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The narrow capture problem: an encounter-based approach to partially reactive

targets

Paul C. Bressloff
Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT 84112

A general topic of current interest is the analysis of diffusion problems in singularly perturbed
domains with small interior targets or traps (the narrow capture problem). One major application
is to intracellular diffusion, where the targets typically represent some form of reactive biochemical
substrate. Most studies of the narrow capture problem treat the target boundaries as totally absorb-
ing (Dirichlet), that is, the chemical reaction occurs immediately on first encounter between particle
and target surface. In this paper, we analyze the three-dimensional narrow capture problem in the
more realistic case of partially reactive target boundaries. We begin by considering classical Robin
boundary conditions. Matching inner and outer solutions of the single-particle probability density,
we derive an asymptotic expansion of the Laplace transformed flux into each reactive surface in
powers of ǫ, where ǫρ is a given target size. In turn, the fluxes determine the splitting probabilities
for target absorption. We then extend our analysis to more general types of reactive targets by
combining matched asymptotic analysis with an encounter-based formulation of diffusion-mediated
surface reactions. That is, we derive an asymptotic expansion of the joint probability density for
particle position and the so-called boundary local time, which characterizes the amount of time
that a Brownian particle spends in the neighborhood of a point on a totally reflecting boundary.
The effects of surface reactions are then incorporated via an appropriate stopping condition for the
boundary local time. Robin boundary conditions are recovered in the special case of an exponential
law for the stopping local times. Finally, we illustrate the theory by exploring how the leading-order
contributions to the splitting probabilities depend on the choice of surface reactions. In particular,

we show that there is an effective renormalization of the target radius of the form ρ→ ρ− Ψ̃(1/ρ),

where Ψ̃ is the Laplace transform of the stopping local time distribution.

I. INTRODUCTION

A topic of increasing interest is the analysis of two-
dimensional (2D) and three-dimensional (3D) diffusion in
singularly perturbed domains [1–25]. Two broad classes
of problem are diffusion in a domain with small inte-
rior targets or traps, and diffusion in a domain with an
exterior boundary that is reflecting almost everywhere,
except for one or more small holes through which parti-
cles can escape. One major application of these studies is
molecular diffusion within biological cells, where interior
targets could represent (possibly reactive) intracellular
compartments and holes on the boundary could repre-
sent ion channels or nuclear pores [26, 44]. Quantities of
interest at the level of bulk diffusion include the steady-
state solution (assuming it exists) and the approach to
steady state, as characterized by the leading non-zero
eigenvalue λ1 of the negative Laplacian [1–3, 12] or by
the so-called accumulation time [25]. In addition, the
flux into an interior target can be used to determine an
effective reaction rate [4, 17]. At the single-particle level,
the solution of the diffusion equation (or more general
Fokker-Planck equation) represents the probability den-
sity to find the particle at a particular location. One is
now typically interested in calculating the splitting prob-
abilities and conditional mean first passage times time
for a particle to be captured by an interior target (nar-
row capture) [8, 13, 15, 16, 20, 21, 23, 24] or to escape
from a domain through a small hole in the boundary
(narrow escape) [5, 7, 9–11, 14, 18, 19, 22]. For all of
these examples, the quantity of interest satisfies an as-

sociated boundary value problem (BVP), which can be
solved using a mixture of matched asymptotic analysis
and Green’s function methods.
Within the context of narrow capture problems in cell

biology, absorption by a target typically represents some
form of chemical reaction. In almost all studies of diffu-
sion in singularly perturbed domains, the boundary con-
ditions imposed on the small targets are taken to be to-
tally absorbing (Dirichlet). A totally absorbing target
means that the only contribution to the effective reac-
tion rate is the transport process itself, since the chem-
ical reaction occurs immediately on first encounter be-
tween particle and target. In other words, the reaction is
diffusion-limited rather than reaction-limited [28]. How-
ever, a more realistic scenario is to consider a combi-
nation of a transport step and a reaction step, both of
which contribute to the effective reaction rate. Collins
and Kimball [29] incorporated an imperfect reaction on
a target surface ∂U by replacing the Dirichlet boundary
condition with the Robin or partially reflecting boundary
condition

−D∇c(x, t) · n = κ0c(x, t), x ∈ ∂U .

Here c(x, t) is particle concentration, n is the unit normal
at the boundary that is directed towards the center of the
target,D is the diffusivity, and κ0 (in units m/s) is known
as the reactivity constant. The above boundary condition
implies that there is a net flux of particles into the target
(left-hand side), which is equal to the rate at which par-
ticles react with (are absorbed by) the target (right-hand
side). The latter is taken to be proportional to the par-
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ticle concentration at the target with κ0 the constant of
proportionality. The totally absorbing case is recovered
in the limit κ0 → ∞, whereas the case of an inert (per-
fectly reflecting) target is obtained by setting κ0 = 0. In
practice, the diffusion-limited and reaction-limited cases
correspond to the regimes ξ ≪ R and ξ ≫ R, respec-
tively. Here R is a geometric length-scale such as the ra-
dius of a spherical target and ξ = D/κ0 is known as the
reaction length. Note that there have been a few studies
of bulk diffusion in singularly perturbed domains con-
taining targets with Robin boundary conditions [1–3, 6].
It is also possible to obtain Robin boundary conditions
by spatially homogenizing a target with mixed boundary
conditions [19], or by considering a stochastically-gated
target in an appropriate limit [30]. However, as far as
we are aware, there have not been any detailed studies
at the single-particle level.
As recently highlighted by Grebenkov [31], the single-

particle probabilistic interpretation of the partially re-
flecting boundary condition is much more complicated
than the Dirichlet boundary condition. The latter is eas-
ily incorporated into Brownian motion by introducing
the notion of a first passage time, which is a particular
example of a stopping time. On the other hand, the inclu-
sion of a totally or partially reflecting boundary requires
a modification of the stochastic process itself. Mathe-
matically speaking, one can construct so-called reflected
Brownian motion in terms of a boundary local time,
which characterizes the amount of time that a Brownian
particle spends in the neighborhood of a point on a to-
tally reflecting boundary [32, 33]. The resulting stochas-
tic differential equation, also known as the stochastic Sko-
rokhod equation [34], can then be extended to take into
account chemical reactions, thus providing a probabilistic
implementation of the Robin boundary condition [35, 36].
A simpler conceptual framework for understanding par-
tially reflected Brownian motion is to model diffusion as
a discrete-time random walk on a hypercubic lattice Z

d

with lattice spacing a. At a bulk site, a particle jumps
to one of the neighboring sites with probability 1/2d,
whereas at a boundary site, it either reacts with prob-
ability q = (1 + ξ/a)−1 or return to a neighboring bulk
site with probability 1 − q. Since the random jumps are
independent of the reaction events, it follows that the

random number of jumps N̂ before a reaction occurs is

given by a geometric distribution: P[N̂ = n] = q(1− q)n,

integer n ≥ 0. In particular, E[N̂ ] = (1 − q)/q = ξ/a.

Introducing the rescaled random variable ℓ̂ = aN̂ , one
finds that [31, 37]

P[ℓ̂ ≥ ℓ] = P[N̂ ≥ ℓ/a] = (1 − q)ℓ/a = (1 + a/ξ)−ℓ/a

→
a→0

e−ℓ/ξ.

