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Abstract

In this paper we analyze the relaxation to steady-state of intracellu-

lar diffusion in a pair of cells with gap-junction coupling. Gap junctions

are prevalent in most animal organs and tissues, providing a direct dif-

fusion pathway for both electrical and chemical communication between

cells. Most analytical models of gap junctions focus on the steady-state

diffusive flux and the associated effective diffusivity. Here we investigate

the relaxation to steady state in terms of the so-called local accumula-

tion time. The latter is commonly used to estimate the time to form a

protein concentration gradient during morphogenesis. The basic idea is

to treat the fractional deviation from the steady-state concentration as a

cumulative distribution for the local accumulation time. One of the use-

ful features of the local accumulation time is that it takes into account

the fact that different spatial regions can relax at different rates. We con-

sider both static and dynamic gap junction models. The former treats the

gap junction as a resistive channel with effective permeability µ, whereas

the latter represents the gap junction as a stochastic gate that randomly

switches between an open and closed state. The local accumulation time

is calculated by solving the diffusion equation in Laplace space and then

taking the small-s limit. We show that the accumulation time is a mono-

tonically increasing function of spatial position, with a jump discontinuity

at the gap junction. This discontinuity vanishes in the limit µ → ∞ for

a static junction and β → 0 for a stochastically-gated junction, where β

is the rate at which the gate closes. Finally, our results are generalized

to the case of a linear array of cells with nearest neighbor gap junction

coupling.

1 Introduction

Gap junctions are small nonselective channels that provide a direct diffusion
pathway between neighboring cells. They are formed by the head-to-head con-
nection of two hemichannels or connexons, one from each of the two coupled
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cells [1, 3, 2]. Gap junctions are prevalent in most animal organs and tissues,
providing a mechanism for both electrical and chemical communication between
cells. Electrical coupling is particularly important in cardiac muscle, where the
efficient transmission of electrical signals allows the heart muscle cells to con-
tract in unison. Gap junctions or electrical synapses are also found throughout
the central nervous system [4]. Direct chemical communication between cells
occurs through the transmission of small second messengers, such as inositol
triphosphate (IP3) and calcium (Ca2+). An important example of long-range
chemical signaling mediated by gap junctions is the propagation of intercellular
Ca2+ waves [5].

One of the characteristic properties of a gap junction is its effective channel
permeability µ. Mathematically speaking, the high resistance to diffusive flow
generates a jump discontinuity ∆u of molecular concentration across the gap
junction such that the diffusive flux through the channel is given by J = −µ∆u.
A number of studies have analyzed the diffusion equation for a one-dimensional
(1D) array of cells with nearest-neighbor coupling [6, 7, 8]. In particular, one can
calculate the steady-state concentration in each cell by assuming that there is a
constant diffusive flux J0 through the cellular array; the flux is then determined
self-consistently by solving the resulting boundary value problem. The latter
includes a set of interior boundary conditions that combine jump discontinuities
in the concentration at the gap junctions with flux continuity conditions. Anal-
ogous to the opening and closing of ion channels [9], gap junctions can be both
voltage-gated and chemically-gated [10, 11]. This has motivated a stochastic
model in which each gap junction is treated as a randomly fluctuating gate that
switches between an open and a closed state [12]. Solving the resulting first-
order moment equations for the stochastic concentrations and fluxes in steady
state generates an effective channel permeability that depends on the kinetics
of the stochastic gate, even though the channel is fully conducting when in the
open state.

One advantage of analytical models is that they provide explicit expressions
for the steady-state flux J0. The latter can be used to extract the effective
diffusivity De for the intracellular transfer of molecules via gap junctions, which
can then be compared with experimental data. However, De is a lumped pa-
rameter that depends on both the cytoplasmic diffusivity D and the junctional
permeability µ. In order to separate these two biophysical parameters, it is
necessary to include additional information about the diffusion process, such as
the time-dependent approach to steady-state [7, 8].

In this paper, we extend previous studies of static and dynamic gap junctions
by investigating the relaxation to steady state in terms of the so-called local
accumulation time. The latter is commonly used to estimate the time to form
a protein concentration gradient during morphogenesis [13, 14, 15, 16, 17]. The
basic idea is to treat the fractional deviation from the steady-state concentration
as a cumulative distribution for the local accumulation time. One of the useful
features of the local accumulation time is that it takes into account the fact
that different spatial regions can relax at different rates. (This contrasts with a
global measure of the relaxation rate based on the principal nonzero eigenvalue
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of the negative Laplacian.) In addition, for linear diffusion problems, the mean
accumulation time can be calculated by solving the diffusion equation in Laplace
space and then taking the small-s limit. This avoids the difficulty in obtaining
the full time-dependent solution by evaluating the inverse Laplace transform [7].

The structure of the paper is as follows. In section II we consider a pair of
cells coupled by a single static gap junction and give a definition of the local
accumulation time. We solve the resulting diffusion equation in Laplace space,
and then use this to calculate both the steady-state flux and the corresponding
accumulation time. We show that the latter is a monotonically increasing func-
tion of spatial position, with a jump discontinuity at the gap junction. This
discontinuity vanishes in the limit µ → ∞. In section III we consider the more
complicated example of a pair of cells connected via a stochastically-gated gap
junction. Defining the steady-state flux and accumulation time in terms of the
solution to the first-order moment equations, we obtain analogous results to the
static case. Finally, in section IV our analysis is generalized to the case of a
linear array of cells with nearest neighbor gap junction coupling. Throughout
the paper we fix the length-scale by taking the size of a cell to be L = 1. The
time-scale is then given by L2/D.

2 A pair of cells coupled by a single gap junction

We begin by considering a pair of identical cells coupled by a single gap junction,
as shown in Fig. 1. Following previous studies [7, 8, 12], we treat each cell as
a one-dimensional compartment of length L and represent the gap junction as
a resistive pore with some permeability µ. For the moment we assume that
µ is given; a mechanism for generating µ based on stochastic gating will be
considered in section 3; see also Ref. [12]. Let uj(x, t), 0 < x < L, denote the
concentration of diffusing particles in the j-th cell, j = 1, 2. We then have a
pair of diffusion equations

∂uj

∂t
= D

∂2uj

∂x2
, x ∈ (0, L), t > 0, j = 1, 2. (2.1)

These are supplemented by the interior boundary conditions

−D
∂u1(L, t)

∂x
= −D

∂u2(0, t)

∂x
= µ[u1(L, t)− u2(0, t)], (2.2)

where µ is the effective channel permeability, and the exterior boundary condi-
tions

u1(0, t) = η, u2(L, t) = 0. (2.3)

The interior boundary conditions ensure continuity of flux across the gap junc-
tion, which depends on the difference in concentrations on either side of the gap
junction. A constant concentration difference is maintained between the exte-
rior boundaries of the two cells. (One way to motivate a 1D model is to assume
that the external concentrations are uniform with respect to the other spatial
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dimensions of the cells, and that there is an array of uniformly distributed gap
junctions at the interior boundary that can be reduced to a single effective gap
junction [8].)

