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Abstract. We present extensive new direct path-integral Monte Carlo results

for electrons in quantum dots in two and three dimensions. This allows us to

investigate the nonclassical rotational inertia (NCRI) of the system, and we find an

abnormal negative superfluid fraction [Phys. Rev. Lett. 112, 235301 (2014)] under

some conditions. In addition, we study the structural properties by computing

a sophisticated center-two particle correlation function. Remarkably, we find no

connection between the spatial structure and the NCRI, since the former can be nearly

identical for Fermi- and Bose-statistics for parameters where the superfluid fraction is

diverging towards negative infinity.

Keywords: Quantum Dots, Path-integral Monte Carlo, Superfluidity

1. Introduction

The study of fermionic many-body systems at finite temperature constitutes a highly

active field of research, offering a plethora of interesting physical effects. Prominent

examples include ultracold atoms [1, 2] such as 3He [3, 4, 5, 6, 7], which undergoes

a pairing-induced superfluid phase transition at low temperature [8] and exhibits

an intriguing, non-trivial phonon-roton-maxon dispersion relation in the spectrum of

collective excitations [5, 6, 7]. A second relevant example is given by exotic warm dense

matter [9, 10, 11, 12, 13], which naturally occurs in astrophysical objects like brown

dwarfs [14, 15] and giant planet interiors [16, 17], and has been predicted to manifest

on the pathway towards inertial confinement fusion [18].

A particularly interesting system is given by electrons in quantum dots [19], which

are studied in the present work. First and foremost, we mention that these exhibit

a number of interesting physics, like the quantum breathing mode response to a
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monopole excitation [20, 21], and the formation of Wigner molecules [22] and even

crystallization [23] at strong coupling. A further important research topic regarding

electrons in quantum dots is the investigation of addition energies [24, 25, 26], which

can be directly compared to experimental measurements [27]. Moreover, we mention the

formation of vortices and their dependence on the respective spatial structure [28, 29],

and the rich interplay of the rotational inertia with a strong external magnetic field [30].

From a theoretical perspective, the accurate description of all aforementioned

systems requires to simultaneously take into account i) coupling effects due to the

interactions, ii) thermal excitations as a result of the finite temperature, and iii) quantum

degeneracy effects like Pauli blocking since identical fermions are indistinguishable. In

addition, confined few-body systems [31] additionally require to take into account the

interplay between i)-iii) and iv) the external potential, which, in the present study, is

modelled as a harmonic oscillator. Due to these challenges, electrons in quantum dots

constitute a rigorous benchmark that is often used to test novel many-body methods,

e.g., Refs. [32, 33, 34, 35, 36, 37, 38, 39, 40, 41].

In the present work, we use the direct path-integral Monte Carlo (PIMC)

method [42, 43] without any nodal constraints [44] to simulate electrons in both 2D and

3D harmonic confinements. Therefore, our simulations are afflicted with the notorious

fermion sign problem (FSP) [45, 46, 47], but are exact within the given Monte Carlo

error bars, which allows for a rigorous treatment of the intriguing interplay between

the effects i)-iv) mentioned above. From a practical perspective, the PIMC method

gives us direct access to the superfluid fraction of the system [48, 49], which exhibits

a remarkable abnormal divergence towards negative infinity in the case of fermions for

some conditions [50, 51]. This effect was first reported by Yan and Blume [50] for

a short-range pair potential and subsequently found by Dornheim [51] for quantum-

dipole systems, and has been explained in terms of the symmetry of the thermal density

matrix. Here, we extend these considerations to electrons in quantum dots and find

analogous behaviour. In addition, we study the structural properties of the system

using a recently suggested center-two particle (C2P) correlation function [52], which

efficiently takes into account the rotational symmetry of the system. This allows us to

resolve the interesting interplay between quantum statistics and the Coulomb interaction

between pairs of electrons, and to explore the connection between the aforementioned

abnormal superfluid fraction and the static structure.

The paper is organized as follows: In Sec. 2, we introduce the relevant

theoretical background including the model system (1), the utilized PIMC simulation

approach (2.2), the estimation of the superfluid fraction (2.3), and finally the center-two

particle correlation function (2.4). Sec. 3 is devoted to the presentation of our extensive

new simulation results, which we start by shortly revisiting the noninteracting system

in Sec. 3.1. Subsequently, we study both the superfluid fraction and the structural

properties of electrons in quantum dots, focusing on the dependence on the temperature

(3.2), on the system-size (3.3), and on the coupling strength (3.4). The paper is

concluded with a concise summary and outlook in Sec. 4.
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2. Theory

2.1. Model system

We consider N spin-polarized electrons in both two- and three-dimensional quantum

dots, which we model by a simple harmonic potential [19]. This gives the Hamiltonian

Ĥ = −1

2

N∑
k=1

∇2
k +

1

2

N∑
k=1

r̂2
k +

N∑
k>l

λ

|̂rl − r̂k|
, (1)

where we assume oscillator units, corresponding to the characteristic length l0 =√
~/mΩ (with Ω being the trap frequency) and energy scale E0 = ~Ω. The first

term corresponds to the kinetic contribution K̂ and the last two terms to the external

potential and the Coulomb interaction, V̂ext and Ŵ , respectively. Moreover, the

coupling constant λ can, in principle, be tuned in experiments [53].