That is, for sufficiently small lattice spacing a, a reaction
occurs (the random walk is terminated) when the random
number of realized jumps from boundary sites, multiplied
by a, exceeds an exponentially distributed random vari-

able (stopping local time) ℓ̂ with mean ξ. Assuming that

a partially reflected random walk on a lattice converges
to a well-defined continuous process in the limit a → 0
(see Refs. [35, 36]), one can define partially reflected
Brownian motion as reflected Brownian motion stopped
at the random time [31, 38, 39]

T = inf{t > 0 : ℓt > ℓ̂},

where ℓt is the local time of the reflected Brownian mo-
tion. The latter is the continuous analog of the rescaled

number of surface encounters (aN̂), and P[ℓ̂ > ℓ] = e−ℓ/ξ.
The reaction length ξ thus parameterizes the stochas-
tic process. (Note that it is also possible to construct
more general partially reflecting diffusion processes by
considering the continuous limit of more general Marko-
vian jump processes [40].)
One major advantage of the above formulation of

partially reflected Brownian motion is that it provides
a theoretical framework for investigating more general
diffusion-mediated surface phenomena [41–43]. In par-
ticular, by considering the joint probability density
P (x, ℓ, t) for the pair (Xt, ℓt), where Xt is the particle
position at time t and ℓt is the boundary local time, one
can analyze the bulk dynamics in a domain with perfectly
reflecting boundaries and then incorporate the effects of
surface reactions via an appropriate stopping condition
for the boundary local time. In particular, the probabil-
ity density p(x, t) for partially reflected Brownian motion
can be expressed as the Laplace transform of a propaga-
tor P :

p(x, t) =

∫ ∞

0

e−γℓP (x, ℓ, t)dℓ,

where γ = ξ−1 = κ0/D. This so-called encounter-based
approach allows one to go beyond the case of constant
reactivity (Robin boundary conditions) by considering

more general probability distributions Ψ(ℓ) = P[ℓ̂ > ℓ]

for the stopping local time ℓ̂ and setting [41–43]

p(x, t) =

∫ ∞

0

Ψ(ℓ)P (x, ℓ, t)dℓ.

For example, reaction rates could depend on the number
of encounters between the particle and surface. The sepa-
ration of the bulk dynamics from surface reactions means
that all of the geometrical aspects of the diffusion process
are disentangled from the reaction kinetics. Geometri-
cal features include the structure of both reactive and
non-reactive surfaces. In the case of the narrow capture
problem in a bounded domain Ω, the exterior boundary
of the domain, ∂Ω, would correspond to a non-reactive
surface, say, while the reactive surfaces would be given
by the interior target boundaries. In the case of small
targets, matched asymptotic methods provide a way of
further separating geometrical effects. That is, the bulk
dynamics is partitioned into an outer solution that de-
pends on the exterior boundary and an inner solution
that depends on the geometry of the targets.
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In this paper, we analyze the 3D narrow capture prob-
lem for a N small spherical targets with partially reac-
tive boundary surfaces. (For simplicity, we consider the
unbounded domain Ω = R

3, but see the discussion in
Sect. V.) We proceed by combining the encounter-based
approach to diffusion-mediated surface reactions [41–43]
with matched asymptotic methods [24]. We begin by
considering the narrow capture problem for reactive sur-
faces with classical Robin boundary conditions, see Sect.
II. Working in Laplace space, we construct an inner solu-
tion around each target, and then match it with an outer
solution in the bulk. This yields an asymptotic expansion
of the Laplace transformed flux into each reactive surface
in powers of ǫ, where ǫ is the non-dimensionalized target
size. The Laplace transformed fluxes are then used to
determine the splitting probabilities in the small-s limit,
where s is the Laplace variable. In Sect. III we briefly
summarize the encounter-based formulation of diffusion-
mediated surface reactions developed in Ref. [42]. In par-
ticular, we define the boundary local time ℓt for diffusion
in a domain R

3\U with a perfectly reflecting boundary
∂U and write down the BVP for the associated propa-
gator. It turns out that for the narrow capture prob-
lem, it is more convenient to work directly with the BVP
rather then using the spectral decomposition of the prop-
agator and the so-called Dirichlet-to-Neumann operator
[31, 41, 42]. In Sect. IV we use matched asymptotics to
analyze the corresponding propagator BVP for the nar-
row capture problem, in which the reactive boundaries
of the targets are replaced by totally reflecting bound-
aries. This then allows us to incorporate generalized
surface reactions by considering an appropriately defined
distribution Ψ(ℓ) of stopping local times. We thus ob-
tain an asymptotic expansion of the inner solution for
the Laplace transformed probability density and the cor-
responding target fluxes. We also show that our results
for Robin boundary conditions in Sect. II are recovered
in the special case Ψ(ℓ) = e−γℓ. Finally, we illustrate
the theory in Sect. V by exploring how the leading-order
contributions to the splitting probabilities depend on the
choice of surface reactions. In particular, we show that
there is an effective renormalization of the target radius

of the form ρ → ρ − Ψ̃(1/ρ), where Ψ̃ is the Laplace
transform of the stopping local time distribution.

II. NARROW CAPTURE PROBLEM: ROBIN

BOUNDARY CONDITIONS

Consider a set of N small partially absorbing targets
Uk ⊂ R

3, k = 1, . . . , N , see Fig. 1. Each target is as-
sumed to have a volume |Uj | ∼ ǫ3L3 with Uj → xj ∈ R

3

uniformly as ǫ → 0, j = 1, . . . , N . Here L is the min-
imum separation between the targets. For concreteness
we will take each target to be a sphere of radius rj = ǫρj.
Thus Ui = {x ∈ R

3, |x − xi| ≤ ǫρi}. Let p(x, t|x0)
be the probability density that at time t a particle is
at X(t) = x, having started at position x0. Setting

⋃N
j=1 Uk = Ua ⊂ R

3, we have

∂p(x, t|x0)

∂t
= D∇2p(x, t|x0), x ∈ R

3\Ua, (2.1a)

p(x, t|x0) → 0, |x| → ∞, (2.1b)

D∇p(x, t|x0) · nk = −κ0p(x, t|x0), x ∈ ∂Uk, (2.1c)

together with the initial condition p(x, t|x0) = δ(x−x0).
Here nk is the unit normal into the surface ∂Uk. Eq.
(2.1b) is a Robin boundary condition with the constant
reactivity parameter κ0 having units m/s [29]. Dirichlet
and Neumann boundary conditions are recovered in the
limits κ0 → ∞ and κ0 → 0, respectively.

A. Matched asymptotics

In order to calculate various quantities of interest, it is
more convenient to work in Laplace space:

D∇2p̃(x, s|x0)− sp̃(x, s|x0) = −δ(x− x0), x ∈ R
3\Ua,
(2.2a)

p̃∞(x, s|x0) → 0, |x| → ∞, (2.2b)

D∇p̃(x, s|x0) · nk = −κ0p̃(x, s|x0), x ∈ ∂Uk. (2.2c)

Let p̃∞(x, s|x0) denote the solution in the case of totally
absorbing targets, which corresponds to taking the limit
κ0 → ∞ in Eqs. (2.2):

D∇2p̃∞(x, s|x0)− sp̃∞(x, s|x0) = −δ(x− x0)

for x ∈ R
3\Ua, (2.3a)

p̃∞(x, s|x0) → 0, |x| → ∞, (2.3b)

p̃∞(x, s|x0) = 0, x ∈ ∂Uk. (2.3c)

Eqs. (2.3) define a BVP that has previously been solved
using matched asymptotics and Green’s function meth-
ods [12, 16, 24]. Similar methods can be used to solve
the full BVP (2.2), by matching appropriate ‘inner’ and
‘outer’ asymptotic expansions in the limit of small target
size ε → 0, see Figs. 1(b,c). However, given that p̃∞ is
known, it is more convenient to decompose the solution
for finite κ0 as

p̃(x, s|x0) = p̃∞(x, s|x0) + ũ(x, s|x0), (2.4)

with

D∇2ũ(x, s|x0)− sũ(x, s|x0) = 0, x ∈ R
3\Ua, (2.5a)

D∇ũ(x, s|x0) · nk + κ0ũ(x, s|x0)

= −D∇p̃∞(x, s|x0), x ∈ ∂Uk. (2.5b)

We then consider asymptotic expansions of ũ.
In the outer region, ũ(x, s|x0) is expanded as

ũ(x, s|x0) ∼ ǫũ1(x, s|x0) + ǫ2ũ2(x, s|x0) + . . .

such that (for m ≥ 0)

D∇2ũm − sũm = 0, x ∈ R
3\{x1, . . . ,xN}, (2.6a)



4

R3

DΔp = ∂p/∂t

D∇p•nk = -κ0 p

xj

Uk

Uj
(a)

(b)

(c)

nk

FIG. 1. Brownian particle in a singularly perturbed domain. (a) A particle diffuses in the domain Ω = R
3\ ∪N

j=1 Uj exterior to
N targets Uj , j = 1, . . . , N whose boundaries ∂Ui are partially absorbing. [Diagram is not to scale – the radii of the targets are
at least an order of magnitude smaller than the distances between the targets. (b) Construction of the inner solution in terms
of stretched coordinates y = ǫ−1(x− xi), where xi is the center of the i-th target. The rescaled radius is ρi. (c) Construction
of the outer solution. Each target is shrunk to a single point. The outer solution can be expressed in terms of the modified
Helmholtz Green’s function and then matched with the inner solution around each target.

