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 
Abstract—Tie-line power exchanges among regional power 

systems facilitate renewable accommodations. Power exchanges 
can be calculated via a tie-line security region that provides the 
feasible region of the coupling parameters among regional power 
systems. However, a tie-line security region is a high-dimension 
polytope due to multiple time periods and border buses inherently 
in power system operations, leading to the considerable 
computational burden. A fast calculation method for tie-line 
security regions in high dimension is studied in this paper. The 
high-dimension polytope across all the time periods is decomposed 
as a Cartesian production of lower-dimension polytopes at each 
time period by leveraging dispatch levels of generations. For each 
lower-dimension polytope, the computational burden brought by 
multiple border buses is alleviated by aggregating tie-line power. 
Also, minimum renewable curtailments are preserved by 
incorporating an additional dimension in the tie-line security 
region. For the coupling parameters located within our tie-line 
security region, a feasible decision of the regional power system 
exists. Finally, the tie-line security region is used to reduce 
renewable curtailments in an interconnected power system under 
a decentralized and non-iterative framework. The performance of 
the presented methods is corroborated in the IEEE 9-bus system, 
a 661-bus utility system and a five-region system. 

Index Terms—renewable accommodation, tie-line security 
region, high dimension, fast calculation. 

I. INTRODUCTION 

The decarbonization of power systems has drawn much 
attention to resolve the environmental issues brought by the 
excessive use of fossil fuels [1]. Consequently, the installed 
capacities of renewables have been fast increasing around the 
world [2]. Within this content, renewable accommodations via 
tie-line power exchanges have been important in 
interconnected power systems, as observed around the world 
[3]. For example, the high-penetration renewables in Europe 
are accommodated via tie-line power exchanges among 
different countries (e.g., Norway, Denmark) [4]. The 
hydroelectricity in Canada is accommodated via North 
American interconnections [5]. 

Generally, different regional power systems are operated by 
different operators. Consequently, the tie-line power exchanges 
to facilitate renewable accommodations would be difficult to be 
determined under a centralized framework. As an alternative, 
the tie-line power exchanges can be determined via the power 
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transfer capability that has been required in China, Europe, and 
America [6]. Essentially, the power transfer capability can be 
described as a tie-line security region in the domain of the 
coupling parameters among regional power systems, i.e., a 
polytope in the domain of (w1, …,wt,…, wnT

) where wt is the 
vector of the coupling parameters at time period t and nT is the 
total number of consecutive periods.  For each point within the 
tie-line security region, at least one feasible decision of the 
regional power system exists. This is defined as the feasibility 
of the tie-line security region in this paper. 

The dimension of a tie-line security region is  ∑ nwt
T
t=1 , where 

nwt is the dimension of wt. Generally, multiple time periods are 
considered in power system operations and multiple border 
buses are inevitable in utility systems. This casts the tie-line 
security region as a high-dimension polytope. The 
computational complexity of exploring a polytope fast increase 
with the dimension of the explored polytope, as also found in 
[7]-[8].  

The representatives to calculate a tie-line security region 
include Fuourier-Motzkin elimination [9]-[11], 
multi-parametric programming [12]-[13] and vertex search 
[14]-[15]. The tie-line security regions in [9]-[14] considered a 
single period and only a few border buses. When these methods 
are extended to the multiple time periods and more border 
buses, a considerable computational burden would suffer, as 
will be detailedly reviewed in Sec. II. Consequently, the fast 
calculation of the tie-line security region considering time 
coupling was studied in [15]. As reported in [15], the original 
high-dimension polytope that represents the tie-line security 
region with time coupling was simply decomposed as the union 
of a few lower-dimension polytopes associated with 
combinations of different periods. The computational burden 
brought by multiple time periods was alleviated while the 
computational burden brought by multiple border buses 
remained. Also, the feasibility of the tie-line security region in 
[15] cannot be guaranteed via the simple decomposition. At the 
same time, the information of renewable accommodations over 
the tie-line security region remained unknown in [15]. This 
leads to the difficulty of coordinating regional power systems 
via tie-line security regions to facilitate renewable 
accommodations accommodate. These limitations in [15] 
mentioned above will be further elaborated in Sec. II. 

To overcome the defects mentioned above, the fast 
calculation of a tie-line security region in high dimension for 
renewable accommodations is studied in this paper. Two works 
are contained in this paper, as described below. 
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(1) A fast calculation method of a tie-line security region that 
considers multiple time periods and border buses is presented 
(Sec. IV). The computational burden brought by multiple time 
periods is avoided by decomposing the original tie-line security 
region across all the time periods as a Cartesian production of 
lower-dimension polytopes at each time period. This 
decomposition is achieved by leveraging dispatch levels of 
generations. Furthermore, the computational burden brought by 
multiple border buses is alleviated by aggregating tie-line 
power. This paves a promising way to represent the 
high-dimension polytope in a lower dimension. Proofs are 
provided for the legibility of our method with which the 
feasibility of our tie-line security region is guaranteed. Also, the 
minimum renewable curtailments of each regional power 
system are preserved over the tie-line security region by 
incorporating an additional dimension in the tie-line security 
region.  

(2) The application method of the tie-line security region in 
renewable accommodations under a decentralized and 
non-iterative framework is illustrated (Sec. V). The coupling 
constraints among regional power systems are reformulated 
based on the vertices of tie-line security regions. Given the 
reformulated coupling constraints, a linear programming (LP) 
problem to reduce renewable curtailments in an interconnected 
power system is established by coordinating the coupling 
parameters. 

II. LITERATURE REVIEW 

The representatives [9]-[15] to describe the power transfer 
capability as a tie-line security region stem from the following 
optimization problem of a regional power system: 

 min ( ),f
x

x   (1) 

s.t.                  , Ax Bw C                                 (2) 

where x is the vector of decision variables; w is the vector of the 
coupling parameters among different regional power systems; 
f(x) is a convex objective function with respect to x (e.g., 
renewable curtailments, and fuel costs); A and B are constant 
coefficient matrices, and C is a constant coefficient vector. 
Note that the DC power flow model has been widely adopted in 
power industries due to its robustness and efficiency [18]. This 
leads to the operational requirements formulated via the DC 
power flow model, i.e., the linear constraint (2). Under such a 
case, the coupling parameters will include tie-line power and 
border angles in this paper. 

In representatives, tie-line security regions are represented in 
the domain of w with which there is a feasible x that satisfies 
the constraint (2). Based on different ideas, they can be 
categorized into three types. 

