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A growing body of work suggests that planar Josephson junctions fabricated using supercon-
ducting hybrid materials provide a highly controllable route toward one-dimensional topological
superconductivity. Among the experimental controls are in-plane magnetic field, phase difference
across the junction, and carrier density set by electrostatic gate voltages. Here, we investigate pla-
nar Josephson junctions with an improved design based on an epitaxial InAs/Al heterostructure,
embedded in a superconducting loop, probed with integrated quantum point contacts (QPCs) at
both ends of the junction. For particular ranges of in-plane field and gate voltages, a closing and
reopening of the superconducting gap is observed, along with a zero-bias conductance peak (ZBCP)
that appears upon reopening of the gap. Consistency with a simple theoretical model supports
the interpretation of a topological phase transition. While gap closings and reopenings generally
occurred together at the two ends of the junction, the height, shape, and even presence of ZBCPs
typically differed between the ends, presumably due to disorder and variation of couplings to local
probes.

Planar superconductor-normal-superconductor (SNS)
Josephson junctions (JJs) with sufficient spin-orbit cou-
pling can exhibit one-dimensional topological supercon-
ductivity in the presence of a magnetic field applied par-
allel to the SN interfaces. Theoretically, the N region
under these conditions acts as a quasi-one-dimensional
topological wire bounded by trivial superconducting
walls, with Majorana zero modes at its ends [1–3]. Com-
pared to alternative nanowire platforms [4–8], planar JJs
have a new experimental knob, the phase difference be-
tween bounding trivial superconductors, which can lower
the magnetic field required to observe a topological phase
transition, as reported in recent experiments in Al/InAs
[9, 10], Al/HgTe [11] and NbTiN/InSb [12].

Previous studies on related structures [9] demonstrated
the formation of a zero-bias conductance peak (ZBCP)
at one end of an Al/InAs planar JJ device. The parallel
magnetic field, B‖, at which the ZBCP first appeared
depended on the phase difference, φ, across the junction,
first appearing at φ ∼ π, as expected for a topological
phase transition [1, 2]. A related effect was reported by
Ren et al. [11], who found that the ZBCP appears in
a diamond-shaped region in the φ–B‖ plane. Ke et al.
observed an expected minimum of critical current at a
gate-voltage dependent value of B‖ [12]. Dartiailh et al.
reported a similar signature and additionally detected a π
phase shift of the current-phase relation associated with
revival of the supercurrent [10].

Here, we extend our previous investigation of topologi-

cal superconductivity in planar JJs [9] using an improved
design that helps preserve the hard superconducting gap
in the leads in the presence of B‖, allowing wide leads [3].
The junction is embedded in a superconducting loop, al-
lowing controlled biasing of φ using externally applied
flux, and the junction region can now be probed at both
ends via tunnelling spectroscopy using quantum point
contacts (QPCs). In tuned ranges of junction gate volt-
age, we observe a closing and reopening of the supercon-
ducting gap with increasing B‖, along with a concurrent
appearance of a ZBCP at one or both ends of the junc-
tion. The gap reopening and the appearance of a ZBCP
both depend on φ and remain concurrent when φ is mod-
ulated by flux.

To test our interpretation of these observations in
terms of a topological phase transition, we investigate
a simple model of the system that includes spin-orbit
coupling as well as both Zeeman and orbital effects of
the in-plane magnetic field. The orbital effect is due to
the finite thickness of the Al-InAs heterostructure stack.
As discussed below (see Supplementary Material: Meth-
ods, Fig. S2a, and Fig. S11), for realistic parameters, the
model exhibits a topological phase for ∼ 10% of param-
eter space examined, showing many features observed in
the experiment. The model also shows non-topological
near-closings of the gap. In the experiment, a similar
fraction, around 10%, of junction gate voltages showed a
ZBCP following the gap reopening.

Planar JJ devices were fabricated using an InAs-based
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FIG. 1. Planar Josephson junction device.
(a) Schematic of a planar Josephson junction consisting
of two superconducting leads (blue) in epitaxial contact with
the underlying semiconductor (brown). Between the leads
of width w = 1.8µm was a semiconductor (normal) region
of width wn = 100 nm and length l = 1.6µm. The nominal
thickness wz ∼ 20 nm of the active semiconductor region
contains two barriers and the InAs quantum well. Red dots
schematically indicate the positions of theoretically predicted
Majorana zero modes in the topological phase. (b) Schematic
cross section shows the Al/InAs heterostructure with layer
thicknesses along with dielectric and gate layers. Leads and
junction were covered by 15 nm of HfO2 dielectric deposited
by atomic layer deposition and Ti/Au electrostatic gates.
(c) False-color electron micrograph of a representative device.
The superconducting leads have meandering perforations
to allow partial depletion below using gate voltage VSC.
Leads are connected by a superconducting loop allowing
phase biasing of the junction using a small out-of-plane
magnetic field B⊥. Tunnelling spectroscopy is performed
using quantum point contacts at the junction ends, controlled
by voltages Vqpc,top and Vtop on the top and Vqpc,bot and
Vbot on the bottom.

heterostructure grown on an InP wafer, with epitaxial Al
as the topmost layer of the heterostructure [see Fig. 1(b)].
In0.75Ga0.25As barriers separate the InAs quantum well
from the Al layer above and the In1−xAlxAs graded
buffer below. The JJ and superconducting loop were
fabricated by a combination of selective wet etching of
Al (using Transene D etchant) and deep wet etching
of the heterostructure stack to form a mesa and U-
shaped trench. A Ti/Au layer contacting a patch of the
mesa (with Al removed) serves as a sub-micron inter-
nal ohmic contact allowing bottom-end tunnelling spec-
troscopy through a QPC inside the superconducting loop.
Patterned HfO2 dielectric was deposited using atomic
layer deposition (ALD) to allow the Ti/Au layer con-
tacting the internal ohmic contact to pass over the su-
perconducting loop. A second layer of ALD HfO2 was

then deposited on the entire chip followed by patterned
deposition of Ti/Au gates to electrostatically control the
junction and QPCs. The JJ (width wn = 100 nm, length
l = 1.6µm) was covered by a gate above the second ALD
layer, energized by gate voltage V1 relative to the leads to
control carrier density and mean free path in the junction
[Fig. 1(c)]. Dependence of density and mobility on gate
voltage was investigated in a Hall-bar geometry made
from the same material, with similar dielectric and top
gate (see Supplementary Material Fig. S12).

