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We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion
of a single neutral atom in the presence of a planar perfect mirror, i.e. a perfect conductor at all
frequencies. We consider a simplified model whereby a moving ‘scalar atom’ is coupled to a quantum
real scalar field, subjected to either Dirichlet or Neumann boundary conditions on the plane. We
use an expansion in powers of the departure of the atom with respect to a static average position,
to compute the vacuum persistence amplitude, and the resulting vacuum decay probability. We
evaluate transition amplitudes corresponding to the excitation of the atom plus the emission of a
particle, and show explicitly that the vacuum decay probabilities match the results obtained by
integrating the transition amplitudes over the directions of the emitted particle. We also compute
the spontaneous emission rate of an oscillating atom that is initially in an excited state.

I. INTRODUCTION

Quantum vacuum fluctuations are at the origin of
many interesting phenomena. A prominent place among
them corresponds to the forces arising between static
neutral objects, originated in the fluctuations of the elec-
tromagnetic (EM) field. These Casimir forces [1] have
been measured with precision in the last decades, and
there have also been theoretical advances on finding their
dependence on the geometry and composition of the bod-
ies.

Vacuum fluctuations also affect the decay probability
of single atoms, via spontaneous emission. In the prox-
imity of metallic plates or when the atom is in a cavity,
those decay probabilities may change because of the in-
fluence of the boundary conditions on the properties of
those fluctuations. This kind of effect has been investi-
gated in the context of cavity electrodynamics [2].

Qualitatively different effects appear when the system
is subjected to time dependent external conditions; for
example, photon creation when macroscopic media are
accelerated or when, being static, a time-dependence of
their electromagnetic properties is induced. Moreover
(under some conditions) even for a medium which moves
at a constant velocity with respect to a static one, a
frictional force, termed ‘quantum friction’, may arise.
These phenomena, broadly named dynamical Casimir ef-
fect (DCE) [3], do also manifest themselves at a micro-
scopic level. For example, the oscillatory motion of the
center of mass of an atom, which is initially in its ground
state, can lead to different excited states of the atom-
field system: one of them corresponds to a final state
where the atom itself has been excited, and a photon has
been emitted. Alternatively, the final state may contain
a pair of photons, with the atom still in its ground state.
The latter is the microscopic counterpart of the photon-
creation process due to a moving mirror [4]. A different
mechanism, not involving motion, arises when external

driving fields produce a time-dependence in the energy
levels [5].

Another interesting line of research, closely related to
the present paper, focusses on single atoms near a mir-
ror, and in relative motion to it. For example, for a two
level atom in its excited state, an oscillating mirror in-
duces modifications in the decay probability and in the
spectrum of the emitted photons [6, 7]. Oscillating atoms
near a perfect mirror have been considered in a number of
situations, most of them using simplifying assumptions,
either about the direction of the emitted photons [8, 9]
or considering a scalar rather than the EM field [10]. For
uniform acceleration, the relation between the excitation
probability for a moving atom has been compared with
that of a moving mirror, in discussions of the equivalence
principle [9]. Imperfect mirrors have also been consid-
ered, in particular, in our previous work [11] on quantum
dissipative effects for an atom moving non-relativistically
in the presence of a graphene sheet. The calculations
were performed perturbatively in the coupling constants
that define the imperfect media, estimating the dissipa-
tive phenomena, in this context, via the imaginary part of
the in-out effective action. This is a “global” observable,
namely, it accounts for the total probability of vacuum
decay.

In this paper, and for a similar kind of system, we
present a two-fold approach to study quantum dissipation
and then check their consistency: we first evaluate the
imaginary part of the effective action, and then present a
more refined study, by evaluating the probability of pho-
ton emission as a function of the direction of the emitted
photons. The consistency of both approaches is checked
by integrating out that emission probability over all the
possible angles, and comparing with the probability of
vacuum decay. We also consider the case of a moving
atom that is initially in an excited state, and analyse
the dependence of the probability of spontaneous emis-
sion on the acceleration of the atom and its distance to
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the mirror. We have done all calculations for a model
where a real scalar field couples to a scalar model for an
atom, which moves in the presence of a “perfect” mirror;
namely, one which imposes either Dirichlet or Neumann
boundary conditions.