together with certain singularity conditions as x → xj ,
j = 1, . . . , N . The latter are determined by matching to
the inner solution.
Next we introduce stretched coordinates y = ǫ−1(x −

xj) around the jth target and take ṽ(y, s|x0) = ũ(x, s|x0)
to be the corresponding inner solution. Eqs. (2.5) imply

D∇2
yṽ(y, s|x0)− sǫ2ṽ(y, s|x0) = 0, |y| > ρj , (2.7a)

D∇yṽ(y, s|x0) · nj + ǫκ0ṽ(y, s|x0)

= −D∇yp̃∞(y, s|x0) · nj |y| = ρj . (2.7b)

The details of the analysis of the inner solution will now
depend on how the reaction length ξ = D/κ0 compares

to the typical target size ǫρ̄, where ρ̄ = N−1
∑N

i=1 ρj
for example [3]. We will focus on the regime ξ ∼ ǫρ̄ by
rescaling the reactivity according to κ0 → κ0/ǫ. (Under
this choice of scaling, we can recover the totally absorbing
case by taking κ0 → ∞, that is, ξ → 0. However, the
totally reflecting case κ0 → 0 is inaccessible.) Introduce
a perturbation expansion of the inner solutions around
the j-th target of the form

ṽ ∼ ṽ0 + ǫṽ1 +O(ǫ2).

It remains to specify the corresponding asymptotic ex-
pansion of the totally absorbing solution. Let G(x, s|x0)

denote the Green’s function of the modified Helmholtz
equation in R

3:

G(x, s|x0) =
e−

√
s/D|x−x0|

4πD|x− x0|
=

1

4πD|x− x0|
+R(x, s|x0),

(2.8)
where R is the regular part of G. Then

p̃∞ ∼ p̃∞,0 + ǫp̃∞,1 +O(ǫ2), (2.9)

with [23]

p̃∞,0 = G(xj , s|x0)

(
1− ρj

|y|

)
, (2.10a)

p̃∞,1 = χ̄j(s)

(
1− ρj

|y|

)

+ first-order spherical harmonics. (2.10b)

(The explicit form of the first-order spherical harmonics
is not needed here, since it does not contribute to the
target flux.) The coefficient χj is

χj(s) = −4πD

N∑

k=1

ρkGk0(s)Gjk(s), (2.10c)

where Gk0(s) = G(xk, s|x0) and

Gij(s) = G(xi, s|xj) for i 6= j, Gii(s) = R(xi, s|xi).
(2.11)
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Substituting into Eqs. (2.7) leads to the following
equations (assuming s≪ 1/ǫ)

D∇2
yṽm(y, s|x0) = 0, |y| > ρj , m = 0, 1, (2.12a)

D∇2
yṽm(y, s|x0) = sǫ2ṽm−2(y, s|x0) = 0, m ≥ 2,

(2.12b)

D∇yṽm(y, s|x0) · nj + κ0ṽm(y, s|x0)

= −D∇yp̃∞,m(y, s|x0) · nj , |y| = ρj , m ≥ 0. (2.12c)

These are supplemented by far-field conditions obtained
by matching with the near-field behavior of the outer so-
lution. In order to perform the matching, it is necessary
to consider the Taylor expansion of p̃∞ near the j-th tar-
get:

p̃∞ ∼ p∞(xj , s|x0) +∇xp̃∞(x, s|x0)|x=xj
· (x− xj)

∼ ǫ∇xp̃∞(xj , s|x0) · y + . . . , (2.13)

since p∞(xj , s|x0) = 0.
Let us begin with the leading order contribution to the

inner solution. Matching the far-field behavior of ṽ0 with
the near-field behavior of p̃∞ shows that

∇2
yṽ0(y, s|x0) = 0, |y| > 1, ṽ0 ∼ 0 as |y| → ∞; (2.14a)

D∇yṽ0(y, s|x0) · nj + κ0ṽ0(y, s|x0)

= −D∇yp̃∞,0(y, s|x0) · nj , |y| = ρj . (2.14b)

In the case of a spherical target of radius ρj , we have

ṽ0 =
Gj0(s))

1 + γρj

ρj
|y| , γ =

κ0
D
. (2.15)

It follows that p̃1 satisfies Eq. (2.6) together with the
singularity condition

ũ1(x, s|x0) ∼
1

1 + γρj

Gj0(s)ρj
|x− xj |

as x → xj .

In other words, ũ1 satisfies the inhomogeneous equation

D∇2ũ1 − sũ1 = −4πD

N∑

j=1

Gj0(s)ρj
1 + γρj

δ(x− xj), x ∈ R
3.

(2.16a)

This can be solved in terms of the modified Helmholtz
Green’s function:

ũ1(x, s|x0) = 4πD

N∑

j=1

Gj0(s)ρj
1 + γρj

G(x, s|xj). (2.17)

We now match the far-field behavior of ṽ1 with the O(ǫ)
term in the expansion of p̃∞, see Eq. (2.13), together
with the non-singular near-field behavior of ũ1 around
the j-th target:

ṽ1(y, s|x0) → ∇xG(xj , s|x0) · y

+ 4πD

N∑

k=1

Gk0(s)ρk
1 + γρk

Gjk(s) (2.18)

as |y| → ∞. We thus obtain a solution of the form

ṽ1(y, s|x0) = χ′
j

(
1− ρj

|y|

)
+ (χ′

j + χj)
ρj

(1 + γρj)|y|
+ first-order spherical harmonics, (2.19)

with

χ′
j(s) ≡ 4πD

N∑

k=1

Gk0(s)
ρk

1 + γρk
Gjk(s). (2.20)

Combining our various results, the full inner solution
is

p̃(y, s|x0) = p̃∞,0(y, s|x0) + ṽ0(y, s|x0)

+ ǫ[p̃∞,1(y, s|x0) + ṽ1(y, s|x0)] +O(ǫ2)

= Gj0(s)

(
1− ρj

|y| −
ρj

(1 + γρj)|y|

)
(2.21)

+ ǫ(χ′
j + χj)

(
1− ρj

|y| +
ρj

(1 + γρj)|y|

)
.

Introducing the renormalized target radius

ργj = ρj −
ρj

1 + γρj
, (2.22)

we can write the inner solution as

p̃(y, s|x0) = Gj0(s)

(
1−

ργj
|y|

)
+ ǫχγ

j (s)

(
1−

ργj
|y|

)

+O(ǫ2), (2.23)

where

χγ
j (s) = −4πD

N∑

k=1

Gk0(s)ρ
γ
kGjk(s). (2.24)

B. The flux into a target

The probability flux into the j-th target at time t is

Jj(x0, t) = −D
∫

∂Uj

∇p(x, t|x0) · njdσ (2.25)

for j = 1, . . . , N , where dσ is the surface measure. Hav-
ing obtained an ǫ expansion of the inner solution in
stretched coordinates, we can determine a corresponding
expansion of the Laplace-transformed flux through the
jth target by substituting Eq. (2.23) into the Laplace
transform of Eq. (2.25):

J̃j(x0, s) = −Dǫ2
∫

|y|=ρj

∇p̃(y, s|x0) · njdσy (2.26)

= Dρ2j

∫ 2π

0

∫ π

0

∂

∂r

∣∣∣∣
r=ρj

p̃(y, s|x0) sin θdφdθ.
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We thus obtain the result

J̃j(x0, s) ∼ 4πǫDργj

(
Gj0(s) (2.27)

− 4πǫD

N∑

k=1

Gk0(s)ρ
γ
kGjk(s)

)
+O(ǫ3).