The Al layer in the leads (width w = 1.8 µm)
was etched to form meandering perforations (width ∼
100 nm). These perforations allowed depletion of the
semiconductor below and laterally when the gate volt-
age covering the leads was set to a large negative value,
VSC ∼ −3 V. Depletion in the meanders resulted in an
improved hard superconducting gap up to B‖ ∼ 0.5 T
(see Supplementary Material Fig. S1 for tunnelling spec-
troscopy in a lead-like structure). The two leads are con-
nected through a superconducting loop (with undepleted
electron gas below) with area ∼12 µm2 allowing phase
biasing of the junction by the application of a perpendic-
ular magnetic field, B⊥. One flux quantum, Φ0 = h/2e,
through the loop corresponds to B⊥ ∼ 0.17 mT, small
compared to the field that closes the induced gap un-
der the Al (B⊥ ∼ 10 mT) or that drives the Al normal
(B⊥ ∼ 40 mT). Split gates controlled by voltages Vqpc,top

and Vqpc,bot electrostatically define constrictions at the
top and bottom of the junction to serve as QPC tun-
nel barriers. Gate voltages Vtop and Vbot, which control
densities in the normal regions outside the QPCs, are
typically fixed at ∼ +100 mV. We show results from four
devices of identical design. We first focus on tunnelling
spectra from the top end of the junction for Devices 1 and
2, and then examine spectra measured simultaneously at
both ends of the junction for Devices 3 and 4.

Figure 2 shows differential conductance, G, as a func-
tion of source-drain bias VSD measured at the top of the
junction (outside the loop) as a function of B‖ applied
along the junction for two devices. To compensate spu-
rious flux through the superconducting loop due to sam-
ple misalignment, G was measured as a function of B⊥ at
each value of B‖ and reconstructed to plot the B‖ depen-
dence at fixed flux (see Methods). Figure 2 is for the case
of zero flux, Φ = 0. Top QPC gates were tuned to operate
in the tunnelling regime, where G is roughly proportional
to the local density of states (see [13], Sec. 11.5).

At B‖ = 0, we measured a gap ∆ ∼ 80 µeV, which
increased to ∆ ∼ 100 µeV at B‖ ∼ 0.05 T. Above 0.1 T,
a dense but striated set of tunnelling peaks approach zero
bias, closing at B‖ ∼ 0.2 T. With further increase of field,
the gap reopened, and a ZBCP appeared, separated from
the gapped states. A maximum gap of ∼ 20 − 30 µeV
was observed in the reopened state before it closed again
at B‖ ∼ 0.5 T.

We compare these experimental observations to a theo-
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FIG. 2. Tunnelling spectroscopy as a function of in-
plane magnetic field. Differential conductance, G, as a
function of source-drain bias VSD and magnetic field B‖ along
the junction, showing a closing of the superconducting gap
followed by reopening and concurrent appearance of a ZBCP
in (a) Device 1, with V1 = +86 mV, VSC = −1.5 V, Vqpc,top =
−0.31 V, Vqpc,bot = −3.0 V, Vloop = −3.0 V. (b) Device 2,
with V1 = +185 mV, VSC = −6.0 V, Vqpc,top = −0.48 V,
Vqpc,bot = −1.61 V, Vloop = −3.0 V.

retical model, extending models developed in Refs. [1, 2].
The proximity-coupled semiconductor is treated as a
parabolic band, approximated within a tight-binding
model, with effective mass of m∗ = 0.026me, where me

is the free electron mass, and Rashba spin-orbit coupling
α = 15 meV nm. The superconducting leads are repre-
sented by a pairing potential ∆ ∼ 140 µeV. The in-plane
field B‖ induces both a Zeeman coupling and an orbital
effect. The Zeeman coupling is characterized by an en-
ergy scale EZ = gS(N)µBB‖/2, where µB is the Bohr mag-
neton, with g-factors gN = −8 in the junction and gS =
−4 in the leads, based on literature values [14, 15]. The
orbital effect is due to the finite cross section of the de-
vice, wz(wn + 2ξ) ∼ (20 nm)(0.5µm) ∼ Φ0/0.2 T, where
ξ ∼ 200 nm is the superconducting coherence length. As
discussed below, this orbital field scale emerges naturally
in the model and is not put in by hand. The orbital effect
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FIG. 3. Theoretical model of topological phase tran-
sition. Dispersion of the Andreev bound states in a Joseph-
son junction with periodic boundary conditions as a func-
tion of momentum k along the junction (measured in units of
kF =

√
2m∗µN/~) at phase difference φ = 0 for three different

values of the Zeeman field: (a) The spectrum is fully gapped
at B‖ = 0. (b) At B‖ = 0.21 T, the gap at k = 0 closes. (c) At
B‖ = 0.3 T, the gap at k = 0 has reopened, implying a topo-
logically inverted superconducting gap. The gap at non-zero
momentum remains non-zero throughout. (d) Andreev bound
state spectrum of a finite-length planar Josephson junction
(l = 4µm) with open boundary conditions. The closing and
reopening of the superconducting gap at B‖ = 0.21 T is fol-
lowed by the appearance of a Majorana state at zero energy
(red), signaling a transition to the topological phase.

is included by considering a bilayer structure with com-
plex hopping between layers [16] and a linearly increasing
superconducting phase difference between the layers and
across the junction (see [13], Sec. 6.4 and [17], Sec. 2.9).

