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We search for the deep origin of the field-induced superconductor-to-insulator transitions observed
experimentally in electron-doped SrTiO3/LaAlO3 interfaces, which were analyzed theoretically very
recently within the framework of superconducting fluctuations approach (Phys. Rev. B 104, 054503
(2021)). Employing the 2D electron-gas model with strong spin-orbit scatterings, we have found
that in the zero temperature limit, field-induced unbounded growth of the fluctuation mass, and
consequent divergence of Cooper-pair density in mesoscopic puddles, drives the system to Boson
insulating states at high fields. Application of this model to the gate-voltage tuned 2D electron sys-
tem, created in the SrTiO3/LaAlO3 (111) interface at low temperatures, shows that, at sufficiently
high fields, the DOS conductivity prevails over the paraconductivity, resulting in strongly enhanced
magnetoresistance in systems with sufficiently small carriers density. Dynamical quantum tunneling
of Cooper pairs breaking into mobile normal-electrons states, which prevent the divergence at zero
temperature, contain the high-field resistance onset.

PACS numbers:

In a very recent paper1 we have shown that Cooper-
pair fluctuations in a 2D electron gas with strong
spin-orbit scatterings can lead at low temperatures
to pronounced magnetoresistance (MR) peaks above a
crossover field to superconductivity. The model was
applied to the high mobility electron systems formed
in the electron-doped interfaces between two insulating
perovskite oxides—SrTiO3 and LaAlO3

2, showing good
quantitative agreement with a large body of experimen-
tal sheet-resistance data obtained under varying gate
voltage3.

The model employed was based on the opposing ef-
fects generated by fluctuations in the superconducting
(SC) order parameter: The nearly singular enhance-
ment of conductivity (paraconductivity) due to fluctu-
ating Cooper pairs below the nominal (mean-field) crit-
ical magnetic field, on one hand, and the suppression of
conductivity, associated with the loss of unpaired elec-
trons due to Cooper pairs formation, on the other hand.
The self-consistent treatment of the interaction between
fluctuations4,5, employed in these calculations, avoids the
critical divergence of both the Aslamazov-Larkin (AL)
paraconductivity6 and the DOS conductivity7, allowing
to extend the theory to regions well below the nominal
critical SC transition. The absence of long range phase
coherence implied by this approach is consistent with the
lack of the ultimate zero-resistance state in the entire
data analyzed there.

In the present paper we focus our attention on the most
intriguing question arising from the Cooper-pair fluctua-
tions scenario of the superconductor–insulator transition
(SIT) presented in Ref.1, that is how Cooper-pairs liquid,
whose condensation (in momentum space) is customarily
associated with superconductivity, could metamorphose
into an insulator just by lowering its temperature un-
der sufficiently high magnetic field ? We have already
identified the highly suppressed normal-state DOS due

to Cooper-pairs formation as the dominant origin of the
insulator side of the SIT.

Here we show that field-induced vanishing of the fluctu-
ations stiffness in the zero temperature limit is at the core
of this intriguing phenomenon. Under these extreme cir-
cumstances, the fluctuation mass enhances without limit,
the AL paraconductivity vanishes and the DOS conduc-
tivity diverges, so that at low but finite temperature the
DOS conductivity prevails over the AL conductivity at
fields that roughly indicate the presence of the observed
enhanced MR.

It is therefore concluded that the consequent diver-
gence of the Cooper-pairs density within mesoscopic pud-
dles, as predicted by the thermal fluctuations approach
in the zero temperature limit, should bolster dynami-
cal quantum tunneling of Cooper pairs breaking into un-
paired mobile electrons states, and so containing the re-
sistance onset. This feature reflects on the overall com-
parison process with the experimental data, which shows
selective sensitivity to the phenomenological parameters
determining both the rate of quantum tunneling and the
normal-state conductivity.

I. CONDUCTANCE FLUCTUATIONS IN THE
ZERO TEMPERATURE LIMIT

In order to reveal the origin of the puzzling insulating
state that emerges in our approach from SC fluctuations
we will consider in this section the fluctuations contri-
butions to the sheet conductivity in the magnetic fields
region where they are rigorously derivable from the mi-
croscopic Gor’kov Ginzburg-Landau theory, i.e. above
the nominal (mean-field) critical field, determined from
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the vanishing of the Gaussian critical shift-parameter1:

εH ≡ ln

(
T

Tc0

)
+a+ψ

(
1

2
+ f−

)
+a−ψ

(
1

2
+ f+

)
−ψ (1/2)

(1)
Here Tc0 is the mean-field SC transition temperature

at zero magnetic field, ψ is the digamma function, f± =

δH2 + β ±
√
β2 − µ2H2, a± =

(
1± β/

√
β2 − µ2H2

)
/2

are dimensionless functions of the magnetic field H, with
the basic parameters: β ≡ εSO/4πkBT, µ ≡ µB/2πkBT,
δ ≡ D (de)

2
/2πkBT}, where D ≡ ~EF /m∗εSO the elec-

tron diffusion coefficient, and εSO = ~/τSO is the spin-
orbit energy. There are no restrictions on the tempera-
ture T as we are mainly interested in the low tempera-
tures region well below Tc0 down to the limit of T → 0.

