
ON THE ROBIN SPECTRUM FOR THE
EQUILATERAL TRIANGLE
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Dedicated to Michael Berry for his 80’th birthday

Abstract. The equilateral triangle is one of the few planar do-
mains where the Dirichlet and Neumann eigenvalue problems were
explicitly determined, by Lamé in 1833, despite not admitting sep-
aration of variables. In this paper, we study the Robin spectrum
of the equilateral triangle, which was determined by McCartin in
2004 in terms of a system of transcendental coupled secular equa-
tions.

We give uniform upper bounds for the Robin-Neumann gaps,
showing that they are bounded by their limiting mean value, which
is hence an almost sure bound. The spectrum admits a system-
atic double multiplicity, and after removing it we study the gaps
in the resulting desymmetrized spectrum. We show a spectral gap
property, that there are arbitrarily large gaps, and also arbitrarily
small ones, moreover that the nearest neighbour spacing distri-
bution of the desymmetrized spectrum is a delta function at the
origin. We show that for sufficiently small Robin parameter, the
desymmetrized spectrum is simple.

1. Introduction

The equilateral triangle is one of the few planar domains where the
Dirichlet and Neumann eigenvalue problems are explicitly solved, de-
spite not admitting separation of variables. The solution was found by
Lamé in 1833 [13], who also investigated the Robin1 boundary value
problem: Denoting by T an equilateral triangle and by ∂T its boundary
as in Figure 1, the Robin problem is to solve

∆f + λf = 0 on T,
∂f

∂n
+ σf = 0 on ∂T
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1The term “Robin boundary condition” came much later, see [6] for a historical
discussion.
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where ∂
∂n

is the derivative in the outward pointing normal direction,
and σ > 0 is the Robin parameter (which we take to be constant).

Figure 1. An equilateral triangle of side length h. The
inscribed circle has radius r = h/(2

√
3).

Lamé only determined the Robin eigenfunctions possessing 120◦ ro-
tational symmetry, and it is only in 2004 that McCartin [16, 18] com-
pletely determined the eigenproblem, showing that all of the eigen-
functions are trigonometric polynomials2, and that the eigenvalues are
determined by a system of transcendental coupled secular equations as
follows: Define auxiliary parameters L ∈ (−π/2, 0], M,N ∈ [0, π/2),
which are required to satisfy the coupled system of equations(

2L−M −N − (m+ n)π
)

tanL = 3rσ(
2M −N − L+mπ

)
tanM = 3rσ(

2N − L−M + nπ
)

tanN = 3rσ.

(1.1)

The corresponding Robin eigenvalues are

(1.2) Λm,n(σ) =
4π2

27r2
(µ2 + ν2 + µν)

where

µ =
2M −N − L

π
+m, ν =

2N − L−M
π

+ n.

2The only polygonal domains where all Dirichlet or Neumann eigenfunctions
are trigonometric are rectangles, and the equilateral, hemi-equilateral and right
isosceles triangles [17], see [20] for a higher dimensional version
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Note that there is a systematic multiplicity of order 2 coming from the
symmetry Λm,n = Λn,m, and we will refer to {Λm,n(σ)}0≤m≤n as the
desymmetrized Robin spectrum.

For σ ≥ 0, let λσn denote the n-th eigenvalue of the Robin Laplacian
on the equilateral triangle, arranged by size and repeated with multi-
plicities (the case σ = 0 are the Neumann eigenvalues). We will study
a number of aspects of the Robin spectrum of the equilateral triangle.

In the first part of the paper, we study the Robin-Neumann gaps

dn(σ) := λσn − λ0n,
see Figure 2. As is the case for any bounded piecewise smooth planar
domain, the RN gaps have a limiting mean value [23], which equals

d̄ := lim
N→∞

1

N

N∑
n=1

dn(σ) =
2 length ∂T

areaT
σ =

4

r
σ,

where r is the radius of the inscribed circle. Remarkably, for the equi-
lateral triangle, the limiting mean value is also an upper bound:

Theorem 1.1. We have dn(σ) < d̄ for all n.

For most domains, we do not expect a uniform upper bound, e.g.
we expect that for the disk there are arbitrarily large RN gaps, but
cannot prove this for any example of a planar domain, see [21] for the
hemisphere.

As a consequence of Theorem 1.1, we show:

Corollary 1.2. The RN gaps tend to the mean value along a density
one sequence of eigenvalues.

We use the results on the RN gaps to deduce information on the
asymptotics of the Robin spectrum of the equilateral triangle by com-
paring it to the Neumann spectrum:

Corollary 1.3. For fixed σ > 0, there are arbitrarily large gaps in the
Robin spectrum {λσn}.

This is sometimes called the “spectral gap property” and is useful
in a variety of applications. An example is to show the existence of
inertial manifolds in dissipative reaction-diffusion equations [5, 14]

∂u

∂t
= ν∆u+ g(u),

for u on a domain satisfying suitable boundary conditions, with g a
suitable nonlinear function, and where ν > 0 is a parameter, see [12]
for the case of the equilateral triangle. There are very few instances



4 ZEÉV RUDNICK AND IGOR WIGMAN

100 200 300 400 500

2

4

6

8

10

12

14

Figure 2. The first 500 RN gaps for the equilateral
triangle with side length 1, with σ = 1. The solid (red)
line is the limiting mean value 2 length(∂T )/ area(T ) =
8
√

3 = 13.8564 . . . . Note that all the gaps are below the
limiting mean value, as is proved in Theorem 1.1.

of planar domains where the existence of arbitrarily large gaps in the
spectrum (with any boundary condition) is known. The question is
open even for the Dirichlet spectrum of the rectangle having the golden
mean as its aspect ratio.

We can also show that there are arbitrarily small nonzero gaps in
the spectrum. In fact, we have a stronger result:

Theorem 1.4. The distribution of nearest neighbour gaps in the desym-
metrized spectrum is a delta function at the origin, i.e. for any fixed
x > 0,

lim
N→∞

1

N
#{n ≤ N : λσn+1 − λσn ≤ x} = 1

We emphasize that in this paper, σ is fixed; it is of great interest to
study the spacings when σ grows with the eigenvalue, see the discussion
by Sieber, Primack, Smilansky, Ussishkin and Schanz [24], and by Berry
and Dennis [1].

In the second part of the paper we examine spectral multiplicities
(or “modal degeneracies”). For the Dirichlet or Neumann spectrum
of the equilateral triangle, there are large multiplicities of arithmetic
origin; the same holds for the hemi-equilateral (half of an equilateral
triangle) and right isosceles triangles, but there are other triangles with
accidental degeneracies, see the paper of Berry and Wilkinson [2] for
an exploration of these “diabolical points”. Hillairet and Judge [7]
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showed that for almost all3 triangles the Dirichlet spectrum is simple,
but their method does not give a single explicit example. For the Robin
spectrum on the equilateral triangle, there is a systematic doubling due
to the symmetry (m,n) 7→ (n,m) in (1.2). McCartin [16, §8] observed
that there are additional degeneracies for σ � 1. We will show that
for small σ > 0, there are no other degeneracies:

Theorem 1.5. There is some σ0 > 0 so that there are no multiplic-
ities in the Robin spectrum for 0 < σ < σ0 except for the systematic
doubling.