It is straightforward to determine the steady-state concentrations u∗
j(x), j =

1, 2, by setting all time derivatives to zero and assuming that there is a constant
diffusive flux J0. The flux is then determined self-consistently by solving the
resulting boundary value problem [8]. In particular, one finds that

J0 =
Dηµ

2µL+D
≡ Deη

2L
, (2.4)

where De is an effective diffusion coefficient:

1

De

=

[
1

D
+

1

2µL

]
. (2.5)

As highlighted elsewhere [6, 7], the effective diffusivity De can be compared
with experimental measurements of tagged particles such as fluorescent probes.
However, experimentalists are typically interested in extracting separate values
for µ and D, whereas the permeability and diffusivity are lumped together in
the expression for De. As an alternative, one could determine the full time-
dependent solution by solving Eq. (2.1) in Laplace space and then evaluating
the inverse Laplace transform. The resulting solution could then be fit to exper-
imental data [7]. In this paper, rather than obtaining the full time-dependent
solution, we focus on a particular characterization of the relaxation to steady
state known as the local accumulation time. The latter has previously been
developed within the context of diffusion-based morphogenesis [13, 14, 16, 17],
but has more recently been applied to intracellular protein gradient formation
[18] and to diffusion processes with stochastic resetting [19]. The accumulation
time is easier to calculate than the full time-dependent solution, and provides a
more compact representation of the relaxation to steady state.

cell 2cell 1

L

J0
u1(0) = η u2(L) = 0

ΔU

Figure 1: Pair of cells coupled by a single static gap junction. At steady-
state there is a uniform flux J0 through each cell but a jump discontinuity
∆U = −J0/µ in the concentration across the gap junction, where µ is the
effective channel permeability.
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Consider the initial conditions uj(x, 0) = ūj(x) and define

Zj(x, t) = 1− uj(x, t)− ūj(x)

u∗
j (x)− ūj(x)

, j = 1, 2, (2.6)

as the fractional deviation of the concentration in the j-th cell from steady
state. Assuming that there is no overshooting, 1 − Zj(x, t) can be interpreted
as the fraction of the steady-state concentration that has accumulated at x by
time t. It follows that −∂tZj(x, t)dt is the fraction accumulated in the interval
[t, t+ dt]. The accumulation time Tj(x) at position x ∈ (0, L) is then defined as
[13, 14, 16]:

Tj(x) =

∫ ∞

0

t

(
−∂Zj(x, t)

∂t

)
dt =

∫ ∞

0

Zj(x, t)dt. (2.7)

For more complicated diffusion problems it is more convenient to calculate the
accumulation time in Laplace space. Let ũ(x, s) =

∫∞

0 e−stu(x, t) etc. Using
the identity

u∗
j (x) = lim

t→∞
uj(x, t) = lim

s→0
sũj(x, s) (2.8)

and setting F̃j(x, s) = sũj(x, s)− ūj(x), the Laplace transform of Eq. (2.6) gives

sZ̃j(x, s) = 1− F̃j(x, s)

F̃j(x)
, F̃j(x) = lim

s→0
F̃j(x, s) = u∗

j (x)

and, hence

Tj(x) = lim
s→0

Z̃j(x, s) = lim
s→0

1

s

[
1− F̃j(x, s)

F̃j(x)

]

= − 1

u∗
j(x)

d

ds
F̃j(x, s)

∣∣∣∣
s=0

. (2.9)

2.1 Solution in Laplace space

Laplace transforming Eq. (2.1) and the associated boundary conditions gives

∂2ũj

∂x2
− k2ũj = −D−1ūj(x), x ∈ (0, L), t > 0 (2.10)

for j = 1, 2, with k =
√
s/D, the initial conditions uj(x, 0) = ūj(x), the interior

boundary conditions

−D
∂ũ1(L, s)

∂x
= −D

∂ũ2(0, s)

∂x
= µ[ũ1(L, s)− ũ2(0, s)], (2.11)

and the exterior boundary conditions

ũ1(0, s) =
η

s
, ũ2(L, s) = 0. (2.12)
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For simplicity, we assume that the cells are initially empty so that ūj ≡ 0. The
general solution within each cell then has the form

ũj(x, s) = Aje
−kx +Bje

kx, j = 1, 2. (2.13)

Substituting these solutions into the various boundary conditions generates four
equations for the four unknown coefficients A1,2, B1,2:

A1 =
η

s
−B1, (2.14a)

A2 = −B2e
2kL, (2.14b)

A1e
−kL −B1e

kL = A2 −B2, (2.14c)

A2 −B2 =
µ

kD

[
A1e

−kl +B1e
kL −A2 −B2

]
. (2.14d)

Using Eqs. (2.14a,b) to eliminate A1 and A2 from (2.14c) implies that

B1 =
B2

(
1 + e2kL

)
+ ηe−kL/s

2 coshkL
. (2.15)

Finally, eliminating B1 from Eq. (2.14d) gives

B2 = −µη

2s

e−2kL[1 + tanh kL]

kD coshkL+ 2µ sinhkL
. (2.16)

Expressing the solutions (2.13) in terms of B2, we have

ũ1(x, s) =
η

s

(
e−kx + e−kL sinh kx

coshkL

)
+ 2B2e

kL sinh kx, (2.17a)

ũ2(x, s) = −2B2e
kL sinh k[L− x]. (2.17b)

The solution in Laplace space can now be used to determine the steady-state
concentrations and flux according to Eq. (2.8), noting that k =

√
s/D → 0 as

s → 0. We thus find from Eqs. (2.16) and (2.17) that

u∗
1(x) = η

(
1− µx

D + 2µL

)
, (2.18a)

u∗
2(x) = µη

L− x

D + 2µL
. (2.18b)

We also recover the flux Eq. (2.4). Although it is simpler to solve the steady-
state equations directly, the advantage of working in Laplace space is that one
can determine the accumulation time (and other quantities) without having to
solve another boundary value problem.