In the model, the quasi-one-dimensional junction sup-
ports Andreev bound states with momentum dispersion
as shown in Fig. 3, where k is momentum parallel to
the SN interfaces. At zero field [Fig. 3(a)], the spectrum
shows a momentum-dependent superconducting gap that
is induced by lateral proximity effect from the leads. At
B‖ ∼ 0.2 T a topological phase transition occurs, sig-
naled by a closing of the gap at k = 0 [Fig. 3(b)]. Increas-
ing B‖ further reopens the gap, as illustrated in Fig. 3(c)
for the case B‖ = 0.3 T. Notice that the spectrum re-
mains gapped at finite k ∼ ±kF throughout this field
range. Correspondingly, in a Josephson junction with
open boundary conditions, the bulk remains gapped away
from the transition point. Figure 3(d) shows the model
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FIG. 4. Flux dependence. Differential conductance, G, as a function of source-drain bias VSD and out-of-plane magnetic
field B⊥ penetrating the flux loop, at different values of in-plane magnetic field B‖. (a) At B‖ = 0, the superconducting gap
is modulated periodically as a function of B⊥. The period corresponds to Φ0 = h/2e through the superconducting loop. (b)
At B‖ = 0.2 T, states cross zero energy in a bowtie shape, indicating a phase-dependent gap closing. (c) At B‖ = 0.27 T
the superconducting gap reopens with a stable ZBCP. (d)–(f) Theoretical spectra as a function of the flux at three values of
B‖ = 0, 0.4 T and 0.45 T (note, these are not the same fields as the experimental data in a-c, suggesting only qualitative
correspondence). The simulations take into account the inductance L = 2 nH of the flux loop.

spectrum in a finite-length junction undergoing a gap
closing at B‖ ∼ 0.2 T and reopening, accompanied by
the appearance of a zero-energy state. The zero-energy
state observed in the model corresponds to a Majorana
zero mode. While the gap closure around B‖ ∼ 0.2 T is
robust, i.e., insensitive to small changes in chemical po-
tential, this feature can be associated either with a topo-
logical transition accompanied by zero-energy states or
with a near-closing without a topological transition, de-
pending on relatively small changes in chemical potential
or other model parameters. This is shown in Supplemen-
tary Material Fig. S2.

We next examine the effects of phase bias on subgap
spectroscopy. Figures 4(a-c) show tunnelling spectra as
a function of B⊥ at different values of B‖ in Device 1.
At B‖ = 0 [Fig. 4(a)], the induced superconducting gap
is modulated periodically as a function of B⊥ with a pe-
riodicity of ∆B⊥ ∼ 170 µT, corresponding to one flux
quantum Φ0 = h/2e through the loop. The maximum

(minimum) induced gap is ∆ ∼ 80 µeV (50µeV) at in-
teger (half-integer) flux through the loop. Around half
flux quantum values, sharp switches are observed, which
we attribute to phase slips due to the large inductance of
the loop, L ∼ 2 nH [18] (see Methods).

Increasing B‖ from zero, the phase-dependent states
initially moved to lower energy up to the first gap clos-
ing. Figure 4(b) shows the phase-dependent spectrum
at B‖ = 0.23 T, corresponding to the first gap closing
in Fig. 2(a). Within each flux lobe, a bowtie-shaped set
of states crossing zero energy was observed, creating a
gapless spectrum. When the in-plane field was increased
to B‖ = 0.27 T, the gap reappeared along with a ZBCP
[Fig. 4(c)]. The ZBCP displays no observable depen-
dence on B⊥, while the gap shows strong phase depen-
dence with the lowest-lying energy level at E ∼ 30 µeV.
In contrast to the phase-dependent spectrum at B‖ = 0
[Fig. 4(a)], spectra at finite parallel field [Figs. 4(b-c)] are
asymmetric in phase bias within each lobe [2, 19–21].
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FIG. 5. Two-ended tunnelling spectroscopy at the two ends of the junction. Differential conductance measured
as a function of source-drain bias VSD and in-plane magnetic field B‖ (a) GT the top end and (b) GB at the bottom end.
The phase bias is set to Φ = 0. Both ends display a closing and reopening of the gap at B‖ ∼0.22 T followed by a zero-bias
conductance peak. Simultaneous differential conductance measured at the top end and bottom end as a function of source-drain
bias VSD and out-of-plane magnetic field B⊥ for different values of in-plane magnetic field B‖. (c) and (d) At B‖ = 0, the
superconducting gap is modulated periodically at both ends as a function of B⊥ with the same periodicity and zero relative
phase difference. (e) and (f) At B‖ = 0.2 T, the spectrum at both ends becomes gapless for all values of B⊥. (g) and (h)
At B‖ = 0.3 T the superconducting gap reopens with a stable zero-bias conductance peak at both ends of the device. Gate
voltages were V1 = +189 mV, VSC = −2.6 V, Vqpc,top = −6 mV,Vtop = −0.1 V, Vqpc,bot = −265 mV, Vbot = +0.2 V, and
Vloop = −3.0 V.