A. DOS conductivity

As indicated in1, the phenomenological approach to
the calculation of the DOS conductivity, based on the
simple Drude formula: δσDOS = −2nse

2τSO/m
∗, as first

introduced by Larkin and Varlamov7 for the zero-field
case in the dirty limit, can fit nicely the result derived by
means of a fully microscopic (diagrammatic) approach.
The key factor is the Cooper-pair fluctuations number
density ns:

ns =
1

d

1

(2π)
2

∫ 〈
|ψ (q)|2

〉
d2q (2)

which depends on an appropriate selection of its mo-
mentum distribution function:

〈
|ψ (q)|2

〉
. The lat-

ter was selected by generalizing the pure-limit zero-field
expression7:

〈
|ψ (q)|2

〉
= α−1

[
ln (T/Tc0) + ξ2q2

]−1
,

with: α = 4π2kBT/7ζ (3)EF , ζ (3) ' 1.202, and ξ =
~vF /2πkBT , to the dirty-limit finite-field expression:

〈
|ψ (q)|2

〉
' 7ζ (3)EF

4π2kBT

1

Φ (x; εH)
(3)

where:

Φ (x; εH) = εH + a+ [ψ (1/2 + f− + x)− ψ (1/2 + f−)]

+a− [ψ (1/2 + f+ + x)− ψ (1/2 + f+)] (4)

and x = ~Dq2/4πkBT . The resulting expression of the
DOS conductivity contribution is given by:

δσDOSd ' −3.5ζ (3)

(
G0

π

)∫ xc

0

dx

Φ (x; εH)
(5)

where G0 = e2/π~ is the conductance quantum, xc =
~Dq2

c/4πkBT , with qc the cutoff wave number, and
3.5ζ (3) ' 4.207.

Further insight into the zero-temperature limit of
δσDOSd is gained by exploiting the linear approximation
of Eq.(4), i.e.: Φ (x; εH) ' εH + η (H)x, where:

η (H) = a+ψ
′
(

1

2
+ f−

)
+ a−ψ

′
(

1

2
+ f+

)
(6)

and performing the integration over x analytically, which
yields:

δσDOSd ' −3.5ζ (3)

(
G0

π

)
1

η (H)
ln

(
1 +

η (H)xc
εH

)
(7)

In the zero field limit ( η (H → 0) = ψ′ (1/2) = π2/2 ≡
η), and for sufficiently large cutoff, i.e. xc � εH/η (H),
we find: δσDOS (H → 0) ' −3.5ζ (3)

(
G0

πdη

)
ln ηxc

ε , so
that:

δσDOS ' −
(

7ζ (3)

π4

)(
e2

d~

)
ln
(ηxc
ε

)
in complete agreement8 with the result of a fully micro-
scopic (diagrammatic) approach presented in Appendix
A (Eq.A2) for a 2D system, following the method used
in Ref.7 for a layered superconductor.

B. Paraconductivity

The AL contribution to the sheet conductance derived
in Ref.1 was obtained from the retarded current-current
correlator:

QRAL (ω) = kBT

(
2e

~

)2(
1

2πd

) xc∫
0

xdx (8)

∑
n=0,±1,±2,....

Φ′ (x+ |n+ y| ; εH)

Φ (x+ |n+ y| ; εH)

Φ′ (x+ |n| ; εH)

Φ (x+ |n| ; εH)

where y = i~ω/2πkBT , and ω is the frequency of the
response function.

Using Eq.8 all nonzero Matsubara-frequency terms
in the corresponding AL static conductivity σAL =
limω→0 (i/ω)

[
QRAL (ω)−QRAL (0)

]
are canceled out and

the remaining n = 0 term can be written in the form:

σALd =
1

4

(
G0

π

) xc∫
0

(
Φ′ (x; εH)

Φ (x; εH)

)2

dx (9)

Exploiting the linear approximation of Eq.(4), i.e.:
Φ (x; εH) ' εH + η (H)x, and performing the integra-
tion over x analytically we find:

σALd '
1

4

(
G0

π

)
η (H)

εH

(
1 + εH

η(H)xc

) (10)
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C. Infinite boson mass at zero temperature

Combining Eq.(7) with Eq.(10), the total fluctuations
contributions to the sheet conductance is written as:

σfluctd '
(
G0

π

)η (H)

4

1

εH

(
1 + εH

η(H)xc

)
−3.5ζ (3)

η (H)
ln

(
1 +

η (H)xc
εH

)]
(11)

which highlights the complementary roles played by the
stiffness parameter η (H) in the AL and DOS conductivi-
ties. The importance of η (H) in controlling the develop-
ment of an insulating bosonic state at low temperatures
and high magnetic field can be clearly understood by
considering the extreme situation of its zero temperature
limit.

To effectively investigate this limiting situation it will
be helpful to rewrite η (H) as a sum over fermionic
Matzubara frequency, that is:

η (h) =

∞∑
n=0

(
n+ 1/2 + 2β + δh2

)2 − µ2h2[(
n+ 1/2 + δh2

) (
n+ 1/2 + 2β + δh2

)
+ µ2h2

]2
(12)

where: h ≡ H/H∗c‖0, t ≡ T/T ∗c , β = β0/t, µ = µ0/t, δ =

δ0/t, β0 ≡ εSO/4πkBT ∗c , δ0 ≡ D
(
deH∗c‖0

)2

/2πkBT
∗
c },

µ0 ≡ µBH
∗
c‖0/2πkBT

∗
c , with H∗c‖0 and T ∗c being char-

acteristic scales of the critical parallel magnetic field and
critical temperature, respectively.