A similar result holds for the square; however, for rectangles whose
squared aspect ratio is irrational, there are multiplicities for arbitrarily
small σ > 0 [22], showing the special arithmetic nature of the result.

For the proof of Theorem 1.5, we partition the spectrum into clusters

CR(σ) = {Λm,n(σ) : m,n ≥ 0,m2 +mn+ n2 = R2},
consisting of all Robin eigenvalues given by (1.2), that, for σ = 0,
correspond to the common Neumann eigenvalue satisfying

4π2

27r2
(m2 +mn+ n2) = Λm,n(0) =

4π2

27r2
R2

with some m,n ≥ 0 integers, for the given R > 0. At σ = 0, these
clusters are well separated, as the Neumann eigenvalues are multiples
by 4π2

27r2
of integers. As σ varies, different clusters remain separated for

small σ due to our upper bound on the Robin-Neumann gaps (The-
orem 1.1). This reduces the problem to showing that there is some
σ0 > 0 for which all of the clusters break up completely (except for
a systematic double multiplicity) for all 0 < σ < σ0. To prove this
requires a detailed study of the secular equations (1.1) governing the
eigenvalues, which takes up sections 9, 10 and 11.

2. Background on the equilateral triangle

We consider an equilateral triangle T of side length h. Denote by

r =
h

2
√

3

the radius of the inscribed circle. The area of T is then

area(T ) =

√
3h2

4
= 3
√

3r2.

3In the sense of Lebesgue measure on the space of triangles of fixed area, which
can be parameterized by triples of angles which sum to π.
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We use Cartesian coordinates (x, y) so that the vertices are located at
{(0, 0), (0, h), (h/2, h

√
3/2)} (Figure 1).

2.1. Neumann eigenfunctions. The eigenfunctions are either sym-
metric or antisymmetric w.r.t the altitude of the triangle, that is the
line x = h/2. A complete set of orthogonal Neumann eigenfunctions is

T s/am,n(x, y) = cos

(
π`

3r
(3r − y)

){
cos
sin

}(√
3π(m− n)

9r

(
x−
√

3r
))

+ cos
(πm

3r
(3r − y)

){
cos
sin

}(√
3π (n− `)

9r

(
x−
√

3r
))

+ cos
(πn

3r
(3r − y)

){
cos
sin

}(√
3π (`−m)

9r

(
x−
√

3r
))

where for the symmetric eigenfunctions T sm,n we take 0 ≤ m ≤ n and
cosine, and for the antisymmetric ones T am,n we take 0 ≤ m < n and
sine. Here the m,n ≥ 0 are integers, and m,n, ` satisfy

m+ n+ ` = 0

with the corresponding eigenvalue being

Λm,n(0) :=
2π2

27r2
(
m2 + n2 + `2

)
=

4π2

27r2
(
m2 +mn+ n2

)
.

There are high multiplicities in the Neumann spectrum of the equi-
lateral triangle, coming from the fact that for integers which can be
written in the form m2 +mn+ n2 there are “typically” many ways to
do so. This is a well-understood number theoretic issue, completely
similar to the problem of representation as a sum of two squares. The
squared L2 norm of the eigenfunctions is [15, §8.1]

||T a/sm,n||22 =

∫
T

(T s/am,n)2 =
9
√

3r2

4
, m < n

and

||T sm,m||22 =
9
√

3r2

2
, m > 0.

2.2. Robin eigenfunctions. The eigenfunctions are either symmetric
or antisymmetric w.r.t the altitude of the triangle, that is the line x =
h/2. McCartin showed that a complete set of orthogonal eigenfunctions
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is

T s/am,n(x, y) = cos

(
πλ

3r
(3r − y)− δ1

)
{cos

sin
}

(√
3π (µ− ν)

9r

(
x−
√

3r
))

+ cos
(πµ

3r
(3r − y)− δ2

)
{cos

sin
}

(√
3π (ν − λ)

9r

(
x−
√

3r
))

+ cos
(πν

3r
(3r − y)− δ3

)
{cos

sin
}

(√
3π (λ− µ)

9r

(
x−
√

3r
))

with some δ1, δ2, δ3 ∈ R, where for the symmetric eigenfunctions T sm,n
we take 0 ≤ m ≤ n and cosine, and for the antisymmetric ones T am,n
we take 0 ≤ m < n and sine. Here µ, ν, λ (depending on m, n and the
Robin constant σ) are chosen subject to

µ+ ν + λ = 0

and µ, ν ≥ 0 are determined by a set of transcendental equations (im-
posed by requiring that the corresponding eigenfunctions satisfy the
Robin condition on the boundary): Define auxiliary parameters

(2.1) L ∈ (−π/2, 0], M,N ∈ [0, π/2)

and set

λ =
2L−M −N

π
−m−n, µ =

2M −N − L
π

+m, ν =
2N − L−M

π
+n.

Then L,M,N are required to satisfy the coupled system of equations(
2L−M −N − (m+ n)π

)
tanL = 3rσ(

2M −N − L+mπ
)

tanM = 3rσ(
2N − L−M + nπ

)
tanN = 3rσ,

(2.2)

see [16] for existence and uniqueness of solutions.
The corresponding eigenvalues are

(2.3) Λm,n(σ) =
2π2

27r2
(µ2 + ν2 + λ2) =

4π2

27r2
(µ2 + ν2 + µν).

One may find some examples of plots of Λm,n(·) in Figure 3. Note that
there is a systematic multiplicity of order 2 coming from the symmetry
Λm,n = Λn,m. We refer to [4] for a computation of the L2 norm of the
eigenfunctions.



8 ZEÉV RUDNICK AND IGOR WIGMAN
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Figure 3. Plots of Λm,n(σ) with (m,n) =
(1, 9), (5, 6), (4, 7). Note that Λ1,9(0) = Λ5,6(0).

3. A uniform upper bound for the RN gaps: Proof of
Theorem 1.1

Our goal is to show that for the equilateral triangle, the Robin-
Neumann gaps are bounded above by their limiting mean value, which
we recall equals

d̄ := lim
N→∞

1

N

N∑
n=1

dn(σ) =
2 length ∂T

areaT
σ =

4

r
σ.

Proof. We will show that

(3.1) 0 < Λm,n(σ)− Λm,n(0) < d =
4

r
σ.

Given that, to pass from the Λm,n(σ) to its analogue for the ordered
eigenvalues is the same argument as for the rectangle (see [23, §8.2])
that we reproduce here for the sake of completeness, albeit briefly.
Namely, recall that {λσn}n≥0 is the Robin spectrum corresponding to
the Robin parameter σ (in non-decreasing order), and, given k ≥ 1,
consider the closed interval

Ik := [0, λ0k + d] ⊆ R.

Then, thanks to the inequality (3.1) to be proved immediately below,
Ik is bound to contain all of λσn < λ0n + d, for n ≤ k, i.e. Ik contains at
least (k + 1) of the eigenvalues {λσn}, implying, in particular, that

λσk ≤ λ0k + d,
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sufficient to deduce the claimed analogue of (3.1) for the ordered Robin
eigenvalues.