2.2. Path-integral Monte Carlo

We use the direct path-integral Monte Carlo method [54, 55], see Ref. [42] for an

extensive review article. In a nutshell, the basic idea behind PIMC is to stochastically

sample the thermal density matrix in the canonical ensemble

ρ(R1,R2, β) = 〈R1| e−βĤ |R2〉 , (2)

where Ĥ is the Hamiltonian, β = 1/kBT the inverse temperature, and R = (r1, . . . , rN)T

contains the coordinates of all N particles. While a direct evaluation of Eq. (2) is not

possible as different contributions to the full Hamiltonian do not commute, one makes

use of a Trotter decomposition [56] into P terms that are each given at P -times the

original temperature. The resulting scheme becomes exact in the limit of large P and the

respective convergence has been carefully checked; see Ref. [57] for a detailed discussion

of different factorization schemes. The PIMC method thus allows for the quasi-exact

evaluation of thermal expectation values

〈Â〉 = Tr
(
e−βĤÂ

)
(3)

within the given Monte Carlo error bar, which scales as ∆A ∼ 1/
√
NMC with the

number of Monte Carlo samples NMC. In practice, we use a canonical adaption [58] of

the worm algorithm presented by Boninsegni et al. [59, 60].

An additional obstacle regarding the PIMC simulations of fermions (i.e., particles

obeying Fermi-Dirac statistics such as electrons or protons) is given by the anti-

symmetry of Eq. (2) under the exchange of particle coordinates [43]. First and foremost,

negative terms cannot be interpreted as a probability distribution, and the expectation

value from Eq. (3) gets modified to [47]

〈Â〉 =
〈ÂŜ〉

′

〈Ŝ〉
′ , (4)
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where 〈. . .〉′ denotes the expectation value computed from the absolute values of the

density matrix, and Ŝ measures the respective sign. In particular, the denominator

of Eq. (2) is called the average sign and constitutes a straightforward measure for the

amount of cancellation within the fermionic PIMC simulation. This can easily be seen

by considering the first-order term to the relative statistical uncertainty [61],

∆A

A
∼ 1

S
√
NMC

, (5)

which directly implies that the Monte Carlo error bar increases when the sign gets small.

In fact, S exponentially decreases both with the inverse temperature β and the system

size N , which can be directly translated to ∆A as

∆A

A
∼ eβN∆f√

NMC
, (6)

where ∆f denotes the difference in the free energy density of the original (〈. . .〉) and the

modified (〈. . .〉′) systems. Eq. (6) is the root of the infamous fermion sign problem [47],

as the exponential increase of 〈A〉 can only be compensated by increasing the compute

time as 1/
√
NMC, which quickly becomes infeasible. In fact, Eq. (6) constitutes the

central computational bottleneck in our simulations and limits the feasible system size

to N ≤ 10.

2.3. Superfluid fraction

The superfluid fraction of a finite system is typically defined in terms of its nonclassical

rotational inertial (NCRI), i.e., its response to an infinitesimal rotation. More

specifically, one makes use of the Landau two-fluid model, where the total density is

decomposed into a normal part reacting to the rotation, and a superfluid part that

remains unaffected,

n = nn + nsf . (7)

The corresponding superfluid fraction is then defined as the ratio of the superfluid to

the total density,

γsf =
nsf
n

= 1− I

Icl
, (8)

with I and Icl denoting the actual and classical moments of inertia. Within the path-

integral picture, the former can be straightforwardly estimated as [62]

γsf =
4m2 〈A2

z〉
β~2Icl

, (9)

which is often being referred to as the area estimator in the respective literature. In

particular, Eq. (9) depends on the area that is enclosed by the paths in the plane

perpendicular to the rotational axis,

A =
1

2

N∑
k=1

P∑
i=1

(rk,i × rk,i+1) . (10)
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Figure 1. Illustration of the center-two particle correlation function ρ2(r1, r2, ϑ). Due

to the rotational symmetry of the Hamiltonian Eq. (1), the two-particle correlations

only depend on the relative angle ϑ (denoted as α throughout this work) and the

respective distances to the center of the trap. Taken from Ref. [65]. Reprinted with

permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

For completeness, we note that for an ideal (i.e., noninteracting) system, γsf can be

computed semi-analytically [63, 50], see Ref. [51] for the corresponding formulas.