Type 1: methods based on Fuourier-Motzkin elimination. A 
tie-line security region can be regarded as the projection from 
the domain of (x,w) to the domain of w. This projection can be 
implemented by Fourier-Motzkin elimination. This similar idea 
has been employed to project the generation-demand space 
onto the demand space [9]-[10]. In [11], Fuourier-Motzkin 
elimination was employed to get the feasible region of power 
exchanges at the point of common coupling in distribution 

networks[11]. In Fuourier-Motzkin elimination, a variable can 
be bounded by a linear combination of other variables. This 
provides the opportunity to eliminate the unfocused variables 
iteratively. However, each variable is eliminated at the expense 
of adding numerous inequalities [16]. The computational 
burden exponentially increases with the number of eliminated 
variables. Consequently, Fuourier-Motzkin elimination may 
suffer the heavy computational burden when multiple time 
periods are considered. Also, Fuourier-Motzkin elimination 
only calculates the tie-line security region, while the 
information of the objective function of a regional power 
system remains unknown.  

Type 2: methods based on multi-parametric programming. 
Multi-parametric programing was employed in [12]-[13] to 
calculate a single-period tie-line security region by regarding 
the coupling parameters as programming parameters. As 
reported in [12], each combination of active and inactive 
constraints of (1)-(2), which can be obtained by repeatedly 
solving the optimization problem in (1)-(2), describes a 
subregion of the tie-line security region. Consequently, an 
exact tie-line security region can be obtained by the exhaustive 
enumeration of all the combinations of active and inactive 
constraints. Also, the optimal objective function can be 
formulated as a piecewise affine function of the coupling 
parameters. To alleviate the computational burden arising from 
the exhaustive enumeration, a modified multi-parametric 
programming method was reported in [13]. The exact tie-line 
security region in [13] was calculated by only enumerating 
combinations of active and inactive constraints that are related 
to boundaries. However, the computational burden of 
multi-parametric programming fast increases with the number 
of both programing parameters and constraints [17]. Multiple 
time periods and multiple border buses will increase the 
number of both programing parameters and constraints. 
Consequently, the computational burden of multi-parametric 
programming will become heavy when multiple time periods 
and multiple border buses are involved. 

Type 3: methods based on vertex search. Different with 
Fourier-Motzkin elimination, the projection to calculate the 
tie-line security region was achieved by exploring vertices of 
the tie-line security region [14]-[15]. For example, vertices in 
[14] were obtained by solving a series of LP problems to 
construct a single-period tie-line security region. However, the 
number of vertices fast increases with the dimension of a 
tie-line security region. To overcome the computational burden 
brought by multiple time periods, the fast calculation of a 
multi-period tie-line security region was studied in [15]. The 
original high-dimension tie-line security region was simply 
decomposed as the union of a few lower-dimension polytopes. 
In each lower-dimension polytopes, the tie-line security region 
was projected to the domain of coupling parameters at certain 
time periods. Consequently, the method in [15] was weak to 
handle multiple border buses. Also, the decomposition in [15] 
is heuristic. This leads to the absence of guaranteeing the 
feasibility of the tie-line security region. Note that vertex search 
in [14] and [15] only calculates the tie-line security region, 
while the information of the objective function is unknown. 
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 As mentioned above, the representatives [9]-[15] still face 
troubles to calculate the tie-line security region and its 
information of the objective function, when multiple time 
periods and multiple border buses inherently in power system 
operations are involved. This motivates us to fill this research 
gap in this paper. 

III. PROBLEM FORMULATION 

The optimization problem to minimize renewable 
curtailments in an interconnected power system will be 
presented in this section. The model is constructed based on the 
DC power flow model that has been widely used in power 
industries [18]. 

A. The operating region Xq,t at time period t in the regional 
power system q 

(1) Power balance should equal power demand, i.e., 

  , , , , , , , , , , , , , , , , , , ,T T T T
G q t G q t B q t B q t R q t R q t R q t D q t D q t   e P e P e P C e P (3) 

where PG,q,t, PB,q,t, PR,q,t, CR,q,t, and PD, q,t represent the vectors of 
the generation levels, tie-line power, maximum renewable 
power, renewable curtailments, and power demand at time 
period t in the regional power system q, respectively; eG,q,t, eB,q,t, 
eR,q,t, and eD,q,t are all-one vectors whose dimensions 
correspondingly match PG,q,t, PB,q,t, PR,q,t, and PD,q,t. 
   (2) Relationship between border angles and power injections 
can be described below. 

  
, , , , , , , , , ,

, , , , , , , , , ,        ,

B q t G q t G q t B q t B q t

R q t R q t R q t D q t D q t

 

  

θ B P B P

B P C B P
  (4) 

where θB,q,t is the vector of the border angles at time period t in 
the regional power system q; BG,q,t=Yq,tMG,q,t; BB,q,t=Yq,tMB,q,t; 
BR,q=Yq,tMR,q,t; BD,q,t=Yq,tMD, q,t; Yq,t is the inverse matrix of the 
susceptance matrix associated with border buses at time period 
t in the regional power system q; MG,q,t, MB,q,t, MR,q,t, and MD,q,t 

are incident matrices associated with PG,q,t, PB,q,t, PR,q,t, and PD,q,t, 
respectively. 

(3) Branch flows should not exceed limits, i.e.,  

  
, , , , , , , ,

max
, , , , , , , , , , , , ,

G q t G q t B q t B q t

R q t R q t R q t D q t D q t F q t



   

A P A P

A P C A P P
  (5) 

 
 

min
, , , , , , , , , ,

, , , , , , , , , , ,

F q t G q t G q t B q t B q t

R q t R q t R q t D q t D q t

 

  

P A P A P

A P C A P
  (6) 

where PF,q,t is the vector of the branch flows at time period t in 
the regional power system q; PF,q,t

min  and PF,q,t
max  are the lower and 

upper bounds of PF,q,t, respectively; AG,q,t=Sq,tMG,q,t; 
AB,q,t=Sq,tMB,q,t; AR,q,t=Sq,tMR,q,t; AD,q,t=Sq,tMD,q,t; Sq,t is the 
power transfer distribution factor (PTDF) matrix at time period 
t in the regional power system q. 