This paper is organised as follows: in II, we introduce
the model and evaluate the imaginary part of its effective
action, both for Dirichlet and Neumann boundary condi-
tions, to the second order in the amplitude of motion of
the atom. In Sec. III, we evaluate the transition prob-
abilities. We find the total decay probability, and also
show its consistency with the finer description of the el-
ementary processes of photon emission and atom excita-
tion. We also discuss the decay or spontaneous emission
process in terms of its corresponding probability. Finally,
in IV, we summarise our main conclusions.

II. THE EFFECTIVE ACTION

It has become common usage in research related to
both the static and dynamic Casimir effects, to begin the
analysis of the phenomenon being studied in a simplified
setting, with a real scalar field playing the role of the
full EM field. In some cases, one can even show that
transverse electric and transverse magnetic modes can be
described by scalar fields satisfying either Dirichlet and
Neumann boundary conditions, and that the EM field
results may be obtained as the superposition of those
two scalar field theories.

In our model, an atom will be coupled to a quantum
real scalar field, and we will assume ‘perfect’ boundary
conditions for the scalar field on the flat boundary, i.e.
Dirichlet or Neumann. The free action for the massless
scalar field shall be given by

Ssc(φ) =
1

2

∫
d4x ∂µφ(x)∂µφ(x) , (1)

and boundary conditions will be assumed to be imple-
mented at the level of the functional integral over gauge
field fluctuations. In our conventions, indices from the
middle of the Roman alphabet (i, j . . .) are assumed to
run from 1 to 3, while those of the middle of the Greek
alphabet (µ, ν, . . .) run from 0 to 3, with x0 ≡ ct. In our
conventions, c ≡ 1. The metric tensor is, on the other
hand, assumed to be (gµν) = diag(1,−1,−1,−1). Ein-
stein convention on the sum over repeated indices is also
understood, unless explicitly stated otherwise.

The classical action for the atom is, on the other hand,
assumed to be:

Sa =
m

2

∫
dt
(
q̇2 − Ω2q2

)
+ g

∫
dt q(t) φ(t, r(t)) , (2)

where q(t) plays the role of the electron’s degree of free-
dom, r(t) of the atom’s center of mass, m is the electron’s
mass, and g is the coupling constant between the electron
and the vacuum field. We will assume that the motion

of the center of mass is bounded and we will denote by
r0 the (time) averaged position.

Following a similar approach to the one of our previous
work [11], we first integrate out the internal degree of
freedom q(t), what produces an “intermediate” effective
action Seff(φ; r), given by the expression:

Seff(φ; r) = Ssc(φ) + S(a)
I (φ; r) (3)

with

S(a)
I (φ; r) = −g

2

2

∫
dt

∫
dt′∆(t− t′)φ(t, r(t))φ(t′, r(t′)),

(4)
where: ∆(t− t′) =

∫
dν
2π e
−iν(t−t′) ∆̃(ν), and

∆̃(ν) =
i

m(ν2 − Ω2 + iε)
. (5)

Then, the complete effective action of the system, func-
tional of the center of mass coordinates, Γ[r(t)], is ob-
tained by including the real scalar field fluctuations in
the presence of the appropriate boundary conditions.
Namely,

eiΓ[r(t)] =

∫ [
Dφ
]
m
eiSeff (φ;r)∫ [

Dφ
]
m
eiSeff (φ;r0)

. (6)

The subindex ‘m’ for the brackets in the field integration
measure has been included to signal that the integral is
over those field configurations that are compatible with
the boundary conditions imposed by the mirrors. In our
case, and as already advanced, those conditions will be ei-
ther Dirichlet or Neumann on the plane x3 = 0. We shall
not need to actually perform the full integrals above when
we evaluate Γ[r(t)] to the first order in S(a)

I . Indeed, to
that order, we just need the correlator of two fields in the
presence of the mirror, which is just the field propagator
in the presence of Dirichlet or Neumann conditions on a
plane. More explicitly, and denoting the contribution of
first order in S(a)

I by Γ(am)[r(t)], we see that:

Γ(am)[r(t)] =
ie2

2

∫
dt

∫
dt′∆(t− t′)

× 〈φ(t, r(t))φ(t′, r(t′))〉(m), (7)

where the symbol 〈. . .〉(m) denotes the functional averag-
ing

〈. . .〉(m) =

∫ [
Dφ
]
m
. . . eiSsc(φ)∫ [

Dφ
]
m
eiSsc(φ)