The numerical bound-state spectrum was determined
as a function of Φ, including the effect of loop inductance
(see Methods). Figures 4(d-f), show numerical spectra
with variation of the magnetic flux at three values of B‖.
At zero in-plane magnetic field [Fig. 4(d)], the spectrum
is spin degenerate and all Andreev bound state energies
are periodically modulated as a function of Φ. At inter-
mediate magnetic fields [Fig. 4(e)], the system is trivial
in some range of Φ and topological in another range. In
the topological region, a zero-energy state appears in the
gap. These regions are separated by a gap-closing transi-
tion. For higher magnetic fields [Fig. 4(f)], the spectrum
becomes topological for all values of Φ and the junction
hosts a stable zero-energy state.

We next examine the effect on the spectrum when
B‖ was tilted by small angles in the plane of the junc-
tion. As shown in Figs. S7(a-c), a tilt angle of ∼ 20◦

closed the reopened gap. Similar behavior is seen in the

model, though with greater sensitivity to tilt, as seen in
Figs. S7(d-f).

Finally, we investigate simultaneous tunnelling spec-
troscopy at both ends of the device using the two QPCs
in Device 3. Differential conductances GT and GB, mea-
sured at the top (top row of Fig. 5) and bottom (bottom
row of Fig. 5) of the junction show correlated modula-
tion of the superconducting gaps at the two ends as a
function of B⊥ with flux switches occurring at the same
values of B⊥ at both ends [Figs. 5(c) and 5(d)]. The sizes
of the superconducting gaps at the two ends are differ-
ent, with ∆T ∼ 50 µeV at the top and ∆B ∼ 120 µeV
at the bottom. In the presence of an in-plane magnetic
field, the gaps at the two ends disappeared simultane-
ously at B‖ ∼ 0.2 T before reopening and undergoing a
final gap closure at B‖ ∼ 0.48 T. A gapless spectrum at
B‖ ∼ 0.2 T was seen for all values of B⊥ [Figs. 5(e,f)].
At B‖ ∼ 0.3 T, the maximal reopened gaps at the two
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ends have different magnitudes, with a smaller gap at
the top end (∆T ∼ 30 µeV) compared to the bottom end
(∆B ∼ 50 µeV). Both ends display ZBCPs that emerge
from the gap-reopening and were reasonably stable for
a range of in-plane magnetic field, phase [Figs. 5(g,h)]
as well as junction gate voltage gate V1. However, their
range in V1 was not strongly correlated (see Supplemen-
tary Material Fig. S8).

The observed ZBCPs emerging from a gap reopen-
ing are consistent with the model, which exhibits topo-
logical superconductivity. However, the lack of general
end-to-end correlations suggest the importance of long-
wavelength disorder as well as sensitivity of coupling of
subgap states to local probes. We speculate that the
strength of disorder in our devices is low enough to al-
low observation of a simultaneous reopening of the gap
on the ends, as the closing and reopening is a bulk prop-
erty that does not depend sensitively on local probe cou-
pling. On the other hand, ZBCPs in local measurements
are sensitive to the details of couplings, and so ought
to be less robust with varying parameters and disorder.
Experiments that simultaneously detect both local and
bulk properties, such as non-local conductance, will help
resolve this matter [22–26].
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SUPPLEMENTARY MATERIAL

Methods

Wafer structure: The wafer structure used in this
work consists of an InAs two-dimensional quantum well
in epitaxial contact with Al. The wafer was grown
on an insulating InP substrate by molecular beam epi-
taxy comprising a 100-nm-thick In0.52Al0.48As matched
buffer, a 1 µm thick step-graded buffer realized with
alloy steps from In0.52Al0.48As to In0.89Al0.11As (20
steps, 50 nm/step),a 58 nm In0.82Al0.18As layer, a 4 nm
In0.75Ga0.25As bottom barrier, a 7 nm InAs quantum
well, a 10 nm In0.75Ga0.25As top barrier, two monolayers
of GaAs and a 7 nm film of epitaxially grown Al. The
top Al layer was grown in the same molecular beam epi-
taxy chamber used for the rest of the growth, without
breaking the vacuum.

Hall effect measurements were performed in Hall bar
devices with Al etched away (see Fig. S12 for Hall effect
measurements). The Hall bar was covered with the same
dielectric material as used in the Josephson junction ex-
periments, grown under nominally identical conditions
and of the same thickness. A peak electron mobility
µ = 43, 000 cm2/Vs was observed at a carrier density
of n = 8×1011 cm−2, corresponding to a peak mean free
path of le ∼ 600 nm at top gate voltage VTG = −0.8 V.
In the junction experiments, we typically use Vsc = −3 V
to control density under the superconducting leads and
V1 = 0 − 0.1 V to control density in the barrier region.
Different geometries and lateral gate coupling makes it
difficult to compare these voltages directly. To get a
rough idea, however, taking le to be around 600 nm in
the junction yields quasi-ballistic motion along the junc-
tion, l ∼ 3le, and ballistic motion across the junction,
wn ∼ le/6.

Transport characterization of a large-area Hall bar
with Al in place yielded a critical field of 2.5 T [9, 27] for
the parent Al layer, considerably larger than field where
the gap closure occurs, ∼ 0.5 T.

Device fabrication: Devices were fabricated using
conventional electron beam lithography. Devices on the
same chip were electrically isolated from each other us-
ing a self-aligned mesa etch process, first by removing
Al using Transene D wet etch, followed by a wet etch
in H2O:C6H8O7:H3PO4:H2O2 (220:55:3:3) to remove the
semiconductor to a depth of ∼ 300 nm. Next, Al was se-
lectively removed leaving the Josephson junction and flux
loop. A 15 nm thick layer of HfO2 grown at 90◦C using
atomic layer deposition (ALD) was used as the gate di-
electric. Gates were defined using electron beam lithog-
raphy followed by e-beam evaporation of Ti/Au layers
of thicknesses (5 nm/20 nm) for finer structures and (5
nm/350 nm) for the bonding pads. The bottom Ti/Au
ohmic contact was formed by etching away a U-shaped
trench in the mesa and then contacting the InAs 2DEG.