One application of diffusion to a target in an un-
bounded domain is calculating the effective Smolu-
chowski reaction rate in terms of the steady-state flux
into the target. Suppose that there is a continuous con-
centration c(x, t) of non-interacting diffusing particles
with background concentration c0, that is, c(x, t) → c0
as |x| → ∞. The steady-state flux into the jth target
is obtained by integrating over the initial position x0 ac-
cording to

Jj = c0 lim
s→0

s

∫

R3

J̃j(x0, s)dx0, (2.28)

with J̃j(x0, s) given by Eq. (2.27). Using the fact that
∫

R3

G(x, s|x0)dx0 =
1

s
,

it follows that to leading order

Jj ≈ 4πc0ǫDρ
γ
j =

4πc0Drj
1 + ǫD/κ0rj

, (2.29)

where rj = ǫρj is the target radius. This recovers the
modified Smoluchowksi reaction rate obtained by Collins
and Kimball for a partially reactive spherical surface with
reactivity κ0/ǫ [29]. In particular, note that one way
to interpret the effect of imperfect reactivity is that the
effective traget size is reduced according to

rj →
rj

1 + ǫD/κ0rj
,

thus making it more difficult for a diffusing molecule to
encounter it. This result generalizes to other types of
diffusion-mediated surface reactions, see Sect. V.
Another quantity of interest is the splitting probability

that the particle is eventually captured by the k-th target
:

πk(x0) =

∫ ∞

0

Jk(x0, t
′)dt′ = J̃k(x0, 0). (2.30)

Introduce the survival probability that the particle hasn’t
been absorbed by a target in the time interval [0, t], hav-
ing started at x0:

S(x0, t) =

∫

R3\Ua

p(x, t|x0)dx. (2.31)

Differentiating both sides of this equation with respect
to t and using Eqs. (2.1) implies that

∂S(x0, t)

∂t
= D

∫

R3\Ua

∇ · ∇p(x, t|x0)dx (2.32)

= D

N∑

k=1

∫

∂Uk

∇p(x, t|x0) · ndσ = −
N∑

k=1

Jk(x0, t).

Laplace transforming Eq. (2.32) and noting that
S(x0, 0) = 1 gives

sS̃(x0, s)− 1 = −
N∑

k=1

J̃k(x0, s). (2.33)

An asymptotic expansion of the splitting probability
πj(x0) defined in Eq. (2.30) can now be obtained by
taking the limit s→ 0 in Eq. (2.27):

πj(x0) = lim
s→0

J̃j(x0, s) (2.34)

= ǫργj


 1

|xj − x0|
− ǫ
∑

k 6=j

ργk
|xk − x0||xk − xj |


+O(ǫ3),

since R(xj , 0|xj) = 0.

III. BOUNDARY LOCAL TIME AND THE

PROPAGATOR

In this section we introduce the encounter-based for-
mulation of diffusion-mediated surface reactions devel-
oped in Ref. [42]. We begin by giving a brief heuristic
definition of the boundary local time. For more rigor-
ous treatments see Refs. [32–34]. Consider the Brownian
motion Xt ∈ R, and let T (A, t) denote the occupation
time of the set A ⊂ R during the time interval [0, t]:

T (A, t) =

∫ t

0

IA(Xτ )dτ. (3.1)

Here IA(x) denotes the indicator function of the set A ⊂
R, that is, IA(x) = 1 if x ∈ A and is zero otherwise.
From the definition of the occupation time, the local time
density T (a, t) at a point a ∈ R is defined by setting
A = [a− h, a+ h] and taking

T (a, t) = lim
ǫ→0+

1

2h

∫ t

0

I[a−h,a+h](Xs)ds. (3.2)

We thus have the following formal representation of the
local time density:

T (a, t) =

∫ t

0

δ(Xτ − a)dτ, (3.3)

where T (a, t)da is the amount of time the Brownian par-
ticle spends in the infinitesimal interval [a, a+da]. Note,
in particular, that

∫ ∞

−∞

T (a, t)da =

∫ ∞

−∞

∫ t

0

δ(Xτ − a)dτda =

∫ t

0

dτ = t.

As we mentioned in the introduction, local time plays an
important role in the pathwise formulation of reflected
Brownian motion [33]. For the sake of illustration, con-
sider a Wiener process confined to the interval [0, L] with
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reflecting boundaries at x = 0, L. Sample paths are gen-
erated from the stochastic differential equation

dX(t) =
√
2DdW (t) +DdT (0, t)−DdT (L, t), (3.4)

where T (x, t) is given by Eq. (3.3) so that, formally
speaking,

dT (0, t) = δ(Xt)dt, dT (L, t) = δ(Xt − L)dt.

In other words, each time the Brownian particle hits the
end at x = 0 (x = L) it is given an impulsive kick to the
right (left).
Following Ref. [42], we now define the boundary local

time for diffusion in R
3\U for a single obstacle with a

totally reflecting surface ∂U :

ℓt = lim
h→0

D

h

∫ t

0

Θ(h− dist(Xτ , ∂U))dτ, (3.5)

where Θ is the Heaviside function. Note that ℓt has units
of length due to the additional factor ofD. Given the def-
inition of the boundary local time ℓt for reflected Brow-
nian motion at a surface ∂U , one can construct partially
reflected Brownian motion by introducing the stopping
time [38, 39, 42]

Tγ = inf{t > 0 : ℓt > ℓ̂}, (3.6)

with ℓ̂ an exponentially distributed random variable that

represents a stopping local time. That is, P[ℓ̂ > ℓ] = e−γℓ

with γ = ξ−1 = κ0/D. Let p(x, t|x0) be the probability
density for a Brownian particle to be at position x ∈
R

3\U at time t, having started at x0 and given a constant
inverse reaction length γ. Then

∂p(x, t|x0)

∂t
= D∇2p(x, t|x0), x ∈ R

3\U , (3.7a)

∇p(x, t|x0) · n = −γp(x, t|x0), x ∈ ∂U , (3.7b)

p(x, 0|x0) = δ(x− x0). (3.7c)

More precisely, p is the probability density of a particle
that hasn’t yet undergone a surface reaction:

p(x, t|x0)dx = P[Xt ∈ (x,x + dx), t < Tγ |X0 = x0].

Given that ℓt is a nondecreasing process, the condition

t < Tγ is equivalent to the condition ℓt < ℓ̂. This implies
that [42]

p(x, t|x0)dx = P[Xt ∈ (x,x+ dx), ℓt < ℓ̂|X0 = x0]

=

∫ ∞

0

dℓ γe−γℓ
P[Xt ∈ (x,x + dx), ℓt < ℓ|X0 = x0]

=

∫ ∞

0

dℓ γe−γℓ

∫ ℓ

0

dℓ′[P (x, ℓ′, t|x0)dx],

where P (x, ℓ, t|x0) is the joint probability of the position
Xt and boundary local time ℓt of reflected Brownian mo-
tion. We shall refer to P as the propagator. (Note that

Grebenkov refers to the density p as the conventional
propagator and denotes it by the symbol G [42, 43]. The
corresponding joint probability density P is called the full
propagator. In our paper we use G to denote a Neumann
Green’s function and simply refer to P as the propagator
of reflected Brownian motion.) Using the identity

∫ ∞

0

dℓ f(ℓ)

∫ ℓ

0

dℓ′ g(ℓ′) =

∫ ∞

0

dℓ′ g(ℓ′)

∫ ∞

ℓ′
dℓ f(ℓ)

for arbitrary integrable functions f, g, it follows that

p(x, t|x0, γ) =

∫ ∞

0

e−γℓP (x, ℓ, t|x0)dℓ. (3.8)

Since the Robin boundary condition maps to an expo-

nential law for the stopping local time ℓ̂t, the probabil-
ity density p(x, t|x0, γ) can be expressed in terms of the
Laplace transform of the propagator P (x, ℓ, t|x0) with
respect to the local time ℓ.

The crucial observation is that one is free to change

the probability distribution of the stopping local time ℓ̂.