In addition, we note that a non-zero superfluid fraction as it is defined in Eq. (9)

does not necessarily indicate the usual phenomenon of superfluidity that manifests for

example as a fricitionless flow in ultracold 4He [42]. In fact, superfluidity naturally

emerges as a long-range order in the off-diagonal density matrix [64], which is not

possible for the small system sizes considered in this work. Therefore, one should

interpret it strictly in terms of NCRI defined above. Still, as the term superfluid fraction

has been used throughout the literature [50, 51, 53, 49], we will stick to it here as well.

2.4. Structural properties

The second central aim of the present work is the investigation of the impact of quantum

statistics on the structural properties of electrons in quantum dots. To this end, we

have implemented the center-two particle (C2P) correlation function [52], which has

already been successfully applied to harmonically confined quantum systems in earlier

works [65, 66, 51]. The basic idea is illustrated in Fig. 1, which shows an exemplary

configuration of N = 13 particles in a 2D harmonic trap. Here the shaded red circles

illustrate the quantum smearing of the electrons, distinguishing them from classical point

particles. To characterize two-particle correlations, one can make use of the rotational

symmetry of the problem and use the modified coordinates (distance to the center of

the trap of particles I and II, and the angle between them, called ϑ in Fig. 1 and α

throughout the present work) shown in Fig. 1 without any loss of information. More

specifically, we estimate the corresponding two-particle density matrix ρ2(rI , rII , α) as
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a histogram in our PIMC simulation.

In addition, Thomsen and Bonitz [52] have suggested that it would be advantageous

to filter out effects that are caused by the inhomogeneous density profile n(r) and not

by correlation effects themselves. To this end, the actual C2P is normalized by the

two-particle density matrix of a hypothetical uncorrelated system with the same radial

density profile as the interacting one,

ρ0
2(rI , rII , α) =

N − 1

N
4πrIrIIn(rI)n(rII) , (11)

and is thus given by

gc2p(rI , rII , α) =
ρ2(rI , rII , α)

ρ0
2(rI , rII , α)

. (12)

We note that Eq. (11) does not depend on the angle α by design, as noninteracting

particles are not affected by their relative orientation towards each other.

While the C2P defined in Eq. (12) already constitutes a sophisticated tool for the

investigation of spatial correlations, the visualization and analysis of a 3D quantity is

often difficult. As a final step, we therefore define the integrated C2P

gint
c2p(rI , α; rII,min, rII,max) =

∫ rII,max

rII,min
drIIρ2(rI , rII , α)∫ rII,max

rII,min
drIIρ0

2(rI , rII , α)
, (13)

which can be interpreted in the following way: Eq. (13) constitutes a measure for the

probability to find one particle at distance rI to the center of the trap, with an angular

difference of α to a second particle somewhere in the interval rII,min ≤ rII ≤ rII,max,

where the min and max values are typically chosen as the limits of a shell in the density

profile n(r).

All results for the C2P shown in this work have been obtained according to Eq. (13).

3. Results

3.1. Noninteracting system

Let us start the discussion of our new simulation results with a brief study of the

temperature dependence of the superfluid fraction of noninteracting bosons and fermions

in a 3D harmonic trap. While similar analyses have been presented in 2D in Ref. [51]

and in 3D in Ref. [50], here we select somewhat different parameters. In addition,

the availability of exact analytical results makes it a valuable test case to verify the

implementation of our simulation scheme. Finally, the abnormal superfluid fraction of

interacting electrons presented in a later section follows the same basic mechanism as

the ideal case, which makes it a good starting point.

In Fig. 2, we show results for N = 2 (top left), N = 4 (top right), and N = 6

(bottom) ideal bosons (green) and fermions (red), with the symbols and lines showing

PIMC data and the exact theoretical results. For all three system sizes, the superfluid
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Figure 2. Superfluid fraction γsf [cf. Eq. (9)] for ideal fermions in 3D. The symbols

and lines show our numerical PIMC data and the exact result known from theory.