An additional HfO2 layer deposited by ALD and subse-
quent lift-off was used to isolate the Ti/Au ohmic from
the superconducting loop and mesa.

Electrical transport measurements: Electrical
transport measurements were performed in an Oxford
Triton dilution refrigerator at a base temperature of
20 mK using conventional low-frequency AC lock-in tech-
niques at 31.5 Hz excitation frequency, an AC excitation
amplitude of 3 µV and a variable DC voltage VSD for
bias spectroscopy. The current through the device was
recorded using a low-impedance current-to-voltage con-
verter that was attached to the ohmic contact connected
to the superconducting loop. For measuring the third
harmonic of the current, a higher AC excitation ampli-
tude of 10 µV was used. Magnetic field to the sample was
applied using a three-axis (Bx, By, Bz)=(1T, 1T, 6T)
vector magnet.

We fabricated 32 devices, of which 10 were measured.
We summarize the behavior of these devices. We also
estimate the probability PZ,T(B), of observing a ZBCP,
which is defined as the percentage of operable V1 gate
space that shows stable ZBCPs at the top (bottom) end.
See Fig. S11 for example.

Device 1: Gap reopening with ZBCP at top end, bot-
tom QPC did not work. PZ,T ∼ 15%.

Device 2: Gap reopening at both ends, ZBCP only at
the top end. PZ,T ∼ 30%.

Device 3: Gap reopening and stable ZBCP at both
ends. PZ,T ∼ 10%, PZ,B ∼ 5%.

Device 4: Gap reopening and stable ZBCP at both
ends. PZ,T ∼ 10%, PZ,B ∼ 10%.

Device 5: Gap reopening and stable ZBCP at both
ends. PZ,T ∼ 5%, PZ,B ∼ 5%.

Device 6: Gap reopening at both ends. Stable ZBCP
at top end. ZBCP at bottom end oscillated as a function
of in-plane magnetic field. PZ,T ∼ 5%, PZ,B ∼ 5%.

Device 7: Gap reopening on both ends. Soft gap at
low fields at both ends.

Device 8: Spectroscopy possible at both ends, how-
ever induced superconducting gap at the bottom end col-
lapsed at B‖ ∼ 150 mT.

Device 9: Spectroscopy not possible at bottom end.
Device 10: No detectable superconducting gap on ei-

ther end.
Theoretical simulation: PZ,T = PZ,B ∼ 9–18%.
Magnetic field alignment: The sample is oriented

with respect to the vector magnet such that Bx of the
magnet is nominally along B⊥, the field in the direction
perpendicular to the plane of the wafer [Fig. 1(c)] and
Bz of the magnet is nominally parallel to B‖ the field
direction along the SN interfaces [Fig. 1(c)]. However,
sample misalignment causes the magnet Bz to have a
small contribution to B⊥, which controls the flux through
the superconducting loop. At non-zero Bz, it is there-
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fore necessary to identify the proportional amount of Bx
that results in constant flux through the loop. At zero
Bz, the value of Bx at which the superconducting gap is
maximised corresponds to zero and multiples of Φ0, while
distinct phase slips appear at odd multiples of Φ0/2. This
allows us to calibrate the flux through the device at zero
Bz. At finite Bz, the superconducting gap acquires a
phase-asymmetric dispersion, and the maxima of the gap
cannot be used to track lines of constant flux. Instead,
we use the phase slips to identify lines of constant flux
through the device. This allows us to define magnetic
fields B‖ and B⊥ that compensate for the finite tilt of
the sample.

Estimation of flux loop inductance: The induc-
tance of the superconducting loop is a combination of
the geometric inductance and the kinetic inductance of
the thin Al layer, and is dominated by the latter [18].
We estimate the geometric inductance of the loop as
LG ∼ 2.5 pH. The kinetic inductance of a thin super-
conductor is proportional to its sheet resistivity and is
given as

LK =
ls
ws

h

2π2e

R�

∆
, (1)

where ls and ws are the length and width of the supercon-
ducting stripe defining the superconducting loop includ-
ing the meanders that are part of the superconducting
leads, and R� is the normal-state sheet resistivity of the
Al/InAs layer. ls/ws ∼ 240 in our device and has two
contributions, l1/w1 ∼ 40 for the U-shaped part of the
loop and l2/w2 ∼ 200 arising from the meandering part
of the superconducting leads. The sheet resistance R�

in our material is measured as ∼6 Ω in the normal state
of a large area Al Hall bar [27] and the superconducting
gap ∆ ∼ 200 µeV. This leads to a kinetic inductance
LK ∼ 1.5 nH, and total inductance L ∼ LK ∼ 1.5 nH. In
our numerical simulations of the flux dependence of An-
dreev bound state spectrum, we find that L ∼ 2 nH quali-
tatively reproduces the features observed in the measured
subgap spectra (see Fig. 4).