We now turn to proving (3.1). To this end we rewrite the equations
(2.2) in a compact form as follows: Set

m1 = m, m2 = n, m3 = −(m+ n),

µ1 = µ, µ2 = ν, µ3 = λ,

M1 = M, M2 = N, M3 = L

so that

(3.2) µ1 + µ2 + µ3 = 0 = m1 +m2 +m3

and

(3.3) µj = mj +
1

π
(2Mj −Mi −Mk)

where {i, j, k} = {1, 2, 3}, and the system (2.2) becomes

µj tanMj =
3rσ

π
, j = 1, 2, 3.

Therefore, since |Mj| < π/2,

(3.4) |µjMj| < |µj tanMj| =
3r

π
σ.

Now consider the difference (compare (2.3))

Λm,n(σ)− Λm,n(0) =
2π2

27r2

3∑
j=1

(µ2
j −m2

j).

We have

µ2
j −m2

j = (µj −mj)(2µj − (µj −mj))

= 2µj(µj −mj)− (µj −mj)
2

≤ 2µj(µj −mj)

=
2

π
µj(2Mj −Mi −Mk).

on inserting (3.3). Therefore

0 < Λm,n(σ)− Λm,n(0) =
2π2

27r2

3∑
j=1

(µ2
j −m2

j)

≤ 4π

27r2

3∑
j=1

µj(2Mj −Mi −Mk).
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Recalling that {i, j, k} = {1, 2, 3} and using (3.2) gives

3∑
j=1

µj(Mi +Mk) =
∑
j

Mj(µi + µk) = −
∑
j

Mjµj

and so
3∑
j=1

µj(2Mj −Mi−Mk) = 2
3∑
j=1

µjMj −
3∑
j=1

µj(Mi +Mk) = 3
3∑
j=1

Mjµj.

Inserting (3.4) gives that this is ≤ 27 r
π
σ and hence

0 < Λm,n(σ)− Λm,n(0) ≤ 4π

27r2
· 27r

π
σ =

4

r
σ

proving (3.1). �

4. Almost sure convergence of the RN gaps: Proof of
Corollary 1.2

A tautological consequence of Theorem 1.1, which says that all RN
gaps (which are positive) are bounded by their limiting mean value, is
that almost all RN gaps converge to the limiting mean value d̄.

Proof. Indeed, let dn ≥ 0 be a sequence of non-negative numbers, which
has a limiting mean value

d̄ := lim
N→∞

1

N

N∑
n=1

dn,

and assume that for all n we have dn ≤ d̄. Then we claim that nec-
essarily, for almost all n, we have dn = d̄ + o(1) as n → ∞. On the
contrary, assume that there is some δ > 0 so that the set

Nδ := {n : dn ≤ d̄− δ}

satisfies:

lim sup
1

N
#Nδ ∩ [1, N ] = c > 0.

Thus we are guaranteed an infinite sequence S of N ’s satisfying

#Nδ ∩ [1, N ] > cN/2.

For all N ≥ 1, we can compute the mean value as

1

N

N∑
n=1

dn =
1

N

∑
n≤N
n∈Nδ

dn +
1

N

∑
n≤N
n/∈Nδ

dn ≤
1

N

∑
n≤N
n∈Nδ

(d̄− δ) +
1

N

∑
n≤N
n/∈Nδ

d̄
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where we have used dn ≤ d̄ for n /∈ Nδ. In particular, for N ∈ S,

1

N

N∑
n=1

dn ≤ (d̄− δ) 1

N
#Nδ ∩ [1, N ] + d̄

1

N
#{n /∈ Nδ, n ≤ N}

= d̄− δ 1

N
#Nδ ∩ [1, N ] ≤ d̄− δ c

2

and so

d̄ = lim
N→∞
N∈S

1

N

N∑
n=1

dn ≤ d̄− δ c
2
< d̄

which is a contradiction. �

5. Large gaps in the Robin spectrum: Proof of
Corollary 1.3

Proof. Since the Robin spectrum clusters at a bounded distance around
the Neumann spectrum { 4π2

27r2
(m2 +mn+ n2) : m,n ≥ 0}, it suffices to

observe that the Neumann spectrum has arbitrarily large gaps. This
well known arithmetic fact admits a quick proof by noting that for
integers of the form m2 +mn+ n2, the prime decomposition can only
contain primes of the form p = 3k + 2 to an even power (see e.g.
[8, Chapter 9.1]). Let p1 = 2, p2 = 5, . . . , pK be the first K primes
congruent to 2 mod 3. Using the Chinese Remainder Theorem we find
n satisfying n = −j + pj mod p2j for j = 1, . . . , K. Then n + 1, n +

2, . . . , n+K are not of the form x2 +xy+ y2 because n+ j = 0 mod pj
while n+ j 6= 0 mod p2j . Thus we found a gap of size ≥ 4π2

27r2
·K in the

Neumann spectrum. �

We can extract qualitative results from the finer results known about
gaps between values of binary quadratic forms: In 1982, Richards [19]
proved that the maximal gap g(x) among integers of the form m2 +
mn + n2 up to x is at least (1

3
− o(1)) log x as x → ∞, see [3, 10] for

improvement to the constant. Hence, if we denote by

gσ(x) = max
(
λσn+1 − λσn : λσn ≤ x

)
,

then, with the help of Theorem 1.1, we obtain the bound

gσ(x)� log x.
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6. Spacings: Proof of Theorem 1.4

Fix σ > 0 and denote by λσn the Robin spectrum (σ = 0 being the
Neumann spectrum) and let

xσ(n) = c(λσn+1 − λσn), c =
4π

areaT

be the normalized nearest neighbour gaps, whose mean value is unity
by Weyl’s law. Let

P̃σ(t, N) :=
1

N
#{n ≤ N : xσ(n) < t}

be the cumulative distribution function of the xσ(n).
Note that if for a pair of tuples (m,n) and (m′, n′) representing

consecutive Neumann energies one has

m2 + n2 +mn = m′2 + n′2 +m′n′,

then Λm,n(0) = Λm′,n′(0), so that the corresponding nearest neighbour
gap vanishes. Hence for the Neumann spectrum, all the nearest gaps
vanish except for at most the number of integers representable by the

form m2 +n2 +mn, whose number of those energies ≤ X is O
(

X√
logX

)
by [9]. On the other hand, by Weyl’s law, the total number of energies
≤ X is proportional to X, hence most of the gaps vanish precisely,
implying, in particular, that the limiting spacing distribution is the
delta function. Hence, in the Neumann case, the limiting spacing
distribution is a delta-function at the origin: we have for any t > 0,

(6.1) lim
N→∞

P̃0(t, N) = 1.

Proof of Theorem 1.4. By Corollary 1.2, the bulk of Robin spectrum
is obtained from the Neumann spectrum by an approximately constant
shift, therefore the spacing distribution remains unchanged. Denote by
dσ(n) = λσn − λ0n the Robin-Neumann gaps and d̄ their limiting mean
value. Fix ε > 0 and let S be the set of integers n so that

d̄− ε < dσ(n)

(and also dn(σ) < d̄). We showed that S has density one (Corol-
lary 1.2). Therefore, the set

S2 := {n ≥ 1 : n ∈ S and n+ 1 ∈ S}

also has density one.
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For n ∈ S2, we compute the difference of the normalized gaps xσ(n)
and x0(n):

1

c
(xσ(n)− x0(n)) = (λσn+1 − λσn)− (λ0n+1 − λ0n)

= (λσn+1 − λ0n+1)− (λσn − λ0n) = dσ(n+ 1)− dσ(n).