Results for Bose- and Fermi-statistics are shown in green and red, respectively. Top

left: N = 2; top right: N = 4; bottom: N = 6.

fraction is small and almost equal for bosons and fermions for large temperatures

T = β−1, whereas differences emerge for smaller T . In fact, it always holds

lim
T→∞

γsf = 0 , (14)

as the systems becomes purely classical in this limit, I → Icl. Further, the first

correction to Icl is due to the finite extension λβ =
√

2πβ of quantum particles,

which is similar for both bosons and fermions. With decreasing temperature, the

paths of different particles in a PIMC simulation start to overlap, and the formation of

permutation cycles, i.e., paths containing more than a single particle in them, becomes

increasingly likely; see Ref. [43] for a recent extensive discussion. In practice, this leads

to an increased impact of quantum statistics, which explains the stark qualitative and

quantitative differences between the red and green data sets.

More specifically, bosons always attain a superfluid fraction of one in the limit

of T = 0 at these conditions, independent of the particle number N . Yet, we stress

that this does certainly not mean that ideal bosons become an actual superfluid, as the

Landau criterion requires a small value of the coupling parameter λ in this case [67].

Fermions, on the other hand, exhibit a substantially more complicated behaviour. In

particular, the superfluid fraction diverges towards negative infinity for both N = 2

and N = 6, and attains one for N = 4, although for lower temperatures compares to
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Figure 3. Exact results for the temperature-dependence of the superfluid fraction

γsf for N = 2 particles in a 3D harmonic trap. Solid blue: λ = 0 (ideal); dotted red:

λ = 1; dashed green: λ = 10. The corresponding symbols show PIMC data for the

same parameters.

bosons. This remarkable effect has been explained by Yan and Blume [50] in terms of

the structure of the density matrix. Specifically, it is the presence of an energetically

low-lying state with a finite circulation for some N that leads to a diverging moment of

inertia and to the observed behaviour in γsf.

Finally, we stress the excellent agreement between theory and PIMC data for both

bosons and fermions everywhere, which is a strong verification of our implementation

and analysis. In addition, we note that simulations are restricted to above a minimum

temperature in the case of fermions due to the fermion sign problem (see Sec. 2.2 above),

as can be seen most clearly for the leftmost red data point for N = 4. In contrast,

there is no such issue for bosons, where simulations are possible even at extremely low

temperatures.

3.2. Abnormal superfluid fraction of electrons: dependence on temperature

Let us begin our investigation of interacting electrons by studying the two-particle

Hamiltonian. The relative and center of mass coordinates are separable; the center-

of-mass energy spectrum is solved analytically and the relative energy spectrum is

obtained by the finite-element method. Eigen energies subject to a relative energy

cutoff of around 100~Ω are computed. We calculate the actual moment of inertia I

through I = ~2 〈M2〉th / (kBT ), where M is the angular momentum projection quantum

number and 〈〉 indicates the thermal average [50]. The classical moment of inertia Icl

is obtained from the thermal average
〈∑N

k=1 r
2
k,⊥

〉
. Here r2

k,⊥ is the square of distance

of the k-th particle to the z axis. Due to spherical symmetry, it is related to the trap

energy
〈∑N

k=1 r
2
k,⊥

〉
th

= 4
3

〈∑N
k=1

1
2
r2
k,⊥

〉
th

where the trap energy is then evaluated by
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Figure 4. Temperature dependence of the superfluid fraction γsf for N = 4 (left) and

N = 6 (right) electrons in a 3D harmonic trap. The dashed green, dash-double-dotted

grey, dotted red, and dash-dotted blue curves correspond to λ = 0 (ideal), λ = 0.5,

λ = 3, and λ = 10, respectively. In addition, results for bosons and fermions are

depicted as circles and squares.

converting it to the thermal average of the derivative of the energy with respect to the

trap depth through the Hellmann–Feynman theorem. The solid blue, dotted red, and

dashed green lines in Fig. 3 show the numerical results for λ = 0, λ = 1, and λ = 10.

First and foremost, we note that these results are in excellent agreement to our new

PIMC results, which are depicted by the corresponding symbols. Secondly, we find that

the coupling strength has a comparatively small impact on the behaviour of γsf even for

λ = 10; indeed, the results for moderate coupling (λ = 1) can hardly be distinguished

from the ideal curve. This is a strong indication that the response of electrons in a

quantum dot to an external rotation is largely determined by the properties of the

corresponding noninteracting system.

Let us next consider our new PIMC data for the temperature dependence of γsf
for larger systems that is shown in Fig. 4. The left panel shows results for N = 4

particles, and the squares and circles have been obtained for Fermi- and Bose-statistics.

The green curves show results for the ideal case (λ = 0) already discussed in Fig. 2

above and have been included as a reference. The dash-double-dotted grey curves have

been obtained for a small yet finite value of the coupling parameter, λ = 0.5, and

closely follow the ideal case. In particular, the fermionic results cannot be distinguished

from the noninteracting curve with the bare eye, whereas the gap for Bose-statistics is

significant.