(4) Generation levels should not exceed dispatch levels, i.e.,  
min max

, , , , , , ,G q t G q t G q t P P P                             (7) 

where PG,q,t
min  and PG,q,t

max  are the vectors of the dispatch levels of 

PG,q,t. PG,q,t
min  and PG,q,t

max  will be selected in Sec. III-B. 
(5) Tie-line power should not exceed its flow limits, i.e.,  

min max
, , , , , , ,B q t B q t B q t P P P                             (8) 

where PB,q,t
min  and PB,q,t

max  are lower and upper limits, respectively. 
(6) Renewable curtailments should not exceed the maximum 

renewable power, i.e.,  

, , , , .R q t R q t 0 C P                             (9) 

(7) Border angles should be located between -π and π, i.e.,  

, , .B q t  π θ π                                (10) 

(8) The epigraph of total renewable curtailments with an 
upper bound at time period t, i.e.,  

, , , , , , , , , , , ,T T
R q t R q t q t R q t R q tz q t   e C e P         (11) 

where zq,t is a continuous variable that represents the total 
renewable curtailments at time period t in the regional power 
system q. This constraint can be combined with the coming 
objective function (14) for the optimal dispatch to reduce 
renewable curtailments, as similarly done in [19]. 

(9) Generation level changes between two consecutive time 
periods should not exceed ramp rates, i.e.,  

down up
, , , , , , 1 , , ,G q t G q t G q t G q t  R P P R              (12) 

where RG,q,t
down  and RG,q,t

up  are the vectors of ramp-down and 
ramp-up rates, respectively. 

B. Coupling between the regional power system q and the 
regional power system p 

Coupling between two regional power systems is reflected in 
the electronic relationship described below. 

 , , , , , , , , , , , , ,B q t B p t B p t B p t B q t B q t  P P D θ D θ   (13) 

where DB,p,t=Xq,p,tAB,p,t; DB,q,t= Xq,q,tAB,q,t; Xq,p,t is the resistance 
matrix at time period t between the regional power system q and 
the regional power system p; AB,p,t and AB,q,t are incident 
matrices associated with θB,p,t and θB,q,t, respectively.  

For illustration purposes, each border bus is only connected 
with a tie-line in this paper. 

C. The objective function and the compact formulation of the 
optimization problem 

The goal in an interconnected power system is to minimize 
renewable curtailments in this paper, i.e., 

 
 , , , , ,

,
, , , , 1 1

min ,
Q T

q t G q t R q t

n n

q t
z t q q t

z
   


P C

            (14) 

where nQ is the number of regional power systems; nT is the 
number of time periods. 

The optimization problem to minimize renewable 
curtailments in an interconnected power system is defined as 
the OP1 problem below. 
    OP1: The objective function (14) subjects to the constraints 
(3)-(13). 

For the OP1 problem, a decision vector at time period t in the 

regional power system q is denoted as xq,t=ൣPG,q,t
T CR,q,t

T ൧
T
 and 

we have xq=ൣxq,1
T … xq,nT

T ൧
T

. A vector zq is denoted as 
zq=ሾzq,1 … zq,nTሿT. The operating region across all the time 
periods in the regional power system q is denoted as Xq=Xq,1

×…×Xq,nT
. The tie-line power associated with the regional 

power system q is denoted as PB,q=ൣPB,q,1
T … PB,q,nT

T ൧
T
. The 

border angles associated with the regional power system q is 
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denoted as θB,q=ൣθB,q,1
T … θB,q,nT

T ൧
T

. For convenience of 
discussion, a compact form of the OP1 problem is given below. 

 
 , , , 1

min ,
Q

q q

n
T
q q

t q q  


z x
e z                               (15) 

s.t.                   Constraint (13),                               (16) 

  , ,, , , .q B q B q q qx P θ z X                     (17) 

The objective function (15) is the compact form of the 
objective function (14), where eq is an all-one vector associated 
with zq. The constraint (16) is exactly the constraint (13). The 
constraint (17) is the compact form of the constraints (3)-(12). 
As observed in (15)-(17), if the coupling parameters PB,q and 
θB,q are fixed, the decisions xq of each regional power system 
can be separately determined. This goal will be achieved in this 
paper by calculating the tie-line security region in the domain 
of (PB,q, zq). The tie-line security region Ωq in the regional 
power system q is mathematically defined as below. 

     , ,, , .q B q q q B q q Ω P z x θ X                (18) 

Remark 1. A tie-line security region is traditionally discussed 
in the domain of the coupling parameters (i.e., PB,q and θB,q), as 
reported in [12]-[13]. In this paper, the domain of the tie-line 
security region is slightly different with the traditional one 
because the tie-line security region is discussed in the domain 
of (PB,q, zq). This will bring two advantages. 

1) The incorporation of zq can preserve the information of the 
objective function over the tie-line security region, as will be 
further elaborated in Remark 4. 

2) The dimension of the traditional tie-line security region 
decreases at the absence of θB,q. Also, this neglection will not 
affect the coordination among regional power systems because 
θB,q can be expliclty formulated as a function of (PB,q, zq) based 
on via our application method in Sec. V.                                          ■ 

If the number of border buses is denoted as nB, the dimension 
of Ωq will be nT×nB,q+nT, where nB,q is the number of border 
buses in the regional power system q. The dimension of Ωq is 
high when multiple time periods and multiple border buses 
inherently in power system operations are involved. This leads 
to the heavy computational burden. To this end, the 
computational burden of calculating the high-dimension 
tie-line security region Ωq will be alleviated in Sec. IV. 

IV. FAST CALCULATION OF A TIE-LINE SECURITY REGION IN 

HIGH DIMENSION 

The computational burden of calculating Ωq arises from time 
periods and border buses. Consequently, our method presented 
in this section alleviates the computational burden by 
decomposing time periods and aggregating tie-line power, as 
will be correspondingly elaborated in Sec. IV-A and Sec. IV-B. 

A. Decomposition of time periods 

The key issue of decomposing time periods lies in selecting 
appropriate dispatch levels (i.e., PG,q,t

min  and PG,q,t
max  in (7)) with 

which the ramp rate constraint (12) can be neglected while this 
constraint can be naturally fulfilled. This goal can be achieved 
by solving the following LP problem. 