Given some distribution Ψ(ℓ) = P[ℓ̂ > ℓ], one can define
a generalized partially reflecting Brownian motion whose
probability density is given by [42]

p(x, t|x0) =

∫ ∞

0

Ψ(ℓ)P (x, ℓ, t|x0)dℓ. (3.9)

In other words, the encounter-based formulation provides
a framework for exploring a range of surface reaction
mechanisms that go well beyond the constant reactiv-
ity case and exponential law Ψ(ℓ) = e−γℓ associated with
the Robin boundary condition. For example, one could
consider a reactivity κ(ℓ) that depends on the local time
ℓ (or the rescaled number of surface encounters). The

corresponding distribution of the stopping local time ℓ̂
would then be

Ψ(ℓ) = exp

(
− 1

D

∫ ℓ

0

κ(ℓ′)dℓ′

)
. (3.10)

However, for a more general surface reaction mechanism,
one cannot calculate the probability density p(x, t|x0)
by solving a BVP, since the Robin boundary condition
no longer holds. This motivates the construction of the
propagator P (x, ℓ, t|x0), which is carried out in Ref. [42]
using a non-standard integral representation of the prob-
ability density p(x, t|x0) and spectral properties of the
so-called Dirichlet-to-Neumann operator. In this paper
it will be more convenient to work directly with the BVP
for the propagator. In the case of a partially reactive
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boundary ∂U , the BVP takes the following form [42]:

∂P (x, ℓ, t|x0)

∂t
= D∇2P (x, ℓ, t|x0), x ∈ R

3\U (3.11a)

−D∇P (x, ℓ, t|x0) · n = −D∇p∞(x, t|x0) · n δ(ℓ)

+D
∂

∂ℓ
P (x, ℓ, t|x0), x ∈ ∂U , (3.11b)

P (x, ℓ = 0, t|x0) = −∇p∞(x, t|x0) · n, x ∈ ∂U , (3.11c)
lim
ℓ→∞

P (x, ℓ, t|x0) = 0, (3.11d)

P (x, ℓ, 0|x0) = δ(x − x0)δ(ℓ), x ∈ R
3\U , (3.11e)

where p∞ is the probability density for a totally ab-
sorbing surface. Note that multiplying the boundary
condition (3.11b) by e−γℓ, integrating with respect to
ℓ ∈ [0,∞), and using integration by parts combined with
Eq. (3.11c) recovers the standard Robin boundary condi-
tion for p(x, t|x0). In appendix A we present an alterna-
tive derivation of Eq. (3.11) that is based on a Feynman-
Kac equation, see Ref. [44].

IV. NARROW CAPTURE PROBLEM:

GENERALIZED SURFACE REACTIONS

In this section we use the encounter-based formulation
[42] to analyze the narrow capture problem shown in Fig.
1 in the case of more general diffusion-mediated surface
reactions. For simplicity, we take each target to have the
same rule for surface reactions so that we only need to
keep track of a single boundary local time that does not
distinguish between targets The BVP for the propaga-
tor of the system shown in Fig. 1 can then be written
down by analogy with Eq. (3.11). Again it will be more
convenient to work in Laplace space so that

D∇2P̃ (x, ℓ, s|x0)− sP̃ (x, ℓ, s|x0)

= −δ(x− x0)δ(ℓ), x ∈ R
3\Ua, (4.1a)

−D∇P̃ (x, ℓ, s|x0) · nk = −D∇p̃∞(x, s|x0) · nk δ(ℓ)

+D
∂

∂ℓ
P̃ (x, ℓ, s|x0), x ∈ ∂Uk, (4.1b)

P̃ (x, ℓ, s|x0)
∣∣∣
ℓ=0

= −∇p̃∞(x, s|x0) · nk, x ∈ ∂Uk,

(4.1c)

lim
ℓ→∞

P̃ (x, ℓ, s|x0) = 0. (4.1d)

It is convenient to eliminate the terms involving Dirac
delta functions by setting

P̃ (x, ℓ, s|x0) = p̃∞(x, s|x0)δ(ℓ) + Ũ(x, ℓ, s|x0), (4.2)

with

D∇2Ũ(x, ℓ, s|x0)− sŨ(x, ℓ, s|x0) = 0, x ∈ R
3\Ua,

(4.3a)

−D∇Ũ(x, ℓ, s|x0) · nk = D
∂

∂ℓ
Ũ(x, ℓ, s|x0), x ∈ ∂Uk,

(4.3b)

Ũ(x, ℓ, s|x0)
∣∣∣
ℓ=0

= −∇p̃∞(x, s|x0) · nk, x ∈ ∂Uk,

(4.3c)

lim
ℓ→∞

Ũ(x, ℓ, s|x0) = 0. (4.3d)

A. Asymptotic expansion of the propagator

Following along analogous lines to the asymptotic anal-
ysis of Sect. II, we separately consider outer and in-
ner solutions for the propagator. In the outer region,

P̃ (x, ℓ, s|x0) is expanded as

P̃ (x, ℓ, s|x0) ∼ p̃∞(x, s|x0)δ(ℓ) + Ũ0(x, ℓ, s|x0)

+ ǫŨ1(x, ℓ, s|x0) + ǫ2Ũ2(x, ℓ, s|x0) + . . . ,

where

D∇2Ũm(x, ℓ, s|x0)− sŨm(x, ℓ, s|x0) = 0,

x ∈ R
3\{x1, . . . ,xN}, (4.4a)

lim
ℓ→∞

Ũm(x, ℓ, , s|x0) = 0. (4.4b)

Eqs. (4.4) are supplemented by singularity conditions as
x → xj , j = 1, . . . , N , which are determined by matching
to the inner solution.

Next consider the inner solution around the jth target.
Introduce the stretched coordinates y = ǫ−1(x−xj) and

ℓ̂ = ℓ/ǫ, and take Ṽ (y, ℓ̂, s|x0) = ǫŨ(x, ℓ, s|x0) to be the
corresponding inner solution. Eqs. (4.3) then imply that

D∇2
yṼ (y, ℓ̂, s|x0)− sǫ2Ṽ (y, ℓ̂, s|x0) = 0, |y| > ρj,

(4.5a)

D∇yṼ (y, ℓ̂, s|x0) · nj = −D ∂

∂ℓ̂
Ṽ (y, ℓ̂, s|x0), |y| = ρj ,

(4.5b)

Ṽ (y, ℓ̂ = 0, s|x0) = −∇yp̃∞(y, s|x0) · nj , |y| = ρj .
(4.5c)

The choice of scaling for ℓ is consistent with a reactivity
of O(1/ǫ), as assumed in Sect. II. Introducing a pertur-
bation expansion of the inner solution around the j-th
target of the form

Ṽ ∼ Ṽ0 + ǫṼ1 + ǫ2Ṽ2 +O(ǫ3) (4.6)
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then yields the following pair of equations for m = 0, 1:

D∇2
yṼm(y, ℓ̂, s|x0) = 0, |y| > ρj , (4.7a)

D∇yṼm(y, ℓ̂, s|x0) · nj = −D ∂

∂ℓ̂
Ṽm(y, ℓ̂, s|x0), |y| = ρj ,

(4.7b)

Ṽm(y, ℓ̂ = 0, s|x0) = −∇yp̃∞,m(y, s|x0) · nj , |y| = ρj .
(4.7c)

Let us begin with the leading order contribution to the

inner solution. Matching the far-field behavior of Ṽ0 with
the near-field behavior of ǫp∞δ(ℓ) (which is zero) shows
that the solution to Eq. (4.7a) for m = 0 is of the form

Ṽ0(y, ℓ̂, s|x0) =
cj(ℓ̂)

|y| . (4.8)

Substituting into the boundary conditions (4.7b,c) im-
plies that

dcj(ℓ̂)

dℓ̂
+ ρ−1

j cj(ℓ̂) = 0. (4.9)

Hence, cj(ℓ̂) = cj(0)e
−ℓ̂/ρj and

Ṽ0(y, ℓ̂, s|x0) =
cj(0)e

−ℓ̂/ρj

|y| , (4.10)

with

cj(0) = −ρj∇yp̃∞,0(y, s|x0) · nj ||y|=ρj
(4.11)

= ρjGj0(s)
d

dρ

(
1− ρj

|y|

)∣∣∣∣
|y|=ρj

= Gj0(s).

Rewriting Eq. (4.10) in terms of the original un-
stretched coordinates then determines the singularity

condition for Ũ0:

Ũ0(x, ℓ, s|x0) ∼
Gj0(s)

|x− xj |
e−ℓ/rj as x → xj .