Since dσ(n+ 1), dσ(n) ∈ (d̄− ε, d̄) we obtain dσ(n+ 1)−dσ(n) ∈ (−ε, ε)
so that for all n ∈ S2,

xσ(n)− x0(n) ∈ (−cε, cε).
Fix t > 0, and take ε < t/c. Then for n ∈ S2, if xσ(n) < t then

x0(n) < t+ cε, while x0(n) < t− cε implies that xσ(n) < t. Thus

{n ∈ S2 : xσ(n) < t} ⊆ {n ∈ S2 : x0(n) < t+ cε}
and

{n ∈ S2 : xσ(n) < t} ⊇ {n ∈ S2 : x0(n) < t− cε}.
On the other hand, we have

0 ≤ P̃σ(t, N)− 1

N
#{n ≤ N, n ∈ S2 : xσ(n) < t}

≤ 1

N
#{n ≤ N : n /∈ S2} = o(1),

and likewise for σ = 0, hence

P̃0(t− cε,N) + o(1) ≤ P̃σ(t, N) ≤ P̃0(t+ cε,N) + o(1).

Since ε > 0 is arbitrary, for any fixed t > 0, we obtain by (6.1)

lim
N→∞

P̃σ(t, N) = 1

which gives our claim. �

7. Simplicity of the desymmetrized spectrum: overview of
the proof of Theorem 1.5

7.1. Review of notation. We recall notation: For integers m,n ≥ 0,
and σ ≥ 0, we defined the variables
(7.1)

L = Lm,n(σ) ∈
(
− π

2
, 0

]
, M = Mm,n(σ), N = Nm,n(σ) ∈

[
0,
π

2

)
given by solutions of the system

(7.2)


(2L−M −N − (m+ n) π) tanL = 3rσ

(2M −N − L+mπ) tanM = 3rσ

(2N − L−M + nπ) tanN = 3rσ

.
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The variables µ, ν were defined as

µ =
2M −N − L

π
+m, ν =

2N − L−M
π

+ n,

and, finally, the Robin eigenvalues with parameter σ are:

Λm,n(σ) :=
4π2

27r2
(
µ2 + ν2 + µν

)
.

To prove that the desymmetrized spectrum is simple (Theorem 1.5),
it is needed to show that there exists σ0 > 0 so that for all σ ∈ (0, σ0),
one has Λm,n(σ) 6= Λm′,n′(σ) for all pairs (m,n) 6= (m′, n′) with 0 ≤
m ≤ n, 0 ≤ m′ ≤ n′. We adopt the notation

(7.3) R2 = R2(m,n) :=
27r2

4π2
Λm,n(0) = m2 + n2 +mn,

and

FR(m,n) =
R4

m2n2(m+ n)2
=

1

m2
+

1

n2
+

1

(m+ n)2
.

7.2. Key propositions.

Proposition 7.1. For σ > 0 sufficiently small:

(1) For 1 ≤ m ≤ n,

(7.4) Λm,n(σ) = Λm,n(0)+
4

r
·σ−4FR(m,n)

π2
·σ2(1−rσ)+O

(
1

m4
· σ3

)
,

with the implied constant absolute.
(2) For m = 0 < n, Λ0,n(·) satisfies4

(7.5) Λ0,n(σ) = Λ0,n(0) +
10

3r
· σ +O(σ3/2),

with the implied constant absolute.
(3) The function Λ0,0(σ) is continuous5 at σ = 0.

Proposition 7.2. If (m,n) and (m′, n′) are two integer points on the
ellipse

X2 +XY + Y 2 = R2

with 1 ≤ m < m′ ≤ n′ < n, then FR(m,n) > FR(m′, n′) and as R→∞
we have a lower bound for the difference

FR(m,n)− FR(m′, n′)� 1

m4

4By general perturbation theory [11, Chapter VII] (see in particular Remark 4.22
on page 408), the functions Λ0,n(·) are analytic, at least in some neighbourhood of
the origin. Therefore the remainder term in (7.5) can be replaced by On(σ2).

5In fact, Λ0,0(·) is analytic, by [11, Chapter VII].
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with the implied constant absolute.

7.3. Proof of Theorem 1.5 assuming Propositions 7.1-7.2.

Proof. We assert that for any integers m,n,m′, n′ ≥ 0, one has:
(i) If

m2 + n2 +mn < m′2 + n′2 +m′n′,

then Λm,n(σ) < Λm′,n′(σ) for σ ∈ (0, π2/(27r)).
(ii) For σ > 0 sufficiently small (absolute), if 0 ≤ m < m′ ≤ n′ < n

satisfy

m2 + n2 +mn = m′2 + n′2 +m′n′

then Λm,n(σ) > Λm′,n′(σ).
The desymmetrized Neumann spectrum {Λm,n(0) : 0 ≤ m ≤ n} is

partitioned into clusters of coinciding eigenvalues

CR = {Λm,n(0) : 0 ≤ m ≤ n,m2 +mn+ n2 = R2}.

Part (i) deals with the situation that at σ = 0, we start from different
clusters CR, CR′ with R < R′, and the claim is that there is some σ0 so
that for σ ∈ (0, σ0), the evolved clusters remain separate. Since distinct
integers are spaced at least one apart from each other, the distance
between different Neumann clusters (σ = 0) is at least 4π2/(27r2). We
use our upper bound (Theorem 1.1) on the Robin-Neumann gaps:

λn(σ)− λn(0) <
4

r
σ,

so that if 4σ/r < 4π2/(27r2) then different Robin clusters cannot mix,
that is

Λm,n(σ) < Λm′,n′(σ)

for σ ∈ (0, π2/(27r)).
Now take integers 0 ≤ m < m′ ≤ n′ < n, so that

m2 + n2 +mn = m′2 + n′2 +m′n′

(equivalently, Λm,n(0) = Λm′,n′(0)). If m = 0, then we invoke Proposi-
tion 7.1(1)-(2) to write

Λm′,n′(σ)− Λ0,n(σ) =
2

3r
· σ +O(σ3/2) > 0,

since F (m′, n′) < 3.
Otherwise, if m ≥ 1, then we invoke Proposition 7.1(1) to yield

Λm′,n′(σ)−Λm,n(σ) = (FR(m,n)− FR(m′, n′)) · 4σ
2(1− rσ)

π2
+O

(
σ3

m4

)
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which along with Proposition 7.2 show that for σ > 0 sufficiently small,

Λm′,n′(σ)− Λm,n(σ)� σ2

m4
+O

(
σ3

m4

)
� σ2

m4
> 0

in particular this difference is nonzero. In either case, m = 0 or m ≥ 1,
(ii) is proved. �

8. Asymptotic expansion of the eigenvalue curves

8.1. Some auxiliary results. We state some lemmas on the proper-
ties of the auxiliary parameters M , N and L, which we then use to
prove Proposition 7.1.

Lemma 8.1. For every 0 ≤ m ≤ n and σ ≥ 0 there exists a unique so-
lution (L,M,N) to (7.2) in the prescribed range (7.1). These solutions
satisfy:

(1) For 0 ≤ m < n, σ > 0 one has L,N = O
(
σ
n

)
, with the implied

constant absolute.
(2) In addition to the above, M = O

(
σ
m

)
uniformly for 1 ≤ m ≤ n,

σ > 0. Otherwise, for m = 0 < n, one has M = O (
√
σ) for

σ > 0 sufficiently small, with the implied constant absolute.
(3) For m = n = 0 one has |L|, |M |, |N | �

√
σ, so, in particular

the functions L,M,N are continuous at σ = 0.