. (8)

A. Dirichlet mirror

For a Dirichlet mirror, we can simply use the images
method, to write:〈
φ(x)φ(y)

〉
m

=G0(x0 − y0, x1 − y1, x2 − y2, x3 − y3)

−G0(x0 − y0, x1 − y1, x2 − y2, x3 + y3) ,
(9)
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where G0 is the free scalar-field propagator

G0(x0−y0, x1 − y1, x2 − y2, x3 − y3) =

=

∫
d4k

(2π)4
e−ik·(x−y) i

k2 + iε
. (10)

Introducing the explicit form of the Dirichlet propagator
above into (7), and using an entirely analogous approach
to the one of [10] we obtain, after some algebra:

Im[ΓDmp] =
g2

8 Ωm

∫
d3p

(2π)3

1

p
(11)

×
[
f(−pq,−p3,−(p+ Ω))f(pq, p

3, p+ Ω)

− f(−pq, p
3,−(p+ Ω))f(pq, p

3, p+ Ω)
]
,

where p = (pq, p
3), p = |p|, and

f(p, ν) =

∫ +∞

−∞
dt e−ip·r(t) eiνt . (12)

We obtain more explicit expressions by expanding in
powers of the departure of the atom from an equilibrium
position r0, which in our choice of coordinates will be of
the form r0 = (0, 0, a), a > 0.

To the second order in the departure, which we denote
y(t), and using tildes to denote time Fourier transforms,
we find

Im[ΓDmp] =
1

2

∫ +∞

−∞

dν

2π
ỹi(−ν) ỹj(ν) mij

D(ν) . (13)

Because of the presence of the plate, spatial isotropy is
lost and mij

D(ν) and not proportional to δij . Rather, as
a 3× 3 matrix, it has the form:

[mij
D(ν)] =

 mq(ν) 0 0
0 mq(ν) 0
0 0 m⊥(ν)

 (14)

where the parallel component is

mq(ν) =
πg2

2mΩ
θ(|ν| − Ω)

∫
d3p

(2π)3

pq
2

2p
[1− cos

(
2p3a

)
]

× δ(|ν| − p− Ω) , (15)

and results in:

mq(ν) =
g2

8πmΩ
θ(|ν| − Ω) (|ν| − Ω)3 (16)

×
{2

3
+

cos(2(|ν| − Ω)a)

2[(|ν| − Ω)a]2
− sin(2(|ν| − Ω)a)

4[(|ν| − Ω)a]3

}
.

The perpendicular component, on the other hand, is
given by:

m⊥(ν) =
πg2

2mΩ
θ(|ν| − Ω)

∫
d3p

(2π)3

(p3)2

p
[1 + cos

(
2p3a

)
]

× δ(|ν| − p− Ω) , (17)
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Figure 1: Ratios m1 = m‖/m0 and m2 = m⊥/m0 as a
function of the dimensionless x = a(|ν| − Ω) for
Dirichlet boundary conditions on the mirror

or,

m⊥(ν) =
g2

4πmΩ
θ(|ν| − Ω) (|ν| − Ω)3

{1

3
+ (18)

cos(2(|ν| − Ω)a)

2[(|ν| − Ω)a]2
− sin(2(|ν| − Ω)a)

4[(|ν| − Ω)a]3
+

sin(2(|ν| − Ω)a)

2[(|ν| − Ω)a]

}
.

It can be seen that both functions, mq and m⊥ ap-
proach a common limit m0 far from the plate, i.e., when
|ν|a→∞:

m0(ν) =
g2

12πmΩ
Θ
(
|ν| − Ω

) (
|ν| − Ω

)3
. (19)

As expected, this is the result corresponding to an oscil-
lating atom in free space [10]. In Fig.1 we plot the ratios
m⊥/m0 and mq/m0 as functions of a(|ν|−Ω), where the
above mentioned limit can be seen explicitly. On the
contrary, in the opposite regime, i.e., close to the plate,
those functions approach rather different limits. Indeed,
m⊥ is enhanced by a factor which approaches 2, that is
m⊥(ν) ≈ 2m0(ν), while mq tends to zero in that limit.
These results have a simple interpretation in terms of the
images of the oscillating atom in each case.