 
 

 
max min

, , , , , , , , , ,

max min
, , , , , ,

, , , , , , 1

max ,
T

q t q t B q t B q t G q t G q t

n
T
G q t G q t G q t

z t t 


x P θ P P

e P P     (19) 

s.t.                    Constraints (3)-(11) , ,t                       (20) 
max min up

, , , , 1 , , ,G q t G q t G t t  P P R                      (21) 

max min down
, , 1 , , , , , ,G q t G q t G q t t    P P R                   (22) 

min max
, , , , , , , ,G q G q t G q t G q t   P P P P                   (23) 

where PഥG,q and P
G,q

 are the vectors of generator capacities in 

the regional power system q. 
When the dispatch levels PG,q,t

min  and PG,q,t
max  are determined by 

solving the LP problem (19)-(23), the following Proposition 1 
shows that the ramp rate constraint (12) can be fulfilled.  
Proposition 1. Define: 1) Yq,t as the operating region where Xq,t 
excludes the ramp rate constraint (12), and 2)  Yq=Yq,1×…×

Yq,nT
. For Yq,t, a tie-line security region Ωq,t is defined as 

     , , , , , , , ,, , .q t B q t q t q t B q t q tz  Ω P x θ Y   (24) 

The dispatch levels PG,q,t
min  and PG,q,t

max  determined from the LP 
problem (19)-(23) yield 

 ,q qΩ R                                     (25) 

where Rq is defined as  
 ,1 , , .

Tq q q t q n   R Ω Ω Ω                 (26) 

■ 
Proof. This proof is completed by two steps: 1) Rq is a subset of 
Ωq, and 2) Ωq is a subset of Rq. 

1) Rq is a subset of Ωq. For the point (PB,q,zq) within Rq, a 
feasible (xq, θB,q) exists within Yq. Note that Xq contains the 
constraints (3)-(12) across all the time periods while Yq only 
contains the constraints (3)-(11) across all the time periods. 
Consequently, the constraints (3)-(11) in Xq must be fulfilled 
with the same (xq,θB,q). Our major focus comes down to the 
constraint (12) in Xq. Its fulfillment can be proven as below. 

The constraint (7) yields 

 min max max min
, , , , 1 , , , , 1 , , , , 1.G q t G q t G q t G q t G q t G q t      P P P P P P   (27) 

If the dispatch levels PG,q,t
min  and PG,q,t

max  are determined from 
the LP problem (19)-(23), (27) can be further expressed as 
follows: 

 down min max max min up
, , , , , , 1 , , , , 1 , , , , 1 , , .G q t G q t G q t G q t G q t G q t G q t G q t        R P P P P P P R  (28) 

Based on (28), (xq,θB,q) within Yq also satisfies the constraint 
(12) in Xq. Consequently, the point (PB,q, zq) within Rq is also 
within Ωq, i.e., Rq is a subset of Ωq. 

2) Ωq is a subset of Rq. For the point (PB,q, zq) within Ωq, a 
feasible (xq, θB,q) exists within Xq. Note that Xq contains the 
constraints (3)-(12) across all the time periods while Yq only 
contains the constraints (3)-(11) across all the time periods. 
Consequently, for the same point (PB,q, zq), the same (xq, θB,q) 
within Xq is also within Yq. In other words, the point (PB,q, zq) 
within Ωq is also within Rq, i.e., Rq is a subset of Ωq.                  ■ 
Remark 2. Proposition 1 implies that the complete tie-line 
security region across all the time periods can be a Cartesian 
production of tie-line security regions at each time period. 
Consequently, the calculation of Ωq relies on the calculation of 
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Ωq,t that is in the domain of (PB,q,t, zq,t). This alleviates the 
computational burden brought by multiple time periods.         ■                                      

As demonstrated in Proposition 1 and Remark 2, the tie-line 
security region Ωq,t should be calculated. However, the 
dimension of Ωq,t is nB,q+1. When facing multiple border buses, 
the computational burden of calculating Ωq,t would be heavy. 
This will be resolved in next subsection by aggregating tie-line 
power. 

B. Aggregation of tie-line power 

The key idea of reducing the dimension of Ωq,t lies in 
representing Ωq,t in a new domain of (P෩B,q,t, zq,t) instead of the 
original domain of (PB,q,t, zq,t), where the dimension of P෩B,q,t is 
smaller than that of PB,q,t. This can be achieved by establishing a 
mapping function from PB,q,t to P෩B,q,t. In this paper, the mapping 
function is explicitly established by 1) categorizing tie-line 
power into groups, and 2) aggregating PB,q,t as P෩B,q,t, as will be 
elaborated in coming contents. 

Geographically, different tie-lines are located between 
different regional power systems. In this paper, PB,q,t is 
categorized based on its geographic locations, i.e., the tie-line 
power at the same border interface is categorized into the same 
group. For the tie-line power in each group, they are aggregated 
as one equivalent tie-line power as described below. 

 , , , ,
1

, ,
j

i

n
jj

B q t B q t
i

P P j


                         (29) 

where PB,q,t
ji  is the tie-line power from PB,q,t and belongs to the 

jth group; 𝑃෨B,q,t
j  is the aggregated tie-line power in the jth group; 

nj is the number of aggregated tie-lines in the jth group.  
Based on the aggregation in (29), PB,q,t can be mapped to 

P෩B,q,t=ൣ𝑃෨B,q,t
1 … 𝑃෨B,q,t

K ൧
T

. This provides an opportunity to 
represent Ωq,t in the domain of (P෩B,q,t, zq,t) instead of (PB,q,t, zq,t).  
However, Ωq,t defined in (24) arises from the operating region 
Yq,t where PB,q,t instead of  P෩B,q,t  exists. Proposition 2 is 
presented to incorporate P෩B,q,t into Yq,t.  
Proposition 2. Denote a polytope Ω෩ q,t as   

    , , , , , , , , , ,, , , ,q t B q t q t q t B q t B q t q tz  Ω P x θ P Y        (30) 

where Y෩q,t is revised from Yq,t as follows: 

, , , , , , ,B q t B q t B q tP A P                               (31) 

 , , , , , , , , , , , , , , , , , , ,T T T T
G q t G q t B q t B q t R q t R q t R q t D q t D q t   e P e P e P C e P (32) 

  
 

 
, , , , , , , , , ,

max
, , , , , , , , , , , , , , ,

G q t G q t B q t B q t B q t

R q t R q t R q t D q t D q t F q t B q t

 

    

A P α P β

A P C A P P ε


    (33) 

 
 

min
, , , , , , , , , , , , , ,

, , , , , , , , , , ,

F q t B q t G q t G q t B q t B q t B q t

R q t R q t R q t D q t D q t

   

  

P ε A P α P β

A P C A P


         (34) 

min,re max,re
, , , , , , ,B q t B q t B q t P P P                               (35) 

Constraints (4), (7) and (9)-(11).                       (36) 
The notations mentioned above can be found in the 

constraints (3)-(11), except: 1) the constant matrix A෩B,q,t in the 

constraint (31), 2) the vectors PB,q,t
min,re  and PB,q,t

max,re  in the 

constraint (35), and 3) the vectors α෤B,q,t  and β෨B,q,t  in the 

constraints (33)-(34), and 4) the error bound εB,q,t in the 
constraints (33)-(34). They will be elaborated below. 