Lemma 8.1 implies in particular, that, as σ → 0, one has

L(σ),M(σ), N(σ)→ 0

uniformly w.r.t. m,n ≥ 0. Therefore µm,n(σ) → µm,n(0) = m and
νm,n(σ)→ νm,n(0) = n uniformly. It will also follow a fortiori from our
analysis below that uniformly in m,n,

lim
σ→0

Λm,n(σ) = Λm,n(0) =
4π2

27r2
(
m2 + n2 +mn

)
.

Lemma 8.2. For m = 0, n ≥ 1 the functions L,M,N are analytic on
σ > 0 and continuous at σ = 0, with L,N continuously differentiable
on R≥0. Further, L,M,N satisfy the following asymptotics around the
origin, with all the implied constants absolute:

N,−L =
3r

nπ
· σ +O

(
σ3/2

n2

)
, M =

√
3r/2 ·

√
σ +O(σ3/2).

To state the next lemmas, we use the uniform notation as in § 3,
where we rewrite the coupled system (7.2) in compact form as follows:
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Set

m1 = m, m2 = n, m3 = −(m+ n),

µ1 = µ, µ2 = ν, µ3 = −(µ1 + µ2),

M1 = M, M2 = N, M3 = L,

so that

µ1 + µ2 + µ3 = 0 = m1 +m2 +m3

and

µj = mj +
1

π
(2Mj −Mi −Mk),

where {i, j, k} = {1, 2, 3}. Thus for each 0 ≤ m1 ≤ m2, we obtain
a coupled system for the variables M1,M2,M3 with M1,M2,−M3 ∈
[0, π/2)

(8.1) µj tanMj =
3rσ

π
, j = 1, 2, 3.

Lemma 8.3. If 1 ≤ m1 ≤ m2 then the derivatives at σ = 0 are

(8.2) M ′
j(0) =

3r

πmj

,

and

(8.3) M ′′
j (0) = −18r2

π3

m2
j + 2mimk

m3
jmimk

We next give bounds for the derivatives of Mj:

Lemma 8.4. There is some σ0 > 0 so that if 1 ≤ m1 ≤ m2 then Mj(σ)
are analytic in [0, σ0] and satisfy (uniformly in [0, σ0])

(8.4) M ′
j =

3r

πmj

(
1 +O

(
1

mj

))
,

(8.5) |M ′′
j | �

1

m1m2
j

,

(8.6) M ′′′
j = 2

(
M ′

j

)3
+O

(
1

m3
1m

2
j

)
=

54r3

π3m3
j

+O

(
1

m3
1m

2
j

)
.

Lemma 8.5. The values of the first three derivatives of Λm,n(·) at the
origin are:

(8.7) Λ′m,n(0) =
4

r
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(8.8) Λ′′m,n(0) = − 8

π2
FR(m,n)

(8.9) Λ(3)
m,n(σ) =

24r

π2
FR(m,n) +O(

1

m4
).

The proofs of these Lemmas will be given in § 9, §10 and §11.

8.2. Proof of Proposition 7.1.

Proof. Proposition 7.1(1) is a direct consequence of (8.7) and (8.8) via
a three-term Taylor expansion around σ = 0, invoking the Lagrange
form of the remainder appealing to the estimate (8.9): For every σ > 0
sufficiently small, one has the estimate

Λm,n(σ) = Λm,n(0)+
4

r
·σ−4FR(m,n)

π2
·σ2+

(
4rFR(m,n)

π2
+O

(
1

m4

))
·σ3,

which yields (7.4). Part (3) of Proposition 7.1 is a direct consequence
of Lemma 8.1(3).

To prove Proposition 7.1(2), namely that

Λ0,n(σ) = Λ0,n(0) +
10

3r
· σ +O(σ3/2)

we write

Λ0,n(σ) =
2π2

27r2

3∑
j=1

µ2
j

Using m = 0, n ≥ 1 we have

µ1 =
1

π
(2M1 −M2 −M3)

µ2 = n+
1

π
(2M2 −M3 −M1), µ3 = −n+

1

π
(2M3 −M1 −M2)

so that
3∑
j=1

µ2
j = 2n2 +

6n

π
(M2 −M3) +

1

π2

3∑
j=1

(2Mj −Mi −Mk)
2.

Inserting Lemma 8.2 which asserts that

M1 =

√
3rσ

2
+O(σ3/2), M2,−M3 =

3r

nπ
σ +O(

σ3/2

n2
)

gives
3∑
j=1

µ2
j = 2n2 +

45r

π2
σ +O(σ3/2)
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so that

Λ0,n(σ) =
2π2

27r2

3∑
j=1

µ2
j = Λ0,n(0) +

10r

3
σ +O(σ3/2)

as claimed. �

9. Proofs of lemmas 8.1-8.2

9.1. Proof of Lemma 8.1.

Proof. The existence and uniqueness of the solutions (L,M,N) to (7.2)
was established in [16, §6]. We observe that L ≤ 0 and M,N ≥ 0 forces
2L−M −N ≤ 0, and so

2L−M −N − (m+ n)π ≤ −(m+ n)π.

Hence, the first equation of (7.2) implies that if (m,n) 6= (0, 0) (which,
for m ≤ n is equivalent to n 6= 0), then

| tanL| � σ

m+ n
≤ σ

n
,

and so

L� σ

n
.

The proof of N � σ
n

is similar to the above, except that we focus on
the 3rd equation of (7.2) and notice that

2N − L−M + nπ ≥ nπ −M ≥ (n− 1/2)π � n.

This concludes the proof of Lemma 8.1(1), and the same argument
yields the case m > 0 of Lemma 8.1(2), by exploiting the 2nd equation
of (7.2).

If m = 0 but n > 0, then, the 2nd equation of (7.2) reads

(9.1) (2M − L−N) tanM = 3rσ.

First, assume by contradiction that M < 10 · (|L| + N) (say). Then,
assuming that σ > 0 is sufficiently small, so that, with the help from
the (readily established) part (1) of Lemma 8.1, |L|, |N | < 1/100 (so
that 0 ≤M < 1/5), the l.h.s. of (9.1) is bounded above by

(2M − L−N) tanM � σ

n
·M � σ2

n2
,

so the equality (9.1) cannot hold with σ > 0 sufficiently small. Hence
we may as well assume that

M ≥ 10 · (|L|+N).
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But then we may deduce from (9.1):

M2 � (2M −M/10) ·M ≤ (2M −N) ·M
� (2M −N) tanM ≤ (2M − L−N) tanM = 3rσ,

so that M �
√
σ as in the 2nd assertion of Lemma 8.1(2).