2.2 Accumulation time

The formula (2.9) implies that we need to evaluate the first derivative of F̃j(x, s) =
sũj(x, s) in the limit s → 0. It can be seen from Eqs. 2.16) and (2.17) that
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F̃j(x, s) only depends on s via its k-dependence. Therefore, for fixed x,

dF̃j

ds
=

dk

ds

dF̃j

dk
=

1

2
√
sD

dF̃j

dk
, j = 1, 2. (2.19)

This will be non-singular in the limit s → 0 provided that the Taylor expansion
of F̃j about k = 0 is of the form

F̃j = u∗
j(x) −

k2

2
fj(x) +O(k3), fj = − d2F̃j

dk2

∣∣∣∣∣
k=0

. (2.20)

This is indeed found to be the case, see appendix A, so that

dF̃j

ds

∣∣∣∣∣
s=0

= −fj(x)

2D
=⇒ Tj(x) =

fj(x)

2Du∗
j(x)

. (2.21)

Eqs. (2.16) and (2.17a,b) yield the k-dependent functions

F̃1 = ηe−kx +
ηe−kL

coshkL
sinh kx− µη

e−kL[1 + tanhkL] sinhkx

kD coshkL+ 2µ sinh kL
, (2.22)

and

F̃2 = µη
e−kL[1 + tanhkL] sinhk(L− x)

kD coshkL+ 2µ sinhkL
. (2.23)
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Figure 2: Composite accumulation time T (x) for a pair of cells coupled by
a static gap junction and various diffusivities D. Other parameter values are
η = µ = L = 1.
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Figure 3: Composite accumulation time T (x) for a pair of cells coupled by a
static gap junction and various permeabilities µ. Other parameter values are
η = D = L = 1.

Taylor expanding each term in Eqs. (2.22) and (2.23) up to O(k3) allows us to
extract the functions fj(x), j = 1, 2, and thus obtain the following expressions
for the local accumulation times, see appendix A:

T1(x) =
3D + 4µL

D + 2µL

L2

3D
− x2

6D
− 1

3D

(
1− µx

D + 2µL

)−1

×
[
x2 − 3xL+

3D + 4µL

D + 2µL
L2

]
, (2.24)

and

T2(x) =
3D + 4µL

D + 2µL

L2

3D
− (L− x)2

6D
. (2.25)

In contrast to the steady-state flux, the accumulation time could be used to
extract values for both D and µ, for example.

Consider the composite accumulation time

T (x) = T1(x)Θ(L − x) + T2(x− L)Θ(x− L), 0 < x < 2L, (2.26)

where Θ(x) is the Heaviside function and Tj(x), j = 1, 2, are given by Eqs.
(2.24) and (2.25), respectively. In Fig. 2 we show example plots of T (x) for
different diffusivities D and µ = L = 1. As expected, the accumulation time is
a strictly monotonically increasing function of x and a decreasing function of D.
In addition, we see that there is a jump discontinuity in T (x) at the gap junction
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connecting the two cells. The corresponding results for various permabilities µ
are shown in Fig. 3. In the limit µ → ∞ the gap junction no longer restricts
the diffusion of molecules and one simply has a domain of length 2L. Taking
the limit µ → ∞ in Eqs. (2.24) and (2.25) yields the following expression for
the composite accumulation time:

T (x) =
2L2

3D
− (2L− x)2

6D
. (2.27)

3 Stochastically-gated gap junction

We now consider the more complicated problem of a a pair of cells connected
by a stochastically-gated (dynamic) gap junction as formulated in Ref. [12],
see Fig. 4. The interior boundary between the two cell now randomly switches
between an open and a closed state. Let n(t) denote the discrete state of the
gate at time t with n(t) = 0 if the gate is open and n(t) = 1 if it is closed.
Assume that transitions between the two states n = 0, 1 are described by the
two-state Markov process,

0
β
⇋
α

1.

The random opening and closing of the gate means that particles diffuse in a
random environment according to the piecewise deterministic equations

∂uj

∂t
= D

∂2uj

∂x2
, x ∈ (0, L), t > 0, j = 1, 2, (3.1)

with static exterior boundary conditions

u1(0, t) = η > 0, u2(L, t) = 0, (3.2)

and n(t)-dependent boundary conditions on the common interior boundary:

u1(L, t) = u2(0, t), ∂xu1(L, t) = ∂xu2(0, t) for n(t) = 0, (3.3a)

∂xu1(L, t) = 0 = ∂xu2(0, t) for n(t) = 1. (3.3b)

That is, when the gate is open there is continuity of the concentration and the
flux across the common boundary, whereas when the gate is closed the right-
hand boundary of cell 1 and the left-hand boundary of cell 2 are reflecting.
For simplicity, we assume that the diffusion coefficient is the same in both
compartments so that the piecewise nature of the solution is solely due to the
switching gate.

Averaging the concentrations with respect to the gate dynamics, we intro-
duce the decompositions

Uj(x, t) ≡ E[uj(x, t)] = E[uj(x, t)1n(t)=0] + E[uj(x, t)1n(t)=1]. (3.4)

It can be shown that the components

Vj,n(x, t) = E[uj(x, t)1n(t)=n], (3.5)
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α β

n = 1

n = 0

cell 1 cell 2

stochastic gate

Figure 4: Pair of cells coupled by a stochastically-gated (dynamic) gap junction.
The gate stochastically switches between an open (n = 0) and a closed (n = 0)
state according to a two-state Markov process with transition rates α, β.

satisfy the first-order moment equations [12]

∂Vj,0

∂t
= D

∂2Vj,0

∂x2
− βVj,0 + αVj,1 (3.6a)

∂Vj,1

∂t
= D

∂2Vj,1

∂x2
+ βVj,0 − αVj,1 (3.6b)

for x ∈ (0, L) and j = 1, 2, with the exterior boundary conditions

V1,0(0, t) = ρ0η, V1,1(0, t) = ρ1η, (3.7a)

V2,0(L, t) = V2,1(L, t) = 0, (3.7b)

and the interior boundary conditions

V1,0(L, t) = V2,0(0, t), ∂xV1,0(L, t) = ∂xV2,0(0, t), (3.7c)

∂xV1,1(L, t) = 0 = ∂xV2,1(0, t). (3.7d)

The boundary condition (3.7a) follows from noting that if n(t) = n and x = 0,
then u1(0, t) = η with probability one, and thus