The constraint (31) is a compact form of (29), leading to the 
easy calculation of A෩B,q,t based on (29). Each element in PB,q,t

min,re 
(resp. PB,q,t

max,re) can be determined by solving an LP problem 
where the objective function is the minimum (resp. maximum) 
corresponding tie-line power subjected to the constraints (3)
-(11). For α෤B,q,t  and β෨B,q,t , they are determined based on the 

method presented in Appendix. As presented in Appendix, the 
following property holds: 

  , , , , , , , , , , , , , , .B q t B q t B q t B q t B q t B q t B q t    ε A P α P β ε   (37) 

Note that the error bound εB,q,t is non-negative and is an 
explicit function of α෤B,q,t  and β෨B,q,t , as also calculated in 

Appendix.  
Based on definitions mentioned above, for the point (P෩B,q,t, 

zq,t) within Ω෩ q,t, a feasible (xq,t, θB,q,t, PB,q,t) exists within Y෩q,t. At 
the same time, (xq,t, θB,q,t, PB,q,t) within Y෩q,t also satisfies the 
constraints (3)-(11) that construct Yq,t. In other words, Ω෩ q,t 
provides an inner estimation of Ωq,t in the domain of (P෩B,q,t, zq,t). 

                                                                                              ■ 
Proof. This proof is completed by checking the existence of the 
constraints (3)-(11) when (xq,t, θB,q,t, PB,q,t) within Y෩q,t is given.  
 The constraints (4) and (9)-(11) hold because they are also 

incorporated in Y෩q,t via the constraint (36). 
The existence of the constraint (3) can be checked based on 

the constraints (31)-(32). The constraint (31) is a compact form 
of (29) that describe the aggregation of tie-line power. 
Particularly, each tie-line power only belongs to a group. This 
feature yields 

, , , , , , , , ,T T
B q t B q t B q t B q te P e P                         (38) 

where e෤B,q,t is an all-one vector associated with P෩B,q,t.  
Substituting (38) into the constraint (3) yields the constraint 

(32), i.e., the constraint (3) holds. 
 The constraint (8) holds because the parameters in (35) are 

determined when the constraint (8) holds. 
 The constraints (5)-(6) hold due to the constraints (33), 

(34) and (37). The constraint (37) is expanded as follows:  

 , , , , , , , , , , , , ,B q t B q t B q t B q t B q t B q t  A P ε α P β        (39) 

, , , , , , , , , , , , .B q t B q t B q t B q t B q t B q t  α P β ε A P          (40) 

Combing the constraints (33) and (39) yields:  
 

   
, , , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , , ,

max
, , , , ,

G q t G q t B q t B q t R q t R q t R q t D q t D q t B q t

G q t G q t B q t B q t B q t R q t R q t R q t D q t D q t

F q t B q t

    

     

 

A P A P A P C A P ε

A P α P β A P C A P

P ε

  (41) 

i.e., the constraint (5) holds. 
Similarity, the existence of the constraint (6) can be checked 

based on the constraints (34) and (40).                                     ■ 
Remark 3. Denote the number of groups as Kq. In power 
industries, Kq can be a small positive integer although multiple 
tie-lines can exist between different regional power systems. In 
other words, Kq is usually much smaller than nB. Consequently, 
the dimension of Ωq,t decreases from nB +1 to K+1 based on (29) 
if Ω෩ q,t is employed to estimate Ωq,t.                                              ■ 
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As demonstrated in Proposition 2 and Remark 3, the task of 
calculating Ωq,t comes down to the calculation of Ω෩ q,t that is in 
the domain of (P෩B,q,t, zq,t). This calculation can be achieved by 
the following vertex search method: 

Step 1: Subjected to Y෩q,t, several LP problems that separately 
explore the minimum and maximum of each element in (P෩B,q,t, 
zq,t) are solved. Denote optimal solutions associated with (P෩B,q,t, 
zq,t) as a set V0.  

Step 2: Points in V0 represent a polytope R. Denote the 
half-space representation of the polytope R as Aq,tP෩B,q,t+Bq,tzq,t 
≤Cq,t, where Aq,t and Bq,t are coefficient matrices and Cq,t is a 
coefficient vector.  

Step 3: For each facet of the polytope R, the following LP 
problem is solved: 

 
, , , , , , , ,

( ) ( )
, , , ,

, , , ,
max ,

B q t q t q t B q t B q t

k k
q t B qt q t q t

z
z

P x θ P
A P B


    (42) 

s.t.           , , , , , , , , ,( , , , , ) ,B q t q t q t B q t B q t q tz P x θ P Y              (43) 

where Aq,t
(k)  and Bq,t

(k)  are the kth-row matrices in Aq,t and Bq,t, 
respectively. 

The intuitive explanation of the LP problem (42)-(43) is to 
move the facet Aq,t

(k)P෩B,q,t+Bq,t
(k)zq,t as far as possible away from 

the center of Ω෩ q,t. Once the LP problem (42)-(43) is solved, 
denote all optimal solutions associated with (P෩B,q,t, zq,t) as a set 
Vnew. Let {Vnew∪V0}→V0. This constructs a new polytope 
Rnew. 

Step 4: The difference between R and Rnew can be measured 
by shape changes. To quantify shape changes, the difference 
between the volume of R and the volume of Rnew is calculated 
[15]. Once the difference is smaller than a given threshold, the 
feasible region Ω෩ q,t  can be regarded as the polytope Rnew; 
otherwise, let Rnew→R and go back to Step 3. 