Finally we show Lemma 8.1(3): Since m = n = 0, then the equality
M = N is forced by the symmetry between these two. (If, by contra-
diction, M > N , then the l.h.s. of the 2nd equation of (7.2) is strictly
bigger than the l.h.s. of the 3rd equation of (7.2).) Then the system
(7.2) reads

(9.2)

{
2(L−M) tanL = 3rσ

(M − L) tanM = 3rσ

Then, by the 1st equation of (9.2), and recalling that L, tanL ≤ 0 and
M ≥ 0, it forces 2L tanL ≤ 3rσ, and so L �

√
σ, as above. Further,

either M = L�
√
σ or we may divide the equations in (9.2), and so

M � tanM = −2 tanL�
√
σ,

as we have already seen. This concludes the proof of Lemma 8.1(3). �

9.2. Proof of Lemma 8.2. Recall (7.2) (with m = 0), namely

(2M −N − L) tanM − 3rσ = 0

(πn+ 2N − L−M) tanN − 3rσ = 0

(−πn+ 2L−M −N) tanL− 3rσ = 0

(9.3)

Consider the third equation of (9.3): Thanks to Lemma 8.1(1) we may
write

tanL = L+O(L3) = L+O(σ3/n3),

and, in addition, from Lemma 8.1(2), one has

nπL = −3rσ +O(σ3/2/n),

and then

(9.4) L = − 3r

nπ
· σ +O(σ3/2/n2).

Analogously,

(9.5) N =
3r

nπ
· σ +O(σ3/2/n2).

Next we focus on the first equation of (9.3): We write

tan(M) = M +
1

3
M3 +O(M5) = M +

1

3
M3 +O(σ5/2),
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and feed (9.4) and (9.5) into it to derive:

2M2 = 3rσ +M(L+N)− 2

3
M4 − 1

3
M3(L+N) +O(σ3) = 3rσ +O(σ2)

= 3rσ(1 +O(σ)),

so that

M =

√
3r

2
·
√
σ(1 +O(σ)) =

√
3r

2
·
√
σ +O(σ3/2).

The continuity of L,M,N at σ = 0 follows directly from Lemma 8.1,
and here we deal with the analyticity of L,M,N for σ > 0 sufficiently
small. We want to use the analytic Implicit Function theorem for the
system (9.3). To do that we evaluate the Jacobian of (9.3) (with m = 0)
as

J0,n(σ) =

2M−N−L
cos2M

+ 2 tanM − tanM − tanM
− tanN πn+2N−L−M

cos2N
− tanN

− tanL − tanL −πn+2L−M−N
cos2 L

+ 2 tanL

 .

For σ → 0, we have M,N,L→ 0 so

tanM ∼M = O
(√

σ
)
, tanN ∼ N = O

(σ
n

)
,

and likewise tanL = O(σ
n
). Also

1

cos2M
= 1 + tan2M = 1 +O(σ),

1

cos2N
= 1 +O

(
σ2

n2

)
,

and likewise 1/ cos2 L = 1 +O(σ2/n2). Thus for small σ > 0,

J0,n(σ) =

4M +O(σ) O(
√
σ) O(

√
σ)

O(σ
n
) πn+O(

√
σ) O(σ

n
)

O
(
σ
n

)
O
(
σ
n

)
−πn+O(

√
σ)


when σ → 0, we obtain

| det J0,n(σ)| = 4π2n2 ·M +O(σ)�
√
σ

because M ≈
√
σ. Thus we found | det J0,n(σ)| �

√
σ 6= 0 so that by

the analytic Implicit Function Theorem, M,N,L are analytic in σ near
σ = 0.

10. Proofs of Lemma 8.3 and Lemma 8.4

10.1. The derivatives of Mj at σ = 0: Proof of Lemma 8.3.
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Proof. We compute derivatives: From the definition of µj we obtain

µ′j =
1

π

(
2M ′

j −M ′
i −M ′

k

)
.

From (8.1) we obtain after one differentiation

(10.1) µ′j tanMj + µj(tanMj)
′ =

3r

π

and differentiating again

(10.2) µ′′j tanMj + 2µ′j(tanMj)
′ + µj(tanMj)

′′ = 0.

We also recall that

(10.3) µj(0) = mj, Mj(0) = 0

so that tanMj(0) = 0, cosMj(0) = 1. Now (tanMj)
′ = M ′

j/(cos2Mj)
and therefore

(tanMj)
′(0) = M ′

j(0).

Substituting in (10.1) and evaluating at σ = 0 using (10.3) gives
mjM

′
j(0) = 3r

π
, or

M ′
j(0) =

3r

πmj

,

which is (8.2). We also obtain

µ′j(0) =
1

π
(2Mj(0)′ −M ′

i(0)−M ′
k(0)) =

3r

π2

(
2

mj

− 1

mi

− 1

mk

)
=

3r

π2

2mimk −mjmi −mjmk

mjmimk

=
3r

π2

m2
j + 2mimk

mjmimk

on using mi +mk = −mj.
The second derivative of tanMj is

(10.4) (tanMj)
′′ =

(
M ′

j

cos2Mj

)′
=

M ′′
j

cos2Mj

−
2(M ′

j)
2 tanMj

cos2Mj

and at σ = 0 we obtain

(tanMj)
′′(0) = M ′′

j (0).

Inserting in (10.2) yields

2µ′j(0)M ′
j(0) +mjM

′′
j (0) = 0

or

mjM
′′
j (0) = −2

3r

πmj

· 3r

π2

m2
j + 2mimk

mjmimk

= −18r2

π3

m2
j + 2mimk

m2
jmimk



ON THE ROBIN SPECTRUM FOR THE EQUILATERAL TRIANGLE 23

which gives

M ′′
j (0) = −18r2

π3

m2
j + 2mimk

m3
jmimk

as claimed in (8.3). �

10.2. Bounding derivatives of Mj: Proof of Lemma 8.4. Ana-
lyticity of Mj near σ = 0 is proved analogously to the case m = 0,
n ≥ 1 in Lemma 8.2.

We will prove the bounds on the derivatives. Before proceeding, we
formulate a standard fact from linear algebra (we leave the verification
to the reader):

Lemma 10.1. Suppose we have a system of the form (I + B)x = y,
x, y ∈ Rn with B a rank one matrix

B = β · αT , β, α ∈ Rn

where ||α|| · ||β|| < 1. Then

x = y − 〈α, y〉
1 + 〈α, β〉

β

and so
xj = yj +O(||y|| · ||α|| · |βj|).

We now proceed with the proof of Lemma 8.4:

Proof. For the first derivative we use (10.1) and rearrange it as

M ′
j

(
1 +

6rσ cos2Mj

π2

1

µ2
j

)
− 3rσ cos2Mj

π2µ2
j

(M ′
i +M ′

k) =
3r cos2Mj

πµj

that is, the vector ~M = (M1,M2,M3)
T satisfies a matrix equation of

the form
(I +B) ~M ′ = y

with

B =
3rσ

π2


2 cos2M1

µ21
− cos2M1

µ21
− cos2M1

µ21

− cos2M2

µ22

2 cos2M2

µ22
− cos2M2

µ22

− cos2M3

µ23
− cos2M3

µ23

2 cos2M3

µ23

 = β · αT

where

αT =
3rσ

π2
(2,−1,−1) , βT =

(
cos2M1

µ2
1

,
cos2M2

µ2
2

,
cos2M3

µ2
3

)
,

and

yj =
3r cos2Mj

πµj
.
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We use Lemma 10.1, noting that

|〈α, y〉| ≤ |α| · |y| � 1

m1

, |βj| �
1

m2
j

to find

M ′
j =

3r cos2Mj

πµj
+O

(
1

m1m2
j

)
=

3r

πmj

(
1 +O

(
1

mj

))
locally uniformly in σ.