B. Neumann mirror

For a Neumann mirror, one has instead the propagator:〈
φ(x)φ(y)

〉
m

=G0(x0 − y0, x1 − y1, x2 − y2, x3 − y3)

+G0(x0 − y0, x1 − y1, x2 − y2, x3 + y3) .
(20)

Proceeding in an entirely analogous way as for the Dirich-
let case,

Im[ΓNmp] =
1

2

∫ +∞

−∞

dν

2π
ỹi(−ν) ỹj(ν) mij

N(ν) . (21)
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Figure 2: Ratios m1 = m‖/m0 and m2 = m⊥/m0 as a
function of the dimensionless x = a(|ν| − Ω) for
Neumann boundary condition on the mirror

where now the parallel component is

mq(ν) =
πg2

2mΩ
θ(|ν| − Ω)

∫
d3p

(2π)3

pq
2

2p
[1 + cos

(
2p3a

)
]

× δ(|ν| − p− Ω) , (22)

and results in:

mq(ν) =
g2

4πmΩ
θ(|ν| − Ω) (|ν| − Ω)3 (23)

×
{1

3
− cos(2(|ν| − Ω)a)

4[(|ν| − Ω)a]2
+

sin(2(|ν| − Ω)a)

8[(|ν| − Ω)a]3

}
.

The perpendicular component, on the other hand, is
given by:

m⊥(ν) =
πg2

2mΩ
θ(|ν| − Ω)

∫
d3p

(2π)3

(p3)2

p
[1− cos

(
2p3a

)
]

× δ(|ν| − p− Ω), (24)

or,

m⊥(ν) =
g2

4πmΩ
θ(|ν| − Ω)(|ν| − Ω)3

{1

3
− (25)

cos(2(|ν| − Ω)a)

2[(|ν| − Ω)a]2
+

sin(2(|ν| − Ω)a)

4[(|ν| − Ω)a]3
− sin(2(|ν| − Ω)a)

2[(|ν| − Ω)a]

}
.

Far from the mirror, the results for Neumann boundary
conditions also coincide with the free space case. Note,
however, that the behaviours of mq and m⊥ close to the
mirror are reversed, when compared with their Dirichlet
counterparts. These results are illustrated in Fig.2.

III. TRANSITION AMPLITUDES

The existence of a threshold at |ν| = Ω, above which
there is a continuum in frequency with a non-vanishing
probability of vacuum decay, suggests that the processes
involved correspond to an excitation of the electron in
the atom (hence the threshold Ω), plus the emission of
a massless scalar field particle (the continuum above the

threshold). Besides, we know that the imaginary part
of the effective action is related to the squared modulus
of the transition amplitude for the creation of real par-
ticles, when the threshold is reached. To that end, and
having in mind the calculation of the imaginary part of
the effective action to the same order we have used, we
consider the transition matrix T , related to the S ma-
trix by S = I + iT , (I: identity operator), to the lowest
non-trivial order in the coupling constant g.

We use standard perturbation theory in the interac-
tion representation, taking as free Hamiltonian the one
corresponding to the free atom plus the free scalar field
(including its boundary conditions). Therefore,

S = T exp

{
i g

∫
dt q(t)φ[t, r(t)]

}
, (26)

with T the chronological ordering operator.
The matrix elements of the T matrix between the ini-

tial and final states, to the first order in g, are then of
the form:

Tfi ≡ g

∫
dt 〈f |q(t)φ[t, r(t)]|i〉 . (27)

The operators above evolve independently, according to
their respective free Hamiltonians, thus, for the electron
degree of freedom:

q(t) =
1√

2mΩ

(
a e−iΩt + a† eiΩt

)
(28)

where a and a† denote the standard destruction and cre-
ation operators for the harmonic oscillator. The scalar
field, on the other hand, will have different expansions
depending on whether the mirror imposes Dirichlet or
Neumann boundary conditions. We consider these two
alternatives below.

A. Dirichlet plane

In this case, which we consider first, using the nota-
tions: z ≡ x3, xq ≡ (x1, x2) (and analogously for the
components of k), we shall have:

φ(x) =

∫
d2kq

∫ ∞
0

dkz
[
α(k) fk(x) + α†(k)f∗k(x)

]
,

(29)
where

fk(x) =
1√

4π3ω(k)
e−i ω(k)t+ikq·xq sin(kzz) , (30)

ω(k) = |k| and the only non-vanishing commutator be-
tween the operators appearing in the decomposition is
[α(k) , α†(k′)] = δ(k− k′).