In the zero temperature (t → 0) limit, at finite
magnetic field, h > 0, the discrete summation in
Eq.(12) transforms into integration, i.e.: η (h) →

t
∞∫
0

dν
(ν+2β0+δ0h

2)
2−µ2

0h
2

[(ν+δ0h2)(ν+2β0+δ0h2)+µ2
0h

2]
2 = t 1

h2
δ0h

2+2β0

h2δ20+2β0δ0+µ2
0
,

so that:

η (h)→ t

(
η0 (h)

h2

)
→ 0 (13)

where:

η0 (h) ≡ δ0h
2 + 2β0

(δ0h2 + 2β0) δ0 + µ2
0

(14)

Note that at zero magnetic field: η (h = 0) =∑∞
n=0 (n+ 1/2)

−2
= ψ′ (1/2) = π2/2, independent of

temperature.
Thus, the zero temperature limit of the sheet conduc-

tance, Eq.(11), at fields above the nominal critical field
H∗c‖0 can be written in the form:

(
σfluct

)
h>1,t→0

d→
(
G0

π

)t(η0 (h)

4h2

)
1

εh

(
1 + h2εh

η0(h)x0

)
−1

t

(
3.5ζ (3)h2

η0 (h)

)
ln

(
1 +

η0 (h)x0

h2εh

)]
(15)

where x0 ≡ ~Dq2
c/4πkBT

∗
c is the temperature-

independent cutoff parameter. It should be stressed at
this point that the temperature-independent argument
of the logarithmic factor in Eq.(15) (see Ref.9) is consis-
tent with the temperature-dependent cutoff parameter
xc = x0/t.

Thus, we conclude that in the t → 0 limit the AL
paraconductivity follows the vanishing stiffness param-
eter η (h) ∝ t, Eq.(13), whereas the DOS conductivity
diverges with 1/η (h) ∝ 1/t. The former effect is a di-
rect consequence of the divergent effective mass of the
fluctuations, whereas the latter is due to the unlimited
accumulation of Cooper-pairs within fluctuation puddles,
whose characteristic spatial size:

ξ (t→ 0) =

(
η0 (h)

h2εh

~D
4πkBT ∗c

)1/2

remains finite in this extreme limiting situation. The
decreasing asymptotic field dependence (η (h) ∝ 1/h2)
of the stiffness parameter (see Eq.(13)) further enhances
the sheet resistance at high fields by diminishing the lo-
calization length (ξ (t→ 0) ∝ 1/h

√
εh).

II. QUANTUM TUNNELING AND PAIR
BREAKING IN THE BOSON-INSULATING

STATE

It is evident that, in light of the limited number of
unpaired electrons available for the total conductivity,
the ultimately divergent negative conductance implied
by Eq.(15) is an unphysical result, which clearly indi-
cates the nature of the correction introduced in Ref.1.
In particular, the limitlessly rising Cooper-pairs density
within mesoscopic puddles, predicted by Eq.(15) in the
zero temperature limit, can be stopped only by allowing
the superfluous Cooper pairs to tunnel out of the pud-
dles while breaking into unpaired mobile electron states.
This should prevent the vanishing of the total conductiv-
ity and the consequent divergence of the sheet resistance
at high fields.

The formal incorporation of such a quantum correc-
tion into the thermal conductance fluctuation, which was
made in Ref.1, amounts to multiplying the AL term in
Eq.(11) by the factor (1 + TQ/T ), where TQ stands for
the tunneling attempt rate, and dividing the DOS con-
ductivity term by the same factor (see Appendix B for
the physical motivation). In parallel with these exter-
nal corrections, the electron pairing functions εH and
η (H) appearing in Eq.(11) were modified by inserting
the frequency-shift term TQ/2T to the arguments of the
digamma functions and their derivatives in Eq.(1) and
Eq.(6) respectively (see Appendix B for more details).
The external corrections are equivalent to replacing the
stiffness parameter appearing in the prefactors of the AL
and the DOS terms in Eq.(11) with the hybrid expres-
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sion:

η (H)→
(

1 +
TQ
T

)
ηU (h) (16)

where ηU (h) is obtained from η (h) in Eq.(12) by insert-
ing, under the Fermion Matsubara frequency summation,
the frequency-shift term TQ/2T :

ηU (h) =

∞∑
n=0

(17)

(
n+ 1/2 + TQ/2T + 2β + δh2

)2
− µ2h2[(

n+ 1/2 + TQ/2T + δh2
)(

n+ 1/2 + TQ/2T + 2β + δh2
)
+ µ2h2

]2
In Eq.(16), (1 + TQ/T ) represents the effect of quan-

tum tunneling of Cooper pairs, whereas the frequency-
shift term TQ/2T appearing in Eq.(17) for ηU (h), repre-
sents pair-breaking effect associated with the tunneling
process.

The corresponding pair-breaking effect on the critical-
shift parameter results in transforming εH according to:

εH → εUh ≡ ln

(
T

Tc0

)
+ a+ψ

(
1

2
+ TQ/2T + f−

)
(18)

+a−ψ

(
1

2
+ TQ/2T + f+

)
− ψ (1/2)

In the absence of quantum tunneling εH (Eq.(1))
is subjected to the usual magnetic field induced pair-
breaking effect10 through either the Zeeman spin-
splitting energy (µBH), or/and the diamagnetic energy
(D (deH)

2
/}) terms. In the zero temperature limit,

the effect is dramatically reflected in the removal of the
(Cooper) singularity of the logarithmic term in Eq.(1),
due to exact cancellation by the asymptotic values of the
digamma functions for f± � 1 (see Appendix C). In the
presence of quantum tunneling, the excitation frequency
shift πkBTQ/~ introduced to define εUh , Eq.(18), causes in
this limit an additional, field-independent pair-breaking
effect through the asymptotic behavior of the digamma
functions for TQ/2T � 1 (see Appendix C).