For the second derivative, use

(10.5) cos2Mj(tanMj)
′′ = M ′′

j − 2(M ′
j)

23rσ

πµj

(which is a rewriting of (10.4) using (8.1)) and insert into (10.2) (again
using (8.1)) to obtain (recalling (tanMj)

′ cos2Mj = M ′
j)

µj

(
M ′′

j −
6rσ

π

(M ′
j)

2

µj

)
= −2µ′jM

′
j − µ′′j cos2Mj tanMj

or, after using (8.1)

(10.6) M ′′
j +

3rσ cos2Mj

π2µ2
j

(
2M ′′

j −M ′′
i −M ′′

k

)
= −

2µ′jM
′
j

µj
+

6rσ

π

(M ′
j)

2

µj
.

The RHS of (10.6) is O(1/(m1m
2
j)) by our bounds on the first derivative

while the LHS of (10.6) is of the form (I +B) ~M ′′ with B = βαT ,

αT =
3rσ

π2
(2,−1,−1), βT =

(
cos2M1

µ2
1

,
cos2M2

µ2
2

,
cos2M3

µ2
3

)
.

Applying Lemma 10.1 we find

M ′′
j = −

2µ′jM
′
j

µj
+

6rσ

π

(M ′
j)

2

µj
+O

(
1

m3
1

· 1

m2
j

)
� 1

m1m2
j

.

�

For the third derivative we have:

Lemma 10.2.

M ′′′
j = 2(M ′

j)
3 +O

(
1

m3
1m

2
j

)
=

54r3

π3m3
j

+O

(
1

m3
1m

2
j

)
.

Proof. Differentiate (10.2) to obtain

(10.7) µj(tanMj)
′′′ + 3µ′j(tanMj)

′′ + 3µ′′j (tanMj)
′ + µ′′′j tanMj = 0.

Recall (10.4) which gives

(10.8) cos2Mj(tanMj)
′′ = M ′′

j − 2(M ′
j)

2 tanMj
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which in particular we now know to be O(1/m1m
2
j) using (8.1). Dif-

ferentiating (10.8) gives

− 2 tanMj(cos2Mj)M
′
j(tanMj)

′′ + cos2Mj(tanMj)
′′′

= M ′′′
j − 4M ′

jM
′′
j tanMj − 2(M ′

j)
2(tanMj)

′

so that by (8.5)

(10.9) cos2Mj(tanMj)
′′′ = M ′′′

j − 2(M ′
j)

3 +O

(
1

m1m4
j

)
on using (8.1) and

(tanMj)
′ =

M ′
j

cos2Mj

= M ′
j

(
1 + (tanMj)

2) = M ′
j +O

(
1

m3
j

)
.

Multiplying (10.7) by (cos2Mj)/µj and inserting (10.9) gives

M ′′′
j + µ′′′j tanMj

cos2Mj

µj
= 2(M ′

j)
3 +O

(
1

m1m4
j

)
and thus we get

M ′′′
j +O

(
1

m2
j

)(
2M ′′′

j −M ′′′
i −M ′′′

k

)
= 2(M ′

j)
3 +O

(
1

m1m4
j

)
.

Applying Lemma 10.1 with αT = (2,−1,−1), βj = O(1/m2
j) and yj =

2(M ′
j)

3 +O( 1
m1m4

j
) (so that 〈α, y〉 = O(1/m3

1)) gives

M ′′′
j = 2(M ′

j)
3 +O

(
1

m3
1m

2
j

)
.

We then use (8.4)

M ′
j =

3r

πmj

(
1 +O

(
σ

mj

))
to obtain

M ′′′
j =

54r3

π3m3
j

+O

(
1

m3
1m

2
j

)
.

�
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11. Proof of Lemma 8.5

Recall that

Λm,n =
2π2

27r2

3∑
j=1

µ2
j

and we set

R2 = m2 +mn+ n2 =
1

2

3∑
j=1

m2
j ,

FR(m,n) =
R4

m2n2(m+ n)2
=

1

m2
+

1

n2
+

1

(m+ n)2
.

We want to show

Lemma 11.1. Assume that 1 ≤ m ≤ n. Then

Λ′m,n(0) =
4

r
, Λ′′m,n(0) = −8FR(m,n)

Λ(3)
m,n(σ) = 24 · r · FR(m,n) +O

(
1

m4

)
11.1. The first derivative of Λm,n. Differentiating gives

Λ′m,n(0) =
4π2

27r2

∑
j=1

µj(0)µ′j(0).

We have∑
j=1

µj(0)µ′j(0) =
1

π

3∑
j=1

mj

(
2M ′

j(0)−M ′
i(0)−M ′

k(0)
)

=
3r

π2

3∑
j=1

mj

(
2

mj

− 1

mi

− 1

mk

)
since µj(0) = mj, and M ′

j(0) = 3r/(πmj). Since

3∑
j=1

mj

(
2

mj

− 1

mi

− 1

mk

)
= 6−

3∑
j=1

mj

(
1

mi

+
1

mk

)
,

and

−
3∑
j=1

mj

(
1

mi

+
1

mk

)
= −

3∑
j=1

mj

mi

−
3∑
j=1

mj

mk

= −
3∑

k=1

1

mk

(mj +mi) =
3∑

k=1

1 = 3,
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we obtain ∑
j=1

µj(0)µ′j(0) =
27r

π2

which gives

Λ′m,n(0) =
4π2

27r2
· 27r

π2
=

4

r
.

11.2. The second derivative of Λm,n. Using Leibnitz’s rule gives

Λ′′m,n =
4π2

27r2

3∑
j=1

µjµ
′′
j + (µ′j)

2.

We have

µj(0) = mj, M ′
j(0) =

3r

πmj

, M ′′
j (0) = −18r2

π3

(
1

mimjmk

+
2

m3
j

)
so that

µ′j(0) =
1

π
(2M ′

j(0)−M ′
i(0)−M ′

k(0)) =
3r

π2

(
2

mj

− 1

mi

− 1

mk

)
and

µj(0)µ′′j (0) = mj
1

π
(2M ′′

j (0)−M ′′
i (0)−M ′′

k (0))

= −18r2

π4

(
2

(
1

mimj

+
2

m2
j

)
−
(

1

mjmk

+
2mj

m3
i

)
−
(

1

mjmi

+
2mj

m3
k

))
giving

3∑
j=1

µj(0)µ′′j (0) = −36r2

π4

3∑
j=1

(
2

m2
j

− mj

m3
i

− mj

m3
k

)
.

Likewise,
3∑
j=1

µ′j(0)2 =
9r2

π4

3∑
j=1

(
2

mj

− 1

mi

− 1

mk

)2.

A straightforward computation reveals that

3∑
j=1

(
2

m2
j

− mj

m3
i

− mj

m3
k

)
=

3R4

(m1m2m3)2
= 3FR(m,n)

and
3∑
j=1

(
2

mj

− 1

mi

− 1

mk

)2

=
6R4

(m1m2m3)2
= 6FR(m,n).
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These give

4π2

27r2

3∑
j=1

µj(0)µ′′j (0) = −16

π2
FR(m,n),

4π2

27r2

3∑
j=1

µ′j(0)2 =
8

π2
FR(m,n).

Altogether we find

Λ′′m,n(0) = − 8

π2
FR(m,n).