Model: To model our device, we use an extension of
the Hamiltonian proposed in Refs. [1, 2] to account for
finite thickness and include orbital effects. The model
is based on two layers of a two-dimensional semicon-
ductor with Rashba spin-orbit coupling. We consider a
rectangular device, with the rectangle divided into three
parts by width: normal region in the middle with width
wn, and superconducting regions on two sides, each of
width w. In the Nambu basis (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑), the

Bogoliubov–de Gennes Hamiltonian is given by:

H =

[
−
∂2
x + ∂2

y

2m∗
− t⊥νx − µ(y) + iα(z) (∂xσy − ∂yσx)

]
τz

+
g(y)µBB‖

2
σx + ∆(y, z)τ+ + ∆∗(y, z)τ−,

(2)
where σ, τ, ν are Pauli matrices acting in spin, electron-
hole, and layer basis, respectively. Here m∗ is the effec-
tive mass of electrons in the semiconductor, α(z) is the
layer-dependent Rashba spin-orbit coupling strength, t⊥
is the inter-layer hopping amplitude, B‖ is the magnetic
field applied along the junction, and µB is the Bohr mag-
neton. The g-factor g(y) is different for the normal and
superconducting regions, such that

g(y) =

{
gN |y| < wn

2
gS

wn

2 < |y| < w + wn

2 .
(3)

Similarly, the chemical potential µ takes the values µN in
the normal region and µS in the superconducting region.
In the last two terms, ∆(y) is the superconducting pairing
potential which is non-zero only in the superconducting
region:

∆(y) =


0 |y| < wn

2

∆eiφ/2 wn

2 < y < w + wn

2

∆e−iφ/2 −w − wn

2 < y < −wn

2 .
(4)

To model the finite thickness of the system, thereby ac-
counting for the orbital effects of the in-plane magnetic
field, we utilize the two-layer structure. Hopping between
the two layers is described by the amplitude t⊥. The or-
bital effect enters as a vector potential ~A = B‖yẑ, where z
is the out-of-plane direction; the vector potential is incor-
porated into the tight-binding Hamiltonian as a complex
amplitude with the Peierls substitution [16]. Further-
more, the parallel magnetic field induces linear phase
growth along the junction’s cross section [13], which is
modeled as an additional modulation ∝ B‖yz to the su-
perconducting phase. We note that another possibility of
modeling the phase evolution is assuming the proximity
effect is only present at the top layer and calibrating ∆
accordingly. The basis of this approach is integrating out
the proximitizing superconductor’s degrees of freedom,
and it yields very similar results to the ones we report
here. In reality a detailed simulation of the system is
more involved. It should include the effect of disorder
in the Al and InAs layers, and consider a well with finite
thickness in the z direction. We should therefore treat the
Hamiltonian introduced in Eq. (2) as a phenomenological
model that, with a proper choice of effective parameters,
reproduces qualitatively the experimental observations.

For our numerical calculations, we discretize the
Hamiltonian to a tight-binding model on a square lattice
of spacing a = 10 nm. Simulations are performed with
the following parameters: m∗ = 0.026me, ∆ = 140 µeV,
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t⊥ = 10 meV, l = 4 µm, wn = 100 nm, w = 200 nm,
wz = 10 nm, µSC = 3.6 meV, µN = 3.3 meV. The g-
factors are taken to be gN = 8 and gS = 4. We use
the leads spectroscopy measurements [Fig. S1] to match
Aeff (the effective cross section for the field-induced su-
perconducting phase gradient), µSC, and the difference
in spin-orbit coupling between the two layers. We ob-
tained Aeff = 0.4(2w + wn)wz, µSC = 3.6 meV, and
the spin-orbit coupling constants α(0) = 15 meV nm,
α(1) = −α(0)/4. Pfaffians were computed using the pf-
pack software package [28]. Some of the preliminary sim-
ulations were performed using the Kwant software pack-
age [29].

We further introduce the effect of finite loop induc-
tance to simulate the flux jumps observed in the exper-
imental phase spectra by establishing the relation be-
tween the external flux (Φ) penetrating the device and
the phase difference (φ) dropped across the Josephson
junction. The spectra of the system obtained as a func-
tion of φ can then be mapped to spectra as a function of
the applied flux Φ. Given a phase difference φ, we calcu-
late the ground-state energy EGS(φ) by summing up the
energies of all occupied levels E < 0. We then calculate
the supercurrent at zero temperature, I(φ) = −dEGS

dφ .
In the presence of a finite loop inductance L, the exter-
nal flux Φ and the phase difference across the Joseph-
son junction φ are related as Φ = (Φ0/2π)φ − LI(φ),
where the second term accounts for the magnetic flux
dropped across the flux loop when a supercurrent I(φ)

flows through it. For each Φ, several values of φ may
be possible. We use a quasi-static approximation and
choose the value of φ that minimises the total energy
Etot(φ) = EGS(φ) + 1

2LI
2(φ), where the second term is

the magnetic energy stored in the loop. Once the map-
ping Φ → φ is established, we obtain the energy spec-
trum as a function of Φ. Here we provide simulations
with L = 2 nH.

In addition, we examined the effect of disorder by intro-
ducing a random potential term V (x, y) into the Hamilto-
nian. We took V (x, y) to be a random uncorrelated Gaus-
sian variable, 〈V (x, y)V (x′, y′)〉 = V 2

0 δ(x − x′)δ(y − y′).
The corresponding tight-binding version of this random
potential is a site-dependent random addition to the
chemical potential, whose variance VTB is related to the