Denote the final half-space representation of Ω෩ q,t as 

   ( ) ( ) ( )
, , , , , , , , , , ,, ,P z Pz

q t B q t q t B q t B t B q t q t q tz z Ω P A P A B     (44) 

where AB,q,t
(P)  and AB,q,t

(z)  are constant matrices obtained in the 

four steps mentioned above; Bq,t
(Pz) is a constant vector obtained 

in the four steps mentioned above.  
Remark 4. The calculation of Ω෩ q,t is a projection of Y෩q,t from 
the domain of (P෩B,q,t, zq,t, xq,t,θB,q,t) to the domain of (P෩B,q,t, zq,t). 
The four steps mentioned above pave an way to explore Ω෩ q,t by 
finding its vertices. Particularly, zq,t at vertices are either 
zq,t= eR,q,t

T CR,q,t or zq,t= eR,q,t
T PR,q,t based on (11) that is 

incorporated in Y෩q,t. Also, each vertex is found in the Step 3 by 
solving the LP problem (42)-(43) that moves a hyperplane as 
far as possible away from the center of Ω෩ q,t. Consequently, zq,t 
at certain vertices reaches the infimum of eR,q,t

T CR,q,t. This 
preserves the information of the objective function (14) in our 
tie-line security region.                                                             ■ 

Once the tie-line security region is obtained based on the four 
steps mentioned above, the coordination in an interconnected 
power system can be achieved under a decentralized and 
non-iterative framework, as will be elaborated in Sec. V. 

V. RENEWABLE ACCOMMODATIONS VIA TIE-LINE SECURITY 

REGIONS 

In this section, the tie-line security region obtained in Sec. IV 
will be utilized for renewable accommodations in an 
interconnected power system under a decentralized and 
non-iterative framework. To achieve this goal, the coupling 
constraints (16) will be explicitly formulated over the tie-line 
security region in Sec. V-A. Furthermore, an LP problem to 
reduce renewable curtailments by coordinating tie-line power 
and border angles will be established within the tie-line security 
regions of different regional power systems. 

A. Reformulation of the coupling constraints (16) over the 
tie-line security region 

For the regional power system q, its PB,q,t and θB,q,t are 
incorporated into the coupling constraints (16). The term PB,q,t 
has been involved in the tie-line security region Ω෩ q,t by P෩B,q,t. 
However, the term θB,p,t is not involved in the tie-line security 
region Ω෩ q,t. Once θB,q,t is formulated as a function of P෩B,q,t, the 
coupling constraints can be easily expressed over the tie-line 
security region. Proposition 3 is presented to construct the 
relationship between θB,q,t and P෩B,q,t. 
Proposition 3. Denote vertices of Ω෩ q,t  as the set V that is 
described as follows: 

     ( ) ( )
, , , ,, , 1, 2,..., ,i i

B q t q t q tz i SV P   (45) 

where Sq,t is the number of vertices; (P෩B,q,t
(i)

, zq,t
(i) ) is the ith vertex.  

All vertices in the set V are found by repeatedly solving the 
LP problem (42)-(43). For the ith vertex obtained by solving the 
LP problem (42)-(43), a corresponding point (xq,t

(i) , θB,q,t
(i) , PB,q,t

(i) ) 

exists within Y෩q,t.  
Based on the definitions mentioned above, the relationship 

between θB,q,t and P෩B,q,t
(i)

 can be expressed in the following. 

 
,

( )
, , , , , ,

1

,
q tS

i
B q t q t i B q t

i




P P    (46) 

 
,

( )
, , , , , ,

1

,
q tS

i
B q t q t i B q t

i




θ θ   (47) 

 
,

( )
, , , ,

1

, , ,
q tS

i
q t q t i q t

i

z z q t


     (48) 

 
,

, , , , ,
1

0, 1,2,..., , 1.
q tS

q t i q t q t i
i

i S 


           (49) 

■ 
Proof. This proof is completed by checking the existence of 
Y෩q,t when the relationship in (46)-(49) is given. Considering the 
convexity of Y෩q,t, each point (P෩B,q,t,zq,t,xq,t, θB,q,t, PB,q,t) within 
Y෩q,t can be a convex combination of vertices, i.e., 

       

       
,

, , , , , , , ,

( ) ( ) ( ) ( ) ( )
, , , , , , , , , ,

1

,
q t

TT T T T

B q t q t q t B q t B q t

S TT T T Ti i i i i
q t i B q t q t q t B q t B q t

i

z

z


 
  

    

P x θ P

P x θ P




 (50) 

where ∑ λq,t,i
Sq,t

i=1 =1 and λq,t,i ൒ 0 for i={1,2,…,Sq,t}. 
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The relationship in (46)-(49) holds due to (50).                             ■ 
Based on Proposition 3, the coupling constraint between 

different regional power systems can be formulated as the 
combinations of (16) and (46)-(49). Such a reformulation is 
over the tie-line security region. 

B. Renewable accommodations via tie-line security region 

The following LP problem is designed to reduce renewable 
curtailments via tie-line security regions: 

 
 , , , , , , , , , ,

,
, , , , , , 1 1

min ,
Q T

q t B q t B q t B q t q t i

n n

q t
z q t i q t

z
     


P P θ

  (51) 

s.t. , , , , , , , , , , , , , , ,B q t B p t B p B p t B q B q t q p t p q      P P D θ D θ   (52) 

 
,

( )
, , , ,

1

, , ,
q tS

i
q t q t i q t

i

z z q t


      (53) 

,
( )

, , , , , ,
1

, , ,
q tS

i
B q t q t i B q t

i

q t


  P P                        (54) 

,
( )

, , , , , ,
1

, , ,
q tS

i
B q t q t i B q t

i

q t


  θ θ                      (55) 

 , , ,0, 1,2,..., , , ,q t i q ti S q t                        (56) 

,

, ,
1

1, , ,
q tS

q t i
i

q t


                                (57) 

, , , , , , , , ,B q t B q t B q t q t  P A P                         (58) 

min,re max,re
, , , , , ,B q t B q t B q t P P P .                          (59) 

The objective function is to reduce renewable curtailments 
because zq,t is the variable associated with the total renewable 
curtailments in each regional power system, as defined in Sec. 
III. The constraints (52)-(57) over the tie-line security region 
are the coupling constraints between different regional power 
systems, as mentioned in Sec. V-A. The constraint (58) is the 
mapping between P෩B,q,t and PB,q,t when PB,q,t is restricted by its 
upper and lower limits (59), as mentioned in Sec. IV.  