V1,n(0, t) = E[u1(0, t)1n(t)=n] = ηP(n(t) = n) = ηρn,

where

ρ0 =
α

α+ β
, ρ1 = 1− ρ0 =

β

α+ β
. (3.8)

Following along similar lines to the static gate, we analyze the diffusion
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equation in Laplace space. In particular, Eqs. (3.6a,b) become

D
∂2Ṽj,0

∂x2
− (α+ β + s)Ṽj,0 + αŨj = 0, (3.9a)

D
∂2Ṽj,1

∂x2
− (α+ β + s)Ṽj,1 + βŨj = 0 (3.9b)

for x ∈ (0, L) and j = 1, 2; the boundary conditions are the same. From the
interior boundary conditions (3.7c), we set

∂xṼ1,0(L, s) = ∂xṼ2,0(0, s) = Γ(s),

with Γ(s) to be determined later by imposing Ṽ1,0(L, s) = Ṽ2,0(0, s). Adding
equations (3.6a) and (3.6b) then gives

∂2Ũj

∂x2
− kŨj = 0, x ∈ (0, L), k =

√
s/D, (3.10)

with the boundary conditions

Ũ1(0, s) =
η

s
, ∂xŨ1(L, s) = Γ(s), (3.11a)

∂xŨ2(0, s) = Γ(s), Ũ2(L, s) = 0. (3.11b)

The corresponding solutions are

Ũ1(x, s) =
η

s

coshk(L− x)

coshkL
+

Γ

k

sinh kx

coshkL
, (3.12a)

Ũ2(x, s) = −Γ

k

sinh k(L− x)

coshkL
. (3.12b)

We can now substitute for Ũj(x, s) in equation (3.9b), say, and determine the

components Ṽj,1(x, s) for the two cells.
Introduce the Green’s functions Gj(x, y; s) according to

∂2Gj(x, y; s)

∂y2
− ξ(s)2Gj(x, y; s) = −δ(x− y), (3.13)

with the boundary conditions

G1(x, 0; s) = 0, ∂yG1(x, L; s) = 0, (3.14a)

∂yG2(x, 0, s) = 0, G2(x, L; s) = 0, (3.14b)

and

ξ(s) =

√
α+ β + s

D
. (3.15)

The Green’s functions have the explicit expressions

G1(x, y; s) =

{
A sinh ξy cosh ξ(L− x) for y < x
A sinh ξx cosh ξ(L − y) for y > x,

(3.16a)

G2(x, y; s) =

{
A cosh ξy sinh ξ(L− x) for y < x
A cosh ξx sinh ξ(L − y) for y > x,

(3.16b)
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with A = ξ cosh ξL. The solutions of (3.9b) can then be expressed in terms of
the Green’s functions as follows:

Ṽ1,1(x, s) =
β

D

∫ L

0

G1(x, y; s)Ũ1(y, s)dy +
ρ1η

s
∂yG1(x, 0; s), (3.17a)

Ṽ2,1(x, s) =
β

D

∫ L

0

G2(x, y; s)Ũ2(y, s)dy. (3.17b)

Finally, the unknown function Γ(s) is determined by requiring that Ṽ1,0(L, s) =

Ṽ2(0, s) (continuity of the concentration when the gate is open), that is,

Ũ1(L, s)− Ṽ1,1(L, s) = Ũ2(0, s)− Ṽ2,1(0, s), (3.18)

with Ũj given by Eqs (3.12a,b) and Ṽj,1 given by Eqs. (3.17a,b).

3.1 Steady-state flux

As a check on the above analysis, we begin by deriving the mean steady-state
flux J0, which was previously obtained by solving the steady-state first moment
equations directly [12]. Eqs. (3.11) imply that

J0 = −D lim
s→0

s∂xŨ1(L, s) = −D lim
s→0

sΓ(s). (3.19)

Multiplying Eqs. (3.12a,b) by s and taking the limit s → 0 gives

U∗
1 (x) = lim

s→0
sŨ1(x, s) = η − J0x

D
, (3.20a)

U∗
2 (x) = lim

s→0
sŨ2(x, s) =

J0(L− x)

D
. (3.20b)

Eq. (3.18) thus implies that

η − 2J0L

D
= lim

s→0
s[Ṽ1,1(L, s)− Ṽ2,1(L, s)]. (3.21)

Next, multiplying Eq. (3.17a) by s and taking the limit s → 0 shows that

lim
s→0

sṼ1,1(x, s) =
β

D

∫ L

0

G1(x, y; 0)

[
η − yJ0

D

]
dy + ρ1∂yG1(x, 0; 0).

Multiplying Eq. (3.13) by ym for j = 1, m = 0, 1, and integrating with respect
to y, we find that

∫ L

0

G1(x, y, 0)dy =
1

ξ20
(1− ∂yG1(x, 0; 0)) ,

∫ L

0

yG1(x, y, 0)dy =
1

ξ20

(
x− sinh ξ0x

ξ0 cosh ξ0L

)
,

12



with ξ0 =
√
(α+ β)/D. We thus obtain the result

lim
s→0

sṼ1,1(x, s) =
ρ1J0
ξ0D

sinh ξ0x

cosh ξ0L
+ ρ1

(
η − xJ0

D

)
. (3.22)

Similarly,

lim
s→0

sṼ2,1(x, s) =
β

D

∫ L

0

G2(x, y; 0)
J0(L− y)

D
dy,

and

∫ L

0

G2(x, y, 0)dy =
1

ξ20
(1 + ∂yG2(x, L; 0)) ,

∫ L

0

yG2(x, y, 0)dy =
1

ξ20

(
x+

sinh ξ0(L− x)

ξ0 cosh ξ0L
+ L∂yG2(x, L; 0)

)
,

so that

lim
s→0

sṼ2,1(x, s) = −ρ1J0
ξ0D

sinh(ξ0[L− x])

cosh(ξ0L)
+

ρ1J0(L− x)

D
. (3.23)

Finally, substituting Eqs. (3.22) and (3.23) into (3.21) and rearranging yields
the following expression for the mean steady-state flux:

J0 =
Dη

2L

1

1 + (ρ1/ρ0) tanh(ξ0L)/ξ0L
, (3.24)

which recovers the result of Ref. [12]. Moreover, comparison with equation (2.4)
implies that the stochastically-gated gap junction has the effective permeability
µe and diffusivity De of the form

1

µe

=
2ρ1
ρ0

tanh(ξL)

ξD
, De =

2µeLD

2µeL+D
. (3.25)

It is useful to discuss a few limiting cases. First, in the fast switching limit
ξ0 → ∞, we have J0 → ηD/2L, µe → ∞ and Eq. (3.20) reduces to the
continuous steady-state solution

U∗
1 (x) = η

(
1− x

2L

)
, U∗

2 (x) = η
L− x

2L
.