The initial state will be of the form: |i〉 = |0〉 ⊗ |0〉,
where the first factor refers to the electron and the second
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one to the field. For this kind of initial state, the only
non-vanishing contribution to Tfi will be of the form:

|f〉 = |1〉⊗|k〉 , |1〉 ≡ a†|0〉 , |k〉 ≡ 1

N
α†(k)|0〉 . (31)

The factor 1
N is included in order to normalize the state

|k〉, what is needed in order to obtain probabilities from
T

(1)
fi . If the system is put in a cubic box of length L,

N =
√

L3

(2π)3 .
We find:

Tfi =
g√

mΩω(k)L3

∫ +∞

−∞
dt eit(Ω+ω(k))e−ikq·rq(t)

× sin[kzrz(t)]. (32)

For parallel motion: rz(t) ≡ a, and to the lowest non-
trivial order in the departure yq(t) = rq(t),

Tfi ' −i
g√

mΩ |k|L3
sin(kza) kq · ỹq(Ω + |k|) . (33)

Thus, the probability for the process, with the final parti-
cle in an infinitesimal volume in momentum space, dPfi,
is obtained by multiplying d3k |T (1)

fi |2 by the density of
final states: 1

2
L3

(2π)3 . Note the factor of 1
2 with respect

to the free space case, due to the fact that states with
the third component of the momentum reversed are now
identical.

Then

dPfi =
d3k

(2π)3
g2

2mΩ k sin2(kza) kakb (34)

× ỹa(−(Ω + k))ỹb(Ω + k),

where a, b = 1, 2. It is convenient to introduce spherical
coordinates centered at the mean position of the atom,
such that ỹ is along the x1 axis. With this choice, the
spatial dependence of the probability is explicitly given
by

dPfi =
g2

2 (2π)3mΩ
k3 sin3 θ sin2(ka cos θ) cos2 ϕ

× |ỹq(Ω + k)|2 dk dθ dϕ (35)

≡ g2

2 (2π)3mΩ
pDq (ka, θ, ϕ) |ỹq(Ω + k)|2 k3 sin θ dk dθ dϕ,

where pDq is proportional to the probability per unit solid
angle. In Fig. 3 we plot this function for different values
of the product ka. We see that for ka ≤ O(1) the angu-
lar dependence corresponds to quadrupole radiation, as
expected from the images method; indeed, in this regime
the retardation between a wave emitted by the atom and
the one due to its image can be ignored, and therefore the
parallel oscillating dipole behaves as a quadrupole when
combined with its image companion.

For intermediate values of ka, retardation cannot be
ignored, and the angular dependence shows a com-
plex structure of peaks, while at very large values

(a) ka = 0.001

(b) ka = 2.5

(c) ka = 5

Figure 3: We plot here pDq from Eq.(36) as a function of
spherical angles θ and ϕ, for Dirichlet boundary

condition and parallel motion

sin2(ka cos θ) averages to 1/2, the radiation becomes
dipolar and coincides with that of an atom oscillating
in free space.

The total probability of this kind of process Pfi is ob-
tained by integrating out over all the possible momenta.
Rather than integrating over the variables above, it is



6

more convenient to proceed as follows:

P =

∫
dPfi (36)

=

∫
d3k

∫ ∞
−∞

dν δ(|ν| − Ω− k)
g2

2mΩ k
sin2(kza)

× kakb ỹa(ν)ỹb(−ν).

Interchanging the order of the integrals, the one over k
may then be performed exactly. This produces an ex-
pression of the form:

P =
1

2

∫
dν

2π
ρ‖(ν) |ỹ(ν)|2 . (37)

ρq(ν) =
g2

4πmΩ
θ(|ν| − Ω) (|ν| − Ω)3 (38)

×
{2

3
+

cos(2(|ν| − Ω)a)

2[(|ν| − Ω)a]2
− sin(2(|ν| − Ω)a)

4[(|ν| − Ω)a]3

}
.

Note that this is in agreement with our results for the
imaginary part, since P is twice the imaginary part of
the effective action.