By solving the LP problem (51)-(59), PB,q,t and θB,q,t can be 

fixed as (PB,q,t
* , 𝛉B,q,t

* ). Given (PB,q,t
* , 𝛉B,q,t

* ), the following LP 
problem can be solved by the regional power system q for its 
decisions: 

 , ,

,
, , 1

min ,
T

q t q t

n

q t
z t t

z
 


x
                               (60) 

s.t.             * *
, , , , , , ,, , , , .q t B q t B q t q t q tz t x P θ X                  (61) 

Remark 5. The LP problem (51)-(59) is solved over the tie-line 
security region. Consequently, the coordination to reduce 
renewable curtailments among different regional power 
systems is achieved under a decentralized and non-iterative 
framework.                                                                               ■ 
Remark 6. The decisions made by solving the LP problem (51)
-(59) guarantee the feasibility of the original constraints (3)
-(13). This arises from that the constraints (51)-(59) are 
designed from Propositions 1-3 whose preconditions are the 
feasibility of the constraints (3)-(13).                                       ■ 

The flowchart of renewable accommodations based on the 
tie-line security region is shown in Fig. 1. 

VI. CASE STUDIES 

The presented methods are verified in the IEEE 9-bus system, 
a 661-bus utility system, and a five-region system. Firstly, the 
presented fast calculation method is verified in the IEEE 9-bus 
test system in Sec. V-A. Secondly, the computational 
performance of the presented fast calculation method is 
compared with the representatives in a 661-bus utility system in 
Sec. V-B. Finally, the presented method for renewable 
accommodations via the tie-line security region is verified in a 
five-region system in Sec. V-C. 

All numerical results are calculated with MATLAB 2015b 
and performed on a desktop computer with Intel (R) Core (TM) 
i5-4460 CPU @ 3.20GHz 8.00G RAM. All LP problems are 
solved via YALMIP and CPLEX. 

A. Verification of the presented fast calculation method 

The fast calculation method presented in Sec. IV relies on the 
decomposition of time periods and aggregation of tie-line 
power. They are verified in the IEEE 9-bus test system in this 
subsection. 

 
Fig. 1 Flowchart of the presented methods 

First stage: 
The regional power system q calculates 

its tie-line security region

START

The regional power system q decomposes the tie-line security region across all 
the time periods by solving (19)-(23) 

For the tie-line security region at each time period, the constraints (31)-(36) are 
constructed to implement the vertex search method in Sec. IV-B

The tie-line security region        at time period t is obtained, as formulated in (44)  ,q tΩ

The tie-line security region        at time period t is calculated asqΩ

,1 , , Tq q q t q n    Ω Ω Ω Ω   

Solve the LP problem (51)-(59) to determine the tie-line power and border
angles as            * *

, , , ,,B q t B q tP θ

Given                   , the regional power system q determines its decisions by 
solving the LP problem (60)-(61)  

 * *
, , , ,,B q t B q tP θ

END

Second stage: 
The central coordinator determines tie-line power 

exchanges and border angles

Third stage: 
The regional power system q makes its decisions
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 Verification of the decomposition of time periods 
The decomposition of time periods presented in Sec. IV-A is 

verified in the IEEE 9-bus test system with two time periods 
[21]. Each border bus is connected with a tie-line. 

As demonstrated in Sec. IV.A, the complete tie-line security 
region across time periods 1 and 2 is a Cartesian product of the 
tie-line security region at each time period. To verify the 
legality of the decomposition, 10000 points are randomly 
selected from our feasible region across two time periods. For 
each point, the feasibility of the original constraints (3)-(14) is 
checked by solving the OP1 problem. Numerical experiments 
are listed in Table 1. It can be found that time coupling is not 
violated in the presence of our decomposing time periods 

Table 1 Numerical results to verify the decomposition 
 Feasible point Infeasible point 

Number 10000 0 

 Verification of aggregating tie-line power 
The aggregation of tie-line power presented in Sec IV-B is 

verified in the IEEE 9-bus test system under a single time 
period [21]. Four border buses 1, 3, 7, and 9 are respectively 
connected with four tie-lines. Four tie-lines are categorized into 
two groups. Tie-lines connected to buses 1 and 9 are in one 
group, while tie-lines connected to buses 3 and 7 are in another 
group. Furthermore, the tie-line security region is calculated, as 
shown in Fig. 2. 

 
Fig. 2 Tie-line security region after aggregation. P෩B1 is the aggregation of 

tie-lines at buses 3 and 7. P෩B2 is the aggregation of tie-lines at buses 1 and 9. z is 
the additional variable associated with renewable curtailments. 

To verify the tie-line security region shown in Fig. 2, 10000 
points are randomly selected. For each selected point, the 
feasibility of the original constraints (3)-(14) is checked by 
solving the OP1 problem. The numbers of feasible points and 
infeasible points are listed in Table 2. As shown in Table 2, all 
selected points are feasible. In other words, the aggregation of 
tie-line power presented in Sec. IV-B can guarantee the 
feasibility of the original constraints (3)-(14). 

Table 2 Numerical results to verify the aggregation 
 Feasible point Infeasible point 

Number 10000 0 

B. Comparison of computational performance  

In this subsection, the computational performance of the 
following five methods is compared: 

M1: The fast calculation method presented in Sec. IV. 
M2: The method based on multi-parametric programming in 

[12]. 
M3: The method based on vertex search in [14]. 
M4: The method based on the simple and heuristic 

decomposition in [15]. 
M5: The method based on Fourier-Motzkin elimination [16]. 

The five methods mentioned above are tested in a 661-bus 
utility system with six time periods. Three border buses are 
correspondingly connected by three tie-lines. The 
computational time of different methods is listed in Table 3.  

Table 3 Computational time of five methods 
Method M1 M2 M3 M4 M5

Time (seconds) 11.3 >3600 >3600 2908.6 >3600

In this test system, the M1 method (i.e., our methods) has the 
least time because the computational burden brought by 
multiple time periods and border buses are resolved. The M2, 
M3 and M5 method cannot obtain the tie-line security region 
within one hour because of the heavy computational burden, as 
analyzed in Sec. II. Particularly, the M4 method obtains its 
result at the expense of 2908.6 seconds. This arises from that 
the computational burden the computational burden brought by 
multiple time periods is handled by simply decomposing as the 
union of a few lower-dimension polytopes at certain 
combinations of different time periods, while the 
computational burden brought by multiple border buses still 
remains.  

Furthermore, the feasibility of the tie-line security regions 
obtained by the M1 and M4 methods are compared. The same 
way in Table 2 is employed to check their feasibility.  The 
numerical results are listed in Table 4. As shown in Table 4, the 
M1 method can guarantee the feasibility, as have been shown in 
Sec. VI-A. As for the M3 method, 2342 points selected from its 
tie-line security region are infeasible. This arises from its 
simple and heuristic decomposition of time periods, as also 
demonstrated in Fig. 5 in  [15]. 