Going to moderate coupling strength, λ = 3 (dashed red), shifts the curves

substantially to the left compared to smaller λ. Heuristically, this can be understood as

follows: due to the stronger Coulomb repulsion, the particles are more clearly separated.
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Figure 5. Temperature dependence of the superfluid fraction γsf for N = 4 (left) and

N = 6 (right) electrons in a 2D harmonic trap. The dashed green, dash-double-dotted

grey, dotted red, and dash-dotted blue curves correspond to λ = 0 (ideal), λ = 0.5,

λ = 3, and λ = 10, respectively. In addition, results for bosons and fermions are

depicted as circles and squares. The data for the ideal system have partly been taken

from Ref. [51].

Consequently, it takes lower temperatures until paths of different particles overlap, which

is the driving mechanism of a large superfluid fraction [49, 53]. Again, we find that the

effect of the Coulomb repulsion is more pronounced in the case of bosons compared to

fermions. The reason for this effect has been reported by Dornheim [51] for the case

of dipole–dipole interaction: for fermions, weak interactions are effectively masked by

the Pauli exclusion principle which separates even ideal fermions from each other; in

contrast, bosons tend to cluster next to each other, and are thus more strongly affected

by the Coulomb repulsion. A more detailed analysis of this effect is presented in Sec. 3.4

below.

Finally, the blue curves correspond to relatively strong coupling, λ = 10.

Interestingly, the curves for the two different types of quantum statistics are quite close

to each other in this case, and both approach unity for similar temperatures.

Let us next consider the same property, but for N = 6 shown in the right panel of

Fig. 4. For bosons, we find a quite similar picture compared to the left panel. Evidently,

the particular particle number does not substantially shape the qualitative physical

behaviour at these conditions. In stark contrast, all fermionic curves attain a maximum

in γsf in the range 0.5 ≤ β ≤ 5 until they diverge towards negative infinity for T → 0.

Still, the impact of the coupling parameter λ is only quantitative, and the main feature

is already present in the ideal case. Furthermore, we again find that fermions are less

affected by the Coulomb repulsion compared to bosons.

In Fig. 5, we present a similar analysis, but for a purely 2D system. The results

are very similar to the 3D case, but the T = 0 limit is flipped in the case of fermions:
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Figure 6. Average sign from the PIMC simulations from Figs. 5 (top row) and 4

(bottom row). The straight lines correspond to exponential fits according to Eq. (15).

for N = 4, γsf diverges towards negative infinity, and for N = 6, it attains unity just as

in the Bose-case. Still, the phenomenological reason is the same for both 2D and 3D: it

is the presence of a state with finite circulation [50] in the respective cases that causes

the negative divergence of the superfluid fraction.

Let us briefly postpone our analysis of the connection of the abnormal superfluid

fraction of fermions to the structural properties of the system to touch upon the

manifestation of the fermion sign problem. In Fig. 6, we show the PIMC expectation

values for the denominator in Eq. (4), i.e., the average sign. The top and bottom rows

have been obtained for 2D and 3D systems, and the left and right columns correspond

to N = 4 and N = 6 spin-polarized electrons. Furthermore, the different data points

distinguish data for various values of the coupling parameter λ. First and foremost,

we note that all depicted curves exhibit the same qualitative behaviour: for small β

(large temperatures), the extension of the paths of different particles is substantially

smaller than the average inter-particle separation. Consequently, permutation cycles

only rarely appear in the PIMC simulation, most configuration weights are positive, and

the average sign is large. With decreasing temperature, the thermal wavelength increases

as λβ ∼
√
β and, eventually, the paths of all particles in the system overlap. This makes

the formation of permutation cycles significantly more likely, configurations with positive

and negative weights appear with a similar frequency in the PIMC simulation, and the

average sign drops. The straight lines in Fig. 6 have been obtained from exponential
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Figure 7. Relative difference in the kinetic energy K (in per cent) between the direct

PIMC estimator and the virial theorem [Eq. (16)] for N = 6 electrons at λ = 3 as a

function of the inverse temperature β. The red circles and blue diamonds correspond

to the 3D and 2D case, and the latter have been shifted upwards (horizontal dotted

grey line) for better visibility. The left and right panels have been obtained for Bose-

and Fermi-statistics.

fits according to

S(β) = ae−bβ (15)

above an empirical minimum value of β, with a and b being the free parameters.

Evidently, the fits are in excellent agreement to the PIMC data, which confirms the

exponential nature of the fermion sign problem reported in earlier studies [47].

A related interesting point is the PIMC estimation of the corresponding energies.