For motion perpendicular to the plane,

Tfi '
g√

mΩ |k|L3
cos(kza) kz ỹ⊥(Ω + |k|) , (39)

and

dPfi =
d3k

(2π)3

g2

2mΩ k
cos2(kza) k2

z |ỹ⊥(Ω + k)|2 . (40)

In this case there is of course axial symmetry with respect
to the direction of motion; therefore we may integrate the
probability along ϕ angle

dPfi =
g2

2 (2π)2mΩ
k3 sin θ cos2 θ cos2(ka cos θ)

× |ỹ⊥(Ω + k)|2 dk dθ (41)

≡ g2

2 (2π)2mΩ
pD⊥(ka, θ) |ỹ⊥(Ω + k)|2 k3 sin θ dk dθ .

In Fig. 4 and we plot the function pD⊥(ka, θ) for differ-
ent values of ka. We can see that the radiation has a
dipolar pattern both at small and very large distances:
at very small distances the image dipole reinforces (with-
out retardation and therefore no interference) the effect
of the vertical oscillating dipole associated to the moving
atom, while at large distances we recover the result for
the oscillating atom in free space.

Again, the total probability becomes identical to twice
the imaginary part of the effective action (evaluated to
the second order in g).

In the same way, we shall study the spontaneous decay
process in which the initial state is now given by |i〉 =
|1〉⊗|0〉 (i.e. the atom in the excited state and the field in
vacuum) and the final state is given by |f〉 = |0〉 ⊗ |1〉.

(a) ka = 0.001 (b) ka = 2.5

(c) ka = 5

Figure 4: We plot here pD⊥ from Eq.(42) as a function of
spherical angles θ and ϕ, for Dirichlet boundary

condition and perpendicular motion

It is straightforward to check that in this case there is
no threshold at |ν| = Ω and the result is given for the
matrix element Tfi in the parallel motion is

Tfi =
g√

mΩω(k)L3

∫ +∞

−∞
dt eit(−Ω+ω(k)) e−ikq·rq(t)

× sin[kzrz(t)], (42)

for rz(t) ≡ a, and to the lowest non-trivial order in the
departure yq(t) = rq(t),

Tfi '
g√

mΩ |k|L3
sin[kza]

[
2πδ(Ω− ω(k)) (43)

− i kq · ỹq(−Ω + |k|)
]
,

where, unlike the excitation case examined previously,
there is a first term independent of the amplitude of the
oscillation ỹq, that corresponds to the spontaneous decay
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for a static atom in front of a mirror. The probability for
the decay process is now given by

dPfi =
d3k

(2π)3

g2

2mΩk
sin2(kza)

[
4π2Tδ(Ω− |k|)

+ kakbỹa(−(−Ω + |k|))ỹb(−Ω + |k|)
]
. (44)

For the motion perpendicular to the plane we have

Tfi '
g√

mΩ |k|L3

[
2πδ(Ω− |k|) sin(kza)

+ kz ỹ⊥(−Ω + |k|) cos(kza)
]

(45)

and

dPfi =
d3k

(2π)3

g2

2mΩ k

[
4π2Tδ(Ω− |k|) sin2(kza)

+ k2
z |ỹ⊥(−Ω + |k|)|2 cos2(kza)

]
, (46)

assuming that ỹ⊥(0) = 0.
It is worth to remark that in both situations (parallel

o perpendicular motions), if the atom’s center of mass
oscillates harmonically with a frequency Ωcm < Ω, the
spectrum of the emitted photons will have three differ-
ent frequencies ω = Ω, Ω± Ωcm. A similar phenomenon
occurs for an atom in front of an oscillating mirror [6, 7],
in the adiabatic approximation. Only two frequencies
would be present in the spectrum when Ωcm > Ω.

B. Neumann plane

We now have a different expansion for the field:

φ(x) =

∫
d2kq

∫ ∞
0

dkz
[
α(k) gk(x) + α†(k)g∗k(x)

]
,

(47)
where

gk(x) =
1√

4π3|k|
e−i |k|t+ikq·xq cos(kzz) . (48)

Since the interaction term is exactly the same as for the
Dirichlet case, it is immediate to find the probabilities in
this case. For parallel motion:

dPfi =
g2

2 (2π)3mΩ
k3 sin3 θ cos2(ka cos θ) cos2 ϕ

× |ỹq(Ω + k)|2 dk dθ dϕ

≡ g2

2 (2π)3mΩ
pNq (ka, θ, ϕ) |ỹq(Ω + k)|2k3

× sin θ dk dθ dϕ, (49)