For systems with long range phase coherence de-
scribed, e.g. in Ref.10,11 the main impact of the pair-
breaking perturbations is near the critical point εH = 0
for Cooper pairs condensation (at q = 0) in momen-
tum space. For the system of strong SC fluctuations at
very low temperatures, under consideration here, where
Cooper pairs tend to condense within mesoscopic pud-
dles in real space, and their excitation process associated
with the frequency shift πkBTQ/~ greatly disperse in mo-
mentum space, dynamical quantum tunneling, which is
inherently connected to this excitation process, strongly
reinforces pair-breaking processes into unpaired electron
states.

The sharp plunge of η (h) just above h = 0 for T → 0,
discussed below Eq.(13) (see Fig.1), is a reflection in the
stiffness parameter of the field-induced pair-breaking ef-
fect. As indicated above, the frequency shift that trans-
forms η (h) to ηU (h), and represents field-independent

pair breaking effect, is intimately connected to the quan-
tum tunneling process discussed above. This is clearly
seen by considering the zero temperature limit of ηU (h)
in Eq.(17):

(ηU (h))T→0 =

(
T

TQ

)
T→0

ηQ (h) (19)

where:

ηQ (h) ≡
∞∫
0

dν

(
ν + 1/2 + 2βQ + δQh

2
)2 − µ2

Qh
2[

(ν + 1/2 + δQh2) (ν + 1/2 + 2βQ + δQh2) + µ2
Qh

2
]2

=
1

h2

δQh
2 + 2βQ

h2δ2Q + 2βQδQ + µ2
Q

(20)

and: βQ = β0/tQ, µQ = µ0/tQ, δQ = δ0/tQ, tQ ≡
TQ/T

∗
c .

The limiting function ηQ (h) in Eq.(20) is a continu-
ous smooth function of the field h, including at h = 0.
Therefore, Eq.(19) implies that the discontinuous plunge
of η (h) at h = 0 in the zero temperature limit is re-
moved by the frequency shift term, as can be directly
checked in Eq.(17). The overall magnitude of ηU (h) di-
minishes to zero with T/TQ in this limit. However, by
multiplying with the divergent quantum tunneling fac-
tor (1 + TQ/T ) the resulting hybrid product in Eq.(16),
which represents the combined effect of quantum tunnel-
ing and pair breaking, is a smooth finite function of the
field ηQ (h) (see Fig.1).

FIG. 1: Field-dependent stiffness parameter ηU (H) calcu-
lated at T = 1 mK for TQ = 0, 10, 40, 80 mK. Inset: The
hybrid product (1 + TQ/T ) ηU (H) calculated for the same T
and TQ values as presented in the main figure.

Our self-consistent field (SCF) approach, exploited in
Ref.1 for calculating the critical-shift parameter ε̃H in the
presence of interaction between Gaussian fluctuations,
avoids the critical divergence of both the AL paracon-
ductivity and the DOS conductivity, and allows to ex-
tend Eq.(11) for the conductance fluctuations to regions
well below the nominal critical SC transition. It also
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offers an extended proper measure of the pair-breaking
effect. In contrast to εH , ε̃H is positive definite in the
entire fields range, including that below the critical field
where εH < 0 (see Fig.2). The uniform enhancement
of ε̃UH with respect to ε̃H , seen in Fig.2, resulting from
the introduction of the frequency shift to the SCF equa-
tion (see Ref.1), is a genuine measure of the pair-breaking
effect associated with the frequency shift. Its monoton-
ically increasing field dependence seen in Fig.2 properly
reflects the field-induced pair-breaking effect in the entire
fields range.

FIG. 2: Field dependence, at T = 30 mK, of the "bare"
critical-shift parameter εUH (dashed lines), and the cor-
responding self-consistently "dressed" parameter ε̃UH (solid
lines), in the absence of quantum tunneling (brown curves)
and for TQ = 80 mK (blue curves). Note the downward
shift of the critical field and the uniform enhancement of the
dressed critical-shift parameter associated with the quantum
tunneling effect.

III. SENSITIVITY TESTS OF THE FITTING
PROCESS

Practically speaking, the quantum tunneling intro-
duced into the thermal fluctuations theory–an essential
requirement for avoiding the unphysical divergence of the
high-field DOS conductivity at zero temperature, and
the normal-electron conductivity term, which is closely
related to the pair-breaking processes bound to the tun-
neling events, are both phenomenological constituents of
our model, which are exclusively determined by the ex-
perimental sheet-resistance data reported in Ref.3.

The other parameters in this model have microscopic
origins and so can either be evaluated from first princi-
ples or be extracted independently from (other) experi-
ments. Among the former group of microscopic parame-
ters the numerical prefactor of the total fluctuations con-
ductance given by Eq.(11) can be checked versus the rele-
vant literature7. At zero field, where the stiffness param-
eter η (h = 0) = π2/2, is independent of the spin-orbit
energy parameter β0, and the corresponding conductance
is:

σfluct (H = 0) '
(
e2

~d

)[(
1

8

)
1

ε
−
(

7ζ (3)

π4

)
ln

(
π2xc
2ε

)]
(21)

the prefactor is found here to be twice larger than that
reported in Ref.7. While we have not been able so far to
successfully trace back to the origin of this discrepancy
such a variation in the amplitude of the total (AL plus
DOS) fluctuations conductivity is not expected to signif-
icantly change the results of the fitting process presented
in Ref.1. As will be elaborated below, the results of the
fitting process can exactly be reproduced by slightly read-
justing only the two phenomenological parameters of the
theory:–the tunneling attempt rate, TQ (T,H), and the
normal-state conductivity, σn (H,T ) .