The mean flux through the gate is the same as the steady-state flux without a
gate. On the other hand, for finite switching rates the mean flux J0 is reduced.
In the limit α → 0 (gate always closed), J0 → 0 so that U∗

1 (x) = η for x ∈ [0, L)
and U∗

2 (x) = 0 for x ∈ (0, L].

13



3.2 Accumulation time

In the case of a dynamic gate we define the local accumulation time in terms of
the first-order moments of the concentration. That is, assuming that the initial
concentrations are zero, we take

Zj(x, t) = 1− Uj(x, t)

U∗
j (x)

, j = 1, 2, (3.26)

where, see Eq. (3.4),

Uj(x, t) ≡ E[uj(x, t)], U∗
j (x) = lim

t→∞
Uj(x, t). (3.27)

The corresponding accumulation times are then defined according to

Tj(x) =

∫ ∞

0

Zj(x, t)dt = − 1

U∗
j (x)

d

ds
F̃j(x, s)

∣∣∣∣
s=0

(3.28)

with F̃j(x, s) = sŨj(x, s). Note that it does not make sense to define an accu-
mulation time for a single realization of the stochastic gate, since one cannot
define a steady-state density, that is, limt→∞ uj(x, t) does not exist.

Eqs. (3.12a) and (3.12b) imply that

dF̃1

ds
=

1

2
√
sD

[
η
d

dk

coshk(L− x)

coshkL
+ sΓ(s)

d

dk

sinh kx

k coshkL

]
+

sinh kx

k coshkL

d

ds
sΓ(s),

(3.29)

and

dF̃2

ds
= − 1

2
√
sD

sΓ(s)
d

dk

sinh k(L− x)

k coshkL
− sinh k(L− x)

k coshkL

d

ds
sΓ(s). (3.30)

In appendix B we show that

sΓ(s) = −J0 + sJ1 +O(s2)

D
(3.31)

for small s, with J0 given by Eq. (3.24), so that

dF̃1

ds

∣∣∣∣∣
s=0

=
1

2D

(
η[(L − x)2 − L2]− J0x

D
[x2/3− L2]

)
− J1x

D
, (3.32a)

and

dF̃2

ds

∣∣∣∣∣
s=0

=
J0(L− x)

2D2
[(L − x)2/3− L2] +

J1(L− x)

D
. (3.32b)

The calculation of J1 is presented in appendix B, which yields the expression

J1 = − χJ0L
2

2D[1 + (ρ1/ρ0) tanh ξ0L/(ξ0L)]
, (3.33a)

14
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Figure 5: Composite accumulation time T (x) for a pair of cells coupled by a
dynamic gap junction and various closing rates β. Other parameter values are
η = D = L = α = 1.

where

χ =
1

3
+

ρ1
ρ0

tanhξ0L

ξ0L
+

ρ1
ρ0(ξ0L)2

[
1− tanhξ0L

ξ0L
− tanh2ξ0L

]
. (3.33b)

In terms of the effective permeability µe, we have

J1 = −χJ0L
2

D

µeL

2µeL+D
, (3.34)

and

χ =

(
1

3
+

ρ1
ρ0ξ20L

2

)
+

1

2

(
1− 1

ξ20L
2

)
D

µeL
− ρ0

4ρ1

(
D

µeL

)2

. (3.35)

The accumulation times can now be determined by substituting Eqs. (3.20)
and (3.32) into (3.28) with J0 and J1 given by Eqs. (3.24) and (3.33), respec-
tively. In Fig. 5 we plot the composite accumulation time defined by Eq. (2.26)
as a function of x ∈ [0, 2L] for various values of the closing rate β. In the limit
β → 0 (ρ1 → 0) the gate is always open, and we recover the continuous accu-
mulation time of a static gap junction in the limit µ → ∞, see also Fig. 3. As
β increases from zero, however, the accumulation time develops a discontinuity
at the junction between the two cells, analogous to the static gap junction with
finite permeability. Finally, in Fig. 6 we show analogous plots for different
diffusivities. As expected, increasing D reduces the accummulation time.
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4 Multi-cell model

So far we have analyzed the accumulation time for a pair of cells coupled via
a single static or dynamic gap junction. We now turn to the case of a 1D
array of N identical cells with nearest neighbor gap junction coupling, see Fig.
7. We will focus on the static case, since the number of discrete states of
N independently gated dynamic junctions grows as 2N , which considerably
complicates the analysis [12]. Suppose that we label the cells by an integer ℓ,
ℓ = 1, . . . , N , and take the length of each cell to be L. Let uℓ(x, t) for x ∈ (0, L)
denote the particle concentration within the interior of the ℓ-th cell, and consider
the diffusion equation

∂uℓ

∂t
= D

∂2uℓ

∂x2
, x ∈ (0, L), t > 0. (4.1)

At each of the intercellular boundaries, the concentration is discontinuous due
to the permeability of the gap junctions. The generalization of Eq. (2.2) is

−D
∂uℓ(L, t)

∂x
= −D

∂uℓ+1(0, t)

∂x
= µ[uℓ(L, t)− uℓ+1(0, t)] (4.2)

for ℓ = 1, . . . , N − 1, and the exterior boundary conditions are taken to be

u1(0, t) = η, uN (L, t) = 0. (4.3)
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Figure 7: One-dimensional array of N cells coupled by gap junctions.