More specifically, we consider the well-known virial theorem [68], which gives a relation

between the kinetic (K), interaction (W ), and external potential (vext) contributions

to the total energy,

K = Vext −
W

2
. (16)

In practice, we directly estimate K in our PIMC simulation using the standard

thermodynamic estimator (see, e.g., Ref. [42]) and compare it to the right-hand side

of Eq. (16). The results are depicted in Fig. 7, where we show the relative deviation

between the two estimations of K in per cent. We note that the virial theorem as it

is given in Eq. (16) is a general property of the Hamiltonian and holds independent of

the particular type of quantum statistics. The left panel has been obtained for Bose-

statistics, and the red circles and blue diamonds show results for the 3D and 2D case,

where the latter have been shifted by 0.2% for better visibility. Evidently, all data

points fluctuate around zero deviation within the given level of statistical uncertainty.

Further, we find that the error bars are only weakly dependent on β, and are of the

order of ∆K/K ∼ 0.01%.

The right panels shows results from the same simulation computed for Fermi-

statistics by evaluating Eq. (4). Again, we find that the data points fluctuate around

zero deviation between the two different estimations of K, which is a strong verification
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Figure 8. Top row: integrated C2P for N = 4 electrons at λ = 10 and β = 10 for

the range 1.5 ≤ rII ≤ 2.5 (horizontal dashed grey lines) for fermions (left) and bosons

(right). Bottom left: Scan-line of the integrated C2P at rI = 2. Bottom right: radial

density profile n(r).

of our simulation scheme and its implementation. Yet, we find a drastic increase of the

error bars with β as predicted by Eq. (6). This nicely illustrates the relative difficulty of

fermionic PIMC simulations compared to the Bose-case, where this problem is absent.

In particular, simulations of as few as four electrons become unfeasible even on modern

supercomputers when the temperature is decreased.

Let us next consider the structural properties of electrons in a 2D quantum dot,

and their relation to the abnormal superfluid fraction reported above. To this end, we

estimate the integrated C2P defined in Eq. (13) in Sec. 2.4. The results are shown

in Fig. 8 for N = 4 at λ = 10 and β = 10. The top row shows the integrated C2P

itself in the α-rI-plane, with the reference particle being located somewhere in the range

1.5 ≤ rII ≤ 2.5 (horizontal dashed grey lines), i.e., around the maximum of the radial

density (see the bottom right panel of Fig. 8). Further, the left and right panels show

results for fermions and bosons, respectively. Naturally, the C2P is fully symmetric in

α around 180 degrees and we restrict ourselves to this half-range. Most importantly,

we find that the type of quantum statistics has only very mild effects on the structural

properties on the system at these conditions. This is a direct consequence of the strong

coupling strength, which effectively separates the paths of individual particles from each

other in the PIMC simulation and suppresses the formation of permutation cycles [43].
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For small angular separations α, the integrated C2P exhibits a pronounced exchange–

correlation hole, followed by a maximum at α = 90, a subsequent minimum which is

substantially less pronounced than the exchange–correlation hole itself, and a second

maximum at the opposite end of the system, i.e., around α = 180. This can be seen

particularly well in the bottom left panel of Fig. 8, where we show a scan-line over the

C2P at rI = 2, see the solid red line in the top row. The red circles and green squares

show results for fermions and bosons, but the deviations between the two data sets can

barely be resolved with the naked eye. From a physical perspective, this indicates that

the most common configuration of particles is given by a single ring around the center

of the trap containing all four particles. This is further substantiated by the radial

density profile n(r) shown in the bottom right panel of Fig. 8. Here the main impact of

quantum statistics can be found around r = 0, where the probability to find a fermionic

particle is reduced compared to the case of bosons.

Let us now connect these findings regarding the structural properties of the system

to the abnormal superfluid fraction investigated above. In particular, it can be seen in

Fig. 5 that γsf strongly depends on the type of quantum statistics at these conditions.

Remarkably, this is not reflected in the structural properties of the system, which,

indeed, can hardly be distinguished at all.

3.3. Particle number dependence

A further interesting topic of investigation is the dependence of the properties of small

electronic systems on the number of particles. In this context, we mention that the

properties of confined few-particle systems often sensitively depend on N , which can

be seen particularly well in the investigation of addition energies [24, 25, 26, 27].

Furthermore, Filinov et al. [53] have found that the nonclassical rotational inertia of

strongly coupled charged bosons exhibits certain ”magic numbers”, where the superfluid

fraction is most pronounced. In this work, we provide a similar analysis for the superfluid

fraction γsf of electrons in quantum dots.