An important parameter in the fitting process is the
magnetic field Hmax at which the sheet resistance has its
maximum:– the outstanding feature characterizing the
emergence of the insulating state at low temperatures.
This parameter is predominantly determined by the lo-
cation of the minimum Hmin of the fluctuations conduc-
tivity σfluct (H,T ), but is slightly shifted downward due
to the field dependence (increasing with increasing field)
of the normal state conductivity σn(H,T ). In the ab-
sence of quantum tunneling, σfluct (H,T ) at very low
temperature exhibits an asymmetrical sharp minimum
arising from the opposing effects of the sharply dimin-
ishing AL term with increasing field above the nominal
(mean-field) critical point and the less sharply decreas-
ing DOS conductivity term in Eq.(11). The relevant field
dependencies of these terms above the nominal critical
point are controlled by the field dependencies of η (h)
and εh, as shown in Figs.1 and 2, respectively. The di-
mensionless spin-orbit energy parameter β0 exclusively
determines Hmin in the absence of quantum tunneling.
The dependence of Hmax on the gate voltage shown in
Fig.3 is therefore conveyed through the dependence of β0

on the Fermi energy EF .
Allowing for quantum tunneling of Cooper pairs, with

attempt rate TQ, the sharp minimum of σfluct (H,T ) is
smeared, and due to the asymmetry of the latter, Hmin is
shifted downward (see Fig.4). The corresponding shift of
Hmax, in conjunction with the downward shift associated
with the field dependence of σn(H,T ), enable us fitting
the data by exclusively varying the phenomenological pa-
rameters TQ (H,T ) and σn(H,T ), without changing the
other parameters. Note that, in contrast to Hmin which
shifts downward with decreasing β0 (or EF ), the depths
of the minima in Fig.4 are seen to be independent of
β0. Consequently, the high-field tails of σfluct (H,T ) for
the smaller value of β0 shown in Fig.4, which always lay
below zero, are seen to situate above the corresponding
tails for the larger value of β0. To compensate for these
negative values, the field independent normal-state con-
ductivity parameter in our fitting process, σ0 (T ), should
be smaller for smaller values of β0 (as indeed found,
see Table I). This feature reflects the underlying con-
sistency of our fluctuations approach (through the de-
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pendence of σfluct (H,T ) upon the normal-state carrier
density) with the experimentally observed high-field re-
sistance (through its dependence on the gate voltage).

FIG. 3: Measured sheet resistance at T = 30 mK, as a
function of field for three gate voltages (corresponding to
RN = 20.5, 10.5, 7.5 kΩ) as reported in Ref.3 (full circles).
The dashed lines represent the results of calculations (for the
respective Fermi energies: EF = 6.5, 7.2, 8.2 meV) similar to
those performed in Ref.1 , but with 1/2 of the total amplitude
of σfluct (H,T ), and modified phenomenological adjustable
parameters TQ (H,T ) and σn(H,T ), as described in the text.

The results of the fittings of the sheet resistance data
at T = 30mK for the various gate voltages, using the re-
duced total amplitude of σfluctU (H,T ), is shown in Fig.3.
The quality of the agreement with the experimental data
is identical to that found in Ref.1 with the larger ampli-
tude. The values of the phenomenological fitting parame-
ters obtained for the smaller amplitude are given in Table
I in Appendix D. All the other (i.e. microscopic) param-
eters have not been changed. Variations of the tunneling
attempt rate for the two amplitudes and two gate volt-
ages in the entire temperatures range are shown in Fig.5.
The collapse of all values of TQ (Hmax, T ) shown in Fig.5
in the zero temperature limit to: TQ (Hmax, T → 0) = 60
mK, reflects some sort of universality of the quantum
tunneling phenomenon which requires further investiga-
tion.

IV. DISCUSSION

The model system, introduced in Ref.3 and further
analyzed in the present paper, has been motivated by
the experimental observations of pronounced MR peaks
above a crossover field to superconductivity3,1 in the high
mobility electron systems formed in the electron-doped
SrTiO3/LaAlO3 (111) interface. Similar electrostatically
tuned SIT was reported for the LaAlO3/SrTiO3 (001)
interface12, showing however13,14 no clear indication of
pronounced MR peaks similar to those reported for the

(111) interface. The theory predicts great sensitivity
of the fluctuation-induced MR peaks, observed at high
fields, to variation of the electronic interface density of
states in the transition region of strong spin-orbit induced
band-mixing15,16,17 (see Fig.3). This feature was ex-
ploited in Ref.1 for extracting the mobile electrons states
density from the experimental sheet-resistance data just
by varying the gate voltage. The sensitivity of the fitting
process to uncertainty in the overall amplitude of the
conductance fluctuations has been tested in the present
paper, showing only minor changes restricted to the phe-
nomenological parameters, i.e. the normal state conduc-
tivity and the quantum-tunneling attempt rate (see Ap-
pendix D and Fig.5).

For the various 2D electrons’ systems generated by
varying the gate voltage applied to this interface, the
diminishing sheet resistance measured at decreasing tem-
perature down to 30 mK in the low magnetic fields region,
has not reached the ultimate zero-resistance character-
izes a genuine SC state. The self-consistent treatment
of the interaction between fluctuations4 employed in our
analysis accounts well for this feature and for the conse-
quent absence of a true critical point, allowing to extend
the theory to regions well below the nominal critical SC
transition.