4.1 Solution in Laplace space

Laplace transforming Eq. (4.1) and the associated boundary conditions gives

∂2ũℓ

∂x2
− k2ũℓ = −D−1ūℓ(x), x ∈ (0, L), t > 0 (4.4)

for ℓ = 1, . . . , N with the boundary conditions

−D
∂ũℓ(L, s)

∂x
= −D

∂ũℓ+1(0, s)

∂x
= µ[ũℓ(L, s)− ũℓ+1(0, s)] (4.5)

for ℓ = 1, . . . , N − 1, and

ũ1(0, s) =
η

s
, ũN (L, s) = 0. (4.6)

(We again assume that the cells are initially empty.) The general solution within
each cell then has the form

ũℓ(x, s) = Aℓe
−kx +Bℓe

kx, ℓ = 1, . . . , N. (4.7)

Substituting these solutions into the various boundary conditions generates the
following hierarchy:

A1 =
η

s
−B1, (4.8a)

Aℓe
−kL −Bℓe

kL = Aℓ+1 −Bℓ+1, (4.8b)

Aℓ+1 −Bℓ+1 =
µ

kD

[
Aℓe

−kL +Bℓe
kL −Aℓ+1 −Bℓ+1

]
, (4.8c)

AN = −BNe2kL (4.8d)

Eqs. (4.8b,c) hold for ℓ = 1, . . . , N − 1.
Following along analogous lines to Ref. [7], we rewrite Eqs. (4.8b,c) as the

matrix equation (
Aℓ+1

Bℓ+1

)
= M(k)

(
Aℓ

Bℓ

)
(4.9)
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for ℓ = 1, . . .N − 1 with

M(k) =




(
1− kD

2µ

)
e−kL kD

2µ ekL

−kD
2µ e−kL

(
1 + kD

2µ

)
ekL


 . (4.10)

Let (λ±,v±) denote the eigenpairs of the non-symmetric matrix M and set
(

Aℓ

Bℓ

)
= aℓv+ + bℓv−. (4.11)

(For ease of notation, we drop the explicit dependence on k =
√
s/D.) Substi-

tuting the eigenfunction expansion into the matrix equation and iterating shows
that

aℓ = λℓ−1
+ a1, bℓ = λℓ−1

− b1. (4.12)

In addition, Eqs. (4.8a,d) imply that

a1 =
η

s
Λ+ −B1Λ̂+, b1 =

η

s
Λ− −B1Λ̂−, (4.13a)

aN = BNΛ+, bN = BNΛ−, (4.13b)

where

Λ± = ṽ
⊤
± ·

(
1
0

)
, Λ̂± = ṽ

⊤
± ·

(
1
−1

)
,

Λ± = ṽ
⊤
± ·

(
−e2kL

1

)
= −Λ̂± −

(
e2kL − 1

)
Λ±. (4.14)

We have introduced the dual vectors ṽj such that

ṽ
⊤
i · vj = δi,j . (4.15)

Therefore, setting ℓ = N in Eq. (4.12) yields a pair of equations for the two
remaining unknowns B1 and BN :

BNΛ+ = λN−1
+

[η
s
Λ+ −B1Λ̂+

]
, (4.16a)

BNΛ− = λN−1
−

[η
s
Λ− −B1Λ̂−

]
. (4.16b)

Eliminating the coefficient BN we find after some algebra that B1 has the solu-
tion

B1 = g(k)
η

s
, (4.17)

with

g(k) =

Λ−

Λ+

(
λ+

λ−

)N−1

Λ+ − Λ−

Λ−

Λ+

(
λ+

λ−

)N−1

Λ̂+ − Λ̂−

=

1 +
(
e2kL − 1

)
Σ−

1 + (e2kL − 1)Σ+

(
λ+

λ−

)N−1

Σ+ − Σ−

1 +
(
e2kL − 1

)
Σ−

1 + (e2kL − 1)Σ+

(
λ+

λ−

)N−1

− 1

(4.18)
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and

Σ± =
Λ±

Λ̂±

. (4.19)

(Recall that the eigenpairs (λ±,v±) depend on k.)
Having found B1, all of the coefficients {Aℓ, Bℓ, ℓ = 1, . . . , N} are then deter-

mined from Eqs. (4.11), (4.12) and (4.13a). In addition, we can now calculate
the steady-state concentrations using

U∗
ℓ (x) = lim

s→0
sũℓ(x, s), (4.20)

and

ũℓ(x, s) = f(x) ·
(

Aℓ

Bℓ

)
= aℓf(x) · v+ + bℓf(x)

⊤ · v− (4.21)

where f(x) = (e−kx, ekx)⊤. In particular,

U∗
1 (x) = η lim

s→0

[
e−kx + 2g(k) sinhkx

]
, (4.22)

and the corresponding steady-state flux is

J0 = −ηD lim
s→0

[
−ke−kx + 2kg(k) coshkx

]
. (4.23)

It remains to calculate the eigenfunctions and eigenvalues of the matrixM(k)
and to determine the function g(k). We find that

λ± = coshkL+
kD

2µ
sinhkL±

√(
cosh kL+

kD

2µ
sinh kL

)2

− 1, (4.24a)

v± =




[
1 + kD

2µ

]
ekL − λ±

kD
2µ e−kL


 , ṽ± = N±




[
1− kD

2µ

]
e−kL − λ∓

kD
2µ ekL


 .

(4.24b)

The normalization factors N± ensure the conditions ṽ± ·v± = 1. However, they
cancel out in Eq. (4.18). One important observation is that

λ± = 1± kλ0 +
k2

2
λ2
0 +O(k3), ṽ± = kv

(1)
± +O(k2),

with

λ0 =
√

L2 +DL/µ, ṽ
(1)
± =




−L− D
2µ ± λ0

D
2µ


 . (4.25)
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It also follows from Eq. (4.14) that Σ±(k) = Σ±(0) +O(k) with

Σ±(0) =
L+ D

2µ ∓ λ0

L+ D
µ ∓ λ0

+O(k). (4.26)

Moreover,

Σ−(0)− Σ+(0) =
D

µ

λ0

[L+D/µ− λ0][L+D/µ+ λ0]
=

λ0

L+D/µ
. (4.27)

The above analysis implies that g(k) = g−1/k +O(1) and thus

J0 = −2ηDg−1. (4.28)

Finally, we can determine g−1 by substituting Eqs. (4.25) and (4.27) into Eq.
(4.18):

g−1 =
Σ+(0)− Σ−(0)

2L[Σ−(0)− Σ+(0)] + 2(N − 1)λ0

= −1

2

1

L+ (N − 1)[L+D/µ]
. (4.29)

We thus recover the classical result for the steady-state flux through the coupled
system shown in Fig. 7 [7, 8, 12]:

J0 =
Dηµ

NµL+ (N − 1)D
. (4.30)

Introducing the effective diffusion coefficient De according to

J0 =
Deη

NL
, (4.31)

we see that for large N
1

De

=

[
1

D
+

1

µL

]
. (4.32)

4.2 Accumulation time

Deriving an explicit expression for the accumulation time is nontrivial for general
N . For the sake of illustration, consider the accumulation time T1(x), x ∈ [0, L],
in the first cell. In this case,

T1(x) = − η

U∗
1 (x)

