞ = e±(Nu−
∑N

j=1
θj)

4
∑

α=1

[T±]
α
α + · · · ,

t̄(p)(u)|u→±∞ = e±(Nu−
∑N

j=1
θj)

6
∑

α=1

[T̄±]
α
α + · · · , (6.4)

where
∑4

α=1[T±]
α
α and

∑6
α=1[T̄±]

α
α are the conserved quantities. From the direct calculation,

we find that the eigenvalues of
∑4

α=1[T±]
α
α and

∑6
α=1[T̄±]

α
α can be quantified by two quantum

numbers m1 and m2 as 21−N [cosh(m1η) + cosh(m2η)]e
∓2Nη and 2{1 + cosh[(m1 + m2)η] +

cosh[(m1 −m2)η]}e∓2Nη, respectively, where m1 ∈ [0, N ] and 0 ≤ |m2| ≤ N −m1. Then the

asymptotic behaviors of transfer matrices t(p)(u) and t̄(p)(u) on some subspace which can be

parameterized by two integers m1 and m2 read

t(p)(u)|u→±∞ = 21−N [cosh(m1η) + cosh(m2η)]e
±(Nu−

∑N
j=1

θj−2Nη) + · · · ,

t̄(p)(u)|u→±∞ = 2{1 + cosh[(m1 +m2)η] + cosh[(m1 −m2)η]}e±(Nu−
∑N

j=1
θj−2Nη) + · · · . (6.5)

Suppose the eigenvalues of t(p)(u) and t̄(p)(u) as Λ(p)(u) and Λ̄(p)(u), respectively. From

Eqs.(6.3) and (6.5), we obtain that Λ(p)(u) and Λ̄(p)(u) should satisfy the constraints

Λ(p)(θj) Λ
(p)(θj + 4η + iπ) =

N
∏

l=1

a(θj − θl)c(θj − θl + 4η + iπ),

Λ(p)(θj) Λ
(p)(θj + 2η) =

N
∏

l=1

ρ̃0(θj − θl) Λ̄
(p)(θj + η),

Λ(p)(θj)Λ̄
(p)(θj + 3η) =

N
∏

l=1

ρ̃1(θj − θl) Λ
(p)(θj + 2η + iπ), j = 1, · · · , N,

Λ(p)(u)|u→±∞ = 21−N [cosh(m1η) + cosh(m2η)]e
±(Nu−

∑N
j=1

θj−2Nη) + · · · ,

Λ̄(p)(u)|u→±∞ = 2{1 + cosh[(m1 +m2)η] + cosh[(m1 −m2)η]}

×e±(Nu−
∑N

j=1
θj−2Nη) + · · · . (6.6)

The eigenvalues Λ(p)(u) (resp. Λ̄(p)(u)) is a polynomial of eu with degree 2N (a polynomial

of e2u with degree N respectively) up to an overall factor e−Nu. Therefore, Λ(p)(u) and Λ̄(p)(u)
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can be completely determined by at least 3N + 2 constraints. Then we arrive at that 3N

functional relations together with 4 asymptotic behaviors (6.6) can determine the eigenvalues

Λ(p)(u) and Λ̄(p)(u), which are expressed by the T −Q relations as

Λ(p)(u) =

N
∏

j=1

a(u− θj)
Q

(1)
p (u+ 2η)

Q
(1)
p (u)

+

N
∏

j=1

b(u − θj)
{Q

(1)
p (u− 2η)Q

(2)
p (u+ 2η)

Q
(1)
p (u)Q

(2)
p (u)

+
Q

(1)
p (u− iπ)Q

(2)
p (u− 2η)

Q
(1)
p (u− 2η − iπ)Q

(2)
p (u)

}

+
N
∏

j=1

c(u− θj)
Q

(1)
p (u− 4η − iπ)

Q
(1)
p (u− 2η − iπ)

, (6.7)

Λ̄(p)(u) =
N
∏

j=1

a1(u− θj)

[

Q
(2)
p (u+ 3η)

Q
(2)
p (u+ η)

+
Q

(1)
p (u+ η)Q

(1)
p (u+ η − iπ)Q

(2)
p (u− η)

Q
(1)
p (u− η)Q

(1)
p (u− η − iπ)Q

(2)
p (u+ η)

]

+

N
∏

j=1

b1(u− θj)

[

Q
(2)
p (u− 3η)

Q
(2)
p (u− η)

+
Q

(1)
p (u− 3η)Q

(1)
p (u− 3η − iπ)Q

(2)
p (u+ η)

Q
(1)
p (u− η)Q

(1)
p (u− η − iπ)Q

(2)
p (u− η)

]

+

N
∏

j=1

c1(u− θj)
Q

(1)
p (u+ η)Q

(1)
p (u− 3η − iπ)