continuum value V0 by V 2
TBa

2 = V 2
0 = 1

m∗τ =
2a2t‖
τ ,

where τ is the transport lifetime. Therefore, V 2
TB =

2t‖/τ . We took ~/τ = 1 meV in the region not covered
by the superconductor and ~/τ = 0.5 meV for the cov-
ered region (due to the lower Fermi velocity there). For
this intermediate range of τ , roughly consistent with the
mean free path from Fig. 12, disorder may or may not de-
stroy the zero-energy state, depending on the particular
disorder realization. When τ is increased by a factor of
10 (weak disorder) the zero-energy state is almost always
observed, while decreasing τ by a factor of 10 (strong
disorder) essentially eliminates the zero-energy state.
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FIG. S1. Spectroscopy of perforated superconducting leads. (a) False-color scanning electron micrograph of a
representative device used to study the gap under the superconducting leads. The superconducting lead has meandering
perforations of dimensions equivalent to those used in the planar Josephson junction devices. VTG allows gate control of the
electron density in the regions where Al has been etched away. Tunnelling spectroscopy is performed using quantum point
contacts that are electrostatically defined using a combination of Vqpc and Vtop gate voltages. (b) Differential conductance G
as a function of in-plane magnetic field B‖ at VTG = −0.8 V displays a soft superconducting gap that collapses at B‖ ∼ 0.3 T.
The hardness of the gap is significantly improved by depleting carriers using VTG. (c) At VTG = −4.0 V and (d) −8.0 V a
hard superconducting gap is obtained that persists until B‖ ∼ 0.6 T. Numerical simulations of the spectrum underneath the
superconducting leads are shown for (e) µSC = 3.6 meV and (f) µSC = 3.2 meV. The parameters of the model are adjusted to
match the spectrum of the leads: Aeff , µSC, and the difference in spin-orbit coupling between the layers. Simulations for the
planar Josephson junction device are performed using the same parameters.
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FIG. S2. Theoretical phase diagrams and spectra. (a) Topological phase diagram in the plane of the parallel magnetic
field B‖ and the chemical potential µN in the normal region (at φ = 0). The colors indicate the topological invariant Q, which
is +1 (−1) for the trivial (topological) phase, multiplied by the energy gap. The diagram exhibits appreciable topological
regions starting near B‖ ∼ 0.2 T. Near closings of the gap at B‖ ∼ 0.2 T are almost independent of µN. These are not k = 0
gap closings and are thus not related to a class-D topological phase transition [30, 31]. (b) Topological phase diagram in the
B‖–φ plane (at µN = 3.3 meV), showing that as a function of B‖, the system can support a topological phase for all, none,
or some values of φ. The spectra of finite junctions are shown for (c) µN = 0.9 meV, (d) µN = 3.3 meV, (e) µN = 7.8 meV,
(f) µN = 1.5 meV. While (c)–(e) correspond to the three topological regions shown in (a), and therefore support Majorana zero
modes (red), the spectrum in (f) does not undergo a topological transition; instead, the gap nearly closes around B‖ ∼ 0.2 T
and then reopens without a zero-energy state.
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FIG. S3. Device 1: Reopening of the gap at different phase biases. Differential conductance measured as a function
of in-plane magnetic field at different values of the flux threading the superconducting loop varying from (a) Φ = −0.5Φ0 to
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FIG. S4. Device 2: Reopening of the gap at different phase biases. Differential conductance measured as a function
of in-plane magnetic field at different values of the flux threading the superconducting loop varying from (a) Φ = −0.5Φ0 to
(i) Φ = 0.5Φ0. The value of gap-reopening field Bc shows a variation (∼ 40 mT) with the externally imposed magnetic flux Φ.
The closing of the gap and the appearance of the zero-bias state remain correlated with the variation of flux.
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FIG. S5. Device 1: Reopening of the gap as a function of chemical potential. Differential conductance measured as
a function of V1 at different values of in-plane magnetic field. (a) B‖ = 0.18 T, the spectrum is fully gapped with no low-energy
states. (b) B‖ = 0.21 T, the spectrum becomes gapless. (c) B‖ = 0.26 T, the gap reopens with sub-gap state formation near
zero energy. (d) B‖ = 0.32 T, the spectrum is fully gapped with a stable zero-bias conductance peak. We also evaluate the field
dependence of the spectrum at different values of V1. Differential conductance measured as a function of in-plane magnetic
field and Φ = 0 at (e) V1 = 70 mV, the gap reopens without the formation of a zero-energy state (f) 75 mV, and (g) 87 mV.
The zero-energy state exhibits oscillatory splitting behavior that is reminiscent of field-dependent hybridization of Majorana
zero modes in a finite-length 1D topological superconductor [32].
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FIG. S6. Device 2: Reopening of the gap as a function of chemical potential. Differential conductance measured
as a function of V1 at different values of in-plane magnetic field. (a) B‖ = 0.2 T, the spectrum is gapless. (b) B‖ = 0.25 T,
the superconducting gap begins to reopen with zero-bias peak formation. (c) B‖ = 0.32 T, the gap reopens maximally with a
stable zero-bias conductance peak. (d) B‖ = 0.36 T, the zero-bias conductance peak has a larger span in V1. We inspect the
in-plane field dependence of the spectrum at different values of V1. Differential conductance measured as a function of in-plane
magnetic field and Φ = 0 at (e) V1 = 165 mV, we observe the closing and reopening of the superconducting gap without the
formation of a zero-bias conductance peak. (f) V1 =175 mV, we observe a zero-bias conductance peak that stabilizes around
B‖ = 0.35 T. (g) V1 =185 mV, the zero-bias conductance peak is stable from B‖ = 0.3 T to B‖ = 0.45 T
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FIG. S7. Device 1: Tilting of the in-plane magnetic field. Differential conductance measured as a function of in-plane
magnetic field where a magnetic field of magnitude B‖ is applied in the plane of the sample with angle θ with respect to the
axis of the Josephson junction. (a) At θ = 0, we observe reopening of the gap with formation of a zero-bias conductance
peak that splits at B‖ = 0.38 T. (b) At θ = 5◦, the reopening of the gap is suppressed and the zero-bias conductance peak
begins to split at a smaller magnetic field (B‖ = 0.33 T) compared to θ = 0. (c) At θ = 20◦, the reopening of the gap is
completely suppressed. The critical magnitude of the field for the reopening remains fixed at B‖=0.22 T for different values
of θ. (d)–(f) Model spectra in the presence of a tilted in-plane magnetic field for θ = 0, θ = 4◦ and θ = 10◦. The tilted field