1

2D
lim
k→0

1

k

d

dk

[
e−kx + 2g(k) sinh kx

]
(4.33)

with g(k) given by Eq. (4.18). In Fig. 8 we plot T1(x) as a function of x for
various cell numbers N . The limit on the right-hand side of Eq. (4.33) is ob-
tained by substituting for g(k) using Eq. (4.18) and numerically evaluating the
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resulting derivative numerically. As a useful check, we note that the numerical
plot converges to the analytical result (2.24) when N = 2. It can be seen that
increasing the number of cells in the array increases the accumulation time in
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the first cell.
In order to determine the corresponding accumulation time Tℓ(x) in the ℓ-th

cell, we use Eqs. (4.12), (4.13a) and (4.21). That is, setting F±(x) = f(x)⊤ ·v±,

sũℓ(x, s) = s (aℓF+(x) + bℓF−(x))

= s
(
λℓ−1
+ a1F+(x) + λℓ−1

− b1F−(x)
)

= η
(
Λ+ − g(k)Λ̂+

)
λℓ−1
+ F+(x) + η

(
Λ− − g(k)Λ̂−

)
λℓ−1
− F−(x)

≡ Fℓ(x, k). (4.34)

We have used the result B1 = ηg(k)/s. Note that λ±,Λ± and F±(x) are also
functions of k, which means that sũℓ(x, s) only depends on s via its dependence
on k. The generalization of Eq. (4.33) is thus

Tℓ(x) = − η

U∗
ℓ (x)

1

2D
lim
k→0

1

k

d

dk
Fℓ(x, k). (4.35)

Define the composite accumulation time

T (x) =

N∑

ℓ=1

Tℓ(x− (ℓ− 1)L)χℓ(x), 0 < x < NL, (4.36)

where χℓ(x) = 1 for x ∈ [(ℓ − 1)L, ℓL) and is zero otherwise. In Fig. 9 we
plot T (x) for the first five cells in a linear array of size N = 10 and various
permeabilities µ. As in the case of two cells, see Fig. 3, T (x) is a monotonically
increasing function of x with jump discontinuities at the gap junctions. In the
limit µ → ∞ the discontinuities vanish and T (x) becomes a continuous function
of x.

5 Discussion

In this paper we calculated the local accumulation time for intracellular diffusion
in cells with gap-junction coupling. We considered a pair of cells connected by
either a static or a dynamic gap junction. In both cases, we showed that the
accumulation time is a monotonically increasing function of spatial position with
a jump discontinuity at the gap junction. This discontinuity vanished in the
limit µ → ∞ for a static junction with permeability µ and in the limit β → 0
for a stochastically-gated junction with rate of closing β. We also extended
our analysis of static gap junctions to the case of a linear array of cells with
nearest neighbor gap junction coupling. In contrast to the expressions for the
steady-state flux, the accumulation times did not simply depend on the effective
permeability and cytoplasmic diffusivity via a lumped parameter given by an
effective diffusivity.

One limitation of our analysis of a stochastically gated gap junction in sec-
tion III is that we only considered the first-order moment equations for the
mean stochastic concentrations E[uj(x, t)]. Mathematically speaking, one can
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view diffusion in a randomly switching environment such as a stochastically
gated gap junction as an example of a piecewise deterministic partial differen-
tial equation (PDE). Previously we have shown how one can analyze such a
system by discretizing space and constructing the Chapman-Kolmogorov (CK)
equation for the resulting finite-dimensional system [20, 12]. The CK equa-
tion can then be used to generate a hierarchy of equations for the r-th order
moments of the stochastic concentration, which take the form of r-dimensional
parabolic PDEs in the continuum limit. Although the diffusing particles are
non-interacting, statistical correlations arise at the population level due to the
fact that they all move in the same randomly switching environment. That is,
for the j-th cell E[uj(x, t)uj(y, t)] 6= E[uj(x, t)]E[uj(y, t)].

Another simplification of our analysis was to focus on one-dimensional dif-
fusion models. One natural extension of our work would be to consider higher
spatial dimensions and more general geometric configurations of cells. In the
case of static gap junctions, Keener and Sneyd [8] have analyzed the steady-
state flux for a line of two-dimensional cells with gap-junctional openings in the
connecting edges. Using symmetry arguments, they showed how the gap junc-
tions along an edge can be lumped into a single effective junction at the center of
each edge, whose relative width characterized the degree of clustering of the gap
junctions. In particular, they found that clustered gap junctions lead to a much
smaller effective diffusion coefficient De for given gap junctional permeability µ.
In future work it would be interesting to investigate how such clustering affects
the corresponding local accumulation times. An alternative generalization of
one-dimensional diffusion would be to consider diffusion on a tree-like structure
with stochastically-gated nodes [21]. A number of biological systems employ
branched tree structures in order to distribute nutrients from a single source to
many destinations or to gather nutrients from many sources. Examples include
plant roots, river basins, neuronal dendrites, and cardiovascular and tracheal
systems.
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Appendix A: Calculation of accumulation time

for a static gate

Carrying out the Taylor expansions of Eqs. 2.22) and (2.23) up to O(k3) we
find that

F̃1 = η[1 + (kx)2/2− k2xL]− µηx

D + 2µL

[1− (kL)2/2][1 + k2x2/6]

1 +
3D + 2µL
D + 2µL

(kL)2

6

+O(k3)

= η[1 + (kx)2/2− k2xL]− [η − u∗
1(x)]

[
1 +

k2x2

6
− 3D + 4µL

D + 2µL

(kL)2

3

]

+O(k3)

= u∗
1(x)

[
1 +

k2x2

6
− 3D + 4µL

D + 2µL

(kL)2

3

]
+ η

k2

3

[
x2 − 3xL+

3D + 4µL

D + 2µL
L2

]

+O(k3).

and

F̃2 = µη

[
1− kL+ (kL)2/2− (kL)3/6

] [
1 + kL− (kL)3/3

]
[k(L− x) + k3(L − x)3/6] + . . .

kD[1 + (kL)2/2] + 2µ[kL+ (kL)3/6] + . . .

=
µη(L− x)

D + 2µL

[1− (kL)2/2][1 + k2(L− x)2/6]

1 +
3D + 2µL
D + 2µL

(kL)2

6

+O(k3)

= u∗
2(x)

[
1− (kL)2

2
+

k2(L− x)2

6
− 3D + 2µL

D + 2µL

(kL)2

6

]
+O(k3).