The solution of Eq. (4.4) for m = 0 is thus given by

Ũ0(x, ℓ, s|x0) = 4πD

N∑

j=1

Gj0(s)e
−ℓ/rjG(x, s|xj), (4.12)

where rj = ǫρj. We now match the far-field behavior of

Ṽ1 with the O(ǫ) term in the expansion of p̃∞(x, s|x0)
about xj (multiplied by δ(ℓ)) together with the non-

singular near-field behavior of Ũ0 around the j-th target.
This yields

Ṽ1(y, ℓ̂, s|x0) → ∇xp∞(xj , s|x0) · y δ(ℓ̂)

+ 4πD

N∑

k=1

Gk0(s)e
−ℓ̂/ρkGjk(s) (4.13)

as |y| → ∞, with Gij defined in Eq. (2.11). Following
the analysis of Sect. II, we obtain the general solution

Ṽ1(y, ℓ̂, s|x0) = 4πD

[
N∑

k=1

Gk0(s)e
−ℓ̂/ρkGjk(s)

](
1− ρj

|y|

)

+
aj(ℓ̂)

|y| + first-order spherical harmonics. (4.14)

Substituting (4.14) into the boundary conditions (4.7b,c)
implies that

daj(ℓ̂)

dℓ̂
+ ρ−1

j aj(ℓ̂) = 4πD

N∑

k=1

Gk0(s)e
−ℓ̂/ρkGjk(s),

(4.15)
with

aj(0) = −ρj∇yp̃∞,1(y, s|x0) · nj ||y|=ρj

= ρjχj(s)
d

dρ

(
1− ρj

|y|

)∣∣∣∣
|y|=ρj

= χj(s). (4.16)

Hence,

aj(ℓ̂) = χj(s)e
−ℓ̂/ρj + 4πDGj0(s)ℓ̂ e

−ℓ̂/ρjGjj(s)

+ 4πD

N∑

k 6=j

Gk0(s)
e−ℓ̂/ρk − e−ℓ̂/ρj

ρ−1
j − ρ−1

k

Gjk(s). (4.17)

Combining our various results yields the O(ǫ) contribu-
tion to the inner solution for the propagator:

Ṽ1(y, ℓ̂, s|x0) = 4πD

[
N∑

k=1

Gk0(s)e
−ℓ̂/ρkGjk(s)

](
1− ρj

|y|

)
+
χj(s)

|y| e−ℓ̂/ρj +
4πD

|y| Gj0(s)ℓ̂ e
−ℓ̂/ρjGjj(s)

+
4πD

|y|

[
N∑

k=1

Gk0(s)

{
e−ℓ̂/ρk − e−ℓ̂/ρj

ρ−1
j − ρ−1

k

}
Gjk(s)

]
+ first-order spherical harmonics. (4.18)
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Having obtained an asymptotic expansion of the in-
ner solution of the propagator in Laplace space, we can
use the transform (3.9) to construct the corresponding
asymptotic expansion of the probability density. First,
Laplace transforming Eq. (3.9) gives

p̃(x, s|x0) =

∫ ∞

0

Ψ(ℓ)P̃ (x, ℓ, s|x0)dℓ. (4.19)

The case of Robin boundary conditions is recovered by
setting Ψ(ℓ) = e−γℓ with γ = κ0/D and κ0 a constant re-
activity. Recall that in the analysis of Sect. II we rescaled
κ0 according to κ0 → κ0/ǫ so that Ψ(ℓ) = e−κ0ℓ/ǫD =

e−qℓ̂ with ℓ̂ = ℓ/ǫ. Therefore, we take Ψ = Ψ(ℓ̂) and
rewrite Eq. (4.19) as

p̃(x, s|x0) = ǫ

∫ ∞

0

Ψ(ℓ̂)P̃ (x, ǫℓ̂, s|x0)dℓ̂. (4.20)

Introducing stretched coordinates then gives the corre-
sponding transform of the inner solution around each
target:

p̃(y, s|x0) (4.21)

=

∫ ∞

0

Ψ(ℓ̂)[p̃∞(y, s|x0)δ(ℓ̂) + Ṽ (y, ℓ̂, s|x0])dℓ̂.

Substituting the asymptotic expansions (2.9) and (4.6),
and using the fact that the integral of an asymptotic
expansion is also an asymptotic expansion, we have

p̃ ∼ p̃0 + ǫp̃1 + ǫ2p̃2 +O(ǫ3), (4.22)

with

p̃m(y, s|x0) (4.23)

=

∫ ∞

0

Ψ(ℓ̂)[p̃∞,m(y, s|x0)δ(ℓ̂) + Ṽm(y, ℓ̂, s|x0])dℓ̂.

Substituting Eqs. (4.10) and (4.18) into (4.23) form =
0 and m = 1, respectively, yields

p̃0(y, s|x0) = Gj0(s)

[
1− ρj

|y| +
Ψ̃(1/ρj)

|y|

]
, (4.24)

and

p̃1(y, s|x0) = p̃∞,1(y, s|x0) + 4πD

[
N∑

k=1

Gk0(s)Ψ̃(1/ρk)Gjk(s)

](
1− ρj

|y|

)
+
χj(s)

|y| Ψ̃(1/ρj) +
4πD

|y| Gj0(s)ψ̃(1/ρi)Gjj(s)

+
4πD

|y|



∑

k 6=j

Gk0(s)

{
Ψ̃(1/ρk)− Ψ̃(1/ρj)

ρ−1
j − ρ−1

k

}
Gjk(s)


+ first-order spherical harmonics. (4.25)

We have introduced the stopping local time density

ψ(ℓ) = −dΨ(ℓ)

dℓ
, ψ̃(q) = 1− qΨ̃(q). (4.26)

It can be checked that (4.24) and (4.25) recover Eq.

(2.23), on setting Ψ(ℓ) = e−γℓ and Ψ̃(q) = (q + γ)−1.

B. The generalized target flux

Multiplying both sides of the boundary condition
(4.1c) by Ψ(ℓ) and integrating by parts with respect to ℓ
shows that

−D∇p(x, t|x0) · nj = D

∫ ∞

0

ψ(ℓ)P (x, ℓ, t|x0)dℓ

(4.27)

for x ∈ ∂Uj. We have used Eq. (4.1d) and the identity
Ψ(0) = 1. Laplace transforming, introducing stretched

coordinates and integrating with respect to points on the
boundary ∂Uj gives the flux into the jth target:

J̃j(x0, s) = Dǫρ2j

∫ ∞

0

ψ(ℓ̂)

[∫

∂Uj

Ṽ (y, ℓ, s|x0)dσ

]
dℓ̂.

(4.28)
Substituting the asymptotic expansion (4.6) of the prop-
agator then gives

J̃j(x0, s) ∼ 4πǫD

[
F(ρj)Gj0(s) (4.29)

− 4πǫD[F(ρi)− ρjψ̃
′(1/ρj)]Gj0(s)Gjj(s)

− 4πǫD
∑

k 6=j

Gk0(s)

{
ρ2kF(ρj)− ρ2jF(ρk)

ρk − ρj

}
Gjk(s)

]

+O(ǫ3),

where

F(ρ) = ρ− Ψ̃(1/ρ). (4.30)
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FIG. 2. (a) Plots of the probability density ψ(ℓ) as a function of the stopping local time for the gamma and Pareto-II models.
(b) Corresponding plots of the renormalized target radius F(ρ) as a function of the physical radius ρ. We also set γ = κ0/D = 1.

We have used Eq. (4.26), which implies that

ρjψ̃(1/ρj) = ρj

(
1− 1

ρj
Ψ̃(1/ρj)

)
= F(ρj). (4.31)

Hence, the leading order terms involve an effective renor-
malization of the target size.
Taking the limit s → 0 in Eq. (4.29) yields a corre-

sponding asymptotic expansion of the splitting probabil-
ities:

πj(x0) = lim
s→0

J̃j(x0, s) (4.32)

= ǫF(ρj)

[
1

|xj − x0|

− ǫ
∑

k 6=j

1

|xk − x0|

{
ρ2kF(ρj)− ρ2jF(ρk)

ρk − ρj

}
1

|xk − xj |

]

+O(ǫ3).

For the sake of illustration, we list a few possible surface
reaction models in terms of the probability density ψ(ℓ)
and the equivalent encounter-dependent reactivity κ(ℓ)
defined in Eq. (3.10). See Table 1 of Ref. [42] for a more
comprehensive list. In each case we take γ = κ0/D where
κ0 is some reference reactivity.

(a) Exponential distribution.

ψ(ℓ) = γe−γℓ, ψ̃(q) =
γ

γ + q
, κ(ℓ) = κ0. (4.33)

(b) Gamma distribution.