is modeled as a modified Zeeman term
gµBB‖

2
(σx cos θ + σy sin θ), and vector potential, ~A = B‖ (ẑy cos θ + x̂z sin θ), which

maintains translational invariance along x.
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FIG. S8. Device 3: Concurrent tunnelling spectroscopy at the two ends of the junction. Differential conductance
measured as a function of source-drain bias VSD and in-plane magnetic field B‖, (a) GT the top end and (b) GB at the bottom
end. The phase bias is set to Φ = 0. Both ends display a closing and reopening of the gap at B‖ ∼ 0.2 T. Both ends display
formation of subgap states after the reopening of the gap. (c) and (d) Differential conductance measured as a function of V1

simultaneously at the top and bottom ends of the junction at B‖ ∼ 0.34 T. The ZBCP is stable for a larger range of V1 at the
top end compared to the bottom end.
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FIG. S9. Device 4: Simultaneous tunnelling spectroscopy at the two ends of the junction. Differential conductance
measured as a function of source-drain bias VSD and in-plane magnetic field B‖. (a) GT the top end and (b) GB at the bottom
end. The phase bias is set to Φ = 0. Both ends display a closing and reopening of the gap at B‖ ∼0.2 T. Both ends display
formation of subgap states after the reopening of the gap. At the top end, the subgap state oscillates around zero bias, and
forms a zero-bias conductance peak at B‖ = 0.3 T. At the bottom end, a stable zero-bias conductance peak appears after the
reopening of the gap. The induced gap collapses simultaneously at B‖ = 0.45 T at both the ends. Simultaneous differential
conductance measured at the top and bottom ends as a function of source-drain bias VSD and out-of-plane magnetic field B⊥
for different values of in-plane magnetic field B‖. (c) and (d) At B‖ = 0, the superconducting gap is modulated periodically
at both ends as a function of B⊥ with the same periodicity and zero relative phase difference. (e) and (f) At B‖ = 0.2 T,
the spectrum at both ends becomes gapless for all values of B⊥ (g) and (h) At B‖ = 0.3 T the superconducting gap reopens.
Both the top and bottom ends display a zero-bias conductance peak which is stable with respect to variation of phase. Gate
voltages were V1 = +93 mV, VSC = −3.5 V, Vqpc,top = −0.375 V, Vtop = +0.1 V, Vqpc,bot = −0.35 V, Vbot = +0.09 V, and
Vloop = −3.0 V.
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FIG. S10. Device 4: Concurrent reopening of the gap as a function junction gate at the two ends of the
junction. Differential conductance measured as a function of V1 simultaneously at the top and bottom ends of the junction
at different values of in-plane magnetic field. (a, e) B‖ = 0, (b, f) B‖ = 0.15 T, subgap states are lowered in energy but the
gap is still finite. (c, g) B‖ = 0.2 T, the superconducting gap closes at both the top and bottom ends. (d, h) B‖ = 0.3 T, the
gap reopens with the formation of subgap states with zero-bias conductance peaks for certain ranges of V1. The subgap states
do not exhibit regions of sustained correlation as a function of V1.
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FIG. S11. Device 4: Third harmonic of the current at the two ends. Third-harmonic current measured at VSD = 0
as a function of V1 and in-plane magnetic field B‖ (a) IT,3ω at the top and (b) IB,3ω at bottom of the junction, at phase
bias Φ = 0. A positive signal indicates a zero-bias conductance peak [9]. The first closing of the gap produces a region with
intermittent positive third-harmonic current at B‖ ∼ 200 mT at both ends. At B‖ > 400 mT, the third-harmonic current is
positive for a sizable fraction of V1, associated with a reclosing of the gap. For 200 mT ≤ B‖ ≤400 mT, regions of V1 with
positive third harmonic correspond to ZBCPs after the gap-reopening. At B‖ = 300 mT, we estimate the percentage of V1

space that produces a positive third harmonic signal as PZ,T ∼ 11% at the top tunnel probe and PZ,B ∼ 13% at the bottom
tunnel probe.
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FIG. S12. Hall effect measurement. (a) Optical micrograph of a Hall-bar device. The Al layer was etched away using
Transene D etchant, followed by wet-etching of the heterostructure to define a mesa in the shape of a 6-probe Hall bar. Next,
HfO2 dielectric of thickness 15 nm (same as that used in the JJ experiments) was deposited globally on the entire sample.
A Ti/Au top gate was then deposited using electron-beam evaporation. For Hall effect measurement, an AC current bias
of amplitude I = 10 nA, and excitation frequency 166 Hz, was applied to the source terminal of the device with the drain
grounded. Longitudinal voltage, Vxx and transverse voltage, Vxy were measured using two separate separate lock-in amplifiers,
as a function of the top-gate voltage, VTG. VTG controls the carrier density in the active region. (b) Schematic cross-section of
the active region showing the layers of the heterostructure, the dielectric and the Ti/Au gate. (c) Longitudinal sheet resistance
ρxx = (Vxx/I)(W/L), where L/W = 2.5 is the aspect ratio of the active region. (d) Transverse resistance ρxy = Vxy/I, measured
as a function of VTG at different values of out-of-plane magnetic field B⊥. (e) Transverse resistance ρxy as a function of B⊥
at different values of VTG. Linearity of the transverse resistance indicates single-channel electron transport. (f) Electron Hall
mobility µe as a function of electron density n. Here, n = B⊥/eρxy and µe = 1/(eρxxn). (g) Electron mean free path le as a
function of VTG. Here, le = (~µe/e)

√
2πn.