Q
(1)
p (u− η)Q

(1)
p (u− η − iπ)

+
N
∏

j=1

c1(u− θj − iπ)
Q

(1)
p (u+ η − iπ)Q

(1)
p (u− 3η)

Q
(1)
p (u− η)Q

(1)
p (u− η − iπ)

, (6.8)

where the definition of the functions a1(u), b1(u), and c1(u) is in (5.6), and

Q(1)
p (u) =

L1
∏

l=1

sinh
1

2
(u− µ

(1)
l − η), Q(2)

p (u) =

L2
∏

k=1

sinh(u− µ
(2)
k − 2η). (6.9)

The regularity analyses of the T − Q relations (6.7)-(6.8) lead to that the Bethe roots

{µ(1)
l } and {µ(2)

k } should satisfy the BAEs

Q
(1)
p (µ

(1)
l + 3η)Q

(2)
p (µ

(1)
l + η)

Q
(1)
p (µ

(1)
l − η)Q

(2)
p (µ

(1)
l + 3η)

= −
N
∏

j=1

sinh 1
2
(µ

(1)
l + η − θj)

sinh 1
2
(µ

(1)
l − η − θj)

, l = 1, · · · , L1, (6.10)

Q
(1)
p (µ

(2)
k )Q

(1)
p (µ

(2)
k − iπ)Q

(2)
p (µ

(2)
k + 4η)

Q
(1)
p (µ

(2)
k + 2η)Q

(1)
p (µ

(2)
k + 2η − iπ)Q

(2)
p (µ

(2)
k )

= −1, k = 1, · · · , L2, (6.11)

where L1 ≤ N and L2 ≤ L1. We shall note that the BAEs (6.10) and (6.11) are homogeneous,

because the periodic boundary condition does not break the U(1) symmetry. The quantum

numbers m1 and m2 characterizing the conserved quantities
∑4

α=1[T±]
α
α and

∑6
α=1[T̄±]

α
α are

related with the numbers of Bethe roots as

m1 = N − L1, m2 = L1 − 2L2. (6.12)
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The eigenvalues (6.7)-(6.8) and associated BAEs (6.10)-(6.11) have the well-defined homoge-

neous limit. These results with the constraint {θj} = 0 are coincide with the previous ones

obtained by using the functional or nested algebraic Bethe ansatz [20, 21].

7 Discussion

In this paper, we have studied the exact solution of quantum integrable model associated with

the A
(2)
3 twisted Lie algebra. We give a detailed analysis of the fusion properties, including

the open chain and the periodic one. We obtain the closed recursive fusion relations and

additional constraints among the fused transfer matrices. Based on them and with the help

of polynomials analysis, we obtain the eigenspectrum and related Bethe ansatz equations of

the system. The results provided in this paper can be generalized to the A
(2)
n model with

arbitrary n and integrable models with the other twisted Lie algebras.
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Appendix A. Expression of the R-matrix R1̄2(u)

In this appendix, we give the explicit expression of the R-matrix R1̄2(u) define in (3.7) as

R1̄2(u) =













































r1r1 r2 r7 r8 r10r2 r9 r11 r12r1
r7 r2 r8 −r10r1

r2 r9 −r11 r12r13 r13 r3r14 r4 r15 r9
r14 r4 −r15 r9r3 r8 r8

r16 −r16 r5
r17 −r15 r6 −r11−r17 r15 r6 r11

r5 −r10 r10
r18 r14 −r17 r2 r1

r13 −r16 r2 r7r1r18 r14 r17 r2r13 r16 r7 r2 r1r1













































,

(A.1)

r1 = 2 sinh(u− 3η), r2 = 2 sinh(u− η), r3 = 4 sinh
1

2
(u− 3η) cosh

1

2
(u− η),

r4 = 2(sinh(u− 2η) + sinh 2η sinh η), r5 = 4 sinh
1

2
(u− η) cosh

1

2
(u− 3η),

r6 = 2(sinh(u− 2η)− sinh 2η sinh η), r7 = −2 sinh 2η,

r8 = −4e−
u
2 sinh η

√

cosh η sinh
1

2
(u− 3η), r9 = −4e−

u
2
+η sinh η

√

cosh η cosh
1

2
(u− η),

r10 = 4e−
u
2 sinh η

√

cosh η cosh
1

2
(u− 3η), r11 = 4e−

u
2
+η sinh η

√

cosh η sinh
1

2
(u− η),

r12 = 2e−η sinh 2η, r13 = −eur8, r14 = eu−2ηr9, r15 = −2 sinh η sinh 2η,

r16 = eur10, r17 = −eu−2ηr11, r18 = 2eη sinh 2η. (A.2)

The above expression allows us to derive the very properties (3.9) of the resulting fused

R-matrix R1̄2(u).
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