ψ(ℓ) =
γ(γℓ)α−1e−γℓ

Γ(α)
, ψ̃(q) =

(
γ

γ + q

)α

, (4.34a)

and

κ(ℓ) = κ0
(γℓ)α−1e−γℓ

Γ(α, γℓ)
, (4.34b)

where Γ(α) is the gamma function and Γ(α, z) is the up-
per incomplete gamma function.

(c) Pareto-II (Lomax) distribution.

ψ(ℓ) =
γα

(1 + γℓ)1+α
, ψ̃(q) = α

(
q

γ

)α

eq/γΓ(−α, q/γ),
(4.35a)

and

κ(ℓ) = κ0
α

1 + γℓ
. (4.35b)
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FIG. 3. Plots of F(ρ) for ρ = 0.5, 1, 2 as a function of the
coefficient α for the gamma and Pareto-II models.



12

R3

x1 x2

x0

FIG. 4. Two spherical targets of radii ρ1 and ρ2. For sim-
plicity, the initial position is taken to be equidistant from the
centers of the two targets.

In Fig. 2(a) we plot the probability density ψ(ℓ) as
a function of the stopping local time ℓ for the gamma
and Pareto-II models and the particular coefficients α =
0.5, 1, 2. We also set γ = 1. (The gamma density for
α = 1 gives the exponential model). In Fig. 2(b) we
show the corresponding plots of the renormalized target

radius function F(ρ) = ρ − Ψ̃(ρ). In all cases, F(ρ) is a
nonlinear, monotonically increasing function of ρ. More-
over, F(ρ) is sensitive to the value of the α-coefficient
that parameterizes each of the two probability distribu-
tions. That is, F(ρ) is a decreasing (increasing) func-
tion of α for fixed ρ in the case of the gamma (Pareto-
II) model. Having determined the renormalized radius
F(ρ), we can now explore how the choice of surface re-
action model modifies the leading-order contributions to
the splitting probabilities for more than one target.

For the sake of illustration, consider two spherical tar-
gets of rescaled radii ρ1 and ρ2 such that ρ2 is fixed
at unity, see Fig. 4. Assuming that the target cen-
ters are equidistant from the starting position x0, that is
|x1 − x0| = |x2 − x0|, the normalized splitting probabili-
ties π̂j = πj/(π1 + π2) are

π̂j =
F(ρj)

F(ρ1) + F(ρ2)
. (4.36)

In Fig. 5 we plot the leading-order contribution to the
normalized splitting probability π̂1 of the first target as
a function of the target radius ρ1 for the gamma and
Pareto-II models. As expected, π1 = 0.5 when ρ1 = ρ2 =
1. In the case of the gamma model, π̂1 is a sigmoid-
like function of ρ1 whose steepness increases significantly
with the α-coefficient. That is, for large α, small changes
in ρ1 leads to large changes in the renormalized radius,
and thus π̂1. The latter effect is much weaker in the case
of the Pareto-II model.

V. DISCUSSION

In this paper we analyzed the 3D narrow capture prob-
lem for small spherical targets with partially reactive
boundary surfaces. We proceeded by combining matched
asymptotic analysis with an encounter-based formulation
of diffusion-mediated surface reactions. In particular, we
derived an asymptotic expansion of the joint probability
density (propagator) for the position and boundary local
time of reflected Brownian motion. The effects of sur-
face reactions were then incorporated via an appropriate
stopping condition for the boundary local time. We illus-
trated the theory by investigating how surface reactions
affected the splitting probabilities. We showed that to
leading order there is an effective renormalization of the

target radius of the form ρ→ ρ− Ψ̃(1/ρ), where Ψ̃ is the
Laplace transform of the stopping local time distribution.
In order to facilitate the analysis, we made a number of

simplifying assumptions. First, the region Ω containing
the targets was taken to be unbounded, that is, Ω = R

3.
The analysis of the target fluxes in the small-s limit is
considerably more involved when Ω is bounded. Suppose,
in particular, that the exterior boundary ∂Ω is totally re-
flecting. The corresponding Neumann Green’s function
of the modified Helmholtz equation in Ω then has a sin-
gularity of the form G(x, s|x0) ∼ 1/s. In the case of to-
tally absorbing targets, the resulting singularities in the
asymptotic expansion of the Laplace transformed fluxes
can be eliminated by considering a triple expansion in ǫ,
s and Γ ∝ ǫ/s [24]. Performing partial summations over
infinite power series in Γ leads to multiplicative factors of
the form Γn/(1 + Γ)n. Since Γn/(1 + Γ)n → 1 as s → 0,
the singularities in s are removed. However, extending
this analysis to partially reflecting targets is non-trivial.
Another major difference between unbounded and

bounded domains Ω is that the splitting probabilities are

O(1) rather than O(ǫ) and
∑N

j=1 πk = 1. Moreover, one
can now construct conditional mean first passage times
(MFPTs); these are infinite when Ω = R

3. The FPT Tk
to be captured by the k-th target is

Tk(x0) = inf{t > 0;X(t) ∈ ∂Uk|X(0) = x0}, (5.1)

with Tk = ∞ if the particle is captured by another tar-
get. Introducing the set of events Ωk = {Tk < ∞}, the
conditional FPT densities are defined according to

fk(x0, t)dt = P[t < Tk < t+ dt|Tk <∞,X(0) = x0].

One finds that

fk(x0, t) =
Jk(x0, t)

πk(x0)
. (5.2)

Moreover, the Laplace transform of fk(x0, t) is the gen-
erator of the moments of the conditional FPT density:

E[e−sTk |1Ωk
] = f̃k(x0, s) =

J̃k(x0, s)

J̃k(x0, 0)
, (5.3)
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FIG. 5. Two spherical targets with rescaled radii ρ1 and ρ2. Plot of leading-order contribution to the normalized splitting
probability of the first target, π̂1 ∼ F(ρ1)/(F(ρ1)+F(ρ2)), as a function of ρ1 for ρ2 = 1 and γ = 1. (a) Ψ given by the gamma
distribution. (b) Ψ given by the Pareto-II distribution. We also set γ = κ0/D = 1. Also shown is the normalized splitting
probability for totally absorbing targets (κ0 → ∞).

and

T
(n)
k = E[T n

k |1Ωk
] =

(
− d

ds

)n

E[e−sTk |1Ωk
]

∣∣∣∣
s=0

=

(
− d

ds

)n

f̃k(x0, s)

∣∣∣∣
s=0

. (5.4)

In particular, the conditional MFPT Tk = T
(1)
k is

πk(x0)Tk(x0) = lim
s→0

dJ̃k(x0, s)

ds

∣∣∣∣∣
s=0

. (5.5)

As with the splitting probabilities, the calculation of
Tk(x0) requires taking the limit s→ 0 and hence dealing
with the singular nature of the Green’s function.
A second simplifying assumption was to consider

spherically-shaped targets. However, as originally shown
by Ward and Keller [1, 2], it is possible to generalize the
asymptotic analysis of narrow capture problems to more
general target shapes such as ellipsoids by applying clas-
sical results from electrostatics. In the case of totally
absorbing targets one simply replaces the target length
ρj in the far-field behavior of the inner solution by the
capacitance Cj of an equivalent charged conductor with
the shape Uj . In addition, using the divergence theorem,
it can be shown that the flux into a target is completely
determined by the far-field behavior. It would be inter-
esting to determine the effective renormalization of the
capacitances in the case of partially absorbing targets.
A third simplification was to take the rule for surface
reactions to be the same for each target, which meant
that we only needed to keep track of a single bound-
ary local time. If each target were to have a different
probability distribution for the stopping local time, then

it would be necessary to introduce multiple local times
ℓj, j = 1, . . . , N [45]. The associated propagator would
then be P = P (x, ℓ1, . . . ℓN , t|x0) such that the marginal
probability density becomes

p(x, t|x0) =

∫ ∞

0

dℓ1Ψ1(ℓ1) . . .

∫ ∞

0

dℓNΨN (ℓN)

× P (x, ℓ1, . . . ℓN , t|x0).