(a) ka = 0.001

(b) ka = 2.5

(c) ka = 5

Figure 5: We plot here pNq from Eq.(49) as a function of
spherical angles θ and ϕ, for Neumann boundary

condition and parallel motion

while perpendicular departures are endowed with the
probabilities

dPfi =
g2

2 (2π)2mΩ
k3 sin θ cos2 θ sin2(ka cos θ)

× |ỹ⊥(Ω + k)|2 dk dθ (50)

≡ g2

2 (2π)2mΩ
p⊥(ka, θ)|ỹ⊥(Ω + k)|2 k3 sin θdk dθ .

In Figs. 5 and 6 we plot the function pNq and pN⊥ , respec-
tively. Although less evident than in the Dirichlet case,
pN⊥ shows a quadrupole pattern at small distances, being
proportional to cos4(θ).

Yet again, the total probabilities are consistent with
the results obtained in the effective action approach.

For completeness we will study in this section the case
of the spontaneous decay process with Neumann bound-
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(a) ka = 0.001 (b) ka = 2.5

(c) ka = 5

Figure 6: We plot here pN⊥ from Eq.(51) as a function of
spherical angles θ and ϕ, for Neumann boundary

condition and perpendicular motion

ary conditions on the perfect mirror. In the case of paral-
lel to the plane oscillatory motion of the atom, the prob-
ability density for such process is obtained

dPfi =
d3k

(2π)3

g2

2mΩ k
cos2(kza)

[
4π2Tδ(Ω− k)

+ kakb ỹa(−(−Ω + k))ỹb(−Ω + k)
]
. (51)

For the perpendicular motion we get

dPfi =
d3k

(2π)3

g2

2mΩ k

[
4π2Tδ(Ω− k) cos2(kza)

+ k2
z |ỹ⊥(−Ω + k)|2 sin2(kza)

]
. (52)

The spectrum of the emitted particles is similar to that of
the Dirichlet plane. Note, however, that the dependence
with the mean distance to the mirror is different, as well
as the relative weight between the static and non-static
contributions for the case of perpendicular motion.

IV. CONCLUSIONS

In this paper we have studied the phenomena of ex-
citation and spontaneous emission of a moving atom in
front of a perfect mirror, in a model where the atom is
coupled to a quantum real scalar field, and the perfect
conductor boundary conditions have been mimicked by
Dirichlet and Neumann boundary conditions.

Assuming that the atom performs small amplitude mo-
tions, we computed the vacuum decay probability to the
second order in the coupling constant between the elec-
tron and the field. This probability is determined by the
imaginary part of the effective action, which is a func-
tional of the trajectory of the atom’s center of mass.
When the atom is close enough to the mirror, the results
for Dirichlet and Neumann boundary conditions admit
simple interpretations in terms of the images method.

The physical process behind vacuum decay is, up to
this order, the transition of the atom from the ground
state to the first excited state, along with the emission
of a photon. Thus, there is a threshold for the process
dictated by energy conservation which is Ωcm > Ω. We
have also computed the probability for the decay process
as a function of the direction of the emitted particle, and
checked that the integration over all directions reproduce
the vacuum decay probability. The angular dependence
of the probability can also be understood in terms of the
images method. In particular, for Dirichlet boundary
conditions, the radiation emitted by an atom in paral-
lel motion becomes quadrupolar when the atom is close
to the mirror. For Neumann boundary conditions this
happens for perpendicular motion.

Finally, we analyzed the spontaneous decay of an os-
cillating atom in front of a mirror. Both the presence
of the mirror and the oscillation of the atom induce cor-
rections to the spontaneous emission in free space. The
presence of the mirror modifies the angular dependence
of the probability, that turns out to be a function of the
atom-mirror distance, but not the energy of the emit-
ted photons. When the atom oscillates, the spectrum of
the emitted particles is modified by the appearance of
two lateral peaks, symmetric with respect to the central
peak that corresponds to the static atom. These results
are similar to those for a static atom in front of an oscil-
lating mirror, and opens new possibilities for the eventual
experimental observation of the effect. The extension of
our results to the more realistic case of the electromag-
netic field can be addressed, in the dipole approxima-
tion, using similar techniques. Work in this direction is
in progress.
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