In our search for the deep origin of the high-field
insulating states we have discovered that, under in-
creasing magnetic field, Cooper-pair fluctuations in the
zero temperature limit tend to localize within meso-
scopic puddles of decreasing spatial size, ξ (t→ 0) =(
η0 (h) /h2εh

)1/2
(~D/4πkBT ∗c )

1/2 while developing an
infinitely large mass. The emerging picture of conden-
sation of Cooper-pairs in real space puddles is of course
ideal, but basically reflects real tendency toward a boson
insulating state. It also calls for a pair-breaking mecha-
nism into unpaired electron states, stimulated by quan-
tum tunneling of Cooper pairs, which prevents the un-
physical divergence of the Cooper-pairs density.

Realization of this scenario in 2D electron systems with
strong spin-orbit scatterings under a parallel magnetic
field at low temperatures shows that at sufficiently high
fields the DOS conductivity prevails over the paraconduc-
tivity, resulting in strongly enhanced MR in systems with
sufficiently small carriers density. Dynamical quantum
tunneling of Cooper pairs, breaking into mobile normal-
electrons states, contain the resistance onset at high mag-
netic field. In this system of heavy, charged bosons in
equilibrium with unpaired mobile electrons, the dilute
system of mobile electrons are responsible for most of
the residual conductance.

An important feature of the localization process pre-
dicted in this approach is its dynamical nature, namely
that it occurs in response to the driving electric force1,
and not spontaneously in a thermodynamical process to-
ward equilibrium state. This feature seems to distinguish
it from the various approaches to the phenomenon of SIT
discussed in the literature18,19,20,21, in which disorder-
induced spatial inhomogeneity in the form of SC islands
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FIG. 4: Normalized fluctuations conductivity,
πσfluct

U (H,T ) /G0, as a function of field at T = 1 mK,
around its minimum, for β0 = 14 (solid lines) and for β0 = 11
(dashed lines), for three values of the quantum tunneling
attempt rate; TQ = 30 mK (magenta), TQ = 40 mK (blue)
and TQ = 50 mK (brown). Note the downward shifts of Hmin

with the decreasing values of β0 and/or the increasing values
of TQ.

FIG. 5: Best fitting values of the quantum tunneling at-
tempt rate TQ (Hmax, T ) at the maximum point Hmax of the
sheet resistance as a function of Temperatures, for β0 = 11
(RN = 20.5 kΩ, blue lines), and for β0 = 14 (RN = 7.5 kΩ,
black lines). Dashed lines represent results for the fitting
expression employed in Ref.1 , whereas the solid lines repre-
sent the results for the same expression, in which the total
amplitude of σfluct

U (H,T ) was multiplied by 1/2.

is involved in generating the insulating state. However,
in a similar manner the formation of fluctuation puddles
in our approach is controlled by disorder, which strongly
affect the Cooper-pairs amplitude correlation function in
real space. This can be seen by comparing the pair cor-
relation function derived in the dirty limit1,22 to that
obtained in the pure limit23.

Another important parameter in our approach of rel-
evance to the insulating behavior that seems to have a
parallel in the literature19, is the self-consistent critical
shift parameter ε̃H , which also plays the role of an energy
gap in the Cooper-pair fluctuations spectrum1. Thus, it
is interesting to note that the two-particle gap, which

characterizes the insulating state in Ref.19, vanishes at
the SIT. Analogously, in our approach the (two-particle)
Cooper-pair fluctuation gap ε̃H gradually diminishes to
very small (nonvanishing) values upon decreasing field
below the sheet-resistance peak (see Fig.2 and Fig.3), in
accord with the lack of a critical point.
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Appendix A: The DOS conductivity from
microscopic theory

In this appendix we evaluate the DOS conductivity in
a 2D system in the zero field limit, following the fully
microscopic (diagrammatic) approach presented in Ref.7
for a layered superconductor.

Starting with diagram No.5, and using the notation
employed in Ref.7 (according to which ~ = kB = 1 and
the distance between layers is s) the corresponding re-
sponse function is given by:

Q(5)
xx (ω) = iωκ1 (Tτ)

πη(2)e
2

4s
Axx

1

(2π)
2

∫
d2q

ε+ η(2)q2

where ε ≡ ln (T/Tc0), Axx = 2
〈
v2
〉
FS

/v2
F =

2
〈
cos2 θ

〉
= 1, and η(2) = πD/8T , so that by perform-

ing the integration over x ≡ η(2)q
2, i.e.: Q

(5)
xx (ω) =

iωκ1

∫ xc

0
dx (ε+ x)

−1 (
e2/16s

)
, one finds:

Q(5)
xx (ω) = iωκ1

e2

16s
ln
(xc
ε

)
The corresponding conductivity:

σ(5)
xx = −Q

(5)
xx (ω)

iω
= −κ1

e2

16s
ln
(xc
ε

)
(A1)

which together with the topologically equivalent diagram
6 gives:

σ(5+6)
xx = 2σ(5)

xx = −κ1
e2

8s
ln
(xc
ε

)
For the two other diagrams 7, and 8, the result is:

σ(7+8)
xx = 2σ(7)

xx = −κ2
e2

8s
ln
(xc
ε

)
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Taking into account all the four diagrams contributing
to the DOS conductivity we have for the 2D limit:

σ(5+6+7+8)
xx = − e

2

8s
κ (Tτ) ln

(xc
ε

)
where:

κ (Tτ) ≡ κ1+κ2 =
−ψ′

(
1
2 + 1

4πTτ

)
+ 1

2πTτ ψ
′′ ( 1

2

)
π2
[
ψ
(

1
2 + 1

4πTτ

)
− ψ

(
1
2

)
− 1

4πTτ ψ
′
(

1
2

)]
Estimating κ (Tτ) in the dirty limit: Tτ � 1 by ex-

ploiting the asymptotic expansion of the digamma func-
tion, ψ (z)→ ln z, ψ′ (z)→ 1/z, we find: κ (Tτ)Tτ�1 →
−2ψ′′