It immediately follows that the Taylor expansions have the general form given
by Eq. (2.20), namely,

F̃j = u∗
j (x)−

k2

2
fj(x) +O(k3), fj =

d2F̃j

dk2

∣∣∣∣∣
k=0

.

Hence, Tj(x) = fj(x)/2Du∗
j(x) and we obtain Eqs. (2.24) and (2.25).

Appendix B: Calculation of accumulation time

for a dynamic gate

In this appendix we calculate the O(s) contribution to sΓ(s), which is needed in
order to determine the local accumulation times in the case of a dynamic gate.
Substituting Eqs. (3.12a,b) and (3.17a,b) into (3.18) and rearranging yields

sΓ(s) = −A(s)

B(s)
, (B.1)
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where

A(s) = η − βη

D

∫ L

0

G1(L, y; s) coshk(L− y)dyρ1η cosh(kL)∂yG1(L, 0; s),

(B.2)

and

B(s) =
2 sinhkL

k
− β

Dk

∫ L

0

G2(0, y; s) sinhk(L − y)dy

− β

Dk

∫ L

0

G1(L, y; s) sinhky dy. (B.3)

Taylor expanding A(s) and B(s) with respect to s, we find that

A(s) = A0 + sA1 +O(s2), B(s) = B1 + sB1 +O(s2), (B.4)

where

A0 = ρ0η, B0 = 2L[ρ0 + ρ1 tanh ξ0L/(ξ0L)]. (B.5)

The O(s) coefficients are

A1 = − βη

2D2

∫ L

0

G1(L, y; 0)(L− y)2dy (B.6)

− βη

D

∫ L

0

∂sG1(L, y; 0)dy − ρ1η∂s∂yG1(L, 0; 0)− ρ1η
L2

2D
∂yG1(L, 0; 0),

and

B1 =
L3

3D
− β

6D2

∫ L

0

G2(0, y; 0)(L− y)3dy − β

D

∫ L

0

∂sG2(0, y; 0)(L− y)dy

− β

6D2

∫ L

0

G1(L, y; 0)y
3dy − β

D

∫ L

0

∂sG1(L, y; 0)ydy. (B.7)

The various Green’s function moment can be determined from Eq. (3.13). First,
multiplying Eq. (3.13) by (L−y)2 and y3, respectively, for j = 1 and integrating
with respect to y, we have

ξ20

∫ L

0

G1(L, y; 0)(L− y)2dy = −
(

2

ξ20
+ L2

)
∂yG1(L, 0; 0) +

2

ξ20
,

and

ξ20

∫ L

0

G1(L, y; 0)y
3dy = L3 − 3L2G1(L,L; 0) +

6L

ξ20

(
1− tanhξ0L

ξ0L

)
.
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Similarly, multiplying Eq. (3.13) by (L − y)3 for j = 2 and integrating with
respect to y,

ξ20

∫ L

0

G2(0, y, 0)(L− y)3dy = L3 − 3L2G2(0, 0; 0) +
6L

ξ20

(
1− tanhξ0L

ξ0L

)
.

Next, introduce the functions

Hj(x, y; s) = ∂sGj(x, y; s). (B.8)

Differentiating both sides of Eq. (3.13) with respect to s shows that Hj satisfies
the inhomogeneous equation

∂2Hj(x, y; s)

∂y2
− ξ(s)2Hj(x, y; s) =

Gj(x, y; s)

D
. (B.9)

together with the same boundary conditions as Gj . It follows that Hj has the
solution

Hj(x, y; s) = − 1

D

∫ L

0

Gj(x, z; s)Gj(x, z; s)dz. (B.10)

Equation (B.9) can now be used to calculate the required moments of ∂sGj .
First, multiplying Eq. (B.9) by ym for j = 1, m = 0, 1, and integrating gives

ξ20

∫ L

0

H1(L, y, 0)dy = − 1

ξ20D
(1− ∂yG1(L, 0; 0))− ∂y∂sG1(L, 0; 0),

ξ20

∫ L

0

yH1(x, y, 0)dy = − L

ξ20D

(
1− tanhξ0L

ξ0L

)
− ∂sG1(L,L; 0).

Second, multiplying Eq. (B.9) by L− y for j = 2 and integrating gives

ξ20

∫ L

0

H2(L, y, 0)(L− y)dy = − L

ξ20D

(
1− tanhξ0L

ξ0L

)
− ∂sG2(0, 0; 0).

Combining all of our results, we find that

A1 = −ρ1η

2D

[
−
(

2

ξ20
+ L2

)
∂yG1(L, 0; 0) +

2

ξ20

]

+ ρ1η

[
1

ξ20D
(1− ∂yG1(L, 0; 0)) + ∂y∂sG1(L, 0; 0),

]

− ρ1η∂s∂yG1(L, 0; 0)− ρ1η
L2

2D
∂yG1(L, 0; 0) = 0, (B.11)
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and

B1 =
L3

3D
− ρ1

6D

[
L3 − 3L2G2(0, 0; 0) +

6L

ξ20

(
1− tanhξ0L

ξ0L

)]

+ ρ1

[
L

ξ20D

(
1− tanhξ0L

ξ0L

)
+ ∂sG2(0, 0; 0)

]

− ρ1
6D

[
L3 − 3L2G1(L,L; 0) +

6L

ξ20

(
1− tanhξ0L

ξ0L

)]

+ ρ1

[
L

ξ20D

(
1− tanhξ0L

ξ0L

)
+ ∂sG1(L,L; 0)

]

=
2L3 − 2ρ1L

3

6D
+

ρ1L
2

2D
[G1(L,L; 0) +G2(0, 0; 0)]

+ ρ1[∂sG1(L,L; 0) + ∂sG2(0, 0; 0)]

=
ρ0L

3

3D
+

ρ1L
3

D

tanhξ0L

ξ0L
+

ρ1L

Dξ20

[
1− tanhξ0L

ξ0L
− tanh2ξ0L

]
. (B.12)

Finally, substituting the s-expansions of A(s) and B(s) into Eq. (B.1, we
see that

sΓ(s) = −A0 +A1s+ . . .

B0 +B1s+ . . .
= −A0

B0
+−A0B1

B2
0

s+O(s2), (B.13)

which implies that sΓ(s) = −(J0 + J1s)/D +O(s2) with

J0 =
A0D

B0
=

Dη

2L

1

1 + (ρ1/ρ0) tanh(ξ0L)/ξ0L
, (B.14)

which recovers Eq. (3.24), and

J1 = −A0B1
D

B2
0

= −J0B1

B0
. (B.15)
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