Table 4 Numerical results of checking the feasibility 

Method 
Number of total 
selected points

Number of 
feasible points 

Number of 
infeasible points

M0 10000 10000 0
M3 10000 7658 2342

C. Verification of renewable accommodations via the tie-line 
security region 

In this subsection, a five-region system that is constructed 
from a 661-bus utility system with 24 time periods is employed 
to verify renewable accommodations via the tie-line security 
region. The diagram of such a five-region system is shown in 
Fig. 3. 

 
Fig. 3 Diagram of a five-region system 

In the five-region system, renewable accommodations under 
the following two different frameworks are compared: 

F1: No power exchanges among different regional power 
systems. 

P෩B1(MW)P෩B2(MW) 

z(MW) 
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F2: The decentralized framework and non-iterative 
framework based on Fig. 1, i.e., renewable accommodations are 
implemented via our tie-line security region. 

Two frameworks are implemented under 50 renewable 
scenarios. Their renewable accommodations are compared in 
Fig. 4. It can be found that renewable accommodations under 
F2 are higher than those under F1. This revisits the necessity of 
accommodating renewables via tie-line power exchanges. 

 
Fig. 4 Renewable curtailments under 50 renewable scenarios 

Furthermore, the computational time under F2 is listed in 
Fig. 5. Its major computational burden lies in two parts: one is 
to calculate tie-line security regions of R1-R5, and the other one 
is the coordination by solving (51)-(59) and (60)-(61). As 
shown in Fig. 5, the computational time of calculating a tie-line 
security region is not more than 700 seconds under the tested 50 
renewable scenarios. As for the coordination by solving (51)
-(59) and (60)-(61), its computational time is not more than 
three seconds. Consequently, it is believed that our method can 
provide an opportunity to coordinate renewable 
accommodations via tie-line security regions when a limited 
time is required in power industries. 

 
Fig. 5 Computational time under F2 

VII. CONCLUSIONS 

A tie-line security region is essentially a high-dimension 
polytope when multiple time periods and multiple border buses 
inherently in power system operations are involved. Its 
calculation suffers a considerable computational burden in the 
existing methods. Consequently, the fast calculation of a 
tie-line security region with multiple time periods and multiple 
border buses is studied in this paper, together with its 
application to facilitate renewable accommodation in an 
interconnected power system.  

The computational burden brought by multiple time periods 
is avoided by leverages dispatch levels with which ramp rate 
constraints always hold even if ramp rate constraints are 
neglected. Consequently, the tie-line security region across all 
the time periods can be decomposed as a Cartesian production 
of the lower-dimension tie-line security region at each time 
period.  

Furthermore, for the tie-line security region at each time 
period, the computational burden brought by multiple border 
buses is alleviated by aggregating tie-line power. The explicit 
mapping function and constraints are designed to guarantee the 
feasibility of the original tie-line power recovered from the 
aggregated tie-line power.  

Also, an additional dimension associated with minimum 
renewable curtailments is incorporated in the tie-line security 
region. This facilitates the coordination of renewable 
accommodations via the tie-line security region. Based on the 
tie-line security region, a linear programming problem is 
designed for renewable accommodations in an interconnected 
power system under a decentralized and non-iterative 
framework. Case studies based on the IEEE 9-bus system, a 
661-bus utility system and a five-region system corroborate the 
effectiveness of the presented methods. 

APPENDIX 

The lth element in AB,q,tPB,q,t in (5)-(6) can be separated based 
on the groups of tie-line power, as described below. 

,
, , , , , , , ,

1 1

,
j

i i

nK
l j jl

B q t B q t B q t B q t
j i

P
 

 
   

 
 A P                  (A1) 

where AB,q,t
l  is the lth-row matrix of AB,q,t; αB,q,t

l,ji  is the 

coefficient in AB,q,t
l  and is associated with PB,q,t

ji .  

In this paper, the term ∑ αB,q,t

l,jinj

i=1 PB,q,t
ji  is approximated by 

α෤B,q,t
l,j PB,q,t

j +β෨B,q,t

l,j
, where PB,q,t

j  is the aggregation of ∑ PB,q,t
jinj

i=1  as 

shown in (29). In other words, AB,q,tPB,q,t in (5)-(6) is 

approximated by α෤B,q,t𝑷෩B,q,t+β෨B,q,t by calculating α෤B,q,t
l,j  and β෨B,q,t

l,j
. 

Their error can be bounded by the error bound εB,q,t whose 
dimension is the number of rows in AB,q,t. The lth element in 
εB,q,t is denoted as 𝜀B,q,t

l , which can be calculated in the 
following: 

,
, , , ,

1

,
K

l l j
B q t B q t

j

 


                            (A2) 

where 𝜀B,q,t
l,j

 is calculated in the following: 
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   , ( )
, ,, , , ,

, ( ) ( ), , ,
, , , , , , , , , , , ,

, 1 1

min max ,
j j

i i i

l j l ji
B q tB q t B q t

n n
l j j jl j l j l j

B q t B q t B q t B q t B q t B q t
P i i

P P
 

   
 

 
    

 
 

 (A3) 

s.t.                                      Constraints (35).                          (A4) 
For convenience of discussion, (A3)-(A4) are equivalently 

formulated as the following problem: 

 
0 0

0 0 0
,, 1 1

min max ,
s

S S

s s s
x sa b s s

a x a x b
  

 
   

 
             (A5) 

s.t.                                      max0 , .s sx x s                                      (A6) 

Note that the lower bound xs is zero. This can be achieved by 
simple linear transformation. In addition, the coefficients in 
(A5) are ranked by the following rule: 

1 2 ... ,na a a                               (A7) 

The global optimal solution of (A5)-(A6) can be explicitly 
formulated as follows (see Theorem 2 in [20]): 

*
0 ,ca a                                       (A8) 

 * * max
0 0

1

1
,

2

S

s s
s

b a a x


                         (A9) 

1 1
* max max * max max
0 0

1 1 1

1
,

2

n c c n

s s s s s s
s c s s s

a x a x a x x
 

   

  
     

  
    (A10) 

where the index c is determined in the following way: 

10, 0,c c                               (A11) 

where λj in (A11) is denoted as 
1

max max

1

.
j n

j s s
s s j

x x


 

                        (A12) 

Based on (A2)-(A3) and (A8)-(A10), α෤B,q,t
l,j  and β෨B,q,t

l,j
 can be 

easily obtained to construct the constant  α෤B,q,t, β෨B,q,t and εB,q,t. 
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