The results are shown in Fig. 9, where we show the N -dependence of γsf both in

2D (left panel) and 3D (right panel) at moderate coupling, λ = 3. The circles and

squares show results for Bose- and Fermi-statistics, and the red and green curves have

been obtained for β = 5 and β = 3. For all depicted cases, the bosonic curves are

quite smooth and exhibit a monotonous increase (the small exception being N = 3 for

β = 3 in 2D) in the superfluid fraction with N . Heuristically, this can be understood as

follows: in the harmonic trap, the average density increases with N . This, in turn, leads

to an increased value of the degeneracy parameter χ = λβ/r, where r is the average

inter-particle distance [49], and thus to an increasing value of γsf.

For fermions, on the other hand, the situation is significantly more complicated and

interesting. In the 2D-case, the superfluid fraction is rapidly oscillating with N , which

is especially pronounced for β = 5. In particular, the negative and positive values of γsf
can be traced back to the ideal case, see Ref. [51] for such data in two dimensions. A
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Figure 9. Superfluid fraction in 2D (left) and 3D (right). Shown is the particle

number dependence for λ = 3 with the squares and circles corresponding to Fermi-

and Bose-statistics, and the dashed green and dotted red lines showing results for β = 3

and β = 5, respectively.

second trend, which can be seen most clearly for β = 3, is given by the overall decrease

of the superfluid fraction with N . This, too, is expected by simple physical intuition.

An increase in N leads to a transition from a finite to a bulk system. For bosons, the

crossover from a normal to a superfluid system then attains the character of a true phase

transition under the right conditions [49]. In contrast, a single species of fermions such

as spin-polarized electrons cannot exhibit the required off-diagonal long-range order [64],

and a corresponding bulk system will thus not be superfluid. This is reflected in the

observed decrease in γsf with N . For completeness, we mention that superfluidity in

Fermi-systems is still possible, but requires a pairing mechanism such as the interaction

with phonons leading to superconductivity [69].

We find similar trends in the case of fermions for 3D systems, although both the

oscillations with N and the decrease with increasing system size are somewhat less

pronounced.

Let us conclude this investigation of the N -dependence by briefly revisiting the

fermion sign problem. To this end, we show the average sign obtained for the simulations

shown in Fig. 9 in Fig. 10. The points show the PIMC data, and the straight lines

correspond to exponential fits of the form

S(N) = ae−bN , (17)

and have been obtained by introducing an empirical minimum value of N = 7 (vertical

dashed grey line). Strictly speaking, Eq. (17) is only expected to hold for a bulk system

such as the uniform electron gas [47, 12], whereas the dependence of a finite, trapped

system is expected to be more complicated. Still, we do find at least a qualitative
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Figure 10. Particle number dependence of PIMC results for the average sign S for

λ = 3. The black stars (green squares) and blue diamonds (red circles) have been

obtained for β = 3 and β = 5, respectively, for spin-polarized electrons in a 2D (3D)

quantum dot. The lines correspond to exponential fits for N ≥ 7 (vertical dashed grey

line), cf. Eq. (17).

agreement with the exponential decay. The particularly small value of S for the 3D

case at β = 5 is directly reflected by the large error bars in γsf observed in Fig. 9. This

again strongly illustrates the severe limitations of fermionic PIMC simulations due to

the notorious sign problem.

3.4. Dependence on coupling strength

A highly interesting question is the precise nature of the intricate interplay of

the Coulomb repulsion with the effect of quantum statistics. In this regard, our

computationally expensive PIMC simulations are uniquely suited to provide reliable

answers as no approximations are involved. In Fig. 11, we show results for the integrated

C2P [cf. Eq. (13) above] for N = 4 spin-polarized electrons in a 2D harmonic trap at

a moderate temperature, β = 1. The left and right columns have been obtained for

Fermi- and Bose-statistics, and the reference particle is always located in the interval

1.5 ≤ rII ≤ 2.5 (horizontal dashed grey lines in the top left panel).

The top row corresponds to a very weakly coupled system (λ = 10−3), where

the Coulomb repulsion has a negligible effect. For fermions, the Pauli exclusion

principle nevertheless results in a pronounced exchange–correlation hole around α = 0,

whereas the rest of the system appears to be relatively featureless. In stark contrast, a

corresponding Bose-system at the same conditions exhibits the opposite behaviour, as

bosons tend to cluster around each other. Increasing the coupling strength to λ = 0.1

leaves the Fermi-system unchanged, whereas the positive exchange–correlation hill of

the bosons is substantially decreased. From a physical perspective, this means that
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Figure 11. Integrated C2P for N = 4 spin-polarized electrons in a harmonic

confinement for β = 1 in 2D for Fermi- (left) and Bose-statistics (right).
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Figure 12. Scan-line for Fig. 11.

bosons are strongly influenced even by weak repulsive interactions, whereas the latter

are effectively masked by the Pauli principle in the case of fermions. For completeness,

we mention that the same point has recently been reported by Dornheim [51] in the

case of dipole–dipole repulsion. The same trend has also been noted in our discussion

of Figs. 5 and 4 above, where the superfluid fraction γsf was substantially more affected

by the coupling parameter λ for bosons compared to fermions.