(
1
2

)
/π2ψ′

(
1
2

)
, ψ′
(

1
2

)
= π2/2, ψ′′ (z) = −14ζ (3),

so that: κ (Tτ)Tτ�1 → 8× 7ζ (3) /π4, and:

(
σ(5+6+7+8)
xx

)
Tτ�1

→ −κ (Tτ)Tτ�1

e2

8s
ln
(xc
ε

)
= −

(
7ζ (3)

π4

)(
e2

s

)
ln
(xc
ε

)
(A2)

It should be stressed at this point that this expression,
which was derived here directly from the 2D limit of the
response function Qxx (ω), as presented in Ref.7 for a
layered (quasi 2D) system, is by a factor of 2 larger than
the 2D limit of the final expression for the total DOS
conductivity reported in Ref.7.

Appendix B: The quantum fluctuations correction
to conductivity

In this appendix we outline the physical reasoning be-
hind our phenomenological quantum fluctuations correc-
tion to the two ingredients of the conductance fluctu-
ations. Starting with the DOS conductivity we con-
sider the Cooper-pair density, ns, given in Eq.(2), with〈
|ψ (q)|2

〉
in Eq.(3). Approximating 7ζ (3) ' 8.4 we

rewrite:

〈
|ψ (q)|2

〉
'
(

2.1EF
π2kBT

)
1

Φ (x; εH)
= 4.2

(
N2Dλ

2
T

)
Φ (x; εH)

(B1)
where N2D = k2

F /2π is the density of the 2D electron gas
and λT =

√
~2/2πm∗kBT is the thermal wavelength.

The momentum distribution function
〈
|ψ (q)|2

〉
mea-

sures the number of bosons per wave vector q in the
Cooper-pairs liquid, engaged in equilibrium with a 2D
gas of unpaired mobile electrons with a nominal density
N2D. The prefactor N2Dλ

2
T =

(
1/2π2

)
(EF τT /~), that

is the number of electrons in an area of size equal to the
thermal wavelength, is proportional to the characteristic
thermal activation time τT = ~/kBT .

The quantum corrections, introduced in Ref.1, amount
to modifying Expression B1 in two steps; in the first, re-
placing the temperature T , appearing in the denominator
of the prefactor, with T + TQ, and in the second step in-
serting the frequency-shift term TQ/2T to the arguments
of the digamma functions in Eq.(4) consistently with the
replacement of εH with εUH . The total modification takes
the form:

〈
|ψ (q)|2

〉
→

〈
|ψU (q)|2

〉
= N2Dλ

2
U

4.2

ΦU
(
x; εUH

)
=

2.1

π2

(EF τU/~)

ΦU
(
x; εUH

)
where 1/τU = 1/τT + 1/τQ, and τQ = ~/kBTQ, is the
characteristic time for Cooper-pair tunneling. The pref-
actor N2Dλ

2
U , is the number of electrons in an effective

area λ2
U = ~2/2πm∗kB (T + TQ) that is proportional to

the characteristic time, τU , for both thermal activation
and quantum tunneling of Cooper pairs. Thus, increas-
ing the temperature and/or shortening the time τQ for
quantum tunneling (which also enhance pair breaking
by increasing ΦU

(
x; εUH

)
), result in larger rate of ther-

mal and/or quantum leakage from puddles of Cooper
pairs. The resulting reduction in the number of Cooper-
pairs, which occurs versus a corresponding increase in the
number of unpaired mobile electrons, would suppress the
DOS contribution to the resistance.

The corresponding unified (quantum thermal (QT))
density (per unit area) of the Cooper-pairs liquid
is now evaluated: nUs = 1

d
1

(2π)2

∫ 〈
|ψU (q)|2

〉
d2q =

1
d

1
(2π)2

∫ q2c
0
πd
(
q2
) (

2.1EF

π2kB(T+TQ)

)
1

ΦU(x;εUH)
, so that the

unified DOS conductivity, σUDOS = −
(
2nUs e

2/m∗
)
τSO,

is given by:

σUDOSd ' −4.2

(
G0

π

)∫ t−1x0

0

dx

(1 + TQ/T ) ΦU
(
x; εUH

)
(B2)

For the AL thermal fluctuations conductivity we start
with the retarded current-current correlator QRAL (ω),
Eq.(8), which was obtained from the Matsubara cor-
relator QAL (iΩν) following the analytic continuation
iΩν → ω. The corresponding electrical response func-
tion is seen to be proportional to the thermal energy
kBT = ~/τT . The effects of quantum tunneling and
pair breaking are introduced by adding to the thermal
attempt rate 1/τT ∝ kBT the quantum tunneling at-
tempt rate 1/τQ ∝ kBTQ , and by appropriately insert-
ing the frequency-shift term TQ/2T into the function
Φ (x+ |n+ y| ; εH), as explained in the main text, i.e.:
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RN = 7.5[kΩ] RN = 10.5[kΩ] RN = 20.5[kΩ]

T [mK] Tq[mK] Hq[T ] Hn[T ] σ0[kΩ−1] T [mK] Tq[mK] Hq[T ] Hn[T ] σ0[kΩ−1] T [mK] Tq[mK] Hq[T ] Hn[T ] σ0[kΩ−1]

30 83 8 6.9 .065 30 80 7.3 7 .041 30 97 6.5 4.25 .014
90 77 10 7 .065 130 75 10 7.1 .041 121 90 10 4.35 .014
212 62 20 12 .09 230 62 15 8 .051 212 82 10 4.5 .015
303 47 25 14 .096 330 55 18 10 .065 303 72 12 6.5 .026
485 10 30 20 .106 430 35 25 12 .069 394 67 15 8 .029

TABLE I: Values of the temperature-dependent parameters extracted in the fitting process of the measured sheet resistance for
the 1/2-reduced amplitude of σfluct (H,T ), which determine the temperature and field dependencies of the phenomenological
parameters σn (H,T ) and TQ (T,H) (see Appendix D for details). As elaborated in Ref.1, the three gate voltages employed
correspond to RN = 20.5, 10.5, 7.5 kΩ .