Finally, note that a complementary approach to deal-
ing with partially reactive surfaces arises within the con-
text of multi-scale computational models of reaction-
diffusion (RD) systems. A major challenge in simulating
intracellular processes is how to efficiently couple stochas-
tic chemical reactions involving low molecular numbers
with diffusion in complex environments. One approach
is to consider a spatial extension of the Gillespie algo-
rithm for well-mixed chemical reactions [46, 47] using a
mesoscopic compartment-based method, although there
are subtle issues with regards choosing the appropriate
compartment size [48–51]. Alternatively, one can com-
bine a coarse-grained deterministic RD model in the bulk
of the domain with individual particle-based Brownian
dynamics in certain restricted regions [52–55]; in this
case considerable care must be taken in the choice of
boundary conditions at the interface between the two
domains. This is somewhat analogous to having to deal
with boundary local times in partially reflecting Brown-
ian motion.
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APPENDIX A. DERIVATION OF THE

PROPAGATOR BVP USING A FEYNMAN-KAC

FORMULA

Another way to define the propagator P (x, ℓ, t|x0) in-
troduced in Sect. III is in terms of the expectation of a
Dirac delta function with respect to the distribution of
paths between (x0, 0) to (x, t):

P (x, ℓ, t|x0) =

〈
δ (ℓ−DT (∂U , t))

〉Xt=x

X0=x0

, (A.1)

where

T (∂U , t) =
∫ t

0

∫

∂U

δ(Xτ − x)dxdτ. (A.2)

That is, the joint probability density is obtained by sum-
ming over all paths whose accumulative boundary local
time is equal to ℓ. Using a Fourier representation of the
Dirac delta function, Eq. (A.1) can be rewritten as

P (x, ℓ, t|x0) =

∫ ∞

−∞

eiωℓG(x, ω, t|x0)
dω

2π
, (A.3)

where P (x, ℓ, t|x0) = 0 for ℓ < 0 and

G(x, ω, t|x0) =

〈
exp (−iωDT (∂U , t))

〉Xt=x

X0=x0

. (A.4)

We now note that G is the characteristic functional of
the Brownian local time, which can be evaluated us-
ing a path-integral representation of the stochastic pro-
cess. The latter can then be used to derive the following

Feynman-Kac equation [56, 57]:

∂G(x, ω, t|x0)

∂t
= D∇2G(x, ω, t|x0) (A.5)

− iωD

∫

∂U

G(x′, ω, t|x0)δ(x− x′)dx′.

Multiplying Eq. (A.5) by eıωℓ, integrating with respect
to ω and using the identity

∂

∂ℓ
P (x, ℓ, t|x0)Θ(ℓ) =

∫ ∞

−∞

iωDeiωℓG(x, ω, t|x0)
dω

2π
,

with Θ(ℓ) the Heaviside function, we obtain the result

∂P (x, ℓ, t|x0)

∂t
= D∇2P (x, ℓ, t|x0) (A.6)

−D

∫

∂U

∂P

∂ℓ
(x′, ℓ, t|x0)δ(x− x′)dx′

−Dδ(ℓ)

∫

∂U

P (x′, 0, t|x0)δ(x− x′)dx′.

This is equivalent to the BVP

∂P (x, ℓ, t|x0)

∂t
= D∇2P (x, ℓ, t|x0), x ∈ R

3\U

−D∇P (x, ℓ, t|x0) · n = DP (x, ℓ = 0, t|x0) δ(ℓ)

+D
∂

∂ℓ
P (x, ℓ, t|x0), x ∈ ∂U ,

which reduces to Eq. (3.11) on setting P (x, ℓ = 0, t|x0) =
−∇p∞(x, t|x0) · n for x ∈ ∂U . The latter equality can
be understood by noting that a constant reactivity is
equivalent to a Robin boundary condition. Thus

∇p(x, t|x0) · n = −κ0p(x, t|x0)

= −κ0
∫ ∞

0

e−κ0ℓP (x, ℓ, t|x0)dℓ. (A.7)

The result follows from taking the limit κ0 → ∞ on both
sides and noting that limκ0→∞ κ0e

−κ0ℓ is the Dirac delta
function on the positive half-line.
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[32] P. Lèvy Sur certaines processus stochastiques homogenes.
Compos. Math. 7 283 (1939).

[33] H. P. McKean Brownian local time. Adv. Math. 15 91-
111 (1975).

[34] M. Freidlin. Functional Integration and Partial Differen-
tial Equations Annals of Mathematics Studies (Princeton
University Press, Princeton, New Jersey, 1985).

[35] V. G. Papanicolaou The probabilistic solution of the
third boundary value problem for second order elliptic
equations Probab. Th. Rel. Fields 87 27-77 (1990).

[36] G. N. Milshtein The solving of boundary value problems
by numerical integration of stochastic equations. Math.
Comp. Sim. 38 77-85 (1995).

[37] D. S. Grebenkov, M. Filoche, and B. Sapoval. Spec-
tral Properties of the Brownian Self-Transport Operator.
Eur. Phys. J. B 36 221-231 (2003).

[38] D. S. Grebenkov. Partially reflected Brownian motion:
A stochastic approach to transport phenomena. in Fo-
cus on Probability Theory, Ed. L. R. Velle, pp. 135-169
(Hauppauge: Nova Science Publishers, 2006).

[39] D. S. Grebenkov. Residence times and other function-
als of reflected Brownian motion. Phys. Rev. E 041139
(2007).

[40] A. Singer, Z. Schuss, A. Osipov, and D. Holcman. Par-
tially reflected diffusion. SIAM J. Appl. Math. 68 844-868
(2008).

[41] D. S. Grebenkov Spectral theory of imperfect diffusion-
controlled reactions on heterogeneous catalytic surfaces
J. Chem. Phys. 151 104108 (2019).

[42] D. S. Grebenkov Paradigm shift in diffusion-mediated
surface phenomena. Phys. Rev. Lett. 125 078102 (2020).

[43] D. S. Grebenkov An encounter-based approach for re-
stricted diffusion with a gradient drift. arXiv:2110.12181
(2021).

[44] P. C. Bressloff, Diffusion-mediated surface reactions,
Brownian functionals and the Feynman-Kac formula.
Preprint (2022).

[45] D. S. Grebenkov, Joint distribution of multiple bound-
ary local times and related first-passage time problems
with multiple targets. Journal of Statistical Mechanics:
Theory and Experiment 10 103205 (2020).

[46] D. T. Gillespie, Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem. 81 2340-2361 (1977).

[47] D. T. Gillespie, Approximate accelerated stochastic sim-
ulation of chemically reacting systems. J. Chem. Phys.
115,1716-1733 (2001).

[48] T. E. Turner, S. Schnell and K. Burrage, Stochastic ap-
proaches for modelling in vivo reactions. Comp. Biol.
Chem. 28 165-178 (2004).

[49] S. A. Isaacson and C. Peskin, Incorporating diffusion in
complex geometries into stochastic chemical kinetics sim-
ulations, SIAM J. Sci. Comp. 28 47-74 (2006).

[50] S. A. Isaacson, The reaction-diffusion master equation
as an asymptotic approximation of diffusion to a small
target. SIAM J. Appl. Math. 7 77-111 (2009).

[51] J. Hu, H.-W. Kang and H. G. Othmer, Stochastic anal-



16

ysis of reaction-diffusion processes. Bull. Math. Biol. 76
854-894 (2014)

[52] S. Andrews and D. Bray, Stochastic simulation of chem-
ical reactions with spatial resolution and single molecule
detail. Phys. Biol. 1 137-151 (2004).

[53] R. Erban and S. J. Chapman, Reactive boundary condi-
tions for stochastic simulations of reaction-diffusion pro-
cesses. Phys. Biol. 4 16-28 (2007).

[54] R. Erban and S. J. Chapman, Stochastic modelling of
reaction-diffusion processes: algorithms for bimolecular

reactions. Phys. Biol. 6 046001 (2009).
[55] B. Franz, M. B. Flegg, S. J. Chapman and R. Erban,

Mutiscale reaction-diffusion algorithms: PDE-assisted
Brownian dynamics. SIAM J. Appl. Math. 73 1224-1247
(2013).

[56] M. Kac, On distribution of certain Wiener functionals.
Trans. Am. Math. Soc. 65, 1-13 (1949).

[57] S. N. Majumdar, Brownian functionals in physics and
computer science. Curr. Sci. 89, 2076 (2005).