Going back to the integrated C2P shown in Fig. 11, a further increase of the coupling

strength to λ = 1 (middle row) again only leads to very mild changes for Fermi-statistics,

whereas there appears a qualitative change for bosons: the exchange–correlation hill is

changed to a hole, although it is still significantly less pronounced compared to the left

panel. At λ = 3, i.e., at moderate coupling, the importance of quantum statistics is

drastically reduced and both panels give a nearly identical picture. Finally, the strong

Coulomb repulsion at λ = 10 effectively separates individual particles, and no differences

between bosons and fermions can be seen with the naked eye.

Let us next consider Fig. 12, where we show a scan-line of the integrated C2P at

rI = 2 (solid red line in the top left panel of Fig. 11). The solid and dashed lines

distinguish fermions and bosons, and the different colours correspond to values of the

coupling parameter λ. The arguably most striking feature of this plot is the exchange–

correlation hill for bosons at λ ≤ 0.1. In addition, it clearly illustrates the small impact

of the coupling strength on fermions for the same λ. For λ = 3, there is still a distinct

impact of quantum statistics, whereas no such difference can be resolved for λ = 10.

The latter case also constitutes the only curve with a second maximum around α = 180.

Let us close this discussion of the integrated C2P with a practical remark. Obviously,

the probability to find two identical fermions at the exact same position must always

be zero, ρ2(r, r, 0) = 0. Yet, by integrating over a finite range of the reference particle

rII,min ≤ rII ≤ rII,max, the integrated C2P can be nonzero for all values of rI even for
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α = 0.

4. Summary and Outlook

In summary, we have presented extensive new ab initio path-integral Monte Carlo

simulation results for electrons in 2D and 3D quantum dots. In particular, we

have investigated the nonclassical rotational inertia of such systems and have found

a divergent, negative abnormal superfluid fraction which manifests under certain

conditions due to the interplay of Fermi-statistics and the harmonic confinement [50].

In addition, we have thoroughly investigated the structural properties of such systems

by computing the center-two particle correlation function suggested by Thomsen and

Bonitz [52]. The comparison of results for Bose- and Fermi-statistics has revealed that

the onset of the abnormal superfluid fraction is hardly connected to the static structure,

which can be nearly independent of the type of quantum statistics, whereas the

respective superfluid fractions diverge. Instead, it is a direct consequence of the structure

of the density matrix with respect to the angular momentum. In addition, we have

substantiated earlier findings for harmonically confined quantum dipole systems [51],

where it has been found that the repulsion between two fermions is effectively masked

by the Pauli exclusion principle for weak too moderate values of the coupling parameter

λ. In stark contrast, bosons sensitively react even to small changes in the coupling

strength.

Future extensions of our work might include the investigation of spin-unpolarized

systems, which would allow for the study of a spin-resolved C2P. In particular, it is clear

that the observed effective screening of the pair interaction by the Pauli principle will not

apply to fermions of a different spin-orientation, which will lead to an interesting mixture

of different effects. In addition, we note that the central computational bottleneck of the

present study is given by the fermion sign problem, which precludes the simulation of

larger systems and lower temperatures. In this regard, we mention the remarkable recent

progress in the fermionic quantum Monte Carlo simulation at finite temperature in the

context of warm dense matter research [70, 71, 32, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81].

Specifically, the adaption of these novel methods to the simulation of electrons in

quantum dots seems promising and rewarding. Finally, we mention that the C2P that

has been used in the present work allows to reliably describe crossovers and melting

phenomena in finite systems [52]. This is in stark contrast to previously employed

Lindemann-type approaches [82] that rely on the underlying Monte Carlo sampling

scheme. Thus, the present set-up can be straightforwardly used to study the impact of

quantum effects onto the crystallization of trapped few-body systems.
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[4] K. Sköld, C. A. Pelizzari, Ronald Mason, E. W. J. Mitchell, and John William White. Elementary

excitations in liquid 3he. Philosophical Transactions of the Royal Society of London. B,

Biological Sciences, 290(1043):605–616, 1980.

[5] Henri Godfrin, Matthias Meschke, Hans-Jochen Lauter, Ahmad Sultan, Helga M. Böhm, Eckhard
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