QU,RAL (ω) = kB (T + TQ)

(
2e

~

)2(
1

2πd

) xc∫
0

xdx
∑

n=0,±1,±2,....

Φ′U
(
x+ |n+ y| ; εUH

)
ΦU
(
x+ |n+ y| ; εUH

) Φ′U
(
x+ |n| ; εUH

)
ΦU
(
x+ |n| ; εUH

)
where 2iπykBT/} = ω.

The corresponding conductivity is: σUAL = limω→0 (i/ω)
[
QU,RAL (ω)−QU,RAL (0)

]
=

kB (T + TQ) limy→0

(
− ~

2πkBTy

) (
2e
~
)2 ( 1

2πd

) ∞∫
0

xdx
∑

n=0,±1,±2,....

[
Φ′U(x+|n+y|;εUH)
ΦU(x+|n+y|;εUH)

Φ′U(x+|n|;εUH)
ΦU(x+|n|;εUH)

− Φ′U(x+|n|;εUH)
ΦU(x+|n|;εUH)

Φ′U(x+|n|;εUH)
ΦU(x+|n|;εUH)

]
= −

(
T+TQ

T

) (
e
π

)2 ( 1
d~
) ∞∫

0

xdx
∑

n=0,±1,±2,....

Φ′U(x+|n|;εUH)
ΦU(x+|n|;εUH)

limy→0
1
y

[
Φ′U(x+|n+y|;εUH)
ΦU(x+|n+y|;εUH)

− Φ′U(x+|n|;εUH)
ΦU(x+|n|;εUH)

]
, which can be

reduced to (compare Eq.9):

σUALd =
1

4

(
G0

π

)(
1 +

TQ
T

) t−1x0∫
0

(
Φ′U
(
x; εUH

)
ΦU
(
x; εUH

))2

dx (B3)

Appendix C: The Quantum limit of the Critical-shift
parameter

In this appendix we study the pair-breaking ef-
fect due to magnetic field and to quantum tunnel-
ing of Cooper pairs in the zero temperature limit.
Consider the unified (quantum-thermal) expression,
Eq.(18), for the critical shift parameter εUh in the zero-
temperature (quantum) limit. Using the asymptotic

expansion of ψ
(

1
2 + TQ/2T + f±

)
for TQ/T, f± �

1, i.e. ψ
(

1
2 + TQ/2T + f±

)
→ ln (TQ/2T + f±) =

ln [(TQ + T±) /2T ], we have:

εUh → εQh = ln (T/Tc0)− lnT + (C1)
a+ ln (TQ + T−) + a− ln (TQ + T+)− ln 2− ψ (1/2)

where:

T± ≡
D (de)

2
H2

πkB}
+

εSO
2πkB

±

√(
εSO

2πkB

)2

−
(
µBH

πkB

)2

(C2)

In the above expression for εQh (Eq.C1), the Cooper
singular term, ln (T/Tc0), is exactly cancelled by the log-
arithmic term arising from the asymptotic expansion of
the digamma functions, so that the remaining regular
terms are rearranged to yield the following temperature
independent expression for εQh :

εQh → a+ ln

(
TQ + T−
Tc0

)
+ a− ln

(
TQ + T+

Tc0

)
+ ln 2 + γ

(C3)
where γ ≈ 0.5772... is the Euler–Mascheroni constant,
and:
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a± =
1

2

1± 1√
1− (µ0/β0)

2
h2


with µ0 ≡ µBH∗c‖0/2πkBT

∗
c , β0 ≡ εSO/4πkBT ∗c .

Appendix D: The phenomenological fitting
parameters

As in our fitting process, described in Ref.1, the
normal-state conductivity contribution σn (H,T )
has a quadratic field-dependent form: σn (H,T ) =

σ0 (T ) [1 + (H/Hn (T ))]
2, with two adjustable,

temperature-dependent parameters σ0 (T ) , Hn (T ).
The corresponding expression for the MR, defined as
usual by: MR (H,T ) ≡ [ρn (H,T )− ρn (0, T )] /ρn (0, T ),
where ρn (H,T ) = 1/σn (H,T ), is given by:

MR (H,T ) = − (H/Hn (T ))
2

1 + (H/Hn (T ))
2 (D1)

yielding negative MR in qualitative agreement with that
observed in Refs.24 and15 at temperatures well above Tc.

Similarly, for the temperature and field dependence of
the phenomenological quantum tunneling "temperature"
parameter TQ (T,H) we use here the form employed in
Ref.1:

TQ (T,H) = TQ (T )

[
1−

(
H

HQ (T )

)2
]

(D2)

with the two adjustable parameters, TQ (T ) and HQ (T ).

The best fitting values for TQ (T ) , HQ (T ) , Hn (T ),
and σ0 (T ), obtained in our fitting process for the 1/2-
reduced amplitude of σfluct (H,T ) are listed in Table I.
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