11.3. The third derivative. We have

Λ(3)
m,n =

2π2

27r2

3∑
j=1

2µjµ
′′′
j + 6µ′jµ

′′
j .

We use µ′j � 1/m1, µ
′′
j � 1/m3

1 to deduce that

Λ(3)
m,n =

4π2

27r2

3∑
j=1

µjµ
′′′
j +O(

1

m4
1

).

Now
3∑
j=1

µjµ
′′′
j =

1

π

3∑
j=1

µj(2M
′′′
j −M ′′′

i −M ′′′
k ) =

1

π

3∑
j=1

M ′′′
j (2µj − µi − µk)

after reordering the sum. We use a simple lemma:

Lemma 11.2. If {i, j, k} = {1, 2, 3}, and b1 + b2 + b3 = 0, then

3∑
j=1

aj(2bj − bi − bk) = 3
3∑
j=1

ajbj.

Apply Lemma 11.2 to aj = M ′′′
j , bj = µj, to obtain

3∑
j=1

µjµ
′′′
j =

3

π

3∑
j=1

µjM
′′′
j

Using µj = mj +O(1/mj) and (8.6) which states that

M ′′′
j =

54r3

π3m3
j

+O

(
1

m3
1m

2
j

)
gives

µjM
′′′
j =

54r3

π3m2
j

+O

(
1

m3
1mj

)
=

54r3

π3m2
j

+O

(
1

m4
1

)
.
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We obtain
3∑
j=1

µjµ
′′′
j =

3

π

3∑
j=1

54r3

π3m2
j

+O

(
1

m4
1

)
and so

Λ(3)
m,n =

4π2

27r2

3∑
j=1

µjµ
′′′
j +O

(
1

m4
1

)
=

4π2

27r2
3

π

3∑
j=1

54r3

π3m2
j

+O

(
1

m4
1

)

=
24r

π2

3∑
j=1

1

m2
j

+O

(
1

m4
1

)
= 24rFR(m,n) +O

(
1

m4
1

)
.

This concludes the proof of Lemma 8.5 . �

12. Proof of Proposition 7.2

Proof. We first assume that

m′ > 10m.

Then use

FR(m,n) =
1

m2
+

1

n2
+

1

(m+ n)2
>

1

m2
,

FR(m′, n′) =
1

m′2
+

1

n′2
+

1

(m′ + n′)2
<

3

m′2
<

3

(10m)2

to obtain

FR(m,n)− FR(m′, n′) >
1

m2
− 3

(10m)2
� 1

m2

which is certainly sufficient.
Now assume that for δ > 0 very small (but fixed),

δR < m < m′ ≤ 10m.

We will show that

FR(m,n)− FR(m′, n′) =
1

R2

(
f
(m
R

)
− f

(
m′

R

))
>

243

4

1

R4
+O

(
1

R5

)
� 1

R4

and since m > δR, we obtain

FR(m,n)− FR(m′, n′)� δ4

m4
� 1

m4

as required.
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Given R, and 1 ≤ m < n, with m2 + mn + n2 = R2 we can express
n in terms of m as

n =

√
R2 − 3

(m
2

)2
− m

2
.

Therefore we can write

FR(m,n) =
1

R2
f
(m
R

)
where

f(x) =
1

x2
+

1

(
√

1− 3(x
2
)2 − x

2
)2

+
1

(
√

1− 3(x
2
)2 + x

2
)2

which simplifies to

f(x) =
1

x2(1− x2)2
.

The derivative of f is

f ′(t) = − 2(1− 3t2)

t3(1− t2)3

which is negative for 0 < t < 1/
√

3, so that f is decreasing in that
range. Moreover, the second derivative is

f ′′(t) =
6 (7t4 − 4t2 + 1)

t4 (t2 − 1)4
=

6 (3t4 + (1− 2t2)2)

t4 (t2 − 1)4
> 0

which is positive, hence f ′(t) is increasing (and negative) and −f ′(t) is
positive and decreasing.

Let x = m/R, x′ = m′/R. Then

FR(m,n)− FR(m′, n′) =
1

R2
(f(x)− f(x′))

We separate two cases: m′ = n′, or m′ < n′.
If m′ = n′ then x′ = 1/

√
3 (since then R2 = 3(m′)2), and f ′(1/

√
3) =

0. We expand f(x) around x′ = 1/
√

3 to first order with Lagrange
remainder term

f (x)− f
(

1√
3

)
= f ′

(
1√
3

)(
x− 1√

3

)
+
f ′′(t)

2

(
x− 1√

3

)2

for some t ∈ (x, 1/
√

3) ⊂ [0, 1√
3
]. Hence using 1√

3
− x = m′−m

R
≥ 1

R
and

a numerical finding that min[0,1/
√
3] f
′′(t) = 119.167 . . . , we obtain

(12.1) f(x)− f
(

1√
3

)
≥ 1

2

(
min

[0,1/
√
3]
f ′′(t)

)(
x− 1√

3

)2

>
59

R2
.
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If m′ < n′ then we use the mean value theorem, obtaining that for
some x < t < x′ we have

FR(m,n)− FR(m′, n′) =
1

R2
(f (x)− f (x′)) =

1

R2
(x′ − x) · (−f ′(t))

We want to give lower bounds for x′ − x and for −f ′(t).
We have x′ − x = (m′ −m)/R ≥ 1/R. Moreover, we claim that

x′ ≤ 1√
3
− 1

2R
.

Indeed, since m′2+m′n′+(n′)2 = R2 with n′ > m′ so that by integrality
n′ ≥ m′ + 1, we have

4R2 = 3(m′)2+(m′+2n′)2 ≥ 3(m′)2+(m′+2(m′+1))2 = 4(1+3m′+3(m′)2)

so that x′ = m′/R satisfies 3(x′)2 + 3
R
x′ + 1

R2 ≤ 1, giving

x′ ≤ 1

6

(√
12− 3

R2
− 3

R

)
<

1√
3
− 1

2R
.

Hence

−f ′(t) > −f ′(x′) > −f ′( 1√
3
− 1

2R
) =

243

4R
+O(

1

R2
).

Therefore

(12.2) f(x)− f(x′) = (x′ − x) · (−f ′(t)) ≥ 243

4

1

R2
+O(

1

R3
)

in this case.
Combining (12.1) and (12.2) gives that in both cases,

FR(m,n)− FR(m′, n′) =
1

R2

(
f
(m
R

)
− f

(
m′

R

))
>

59

R4
+O(

1

R5
)

as claimed.
Finally assume

m < m′ ≤ 10m and m ≤ δR,

so that in particular, m′ < 10δR: Then

FR(m,n)− FR(m′, n′) =
1

R2
(f(x)− f(x′)) =

1

R2
(x′ − x) · (−f ′(t))

for some t ∈ (x, x′). Note that 0 < t < x′ < 10x < 10δ so that

−f ′(t) =
2(1− 3t2)

t3(1− t2)3
>

2(1− (10δ)2)

t3
>

1

t3
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for δ > 0 sufficiently small, so since tR < m′ < 10m we obtain

FR(m,n)− FR(m′, n′) =
m′ −m
R3

(−f ′(t)) > m′ −m
t3R3

>
1

(10m)3

which is consistent with the assertion of Proposition 7.2 in this case. �
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